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Optimal turbulent transport in microswimmer suspensions
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Microswimmer suspensions self-organize into complex spatiotemporal flow patterns,
including vortex lattices and mesoscale turbulence. Here we explore the consequences for
the motion of passive tracers, based on a continuum model for the microswimmer velocity
field. We observe two qualitatively different regimes distinguished via the dimensionless
Kubo number K . At advection strengths right above the transition to turbulence, the flow
field evolves very slowly (K � 1) and the spatial vortex structures lead to dominant
trapping effects. In contrast, deep in the turbulent state, much faster dynamics (K � 1)
consistent with the so-called sweeping hypothesis leads to transport properties completely
determined by the temporal correlations. In between (K ≈ 1), we observe a regime of
optimal transport, signaled by a maximum of the diffusion coefficient.

DOI: 10.1103/PhysRevFluids.7.084501

I. INTRODUCTION

One of many interesting phenomena in active fluids [1–5] is the enhancement of mixing of
suspended particles due to the motion of the microwimmers and accompanying hydrodynamic
flows. This effect, observed in recent experiments [6–10] and simulations [11–13], might be utilized,
e.g., in microfluidic devices [14,15]. However, it is largely unexplored how the complex emerging
large-scale flow patterns, which are typical for such microswimmer suspensions, impact the mixing
and transport properties of these nonequilibrium systems. Here we quantify active fluid transport in
the framework of an experimentally validated model for polar active fluids, which enables a precise
control of the flow states ranging from vortex lattices [16–22] to active turbulence [21–26], either
externally, e.g., through obstacles [17,19,20,27,28], or by changing the fluid parameters [18,21,22].

Previous work has mostly focused on characterizing transport deep in the turbulent regime,
drawing on analogies either to two-dimensional turbulence [29,30] or to stochastic processes such
as Lévy walks [31,32]. Much less is known about transport close to the transition region between
different flow states. Interestingly, equilibrium systems close to structural phase transitions often
display anomalous transport properties, e.g., anisotropic and enhanced diffusion near transitions to
nematic phases in liquid crystals [33–35] or peaks in the thermal conductivity close to structural
changes in crystalline solids [36–38]. In contrast, for a nonequilibrium, active system, we rather
expect the interplay of the spatial and temporal persistence of flow structures to have a profound
impact on transport. For example, in a stationary vortex lattice, tracer trajectories will be trapped
by individual vortices, following closed streamlines. This situation is comparable to the transport of
electrons in electrostatic potentials, where trajectories are determined by equipotential lines [39–43].
When the flow becomes turbulent, particles will travel between vortices, giving rise to a diffusive
transport for long times, similar to the transport of charged particles in time-varying fields [44–46].
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Inspired by these analogies, we perform an analysis of the transport properties of active tur-
bulence in terms of the Kubo number K , comparing temporal and spatial correlations of the flow
field. We find that the diffusion coefficient as a function of K obtains a maximum close above the
transition from a vortex lattice to the turbulent state. In this regime, the interplay between temporal
correlations and spatial structure of the underlying flow leads to optimal transport conditions.

II. MODEL

In this work, we employ an established model for dense microswimmer suspensions
[18,21,23,24,29,47–50] in which density fluctuations can be neglected [51] and the dynamics can be
described on a coarse-grained (order parameter) level via an effective microswimmer velocity field
v [50]. We choose this model over different models that have been shown to exhibit similar pattern
formation [27,52,53] because it can be derived from microscopic Langevin dynamics including
coupling to the solvent flow [50] and has been shown to capture experiments on bacteria in
unconfined bulk flow [23] as well as in the presence of geometric confinement, e.g., obstacle lattices
[19]. The dynamics of v is given by

∂t v + λv · ∇v = −δF
δv

,

(1)

F =
∫

dx
[

q∇ · v − a

2
|v|2 + b

4
|v|4 + 1

2

∣∣(1 + ∇2)v
∣∣2

]
,

where q is a pressurelike quantity that ensures the incompressibility condition ∇ · v = 0. The
dynamics can be interpreted as a competition between gradient dynamics determined by the
functional F and nonlinear advection (λv · ∇v), where λ is the advection strength, which can be
related to mesoscopic parameters such as the self-propulsion speed [20,50]. For high activity, i.e.,
0 < a < 1, the minimum of F is a vortex pattern with square lattice symmetry characterized by two
perpendicular modes with characteristic wavelength � = 2π [21]. When the nonlinear advection
strength λ is increased above some critical value λ�, which depends on the other parameters a and
b, the stationary square lattice pattern is destabilized and the advection term induces a dynamic,
fluctuating state denoted as mesoscale turbulence [23,50].

We consider N passively advected tracer particles that follow the effective microswimmer
velocity field v governed by Eq. (1), according to

∂t Xi(t ) = v(Xi(t ), t ), (2)

where Xi = (Xi,Yi ) denotes the position of tracer i. In other words, the tracers sample the La-
grangian trajectories (moving with the flow) of the evolving field v(x, t ). When considering Eq. (2)
as governing equation for a single tracer, one could argue that it should contain a term stemming
from molecular noise, e.g., Brownian diffusion. However, here we will focus on the impact of
advective transport and neglect the influence of molecular diffusion, hence, there is no noise term in
Eq. (2). To justify this assumption, let us briefly consider the Peclet number Pe, which gives the ratio
between advective and diffusive transport in a system and is calculated via Pe = �ava/D0, where
�a denotes the length scale of the advecting flow, va is the average advective velocity and D0 is
the bare molecular diffusion [46]. To estimate the Peclet number for tracers in bacterial suspensions
exhibiting bacterial turbulence, e.g., Bacillus subtilis [47], we can first calculate an approximate
molecular diffusion coefficient using the Stokes-Einstein relation [54], which is valid for a spherical
tracer in three dimensions at low Reynolds number. The relation is given by D0 = kBT/(3πηd ),
where kB is the Boltzmann constant, T is the temperature, η is the viscosity of the solvent medium,
and d the diameter of the tracer. For a tracer of micron size (d ≈ 1 μm) in water at normal
conditions (T = 293.15 K, η ≈ 0.001 N s m−2), we obtain D0 ≈ 0.4 μm2 s−1. Second, the length
scale in bacterial turbulence observed in B. subtilis is approximately given by the mean vortex radius
�a ≈ 40 μm [47] and the average velocity va is of the order of 10 μm s−1 [47], depending on the
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strength of activity. This estimate yields a Peclet number of Pe ≈ 103, i.e., advective transport is
at least three orders of magnitude stronger than the bare molecular diffusion. These considerations
indicate that neglecting molecular diffusion and, thus, a corresponding noise term in Eq. (2), is
indeed a valid assumption, at least for bacterial suspensions exhibiting a mesoscale-turbulent state.
We also neglect any other sources of noise stemming, e.g., from chemical heterogeneities.

We employ a pseudospectral method to solve Eq. (1) in a two-dimensional system with periodic
boundary conditions starting from random initial values and simultaneously evolve the tracer
trajectories according to Eq. (2), see Appendix A for details on the numerical methods.

III. TRANSITION TO TURBULENCE

We first discuss spatial and temporal correlations of v(x, t ), which are characterized in the
Eulerian frame (fixed in space). Note that we make the assumption of statistically homogeneous,
stationary, and isotropic turbulence throughout this work. Thus, the correlation functions do not
depend on space x, time t , and orientation but only on the distance r and time lag τ . The longitudinal
correlation function f (r) [55] is defined via

f (r) = v−2〈vx(x, t )vx (x + rex, t )〉, (3)

where ex denotes the unit vector in x direction and the average 〈. . . 〉 is performed over all x and
t . Further, the component-wise root-mean-square velocity v, defined via v2 = 〈v2

x 〉 = 〈v2
y 〉, gives a

measure of the overall strength of the flow field. The Eulerian temporal correlation function CE (τ )
is defined via

CE (τ ) = 〈v(x, t ) · v(x, t + τ )〉. (4)

Integrating the correlation functions over r and τ , respectively, we define a characteristic length and
timescale of the evolving field v(x, t ) [55]. In particular, the longitudinal correlation length 
 and
the Eulerian correlation time τE are calculated via


 =
∫ ∞

0
f (r) dr and τE = 1

2v2

∫ ∞

0
CE (τ ) dτ. (5)

The field v(x, t ) displays two types of spatiotemporal structures depending on the nonlinear
advection strength λ. In particular, there is a threshold value λ�, below which the system settles
into a regular square vortex lattice (see also Appendix B) given as the minimum of the functional
F in Eq. (1). In contrast, for λ > λ�, this stationary, nonfluctuating state is destabilized and the
system exhibits a dynamic, mesoscale-turbulent state, see Fig. 1 for snapshots. When approaching
the threshold value λ� from above, the Eulerian correlation time will diverge due to the development
of a nonzero tail of CE (τ ) (see Appendix C). The value λ� depends on the other parameters and can
be obtained numerically by determining when a stationary square lattice emerges. Figure 1(a) shows
the value of λ� as a function of the coefficient a of the linear term in Eq. (1) at b = 1.6. For the values
of a considered in this work, the threshold value is in the range λ� ≈ 1.7 . . . 2.8.

IV. TRANSPORT PROPERTIES

The emerging states of the flow field v(x, t ) determine the shape of the tracer trajectories Xi(t ) via
Eq. (2). In particular, in the stationary vortex lattice below λ�, the tracers move along closed loops,
whereas above λ�, the trajectories become increasingly irregular. The resulting transport behavior is
quantified by the mean-squared displacement (MSD),

〈�X2〉(τ ) = 1

N

N∑
i=1

[Xi(t0 + τ ) − Xi(t0)]2, (6)

where Xi(t0) is the initial position of tracer i at time t0. In Fig. 1(d), the MSD is plotted as a function
of time lag τ at different values of λ, while corresponding sample trajectories are shown in (e).
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FIG. 1. Transition to turbulence. (a) Numerically obtained threshold value of the nonlinear advection
strength λ� as a function of a (b = 1.6). Below λ�, the system settles into a stationary vortex lattice, whereas
above λ�, a mesoscale-turbulent state emerges. Snapshots of the vorticity field ω = (∇ × v)z at a = 0.5 in the
lattice state at (b) λ = 1.7 and in the mesoscale-turbulent state at (c) λ = 4. Tracers move along instantaneous
streamlines (solid lines) of the flow, which continuously break up and reconnect in the turbulent state. (d) MSD
as a function of time lag τ for different λ and a = 0.5. (e) Sample trajectories for λ = 1.7 (red), λ = 2 (violet),
λ = 4 (blue), and λ = 10 (green) and elapsed time �t = 250. The same scale is used for (b), (c), and (e), where
the gray bar indicates a length of 2π

Initially, we observe ballistic behavior, i.e., 〈�X2〉 ∝ τ 2. For longer time lags, the behavior depends
on the type of emerging state. Below λ�, due to the trapping of tracers in closed loops within vortices
of the stationary lattice, see Fig. 1, the MSD will saturate at a constant value. In contrast, for λ > λ�,
the emerging turbulent state allows the tracers to escape closed loops, introducing randomness to the
trajectories, see Fig. 1(e). As a consequence, the behavior becomes diffusive after the initial ballistic
timescale. The slope 〈�X2〉(τ ) is proportional to the diffusion coefficient D, defined analogously
to Brownian motion, i.e., 〈�X2〉(τ ) = 2dDτ , where d denotes the spatial dimension (d = 2 in our
case). On further increase of λ, we observe another effect: As tracers are transported with v, but
the structures in the flow field itself with λv [see Eq. (1)], the tracer motion increasingly decouples
from that of the flow field, see the supplementary movies [56]. As a result, the ballistic timescale
decreases, trajectories become more irregular, see Fig. 1(e), and the long-time MSD shifts toward
smaller values.

Aiming for a more systematic analysis, we plot the diffusion coefficient in Fig. 2(a) as a function
of λ for different values of 0 < a < 1. After an initial trapping regime, where D = 0, diffusion
increases rapidly above λ� for all values of a. Strikingly, we observe a clear maximum at λ > λ� in
an intermediate regime, 3 < λ < 6, above which D slowly decreases. Further note that an increase
of the activity (measured by the coefficient a) consistently leads to higher D due to enhancement of
the mean kinetic energy ∝ v2 of the flow, compare Eq. (D3) in Appendix D.

To unravel the nonmonotonic behavior of D(λ) and, in particular, the location of the maximum,
we take a closer look at the subtle interplay between different timescales of the flow field. To
this end, we will borrow a concept commonly used for transport problems in random fields,
e.g., electrons in turbulent magnetized plasmas [39,40,43,45]: the dimensionless Kubo number K
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FIG. 2. (a) Diffusion coefficient D as a function of λ for different values of a (b = 1.6). (b) Kubo number
K as a function of λ. Inset: Inverse Kubo number K−1 as a function of λ. The dashed line gives the result
obtained via Kraichnan’s random sweeping hypothesis with c = 0.33, see Eq. (9). (c) Dimensionless diffusion
coefficient D/(
v) as a function of K . The scaling in the different regimes is given as solid and dashed line,
respectively. Error bars represent the standard error.

[41,46,57] defined via

K = τE

τtr
. (7)

It compares the Eulerian correlation time τE [Eq. (5)] with the transport timescale τtr = 
/v, often
denoted as large eddy turnover time in inertial turbulence [55]. We recall that 
 is completely
determined by spatial correlations of the advecting flow. Thus, τtr measures how long it takes a
tracer to be transported a distance 
 by v(x, t ). For fields evolving very quickly compared to τtr ,
we have K � 1, whereas for slowly evolving fields, we have K � 1. Figure 2(b) shows K as a
function of λ. The divergent behavior when approaching the transition to the stationary state at
λ� is inherited from the likewise diverging Eulerian correlation time. Remarkably, we observe a
proportionality K ∝ λ−1 for larger advection strength, i.e., K−1 ∝ λ, see inset. The plausibility
of this linear relation can be shown on theoretical grounds using Kraichnan’s idealized random
sweeping hypthesis [58–60] based on the assumption that decorrelation processes are dominated by
the sweeping of small-scale structures by the large-scale flow. In mathematical terms, this can be
written as an advection problem,

∂t v ≈ −λvs · ∇v, (8)

where we have modified the original ansatz [58,60] by adding the advection strength λ as a prefactor
on the right-hand side, motivated by the structure of Eq. (1). As the fluctuations of the sweeping
velocity field vs ultimately stem from the flow field v, it is reasonable to assume that the sweeping
velocity variance v2

s is proportional to the variance of v given by v2. Here we introduce the
proportionality constant c via vs = c v, to be determined by comparison with numerical results.
Since the calculation is quite involved, we detail all the steps in Appendices E and F and only state
the final result here:

K−1 = 4cλ√
2π

∝ λ. (9)

As seen from the inset of Fig. 2(b), the sweeping hypothesis is remarkably accurate for the highly
dynamic, turbulent flow field at larger values of both λ and a. Via comparison with numerical results,
we find c ≈ 0.33 for the proportionality constant. Surprisingly, this value seems to be quite universal
across wide ranges of parameter sets and does not depend on a and b as long as a > 0.2 (see
Appendix G for a variation of b). The resulting linear relation is shown in Fig. 2 as the dashed line.

084501-5



REINKEN, KLAPP, AND WILCZEK

As only part of the energy of the flow field resides in the large-scale structures responsible for the
sweeping effect, a value c < 1 seems indeed plausible from an intuitive point of view. Closer to the
transition, where the dynamics becomes much slower, the sweeping effect does not seem to be the
dominant driver of temporal decorrelation and more subtle interactions between pattern formation
and nonlinear advection evidently play a larger role.

Having introduced the Kubo number, we are now equipped to characterize different regimes of
transport. For smaller values of λ close to the transition at λ�, the flow field evolves very slowly, i.e.,
τE � τtr , which yields K � 1, see Fig. 2(b). In this regime, vortices persist for long times before
moving or vanishing, which means that tracers are frequently trapped and their trajectories describe
full circular orbits for multiple rotations before being transported further away, see also Fig. 1(e).
Increasing λ leads to faster dynamics of the flow field, the trapping effect becomes less dominant,
and the diffusion coefficient increases as is shown in Fig. 2(a). When the maximum of D is reached,
we have K ≈ 1. Here the two timescales τE and τtr become comparable, which means that it takes
approximately the same amount of time for the flow field to rearrange itself as it takes a tracer to
move to the other side of a vortex comparable in size to 
. Before the orbit can transport the tracer
back to its original position, v(x, t ) has changed considerably and the original vortex has moved or
vanished. This interplay between timescales creates optimal transport conditions. Increasing λ even
further, we observe a third regime where D decreases. Here τE � τtr (yielding K � 1) and tracers
are not able to reach the other side of a vortex before rearrangement. The Lagrangian correlation
time τL approaches the Eulerian correlation time τE and the spatial structure of v(x, t ) becomes
increasingly unimportant for turbulent diffusion. As a consequence, the diffusion coefficient scales
as D ∝ τE ∝ K , see Appendix D for details. Indeed, for particle transport by a random potential
[42–44], this proportionality is an established result and usually denoted as quasilinear regime,
valid for K � 1.

To investigate the scaling behavior further, we plot the nondimensionalized diffusion coefficient
D/(
v) in a log-log plot as a function of K , see Fig. 2(c). After the quasilinear regime for K � 1
(larger λ), where D ∝ K , we find the maximum of D at K ≈ 1. Then, the diffusion coefficient
decreases for K � 1 (smaller λ) due to the dominance of trapping effects. To understand this high-
Kubo-number regime, we have to remind ourselves that transport of tracers always follows the
instantaneous streamlines of the flow field, see Eq. (2). As these persist for long times due to the slow
dynamics, the main “drivers” of transport are those streamlines in between vortices that continue for
large distances and do not curve back on themselves, compare Fig. 1(c). This picture is reminiscent
of percolation theory, on the basis of which a scaling law can be derived analytically for transport
in random potentials acting like stream functions [61]. The derived scaling is D ∝ K−0.3, which
has also been confirmed numerically [39,40,45]. Remarkably, the scaling is also consistent with our
results as shown in Fig. 2(c). We stress that this scaling is robust against variation of the coefficient
b, see Appendix G.

V. CONCLUSIONS

We have investigated transport of particles in active turbulence using a continuum model for
polar active fluids, which exhibits a range of flow states. Maximal diffusion coefficients are reached
for intermediate advection parameters slightly above the transition from a regular vortex lattice to
active turbulence. Drawing on analogies to transport in random fields and, in particular, magnetized
plasmas, we borrow the concept of the Kubo number and show that this optimal turbulent transport
occurs at K ≈ 1, where the flow balances spatiotemporal persistence and dynamics. Additionally,
we rationalize the Kubo number scaling for large active advection using Kraichnan’s random sweep-
ing hypothesis [58,60], establishing analogies to transport in classical hydrodynamic turbulence.

From a more general perspective, our work describes a novel, striking example of how a
nonequilibrium transition between different collective states of an active system leads to a diffusion
anomaly. While such anomalies are well established in the context of structural phase transitions
of equilibrium systems, e.g., liquid crystals [33–35], corresponding nonequilibrium effects are
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less explored and often restricted to simple models such as driven Brownian particles [62,63]
or lattice models [64]. In contrast, here we have established a clear link between a large-scale
pattern formation phenomenon in a generic continuum model of a polar active fluid, and a diffusion
maximum.

As discussed in Sec. II, we neglect the influence of molecular diffusion as we expect the diffusion
coefficient D0 to be much smaller than the turbulent diffusion coefficient observed in this study. We
note that for transport in two-dimensional stationary fields, molecular diffusivity independent of
advection is indeed essential to facilitate transport by letting tracers escape from otherwise closed
streamlines [46]. Such a seed diffusivity D0 would of course alter the behavior in the stationary
vortex lattice state and for very high Kubo numbers, where trapping effects play a significant
role. However, in the region of optimal turbulent transport, where the maximum of the diffusion
coefficient is reached, the flow field already rearranges itself quite quickly and trapping effects do
not play a dominant role. Thus, a strong impact of molecular diffusion on the behavior in this region
is not expected. Still, a systematic investigation of the influence of (molecular) noise on the tracer
dynamics is an interesting subject for future studies.

Further, starting from the present findings for passive pointlike tracers, it seems promising to
investigate additional effects such as impact of inertia, shape or activity of the tracers [65]. Indeed,
for passive flows, such aspects have already been explored in some detail, e.g., Refs. [66,67]. Active
flows provide an intriguing generalization of such studies, whose implications for phenomena like
mixing have yet to be explored.
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APPENDIX A: NUMERICAL METHODS

For the numerical simulations we use the vorticity formulation, which is obtained by taking the
curl of Eq. (1), yielding

∂tω + λv · ∇ω = aω − b[∇ × (|v|2v)]z − (1 + ∇2)2ω, (A1)

where ω = (∇ × v)z denotes the vorticity in the vertical direction. The spatially constant mean
velocity 〈v〉, which is not contained in the vorticity field, is evolved simultaneously via

∂t 〈v〉 = (a − 1)〈v〉 − b〈|v|2v〉. (A2)

Here 〈. . . 〉 denotes the spatial average. The full spatially dependent velocity field is then obtained
using the stream function  via

v = 〈v〉 +
(−∂y

∂x

)
, (A3)

which automatically fulfills the incompressibility conditon ∇ · v = 0. The stream function and the
vorticity are connected via

∇2 = ω. (A4)

The dynamics is calculated in a two-dimensional box of side length L, where the spatial dimensions
are discretized by n × n grid points. For reasons of accuracy, we employ a pseudospectral method.
For the time integration we use Euler’s method combined with an operator splitting technique to
solve the linear part of Eq. (A1) exactly.

Note that the stream function (x, y, t ) is analogous to the fluctuating potential introduced to
investigate transport properties in random fields, e.g., electrons in plasma physics [39–41,43,45].
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The tracers move along equipotential lines of (x, y, t ) and their equations of motion can also be
written as

∂t Xi(t ) = −∂y(Xi,Yi, t ), ∂tYi(t ) = ∂x(Xi,Yi, t ). (A5)

In order to determine the motion of tracer particles according to Eq. (2), or equivalently
Eq. (A5), we need the Eulerian velocity field v(x, t ) at arbitrary points in continuous space x. To
interpolate the field v(x, t ) from the velocity field in the discretized box coordinates (discontinuous
space) we employ bicubic splines. The trajectories of the tracers are calculated via a four-step
Adams-Bashforth method, which allows for higher accuracy than Euler’s method without losing
computational efficiency. Before starting the analysis of the tracer trajectories, we let the dynamics
of v evolve for at least 500 time units to achieve a statistically steady state. The tracers are then
added to the calculation using initial spatial coordinates taken from a uniform distribution covering
the whole box.

APPENDIX B: STATIONARY VORTEX LATTICE

For small advection strength, λ < λ�, the system settles into a stationary square vortex lattice
state characterized by the wave number kc = 1. We make the following ansatz for such a vortex
lattice:

vx(x, y) = v̂ cos(kcy), vy(x, y) = v̂ cos(kcx), (B1)

where v̂ is a velocity amplitude. Note that Eq. (B1) fulfills the incompressibility condition ∇ · v = 0.
For a velocity field according to Eq. (B1), the tracer trajectories X(t ) are given as solutions to the
following initial value problem:

∂t X (t ) = v̂ cos[kcY (t )], ∂tY (t ) = v̂ cos[kcX (t )], X (0) = X0,Y (0) = Y0. (B2)

Using the method of separation of variables, we obtain a condition for the closed trajectories of the
tracers depending on the initial position X0 = (X0,Y0),

sin(kcX ) − sin(kcX0) = sin(kcY ) − sin(kcY0). (B3)

Below the critical value of the nonlinear advection strength, λ < λ�, tracers must follow trajectories
according to Eq. (B3).

Further, we can calculate the Eulerian spatial correlation functions f (r) and CE (r) [see Eqs. (3)
and (C12)] for a velocity field given by Eq. (B1). The calculation is straightforward and yields

f (r) = J0(kcr) + J2(kcr),CE (r) = 2v2J0(kcr), (B4)

where Jn(r) denotes the n-th Bessel function of first kind. Using the result for f (r), the correlation
length can be calculated exactly for a regular vortex lattice via Eq. (5), which yields


 =
∫ ∞

0
J0(kcr) + J2(kcr) dr = 2/kc. (B5)

Setting kc = 1, we have 
 = 2, which is also observed in Fig. 4(b) for λ < λ�.

APPENDIX C: EULERIAN CORRELATIONS

In this section, we discuss spatial and temporal correlations in the Eulerian framework. To this
end, let us first introduce a few important quantities and definitions (for details, see Refs. [55,60]).
We start with the Fourier transform (with respect to space) of the velocity field, which can be
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calculated in 2D via

v(k, t ) = 1

4π2

∫
dx v(x, t ) exp(−ik · x),

v(x, t ) =
∫

dk v(k, t ) exp(ik · x).

(C1)

The full Eulerian velocity correlation tensor is calculated via

CE
i j (r, τ ) = 〈

vi(x, t )v j (x + r, t + τ )
〉
, (C2)

where, in statistically stationary and homogeneous turbulence, CE
i j only depends on the distance

vector r and time lag τ and is independent of the coordinates x and t . The Fourier transform of
CE

i j (r, τ ) is denoted as time-lag-dependent energy spectrum tensor Ei j (k, τ ),

Ei j (k, τ ) = 1

4π2

∫
dr CE

i j (r, τ ) exp(−ik · r), (C3)

CE
i j (r, τ ) =

∫
dk Ei j (k, τ ) exp(ik · r). (C4)

The instantaneous energy spectrum tensor Ei j (k) is defined analogously as the Fourier transform
of the instantaneous correlation tensor CE

i j (r, τ = 0) = CE
i j (r). In two-dimensional isotropic turbu-

lence, the full energy spectrum tensor can be written as

Ei j (k) = Ẽ (k)

πk

(
δi j − kik j

k2

)
, (C5)

where we have introduced the scalar energy spectrum Ẽ (k), which is just a function of the wave
number k = |k|. The energy spectrum is related to the trace of the full tensor Ei j (k) via

Ẽ (k) = πkEii(k). (C6)

As a result of this definition, the mean kinetic energy is given as the integral

1

2
〈|v|2〉 = v2 =

∫
dk Ẽ (k). (C7)

The time-lag-dependent quantity Ẽ (k, τ ) is defined analogously.
The Eulerian correlation function is obtained as the trace of the correlation tensor and, in two

dimensions, is related to the time-lag-dependent energy spectrum via

CE (r, τ ) = CE
ii (r, τ ) = 2

∫ ∞

0
dk Ẽ (k, τ )J0(kr), (C8)

where J0(x) denotes the zeroth-order Bessel function of first kind. Here we have again assumed
isotropic turbulence. Correspondingly, Ẽ (k, τ ) can be written as

Ẽ (k, τ ) = 1

2

∫ ∞

0
dr CE (r, τ )krJ0(kr). (C9)

The correlation function CE (r, τ ) includes both spatial and temporal correlations. To characterize
temporal correlations, we set r = 0 and obtain the Eulerian temporal correlation function CE (τ ),
which is related to the time-lag-dependent energy spectrum Ẽ (k, τ ) via

CE (τ ) = 2
∫ ∞

0
dk Ẽ (k, τ ). (C10)

The spatial correlations, in turn, are characterized by the instantaneous correlation tensor CE
i j (r, τ =

0) = CE
i j (r). In isotropic, incompressible flows, the full tensor CE

i j (r) can be written in terms of the
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FIG. 3. Eulerian correlations for a = 0.5 and b = 1.6. (a) Normalized Eulerian temporal correlation func-
tion CE (τ ) for different values of λ. Below the onset of turbulence at λ�, the system is in a stationary state, i.e.,
temporal correlations do not decay. (b) Longitudinal correlation function f (r) for different values of λ. Due
to the finite-wavelength instability, f (r) shows oscillatory behavior, especially for smaller values of λ. The
longitudinal correlation function below the onset of turbulence at λ�, f (r) can be calculated analytically for a
stationary square vortex lattice, see Appendix B. The result is included as black dashed line.

longitudinal correlation function f (r) [defined in Eq. (3)] via [55]

CE
i j (r) = v2

{
δi j

∂

∂r

[
r f (r)

] − rir j

r

∂ f (r)

∂r

}
. (C11)

The scalar spatial Eulerian correlation function CE (r) can be calculated via contraction, i.e., CE (r) =
CE

ii (r) and is related to f (r) by

CE (r) = v2

r

∂

∂r
[r2 f (r)]. (C12)

Figure 3 shows the Eulerian temporal correlation functions CE (τ ) and the longitudinal spatial
correlation function f (r) at different values of nonlinear advection strength λ. Further, in Fig. 4,
different quantities calculated in the Eulerian framework are plotted as a function of λ. Figure 4(a)
shows the velocity scale v, Fig. 4(b) the integral length scale 
, and Fig. 4(c) the Eulerian correlation
time τE , all defined in the main text.

APPENDIX D: LAGRANGIAN CORRELATIONS

As the tracers sample the Lagrangian statistics of the flow field, we can calculate the Lagrangian
correlation function CL(τ ) from the trajectories of the tracers via

CL(τ ) = 1

N

N∑
i=1

ui(t0) · ui(t0 + τ ), (D1)

where τ is a time lag and ui(t ) denotes the velocity of tracer i at time t . Analogously to the Eulerian
correlation time τE , we calculate the Lagrangian correlation time τL as

τL = 1

2v2

∫ ∞

0
CL(t ) dt . (D2)

Figure 5 shows CL(τ ) in (a) and τL as a function of nonlinear advection strength λ in (b). Note
that even in the stationary vortex lattice state for nonlinear advection strength λ below the thresold
value λ�, CL(τ ) exhibits oscillatory behavior. Here, however, we observe τL = 0. This is because the
closed trajectories of the tracers posses different periods depending on their initial position within
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function of λ for different values of a. Above the transition to turbulence, which occurs at λ� ≈ 1.7 . . . 2.8
(dependent on a), v decreases with increasing λ. (b) The integral length scale 
 as a function of λ for different
values of a. Below λ�, we observe 
 = 2, consistent with a square vortex lattice, see Appendix B. In the
turbulent state, energy is transferred to larger structures, resulting in 
 increasing with λ. (c) Eulerian correlation
time τE as a function of λ for different values of a. Below the onset of turbulence at λ�, the system is stationary,
which means τE must diverge. Above λ�, the dynamics gets faster with increasing λ, resulting in decreasing
τE .
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vortices. As there are infinitely many different initial positions, averaging over all tracers results in
the integral in Eq. (D2) vanishing. The diffusion coefficient as introduced in the main text is directly
related to the Lagrangian correlation time τL via [46,55]

D = τLv2. (D3)

Increasing the nonlinear advection strength λ above the regime where the diffusion constant D is
maximal, compare Fig. 2(a), we find that the spatial structure of the flow field becomes increasingly
unimportant for transport. Here, the Lagrangian correlation time τL approaches the Eulerian corre-
lation time τE , until we have τL ≈ τE , which is valid for large λ (small Kubo number K � 1). In
this regime, often denoted as quasilinear [42–44], the diffusion coefficient can be approximated as

D = τEv2, (D4)

or, in nondimensionalized form D/(
v) ≈ K , as is shown in Fig. 2(c).

APPENDIX E: KUBO NUMBER AS A FUNCTION OF NONLINEAR ADVECTION STRENGTH

As observed in Fig. 2(b), there is an approximately linear relation between the inverse Kubo
number K−1 and the nonlinear advection strengh λ for values of λ sufficiently above the transition
to turbulence. We can understand this linearity based on Kraichnan’s random sweeping hypothesis
[58,59], which was originally used in the context of conventional inertial turbulence. Following the
reasoning of Kraichnan [58,60], we assume a small-scale velocity field v that is passively advected
by a random sweeping velocity vs with variance v2

s = 〈v2
s 〉/2. Thus, in Fourier space, we have

∂t v(k, t ) = −iλk · vsv(k, t ). (E1)

Note that nonlinear advection in our model is scaled by the coefficient λ, see Eq. (1). Hence, we
have also added λ in Eq. (E1). We can readily solve Eq. (E1), yielding

v(k, t ) = exp(−iλk · vst )v(k, 0). (E2)

This result can be used to connect the time-lag-dependent energy spectrum Ẽ (k, τ ) to the instanta-
neous spectrum Ẽ (k), which means we can evaluate the temporal Eulerian correlation function given
by Eq. (C10). The detailed calculation is given in Ref. [60] for inertial Navier-Stokes turbulence.
Taking into account the additional coefficient λ is straightforward and we find

Ẽ (k, τ ) = Ẽ (k)〈exp(−iλk · vsτ )〉, (E3)

where 〈. . . 〉 denotes an ensemble average over different realizations of the sweeping velocity field
vs. Here we assume a Gaussian ensemble distribution with bivariate variables vs,x and vs,y and a
covariance tensor that is diagonal. Under these assumptions, we can further evaluate the time-lag-
dependent energy spectrum, which yields

Ẽ (k, τ ) = Ẽ (k) exp
( − 1

2λ2k2v2
s τ

2
)
. (E4)

Inserting Eq. (E4) into Eq. (C8) yields

CE (r, τ ) = 2
∫ ∞

0
dk Ẽ (k)J0(kr) exp

(
− 1

2
λ2k2v2

s τ
2
)
. (E5)

Thus, we can evaluate the Eulerian correlation function CE (r, τ ) if we have knowledge of the energy
spectrum Ẽ (k), which is completely determined by the statistics of the velocity field v. In particular,
the Eulerian temporal correlation function is obtained by setting r = 0, i.e.,

CE (τ ) = 2
∫ ∞

0
dk Ẽ (k) exp

(
− 1

2
λ2k2v2

s τ
2
)
. (E6)
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The Eulerian correlation time τE is calculated via integration, see Eq. (5), yielding

τE = v−2
∫ ∞

0
dτ

∫ ∞

0
dk Ẽ (k) exp

(
− 1

2
λ2k2v2

s τ
2
)
. (E7)

The time integral can be evaluated, which yields

τE =
√

2π

2λvsv2

∫ ∞

0

Ẽ (k)

k
dk. (E8)

Inserting this into Eq. (7), we can calculate the Kubo number K via

K =
√

2π

2λvs
v

∫ ∞

0

Ẽ (k)

k
dk. (E9)

The above integral is directly connected to the integral length scale [55]. In two dimensions, we
have ∫ ∞

0

Ẽ (k)

k
dk = 
v2

2
, (E10)

which is shown in Appendix F. Thus, we find the following simple equation for the inverse Kubo
number K−1:

K−1 = 4√
2π

λvs

v
. (E11)

As the fluctuations of the sweeping velocity field vs ultimately stem from the field v, it is reasonable
to assume that the component-wise variance v2

s of the sweeping velocity field is proportional to the
component-wise variance of the small-scale velocity field given by 〈v2

x 〉 = 〈v2
y 〉 = v2, i.e.,

vs = c v, (E12)

where c is a coefficient to be determined via comparison with the numerical results. Thus, we find
the simple scaling

K−1 = 4cλ√
2π

∝ λ. (E13)

This linear dependence can be observed in Fig. 2(b) for larger values of λ.
To further test the sweeping hypothesis, we can directly compare the temporal correlation

function CE (τ ) calculated numerically by looking at time-resolved data [using Eq. (4)] with CE (τ )
calculated via Eq. (E6). To this end, we have to determine the energy spectrum Ẽ (k), e.g., via
calculation from the longitudinal correlation function f (r) (also determined numerically) using
Eqs. (C9) for τ = 0 and (C12). Figure 6 shows Ẽ (k) for λ = 10, a = 0.5 and 1.6. As in Ref. [24],
we observe that Ẽ (k) increases as ∝ k3 for small k, shows a clear maximum, and then decreases
exponentially for larger k. Inserting Ẽ (k) into Eq. (E6) and integrating, we can calculate CE (τ ) on
the basis of the sweeping hypothesis and test whether it gives an accurate estimate. Figure 7 shows
the comparison with direct numerical results for CE (τ ) at different values of λ. As in Fig. 2(b), we
have set c = 0.33, which gives quite accurate results for larger values of λ, e.g., at λ = 10. This is
consistent with the linear behavior observed in Fig. 2(b) for large advection strength.

APPENDIX F: CONNECTION BETWEEN ENERGY SPECTRUM
AND INTEGRAL LENGTH SCALE

The integral in Eq. (E9) is directly connected to the integral length scale. To show this, we first
insert Eq. (C9) for τ = 0 into the integral, i.e.,∫ ∞

0

Ẽ (k)

k
dk = 1

2

∫ ∞

0
dk

∫ ∞

0
dr CE (r)rJ0(kr). (F1)
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FIG. 6. Energy spectrum Ẽ (k) as a function of the wave number for λ = 10, a = 0.5, and b = 1.6. The
spectrum increases as ∝ k3, shows a clear maximum and then decreases exponentially for larger k.

As only J0(kr) depends on k, we can integrate over k, yielding
∫ ∞

0

Ẽ (k)

k
dk = 1

2

∫ ∞

0
CE (r) dr. (F2)

The spatial correlation function CE (r) can be written in terms of the longitudinal correlation
function, see Eq. (C12), which yields

∫ ∞

0

Ẽ (k)

k
dk = v2

2

∫ ∞

0

[
2 f (r) + r

∂ f (r)

∂r

]
dr

= v2
∫ ∞

0
f (r) dr + v2

2

∫ ∞

0
r
∂ f (r)

∂r
dr.

(F3)

The second integral on the right-hand side can be computed via integration by parts, i.e.,∫ ∞

0
r
∂ f (r)

∂r
dr =

[
r f (r)

]∞

0
−

∫ ∞

0
f (r) dr. (F4)
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FIG. 7. Correlation function CE (τ ) for λ = 5, λ = 7, and λ = 10. The blue curve shows the correlation
function calculated directly from the numerical results. The red curve shows the correlation function calculated
via Eq. (E6) with c = 0.33. The energy spectrum Ẽ (k) was calculated from the spatial correlation function f (r)
determined from the numerical simulations. The other parameters are a = 0.5 and b = 1.6.
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FIG. 8. (a) Diffusion coefficient D as a function of nonlinear advection strength λ for different values of
b. (b) Kubo number K as a function of λ for different values of b. K is finite in the mesoscale-turbulent state
for λ > λ� and diverges when approaching the stationary vortex lattice state for λ < λ�. Inset: Inverse Kubo
number K−1 as a function of λ, which shows linear behavior for larger values of λ. The dashed line gives
the result obtained via Kraichnan’s random sweeping hypothesis with c = 0.33. (c) Dimensionless diffusion
coefficient D/(
v) as a function of Kubo number K . The scaling in the different regimes is given as solid and
dashed line, respectively. The remaining parameter is a = 0.5.

The boundary term vanishes because f (r) decays faster than linear for large r. Thus, inserting
Eq. (F4) into Eq. (F3) yields ∫ ∞

0

Ẽ (k)

k
dk = v2

2

∫ ∞

0
f (r) dr. (F5)

With the definition of the integral length scale 
, see Eq. (5), we finally have∫ ∞

0

Ẽ (k)

k
dk = 
v2

2
. (F6)

APPENDIX G: GENERALITY OF THE RESULTS

In the main text of this article, we varied the value of the coefficient of the linear term, a, and left
the coefficient of the cubic term unchanged, b = 1.6. In order to test the generality of our results,
we performed additional numerical calculations varying b, while keeping a constant. The results are
shown in Fig. 8 for three values b = 0.1, b = 1.6, and b = 6.4 (and a = 0.5). Note that the results
for a = 0.5 and b = 1.6 are also presented in the main text.

Investigating diffusion coefficient and Kubo number, we find the same qualitative behavior for
all values of b. After an initial trapping regime in the vortex lattice for small advection strength λ,
the diffusion coefficient D increases rapidly above the transition occurring at λ� until a maximum
is reached. After this regime of optimal transport, the diffusion coefficient decreases. We further
note that, for all values of λ, the diffusion coefficient is larger, the smaller b. This is because the
cubic term is responsible for the saturation of the emerging patterns. Thus, decreasing b increases
the velocity scale v, which directly increases the diffusion coefficient, see Eq. (D3). Regarding the
Kubo number K , we find a linear relation between K and advection strength λ, not only at b = 1.6
(main text), but also for the other values of b. Remarkably, the coefficient b has no impact on the
proportionality constant c = 0.33, see Fig. 8(b). Further, Fig. 8(c) shows the scaling behavior of
the nondimensionalized diffusion coefficient D/(
v) as a function of K . As in Fig. 2, we observe a
regime D ∝ K for small K , where transport is completely determined by the temporal correlations.
For large K , the data indicate again a regime where D ∝ K−0.3, which is a result of the frequent
trapping of tracers in persistent vortices. However, note that the data points for the dimensionless
diffusion coefficient D/(
v) at different values of b do not collapse onto one curve for K � 1.
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In contrast, for constant b and varying a, this is the case, compare Fig. 2(c). This observation
suggests that the cubic nonlinearity, which is scaled by b [see Eq. (1) in the main text], has a
strong quantitative impact on transport in particular in the slowly evolving system (K � 1) close
to the transition between turbulence and vortex lattice for smaller values of λ close to λ�. However,
our results indicate that the coefficient b does not impact the scaling exponents. To conclude,
the transport properties of the microswimmer suspension described in detail in the main text and
summarized above are quite general for large regions of parameter space.
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