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We present numerical simulations of turbidity currents generated by a moving source
that model particle clouds released by underwater vehicles such as those used in deep-sea
dredging and mining. We use two approaches to model the flow and resulting deposits.
First, we adapt the shallow-water equations to include a moving source of both momentum
and particles. Second, we modify the classical box model to include a moving source.
We validate our simulations before studying the impact of the most important governing
dimensionless parameters: a vehicle Froude number Fr based on the depth of sediments
being resuspended and the dimensionless settling speed of those sediments, us. We find
that Fr is most determinant in the current and deposit shape, with Fr > 2 resulting in
elongated shapes and Fr < 2 resulting in rounder ones, and that us determines the rate
at which deposits grow. Another parameter, the vehicle’s drag coefficient, was found not to
have much effect beyond the immediate vicinity of the vehicle. Overall, both models found
similar trends. The box model, much less computationally expensive, was less accurate
when spatial nonuniformities developed, as happens at long times, but captured the early
spreading rate well. The shallow-water equations handled nonuniformities correctly but
tended to over-predict the spreading rate. We used the insight gained from those simula-
tions to obtain criteria for the maximum extent of deposits left but such currents in both
the low and high Froude number regimes.

DOI: 10.1103/PhysRevFluids.7.084301

I. INTRODUCTION

Deep-sea mining is an emerging field with both tremendous potential for the rare metal indus-
try and considerable environmental risks. While industrial-scale deep-sea mining remains in the
planning and exploratory stages, many operations are expected to begin in the next decade in the
extensive international waters where polymetallic nodules can be found [1,2]. The environment
where such operations would take place is difficult to study and remains only partially understood,
although ongoing research, notably into the microbial ecology of polymetallic nodule fields, is
helping further characterize it [3]. Even as our knowledge of these ecosystems remains partial,
upcoming mining operations are being developed, threatening significant biodiversity loss [4]. Other
than the immediate destruction where mining itself takes place, one of the most impactful aspect of
deep-sea mining is the large sediment plume generated by the extraction process [5–7], which will
likely affect a much broader area. We focus here on the spreading of such plumes in a quiescent
environment.

The processes of collecting polymetallic nodules currently envisioned all involve a vehicle
moving along the sea-floor. Such vehicles will disturb deposited sediments and are expected to
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generate plumes of particulates in a manner similar to what may be seen when a land vehicle moves
in a dry field. Because the ambient water near the sea-floor is nearly quiescent, the particulates
themselves are likely to be dynamically significant in the spread of the resulting particle clouds.
Recently, studies of the impacts of deep-sea mining on very large scales have been undertaken [5,6].
However, these studies do not take into consideration the local spread of these particle clouds, also
known as turbidity currents or particle-laden currents, in the vicinity of the mining itself. In fact,
few studies have considered such currents when generated by a moving source in any context, with
the notable exception of the recently published direct numerical simulations of gravity currents
released from a moving source [8]. These simulations identified two distinct regimes depending on
the ratio of current spreading speed to vehicle speed. They also favorably compared their results to
laboratory experiments, and in some cases to a much simpler box model (BM) which was found
to adequately recover the spreading rate of the current in some cases. However, this study did not
include suspended particles, which will be the main focus of the present work.

To allow for an efficient study of the impacts of deep-sea mining, we have developed simulations
of gravity currents from moving sources that are averaged over the depth of the current. These are
governed by the shallow-water equations (SWEs), which have been successfully used to describe
ocean waves, including tsunamis [9], and gravity currents in a variety of contexts (see, for example,
Refs. [10,11] and more recently Ref. [12]). However, they have never been applied to gravity
currents spreading in two dimensions from a moving source. This approach involves one fewer
dimension than direct simulations [8], making them much faster and allowing for the consideration
of several types of particles, background flows as well as the optimization of a vehicular path to
minimize environmental impacts. Smoothed particle hydrodynamics have been used to study deep-
sea turbidites, including polydispersity and ocean current effects for stationary [13] and moving
sources [14], though those studies include all effects simultaneously, making a direct comparison
with our approach difficult. Despite the dimensionality reduction, such simulations, both shallow-
water and smoothed particle hydrodynamics, still involve relatively large two-dimensional grids and
therefore remain computationally demanding.

To obtain an even faster and more flexible model, we also incorporated a moving source into a
box model [11], where quantities are averaged over the entire current. This approach has been used
for several types of gravity currents [15–18]. In this method, we track averaged or total quantities. As
a result, the system is described through ordinary differential equations only, and thus can be solved
very quickly. However, some accuracy is lost. To better evaluate the advantages and disadvantages of
each method and to quantify the degree of accuracy of the results obtained, we present a comparison
of the results obtained by each method.

The remainder of this paper is organized as follows. We first present the governing equations in
their most detailed form in Sec. II, before deriving the vertically averaged shallow-water equations in
Sec. III and the box model in Sec. IV. We then describe the numerical methods used to solve
each system in Sec. V before performing a validation, especially for the shallow-water equation, in
Sec. VI. We present and compare results obtained by each model in Sec. VII and then conclude by
discussing the applicability of both approaches in Sec. VIII.

II. GOVERNING EQUATIONS

We aim to capture the dynamics of a dilute particle-laden gravity current that is formed at the
bottom of the ocean by the displacement of a dredging vehicle. The fluid motion is thus described
by the incompressible Navier-Stokes equations where the suspension density, ρ, is variable [19].
The volume fraction of suspended particles, C, satisfies the advection-diffusion equation in which
the particle velocity is given by Up = U − Usk̂, where U is the fluid velocity and Us the particle
settling speed [20]. This formulation is valid for small particle Stokes numbers, as is appropriate for
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FIG. 1. Schematics of the parameters of the moving vehicle releasing particles into suspension.

fine sediments found on the ocean floor [21]. We thus consider the equations

∇ · U = 0, (1)

ρ

(
∂U
∂T

+ (U · ∇)U
)

= −∇P + μ∇2U − ρg k̂ + Sm, (2)

∂C

∂T
+ (U − Usk̂) · ∇C = κ∇2C + SC, (3)

where P is the fluid pressure, g is the gravitational acceleration, k̂ is an upward vertical unit vector,
and κ the particle diffusion constant. We also introduced source terms: Sm is a momentum source
with units of force per volume, and SC is a particle source term with units of concentration per
time. We use capital letters for dimensional quantities, and later will use lower case letters for
dimensionless quantities.

To simplify the equations, we first consider the Boussinesq approximation, which assumes that
the fluid density is constant, here taken to be the fluid density in the absence of particles ρ0, except
in the buoyancy term where density variations are multiplied by the gravitational acceleration. This
approximation is valid when the density difference is less than 5% [22], which we expect to be
the case in dilute currents. We also introduce a dynamic pressure, Pd = P + ρ0gZ , where Z is the
vertical coordinate taken to increase from the ocean floor toward the surface. We further consider
that the suspension density is linearly related to the particle volume fraction through

ρ = ρ0

(
1 + ρs − ρ0

ρ0
C

)
= ρ0(1 + �ρsC),

where ρs is the sediment density and we introduced the dimensionless density difference �ρs =
ρs−ρ0

ρ0
. Finally, we introduce the dynamic viscosity, defined by μ = νρ0. Equation (2) becomes,

after dividing the momentum equation by ρ0,

∂U
∂T

+ (U · ∇)U = −∇Pd

ρ0
+ ν∇2U − �ρsg C k̂ + Sm

ρ0
. (4)

We consider source terms Sm and SC that are centered on the vehicle’s position, Xv (T ), see
Fig. 1. We assume that both the momentum and particle source term have the same horizontal
distribution, �2(X − X v ), which has compact support on the scale of the vehicle size L and is
such that

∫
R2 �2(X )dX = 1. The vertical distribution relative to the ocean floor, where Z = 0, may

be different for the momentum and concentration and we therefore denote them respectively as
�1,m(0) and �1,C (0). We consider that the vehicle is subject to a hydrodynamic resistive force, or
hydrodynamic drag, of −F and therefore exerts an equal and opposite force F on the fluid. The
local force per volume, or momentum source, of the vehicle is thus Sm = �2(X − Xv )�1,m(0)F.
Focusing on the regime where the flow around the vehicle is turbulent, we approximate the
resistive force using a high Reynolds number drag coefficient CD as F = t̂CDρ0L2U 2

v , where Uv

is the vehicle speed and t̂ is a unit vector tangent to the vehicle’s trajectory, as shown in Fig. 1. We
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use a drag coefficient valid for spheres at large Reynolds numbers, which has been found to also be
approximately applicable to trucks [23] of CD = π/10, though we will also investigate the effects
of varying CD. We therefore use as a momentum source

Sm

ρ0
= �2(X − Xv ) �1,m(0) t̂ CDL2U 2

v . (5)

For the particle source term, we consider that as the vehicle moves forward at speed Uv it scours
deposited particles over a depth D from where particles become resuspended. Particles in the deposit
have a packing fraction Cp so that, multiplying by the vehicle width L, the rate at which the mass of
particulate gets released is

dM
dt

= CeL D Cp ρs Uv,

where Ce stands for the fraction of removed sediments that becomes resuspended. Depending on the
design of the vehicle, some sediment may be expelled smoothly enough so as to never become
resuspended but for the purposes of this study we assume that all removed sediment becomes
resuspended and set Ce = 1. To obtain the resuspended particle concentration rate, we divide the
mass rate of change by ρs and multiply by the spatial distribution, finding

Sc = �2(X − Xv ) �1,C (0) L D Cp Uv. (6)

Nondimensionalization

To nondimensionalize the equations, we use the vehicle size, width, and height, L, as a typical
length scale, and the vehicle’s speed, Uv , as a velocity scale. We also use the pure fluid density,
ρ0, as a density scale. We define the maximum volume fraction of particles released as Cm = D

L Cp,
which can be thought of as a rescaled ratio of the scoured depth, D, to the size of the vehicle L. We
use Cm to rescale the particle volume fraction C. We write our nondimensional quantities in lower
case as

t = UvT

L
, x = X

L
, u = U

Uv

, pd = Pd

ρ0U 2
v

, c = C

Cm
,

where we included the time (dimensional: T , dimensionless: t) and position vector (dimensional:
X , dimensionless: x). In nondimensional form, our governing equations are

∇ · u = 0, (7)

∂u
∂t

+ (u · ∇)u = −∇pd + 1

Rev

∇2u − c

Fr2 k̂ + sm, (8)

∂c

∂t
+ (u − usk̂) · ∇c = 1

Pev

∇2c + sc, (9)

with nondimensional numbers

Rev = UvL

ν
, Pev = UvL

κ
, us = Us

Uv

, and Fr = Uv√
�ρsCmgL

= Uv√
�ρsCpgD

,

which are, respectively, the vehicle Reynolds and Péclet numbers, dimensionless settling speed, and
vehicle Froude number. The nondimensional sources are

sm = SmL

ρ0U 2
v

= t̂ CD δ2(x − xv ) δ1,m(0) and sc = SCL

CmUv

= δ2(x − xv )δ1,C (0),

where δ2, δ1,m, and δ1,C are dimensionless distribution functions.
It is possible to solve these equations, or very similar equations, directly. This has been done

without source terms (e.g., Ref. [20]) and more recently with some source terms as well [8].
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However, doing so remains very expensive computationally and therefore we proceed to develop
a simplified model.

III. SHALLOW-WATER EQUATIONS

To obtain a system that can be solved at a smaller computational expense, we first associate a
(nondimensional) height, h, to the gravity current. Such a height is typically defined as the region
where the particle concentration exceeds a threshold value, such as c > 0.01. We then proceed to
integrate the inviscid Navier-Stokes equations over the height of the current, to obtain the shallow-
water equations. We ignore the fluid motion above and outside the current, as we consider that the
currents of interest in deep-sea mining occur in a very deep ambient. The resulting single-layer
shallow-water equations have been derived in details, for example, in Ref. [11], and we follow the
same derivation.

Specifically, we define the average velocity and concentration as

ū = 1

h

∫ h

0
u dz and c̄ = 1

h

∫ h

0
c dz.

The presence of the source term and of the particle’s settling require more careful attention. The
latter can be integrated as∫ h

0
usk̂ · ∇c dz =

∫ h

0
us

∂c

∂z
dz = us[c(h) − c(0)] ≈ −us c̄,

where we used the approximations that at the top of the current the particle concentration is close
to zero while at the bottom of the current it is close to the average particle concentration with the
current.

To integrate the source terms, we need to specify the vertical distributions of momentum and of
particles. We assume that the momentum is uniformly distributed over a (nondimensional) height of
one, irrespective of the presence or absence of particles, so

δ1,m(0) =
{

1 if 0 � z � 1,
0 otherwise.

We then find upon integration that ∫ h

0
δ1,m(0) dz = min(h, 1).

In practice, we find that h < 1, so that this term is effectively just h.
For the concentration, the vertical distribution of particles always occurs over the height of the

current, h, so that

δ1,C (0) =
{

1
h if 0 � 1 � h,

0 otherwise.

We then find upon integration that ∫ h

0
δ1,C (0) dz = 1.

In addition to the momentum and concentration equations, we consider the integration of the
continuity equation. This yields an equation describing the time evolution of the current height
itself. However, this height is now also subject to a source term. We model the release of particles as
generating a source for the current height given by the vehicle speed, multiplied by the frontal area
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of the vehicle and by the horizontal distribution function. In dimensionless terms, we thus have

∂h

∂t
+ ∇ · (hū) = δ2(x − xv ). (10)

Usually, the shallow-water equations are derived assuming an inviscid flow (and no particle
diffusion). However, it is convenient for numerical reasons to retain a diffusive term in those
equations. Formally, we would like to consider

νm = 1

Ren

∫ h

0
∇2u dz ≈ 1

Ren

(
∂2(hū)

∂x2
+ ∂2(hū)

∂y2
+ ∂ū

∂z

∣∣∣∣
z=h

z=0

)
.

As this is retained for numerical convenience, we have introduced a numerical Reynolds number,
Ren, which only serves to stabilize simulations and typically takes values O(100) [24]. We also
do not model the last term on the right and neglect its contribution, as the boundary friction is
usually negligible at high Reynolds number. We approximate the remaining terms as the (horizontal)
Laplacian of the integrated velocity over the height of the current

νm ≈ 1

Ren

[
∂2(ūh)

∂x2
+ ∂2(ūh)

∂y2

]
= 1

Ren
∇2

h (ūh),

which will help avoid numerical instabilities. Similarly, we include a diffusive term for the particle
concentration,

Dm ≈ 1

Pen
∇2

h (c̄h).

Finally, we assume that the current height itself is subject to diffusive effects due to turbulent motion.
We thus also include a diffusive term, 1

Ren
∇2

h h, to regularize the current height. The effect of these
diffusive terms is expected to be small but numerically stabilizing, and this expectation will be
verified explicitly in the validation section. We therefore find

∂h

∂t
+ ∇ · (hū) = 1

Ren
∇2

h h + δ2(x − xv ),

∂hū
∂t

+ ∇ · (hūū) = 1

Ren
∇2

h (hū) − 1

2Fr2 ∇(c̄h2) + δ2(x − xv ) t̂ CD min(h, 1),

∂hc̄

∂t
+ ∇ · (hūc̄) + usc̄ = 1

Pen
∇2

h (hc̄) + δ2(x − xv ).

To facilitate the numerical formulation of this system, we introduce variables that appear directly
in the time derivatives. We thus rewrite our system in terms of the current height, h, integrated
velocity q = hū and integrated concentration φ = hc̄. Our system of equations is therefore

∂h

∂t
+ ∇ · q = 1

Ren
∇2

h h + δ2(x − xv ), (11)

∂q
∂t

+ ∇ · (
qq
h

) = 1

Ren
∇2

h q − 1

2Fr2 ∇(hφ) + δ2(x − xv ) t̂ CD min(h, 1), (12)

∂φ

∂t
+ ∇ · (φ

q
h

) + us
φ

h
= 1

Pen
∇2

hφ + δ2(x − xv ). (13)

Should the vehicle come to a stop, all the sources associated with it would vanish, corresponding to
setting to zero all the terms multiplying δ2.

Finally, as a diagnostic tool, we will keep track of the height of deposited particles, b. Particles
are eroded by the vehicle and deposited as they settle out of the current, resulting in

∂b

∂t
= D

L
[usc̄ − δ2(x − xv )] = D

L

[
us

φ

h
− δ2(x − xv )

]
.
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FIG. 2. Schematics of the box model used to approximate the gravity current spreading from a moving
vehicle.

IV. BOX MODEL

While Eqs. (11)–(13) can be solved numerically, it remains relatively computationally expensive
to do so. It may therefore be advantageous to simplify them even further to obtain a system
of equations that can solved numerically very quickly. This can prove particularly useful when
evaluating environmental consequences of dredging, which can involve a wide range of conditions.
With such applications in mind, we introduce a corresponding box model, where the relevant
quantities are averaged horizontally over the extent of the current. The model only tracks in time a
couple of scalar quantities, the current volume and particle concentration, as well as the position of
the current boundary boundary. The result is much simpler and easier to solve, but may suffer from
a lack of detail and accuracy. In following sections, we compare results obtained by the box model
and by the shallow-water equations simulations to determine when each model is most useful.

To obtain a (dimensional) box model, we begin by defining a boundary of the current, �, within
which we consider the particle concentration to be nonzero and outside of which we assume that
no particles are in suspension, see Fig. 2. This boundary is assumed to be piecewise smooth and a
simple closed curve. Its interior area, denoted by Ab, may be obtained directly from �. We also define
a current height, Hb, and a particle concentration Cb, which are assumed to be averaged horizontally
over the entire current and are therefore functions of time only. The volume of the current is then
Vb = AbHb and the excess mass of the current, Mb, due to suspended particles is then expressed as

Mb = (ρs − ρ0)VbCb. (14)

The rate of change of the volume is found by integrating over the horizontal extent of the current
the source term in Eq. (11) which gives, in dimensional form

dVb

dT
= UvL2. (15)

The rate of change of the excess mass of suspended particle is the sum of the source of particles that
is the vehicle, and the loss of particles through settling over the entire area of the current:

dMb

dT
= LDUv Cp(ρs − ρ0) − AbUsCb(ρs − ρ0). (16)

Combining Eqs. (14), (15), and (16), we find an equation for the rate of change of the concentration:

dCb

dT
= LDCpUv − CbL2Uv − AbUsCb

Vb
= LDCpUv

Vb

(
1 − CbL

CpD

)
− UsCb

Hb
. (17)

Finally, we describe the motion of the boundary following box models presented, among others,
by Hogg et al. [16]. In the absence of a vehicle, the so-called nose condition states that the spreading
is driven by an imbalance in hydrostatic pressures so that UN = CF

√
HbCbg�ρs, where UN is the
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nose velocity in a direction normal to the boundary, CF current Froude number that is typically taken
to be a constant between 1.19 [25] and

√
2 [26] depending on the depth of the surrounding fluid).

In addition, we associate a flow to the moving vehicle, denoted as UvQ(X − Xv ), where Xv is the
position of the vehicle. This flow is assumed to take the form of an inviscid flow around a cylinder
when at a distance greater than L from the vehicle, and otherwise to be a linear interpolation between
the velocity of the vehicle at the location of the vehicle and the inviscid flow at a radius L away.
The choice of an inviscid flow filed around a cylinder is appropriate ahead of the vehicle, where the
flow is less affected by the specific design of the vehicle. Behind the vehicle, the flow is generally
more complicated with a turbulent wake and streamline separation. However, in a box model, the
boundary of the current is always ahead of the vehicle and is therefore unaffected by the wake.
Specifically, we have the following spatial dependence of the flow, Q(X ), for a vehicle located at
the origin and moving in a direction t̂

Q(X,Y ) =
⎧⎨
⎩

L2

R4

(
t̂ k̂ × t̂

)T
(

X 2 − Y 2

2XY

)
if R2 � L2,(

1 − R
L

)
t̂ + (

R
L

)
Q( XL

R , Y L
R ) if R2 < L2,

where we denote the distance to the vehicle as R = √
X 2 + Y 2. Only the normal component of the

flow will affect the normal displacement of the boundary, so in all we move the boundary according
to

d�

dT
= n̂[CF

√
HbCbg�ρs + UvQ(X − Xv ) · n̂], (18)

where n̂ is a unit outward normal to the curve �.
In dimensionless form, using the same nondimensionalization as above, we therefore obtain the

following system of differential equations:

dvb

dt
= 1, (19)

dcb

dt
= 1 − cb

vb
− usabcb

vb
, (20)

dγ

dt
= n̂

[
CF

Fr

√
vbcb

ab
+ q(x − xv ) · n̂

]
, (21)

where we have eliminated the current height hb from the equations and the area, ab can be obtained
directly from the position of the boundary γ . Also, should the vehicle come to a stop, all the sources
associated with it would vanish, corresponding to setting to zero all the terms on the right-hand
side of our system of equations except for the settling term (involving us) and the spreading term
(involving Fr).

We can also recover an equation for the height of the deposited particles

∂bb

∂t
= D

L
[δb(x, y)uscb − δ2(x − xv )], (22)

where δb(x, y) is a function indicating if a point (x, y) is inside the current, where δb(x, y) = 1, or
outside the current, where δb(x, y) = 0.

V. NUMERICAL IMPLEMENTATION

To capture the spread of a gravity current from a moving source, we implement a numerical
solver for Eqs. (11)–(13). For the time integration, we use a Runge-Kutta method of order two. To
discretize spatial derivatives, we need to be more careful, as the front of the current is, theoretically,
a shock between positive values of the current height within the current and a zero value of the
height outside the current. To handle this discontinuity accurately, we compute advective terms
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using a third order upwinding WENO method [27]. This method greatly reduces oscillations near
the front of the current, but numerical issues remain owing to the factor of 1

h that appears in Eqs. (12)
and (13), or alternatively because the shallow-water equations are not properly defined when the
current height is zero. While numerical methods that can handle wet/dry transitions have been
developed [9,28], they are not directly applicable in the presence of a source that can smoothly
increase the current height from zero to a finite nonzero value. We therefore use instead the Artificial
Bed method [10,12], which assigns a small nonzero value, h = hm, to the current height outside the
current proper, called minimum current height. In the limit of hm → 0, we recover the formulation
given above, but small nonzero values of hm allow for stable simulations by avoiding numerical
divisions by zero, or values extremely close to zero.

The other regularizing component of the simulations are the Laplacian terms, which are com-
puted using centered finite differences. To reduce the number of parameters and avoid having
different requirement on the time step for different diffusive terms, we make the common assump-
tion that the numerical Reynolds and Péclet numbers are equal (e.g., Ref. [20]) so that Ren = Pen.

In the simulations presented here, the grid used was uniform and fixed in space, though more
efficient simulations could be performed by relaxing both of those conditions. To represent the
spatial distribution of the source around the vehicle, we use an approximation of the delta function
with radius one suggested by Peskin [29] which integrates to one and closely approximates other
properties of the delta function

δ2(x) = δ2(x, y) =
{

[1+cos(πx)][1+cos(πy)]
4 if

√
x2 + y2 � 1,

0 otherwise.

To close the system, we must provide boundary conditions. Here, for simplicity, we use periodic
conditions in both horizontal coordinates. As the current approaches the boundary, it will eventually
be affected by the choice of boundary conditions, so we restrict our attention to times prior to when
the current comes within one vehicle length from the boundary. Finally, to initiate the process, we
use the least arbitrary initial conditions possible: we start from rest, with no suspended particles.
The current is therefore only formed by particles suspended by the moving vehicle, and does not
compete with a current spreading because of some initial suspension.

To solve the box model equations, Eqs. (19)–(21), we use a simple Runge-Kutta method of order
two to march forward in time the concentration equation (and the volume equation, though that can
also be solved exactly). To move the boundary, we first discretize its location by introducing markers
that are no further apart that �sm. Each marker is also moved forward in time using a second order
Runge-Kutta method. After markers have been moved, a periodic cubic spline interpolation based
on arc length along the curve, s, is used to redistribute markers at every time step to keep them
evenly spread. The area within the current is computed using the line integral

ab =
∫

γ

1

2

(
−γy

dγx

ds
+ γx

dγy

ds

)
ds,

where γx and γy are the x and y components of γ , respectively, and dγx

ds and dγy

ds the components
of their unit tangent vectors. This integral is evaluated numerically using a trapezoidal quadrature
method, and the tangent vectors are obtained directly from the cubic spline interpolation.

The box model does not require any boundary condition as the current can spread indefinitely.
However, an initial current must be specified to provide an initial boundary location. We thus
initialize the current as a circle centered on the vehicle with a radius of R0. We note that small
values of the initial radius are sensitive to the form of the fluid velocity near the vehicle and require
finer time and space resolutions.

The only modeling parameter in the box model is the constant CF , which relates the front
propagation speed to the square root of the current height,

√
vb/ab. For two-dimensional currents,

this constant was theoretically found to be CF = √
2/2 is an idealized frictionless case in a tube [26],

and was measured empirically to be somewhat larger in unidirectional spreading, with a theoretical
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FIG. 3. [(a)–(h)] Simulated spreading of a deep-sea cloud generated by a dredging vehicle modeled by the
shallow-water equations. [(i)–(l)] Same current simulated using a box model. The current height h is shown
from the side [(a)–(d)] and from above [(e)–(h)]. In panels [(a)–(d)], the height was truncated to better show the
current away from the vehicle, with the actual maximum height reaching h = 0.88. The vehicle, shown as a red
circle in panels [(e)–(l)] starts at (0,0) and moves toward the positive x axis until t = 20, when it stops. Physical
parameters are Fr2 = 2, us = 0.01, CD = π/10 and for the box model CF = 1.2. Numerical parameters for the
shallow-water solver are �x = 0.025, �t = 0.0025 (so CFL = 0.1), hm = 0.001, Ren = 500, and for the box
model �t = 0.002, �sm = 0.025, and R0 = 0.1.

value of
√

2 in a deep ambient [30], and an empirically measured value of CF ≈ 1.2 [25]. We
therefore set CF = 1.2 in the remainder of this paper.

VI. VALIDATION

We begin by providing a sample of the computed current height over time as obtained by
the shallow-equations solver, see Figs. 3(a)–3(h) and by the box model, Figs. 3(i)–3(l). Here the
vehicle is moving toward the positive x axis until time t = 20, at which point it stops and the
current continues to spread. The maximum current height, not shown to emphasize current features
away from the vehicle, is approximately h = 0.88. There is qualitative agreement between the two
approaches, and we will compare them more closely in the next section.

A. Box model solver validation

The box model contains relatively few numerical difficulties and parameters. In the present
implementation, the only numerical parameters present in the box model solver are the time step,
�t , the maximum spacing between boundary markers, �sm, and the initial current radius, R0. In
certain nonconvex configurations, if the first two parameters are too large the interface crosses itself
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FIG. 4. (a) Sample calculation of the current height at various times for two choices of time step �t . We
indicate the position of the vehicle with a red star. Each curve is one time-unit apart and the black curve and
circle are the initial current extent and vehicle position, respectively. (b) Closeup of the front of the current.
The difference in distance traveled is less than 0.1%.

resulting in an ill-defined boundary and trapping a current-free bubble within the current. However,
in the setups we considered and present here, this was not an issue. We set �sm = 0.05, and for
validation simulated an identical system for �s = 0.025m, which showed no visible difference, with
the maximum progression of the current being within 0.001% of each other. In those simulations,
we set �t = 0.01. Reducing the time step by a factor of 10, to �t = 0.001, resulted in very minor
differences in current progression, about 0.1%, as shown in Fig. 4.

The initial radius used had a direct impact on the distance spread, as larger R0 naturally spread
further, especially in the direction opposite the vehicle motion. The differences in spreading in three
different directions (against vehicle motion, with vehicle motion, perpendicular to vehicle motion)
are shown for three initial radii in Table I. The differences stayed about constant in time, and keeping
in mind that the current will usually spread over distances of order 10 in this study, these differences
are found to be quite small. Using values of R0 smaller than 0.1 required finer time and space
resolutions than desirable at later times, so we elected to use R0 = 0.1 in the remainder of this study.
We note that if the source position is kept fixed, our box model predicts a current spreading radially
with radius r = 0.95t3/4/Fr1/2, which is similar to but faster than that reported in the stationary box
model results of Ref. [8] (which themselves agreed well with direct numerical simulations), where
the multiplicative factor was 0.74, after conversion to our nondimensionalization. This difference is
attributable to the choice of CF = 1.2 which was made to capture current spreading unidirectionally
rather than radially. We therefore expect our results to be more accurate when the motion of the
source is faster than the current spread. In the regime studied here where settling is much slower
than the source’s speed, the integral of the particle concentration over the depth of a current is
approximately HbCb in the box model formulation and CpD in the shallow-water formulation. The

TABLE I. Differences in spreading distances as a function of R0 toward the back, front, and side of the
current, as defined relative to the direction of motion of the vehicle. Distances are measured at time t = 4.

R0 Diff. back Diff. front Diff. side

0.05 N/A N/A N/A
0.1 0.1 0.001 0.01
0.2 0.35 0.002 0.06
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TABLE II. Parameters used to perform numerical validations of the shallow-water equation solver.

Parameter Value

Fr2 2
us 0.01
CD 0
�x 0.05
�t 0.005
CFL = �t/�x 0.1
hm 0.001
Ren 250
Domain size 20
Final time 13

Froude number therefore captures the ratio of the vehicle to current speed for both the SWE and
BM models and our results will be most accurate when Fr � 1.

B. Shallow-water solver validation

Solving the shallow-water equations is more challenging numerically and requires the introduc-
tion of additional numerical parameters. We require a spatial discretization size, �x, a time step,
�t , minimum current height, hm, and (inverse) numerical diffusion coefficient Ren. We use a basic
set of numerical and physical parameters, given in Table II, and then vary one numerical parameter
at a time to determine its impact. Here, we set the drag coefficient, CD, to zero to focus on the effects
of the spreading current. The domain size and final time were kept constant throughout.

To evaluate the accuracy of the shallow-water solver, we consider a setup similar to that shown
in Fig. 3, where a vehicle moves to the right and then stops at time t = 10. We will evaluate
the accuracy of the dynamics of the current by looking at a cut of the current height h in the y
direction at the location x = 5 (the vehicle traveled from x = 0 to x = 10). We show in the following
figures only half of the domain, as the other half is the same by symmetry. In addition, we also
consider the height of the deposited particles, as a measure of the long-term effects of the current.
In fact, this deposit is arguably the most important feature of such currents as it is representative
of the impact of the current on its overall environment. We show the deposit height normalized by
D/L and do not show the deposit very close to the center line, since at that location it is dominated
by the erosion due to the vehicle, with a normalized depth of b ≈ −1.

We first show in Fig. 5 the effect of changing the CFL number, or ratio �t/�x by changing
�t and keeping �x fixed. In the regime considered, the effects of �t are very small overall, and
particularly small for the height of the deposit. Using too large a time step eventually results in
instabilities, and those considerations are ultimately the most determinant in the choice of a CFL
number as the accuracy is only weakly affected otherwise. Oscillations hinting at the onset of
instability can be seen in the closeup for the largest CFL value shown (CFL = 0.4).

In Fig. 6, we consider the effects of varying the spatial resolution, �x. As was the case when
varying �t , we find that the current and deposited particle profiles are nearly independent of
the spatial resolution used in the range explored. Even zooming in on the most sensitive areas
reveals only very minor differences between �x = 0.05 and �x = 0.0125. Here too, the biggest
consideration in selecting a spatial resolution will be the stability of the simulations as other
parameters, like the numerical Reynolds number and minimum current height, are changed.

The choice of the minimum current height hm is seen in Fig. 7 to have a more significant influence
on the current profile. As the current spreads away from the vehicle, it effectively plows into the
region of minimum thickness, resulting in an accumulation at the edge of the current, the height and
width of which depend on hm. Varying from hm = 0.008 to hm = 0.001 shows that smaller values
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FIG. 5. (a) Current height and (b) resulting deposit height normalized by D/L for various CFL ratios
obtained by varying the time step �t . Other parameters are as shown in Table II and we show a cut from
the center of the domain in a direction perpendicular to the vehicle motion. [(c), (d)] Closeups emphasizing the
region where variations are most pronounced.

correspond to a faster spread and a smaller current head. Using a smaller hm is more physically
accurate, and the maximal height of the current should probably be lower than even that shown with
the smallest hm used. Unfortunately, using too small a value of hm results in instabilities, unless a
sufficiently small �x and �t are used, which becomes computationally very expensive. However,
the most important long-term feature of the flow, the height of the deposited particles, show only
a very weak dependence on hm. The only effect is at the current’s edge, where larger values of hm

that slow the spread of the current correspondingly show a deposit having reached a shorter distance
away from the vehicle. However, at later times, the current would continue to spread and result in a
deposit profile similar for all hm, as is seen behind the very front of the current, say for y < 6.5 in
Figs. 7(b) and 7(c).

Finally, the influence of the numerical choice of Ren is shown in Fig. 8. Inversely to hm for which
smaller values are more relevant, larger values of Ren corresponds to less numerical diffusion and
are therefore preferable. However, smaller values of Ren broaden the sharpest features of the current,
such as the current head, and therefore hinder numerical instabilities. We see in Fig. 8 that as was
the case for small hm, using larger values of Ren results in a faster spread, but avoiding numerical
instabilities at higher Ren requires finer spatial and temporal resolutions. Unlike small values of hm,
the more physical choice of a larger Ren causes a higher maximum current height and a thinner
current head. While this effect should plateau for high enough Ren, with the resolution used such
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FIG. 6. (a) Current height and (b) resulting deposit height normalized by D/L for various values of �x.
Other parameters are as shown in Table II and we show a cut from the center of the domain in a direction
perpendicular to the vehicle motion. [(c), (d)] Closeup emphasizing the region where variations are most
pronounced.

a plateau was not reached. However, once again the particulate deposit height is only very weakly
affected by the exact choice of Ren. The only significant effect is at the front of the current, which is
reached earlier at higher Ren. So, particularly for Ren � 250, the effect of Ren on the deposit height
is negligible.

We show in Fig. 9 the shape of the current, indicated by the level curve where h = 2hm, for
various numerical Reynolds numbers and minimum current height hm. As noted before, the current
spread faster, which is most visible at the top and bottom right portions of the current, for large
numerical Reynolds numbers and small minimum current heights. The current shape is only weakly
dependent on Ren provided Ren � 250. The dependence on hm is more significant, but all the
qualitative features of the current are unchanged for hm � 0.002 and even the quantitative features
such as the angle of the front with the horizontal are only weakly affected. We also note that this
effect becomes even less pronounced when the vehicle’s momentum is included CD > 0, as it affects
the current much more evenly for all values of hm.

To validate our simulation results against known results, we computed the progression of a two-
dimensional current in the absence of a source, as shown in Fig. 10. Using hm = 0.001 and Ren =
500, we recovered the slumping phase where the spreading velocity is approximately constant. As
reported in Ref. [12], the slumping velocity is approximately constant at

√
2/Fr. In our simulations

we found it to be 1.42/Fr. The current eventually slows beginning around time 12. We note that a
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FIG. 7. (a) Current height and (b) resulting deposit height normalized by D/L for various values of the
minimum height hm. Other parameters are as shown in Table II and we show a cut from the center of the
domain in a direction perpendicular to the vehicle motion. (c) Closeup of the deposit height at the front where
variations are most pronounced.

similar slumping phase and velocity were obtained for axisymmetric currents in our simulations,
which corresponds to a faster spread than predicted by the box model. As a result, we expect the
accuracy of our simulations to be greater for currents spreading unidirectionally, so in the regime
Fr2 > 2. A comparison of our results to direct numerical simulations of the current generated by a
moving source is presented in the next section.

From our validation, we conclude that the front dynamics may not be captured perfectly accu-
rately with the parameters used to allow for faster computations. The effects on the current height of
using a larger hm and smaller Ren than ideal are opposite of each other, therefore partially canceling.
Only the speed of the spread is reduced by both a too large hm and a too small Ren. However, their
effects on the current shape is small for hm and negligible for Ren. Moreover, the long-term behavior
of the current, notably the deposit left behind and the extent reached are virtually unaffected by these
choices. We therefore focus our attention on these features in the rest of this paper.

VII. PHYSICAL RESULTS

We characterize in this section the effects of the particle settling speed, us, and of the vehicle
Froude number, Fr, on the currents’ time evolution and on the height of the deposits they leave
behind. In the shallow-water equation model, a third physical parameter is present, the drag
coefficient, CD, though it does not have an equivalent in the box model. We investigated the effects

0 2 4 6 8 10
Distance from center

0

0.02

0.04

0.06

0.08

0.1

C
ur

re
nt

 h
ei

gh
t

Re
n
=500

Re
n
=250

Re
n
=125

Re
n
=62.5

0 2 4 6 8 10
Distance from center

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
ep

os
it 

he
ig

ht

Re
n
=500

Re
n
=250

Re
n
=125

Re
n
=62.5

6.5 7 7.5 8 8.5 9 9.5
Distance from center

0

0.002

0.004

0.006

0.008

0.01

D
ep

os
it 

he
ig

ht

Re
n
=500

Re
n
=250

Re
n
=125

Re
n
=62.5

(a) (b) (c)

FIG. 8. (a) Current height and (b) resulting deposit height normalized by D/L for various values of
the numerical Reynolds number (Ren). Other parameters are as shown in Table II and we show a cut from
the center of the domain in a direction perpendicular to the vehicle motion. (c) Closeup of the deposit height at
the front where variations are most pronounced.
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FIG. 9. (a) Contour of the current height h = 2hm for various numerical Reynolds numbers. (b) Contour of
the current height h = 2hm for various minimum current heights hm. Other parameters are as shown in Table II
and the vehicle is shown as a cyan circle.

of the drag coefficient and found them to be mostly restricted to the vicinity of the vehicle, causing
a broader front around the vehicle at larger CD and resulting in a more pointed propagation front for
CD = 0. However, because these effects were localized and did not extend to the global features of
the current, we focus here on the effects of us and Fr.

We note first that, as can be seen in Figs. 11 and 12, the SWE simulations yield a current that
spreads significantly faster than the box model. In general, and even more so in axisymmetric
currents [11], the SWE are known to over-predict the spread of gravity currents, and this is also
the case here. Comparing our results to those of Ref. [8] (with our Fr2 playing the role of their a3),
we note, for example, that our SWE simulations yield currents spreading faster than what is found
in comparable direct-numerical simulations, while the BM results are in closer agreement, with,
for example, the spreading rate of an axisymmetric current being only about 21% faster in our BM,
despite the value of CF being selected to agree with two-dimensional currents. Better agreement can

FIG. 10. Front position of a two-dimensional current with no source present as computed by the SWE. The
slumping phase with constant velocity is recovered, with a computed velocity of 1.42.
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FIG. 11. Box model simulated contours of the current boundary for (a) us = 0.005, (b) us = 0.01, and
(c) us = 0.02. Here the vehicle position is shown with red circles and the black contours are the boundary until
time t = 20, at which point the vehicle stops. Green contours are the boundary location after the vehicle has
stopped moving. We set Fr2 = 2.

be achieved in the SWE by introducing additional parameters such as shape factors, entrainment
coefficient, and drag terms [11], but these terms would not alter the qualitative trends found here in
terms of us and Fr. To focus on the novel features of the moving source of a turbidity current, we do
not introduce here these additional factors, but note that they could be added later if more data were
available to determine their most appropriate values.

FIG. 12. Shallow-water equation simulated time evolution of the current height for [(a)–(d)] us = 0.005,
[(e)–(h)] us = 0.01, and [(i)–(l)] us = 0.02. The vehicle is shown as a red circle and stops at time 20. Other
parameters are Fr2 = 2 and CD = π/10.
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FIG. 13. Using the BM, (a) current area and (b) suspended mass as a function of time for various settling
speeds. Using the SWE, (c) current area and (d) suspended mass as a function of time. Here the vehicle is
moving until time t = 20, at which point it stops. Other parameters are Fr2 = 2 and, for SWE, CD = π/10.

A. Effects of the settling speed

We used the BM to simulate gravity currents for various particle settling speeds, us, as shown in
Fig. 11, and compare the results to those obtained from the SWEs, shown in Fig. 12. For the BM,
we see that the current spreads in a similar way for all values of us while the vehicle is moving
(prior to time t = 20, black contours), as the particle settling is dominated by the influx of new
particles. However, the current spread is quickly affected by the particle settling speed as soon as
the vehicle stops, with larger settling speeds corresponding to currents slowing down first. In the
SWE simulations, the spread of the current seems to be even less affected by the value of us, at least
for the time span considered. The propagation of the front, which includes inertial effects from the
earlier stages of spread, is very similar for all the values of us presented. However, once the vehicle
stops the current height closer to the vehicle path and away from the front is significantly higher for
small particle settling speeds, as fewer particles have settled out.

Figure 13 presents a comparison of global features of the current as captured by the box model
and by the shallow-water equations. While the vehicle is moving, the surface area of the current
grows almost independently of the particle settling speed in both models. Even after the vehicle has
stopped, the current area in the SWE model shows little dependence on us, most likely because the
current head has a large height, as was seen in the validation section, rendering it less susceptible to
particle settling. We also see that the SWE generate currents with much larger surface areas than the
BM. However, the surface area in the SWE is defined here as the whole region within the contour
h = 2hm, as shown in Fig. 9, which includes regions where the current is very thin and therefore
can be seen as an overestimation of the dynamically relevant area of the current. We also track
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FIG. 14. [(a)–(c)] BM simulated deposit heights at time t = 26 for various particle settling speeds us. [(d)–
(f)] Corresponding SWE simulated deposit heights at time t = 26. Other parameters are Fr2 = 2 and, for SWE,
CD = π/10.

the total mass of suspended particles, defined as �ρscbvb for the box model and as the integral of
�ρsφ = �ρshc̃ for the SWE. We find that it is quite similar in both models and shows a more clear
dependence on the particle settling speed. While the vehicle is moving, the suspended mass initially
grows quickly. For the largest settling speed considered here, us = 0.02, an equilibrium mass is
then reached where settling balances newly resuspended particles. Presumably an equilibrium mass
would eventually be reached for all particle settling speeds, but require more time to be established
for smaller values of us. After the vehicle stops, the mass decreases in all cases, with a faster rate of
decrease at higher us. Overall, the settling speed thus has a relatively weak influence on the current
shape but a more significant effect on the amount of particles in suspension. This in turn will affect
the shape of the deposit profiles left behind.

The height of the deposits found using the BM simulations have similar shapes for various us,
with higher deposits in regions reached earlier by the current, see Figs. 14(a)–14(c), so that the
boundary of the current over time approximates level curves of the deposit height. However, the
height of the deposits near the vehicle path is sensitive to us, with larger settling speeds resulting
in higher deposits, as seen in the color bars of Fig. 14, and correspondingly fewer particles left
in suspension. The deposit heights obtained by the SWE, Figs. 14(d)–14(f), show similar trends
and clearly show a broader deposit for smaller settling speeds. Comparing both methods, we note
that the BM shows a much stronger dependence on the vehicle’s starting point. The deposit heights
obtained from the BM are increasing at the same rate for any point within the current, so that the
longer a point has been covered by the current, the higher deposit it receives. At long times, this
is likely to result in larger discrepancies between the two models, and the SWE results are more
likely to be accurate, as regions that have been within the current for a long time become depleted
of particles and no longer contribute to the deposit. This is clearly visible in Fig. 15, which shows
a horizontal cut of the deposit height parallel to the vehicle’s path. The SWE deposit heights are
clearly more even, with larger deposits associated to larger us. The deposit height shape is peaked
near the vehicle’s starting point for the BM, particularly at higher particle settling speeds where
the assumption of uniform concentration becomes more inaccurate. We show in Fig. 16 cuts of
the deposit height taken perpendicular to the vehicle’s path at three different locations. The results
are rather similar between the two models for small x, but become more and more different as x
increases and spatial nonuniformities grow.

B. Effects of the Froude number

We look next at the impact of the Froude number on the spreading current as simulated by
the box model, Fig. 17, and by the shallow-water equations, Fig. 18. For Fr2 = 0.5, the current
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FIG. 15. Deposit height at time t = 26 at the level immediately to the side of the vehicle, y = 1 for various
particle settling speeds us obtained (a) by the BM and (b) by the SWE. Other parameters are Fr2 = 2 and, for
SWE, CD = π/10.

spreads quickly perpendicular to the vehicle’s motion, resulting in a more circular boundary. This
is most evident at early times, when the particle concentration in the current is still relatively high.
At longer times, the concentration is reduced and the current spreads more slowly, and eventually
the vehicle motion becomes dominant in the BM simulations. This last feature is not observed in
the SWE and is probably not realistic as the local concentration near the vehicle should be high
even at later times. In SWE simulations, the front of the current spreads with approximate speed√

2, so that we expect the overall dynamics to exhibit subcritical flow when Fr2 < 2 as the vehicle
then moves slower than the current and therefore remains within the body of the current. This is
observed in Fig. 18 for Fr2 = 0.5. The current then spreads so fast laterally that it reaches the

FIG. 16. Deposit heights at time t = 26 for various settling speeds, us, at the three points along the
progression of the vehicle: x = 2.5, x = 10, and x = 17.5. Results are obtained [(a)–(c)] using the BM and
[(d)–(f)] using the SWE. Other parameters are Fr2 = 2 and, for SWE, CD = π/10.
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FIG. 17. Box model simulated contours of the current boundary for (a) Fr2 = 0.5, (b) Fr2 = 2, and
(c) Fr2 = 8. Here, the vehicle position is shown with red circles and the black contours are the boundary
until time t = 20, at which point the vehicle stops. Green contours are the boundary location after the vehicle
has stopped moving. We set us = 0.01.

spanwise boundaries of the computational domain used for the SWE, which has size 40 by 40 units,
making the results at the last time shown t = 26 dependent on the boundary’s location. At the other
extreme, for Fr2 = 8, the vehicle travels faster than the current, resulting in an elongated particle
cloud, a feature qualitatively recovered by both models. The flow is then super-critical in that the
current is then unable to catch-up to the vehicle. As shown in Ref. [8], the current spread is then
mostly span-wise and develops as would a two-dimensional current launched by the moving vehicle,

FIG. 18. Shallow-water equation simulated time evolution of the current height for [(a)–(d)] Fr2 = 0.5,
[(e)–(h)] Fr2 = 2, and [(i)–(l)] Fr2 = 8. The vehicle is shown as a red circle and stops at time 20. Other
parameters are us = 0.01 and CD = π/10.
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FIG. 19. Snapshots of the shape of a gravity current at time t = 18 for various Froude numbers as simulated
by the shallow-water equations. The vehicle is shown as a red circle and the estimated opening angle with
tangent

√
2/Fr is shown in pink. Other parameters are us = 0.01 and CD = π/10.

with no significant streamwise interactions until the vehicle stops. The intermediate case of Fr2=2
shows a transition regime with a slight elongation, which is more pronounced in the box model than
in the shallow-water equations, where the vehicle remains on the edge of the front of the current.

We show in Fig. 19 a snapshot of the current shape at a fixed time for various values of Fr2. In the
super-critical regime shown, the vehicle therefore precedes the spreading current and the slope of
the opening front can be approximated as the ratio of the two-dimensional spreading velocity to the
vehicle velocity, which here is approximately

√
2/Fr. This angle is shown in pink in Fig. 19 and can

be seen to approximate the current front very well for Fr2 � 8. Because currents in SWE simulations
travel faster than what is reported in direct numerical simulations, the opening angle is greater than
that reported by Ref. [8]. However, our simulations confirm the qualitative understanding that the
current spreads away from the vehicle’s path in a manner virtually identical to the spread of a
two-dimensional turbidity current with a finite initial area. The consequences of this on the extent
of the final deposit are discussed in the next section.

The global features of the suspended mass and current area as obtained by both models are
shown in Fig. 20. Both models are seen to recover similar trends, with the only significant difference
being the SWE simulations showing a much greater current area (about three times greater) in all
cases. The currents with smaller Fr spread over a greater area, allowing more particles to settle out
quickly, and resulting in a smaller suspended mass. For Fr2 = 0.5, an equilibrium suspended mass is
reached, and even overshot, while the vehicle is still moving. For the SWE simulations, the current
area appears to level off at late times, but this is an artifact of the finite domain size used in the
simulations.

We show the deposit heights left by the currents according to both models in Fig. 21. As was the
case for the current shape, the deposits are more circular at low Fr and more elongated at high Fr.
This effect is more accentuated in the BM. In fact, in the SWE, we see in Fig. 22 that the deposit
height actually increases along the path of the vehicle at low Fr, as particles resuspended early settle
ahead of the vehicle before additional particles are suspended and later settle as the vehicle arrives.
Once again, the BM deposit heights increase uniformly over the entire current area, resulting in the
highest deposit being located at the initial location of the vehicle. We see in Fig. 23 that the deposit
heights along the y axis (away from the vehicle path) agree well between both models for small
x, but become progressively more different as one moves in the direction of the vehicle motion
(increasing x).

VIII. DISCUSSION AND CONCLUSION

Our simulations have allowed us to provide a clear description of the behavior of turbidity
currents generated by a moving source, which we use to model the particle plume generated by
an underwater vehicle. The derivation of the governing equations has shown that such currents

084301-22



SHALLOW-WATER EQUATIONS AND BOX MODEL …

FIG. 20. Using the BM, (a) current area and (b) suspended mass as a function of time for various Froude
numbers. Using the SWE, (c) current area and (d) suspended mass as a function of time. Here the vehicle is
moving until time t = 20, at which point it stops. Other parameters are us = 0.01 and, for SWE, CD = π/10.

are described by three nondimensional numbers: a drag coefficient CD, a Froude number Fr =
Uv/

√
�ρsCpgD, and a dimensionless particle settling speed us = Us/Uv . The flow near the vehicle

itself is dependent on the choice of drag coefficient (CD) or on how the flow past a vehicle is modeled
in the box model. However, this is a localized effect and direct numerical simulations likely suffer

FIG. 21. [(a)–(c)] BM simulated deposit heights at time t = 26 for various Froude numbers Fr. [(d)–(f)]
Corresponding SWE simulated deposit heights at time t = 26. Other parameters are us = 0.01 and, for SWE,
CD = π/10.
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FIG. 22. Deposit heights at time t = 26 at the level immediately to the side of the vehicle, y = 1, for various
Froude numbers Fr obtained (a) by the BM and (b) by the SWE. Other parameters are us = 0.01 and, for SWE,
CD = π/10.

the same limitation unless they are able to resolve the exact shape of the vehicle. Overall, we found
that the drag coefficient is relatively unimportant except for the immediate vicinity of the vehicle,
and the other two dimensionless numbers are more influential.

Comparing the SWEs and BM results, we find that both approaches correctly capture the trends
and dependencies on Fr and us but exhibit differences in other respects. The BM shows significant
differences from the SWE when nonuniformities are present in the current. This is most visible at
longer times and in the high Fr regime, where the source of particles gets to be far removed from

FIG. 23. Deposit heights at time t = 26 for various Froude numbers, Fr, at the three points along the
progression of the vehicle: x = 2.5, x = 10, and x = 17.5. Results are obtained [(a)–(c)] using the BM and
[(d)–(f)] using the SWE. Other parameters are us = 0.01 and, for SWE, CD = π/10.
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some parts of the spreading current and the box model overestimates the spreading away from the
vehicle. However, comparison with the simulations of Ref. [8] indicate that in the axisymmetric
or near axisymmetric regime of Fr � 1, the box model provides a good estimate of the current
spreading rate. Moreover, for global quantities such as the suspended mass of sediments, the BM
agrees well with the SWE and so can provide useful estimates.

Based on our validation, we find that the front head size in SWE simulations is sensitive to
numerical parameters such as the minimum current height and the numerical Reynolds number.
Moreover the SWE over-predict the spreading rate of the current, resulting in an overestimate of
their area. This is a well-known issue for this formulation and previous authors (see Ref. [11]
for a summary) have suggested several additional parameters that can be introduced to improve
the agreement of the spreading rate computed by the SWE and experimental observations or
direct numerical simulations. For example, a drag term of the form −cd |ū|2 = −cd |q/h|2 can be
added in the momentum equation of the SWE [Eq. (12)], where cd is a coefficient of magnitude
approximately 0.05. Similarly, a shape factor, capturing the fact that the average over the current’s
height of uu is not, in general ūū, can be introduced in the term ∇ · ( qq

h ). Perhaps more crucially, an
entrainment coefficient capturing the mixing of ambient fluid into the current can also be added to
the SWEs. This may be achieved by adding a term of the form η|ū| on the right-hand side of Eq. (11),
and a similar treatment may be applied to the box model, with η ≈ 0.1. These terms are usually most
useful for, but not restricted to, currents spreading over a sloping bottom. Although incorporating
these additional parameters could certainly improve quantitative agreement, they would most likely
not affect any of the trends discussed here. Importantly, the spreading rate of the front had little
effect on the core of the currents and on the height of their deposit and the SWE therefore provide
descriptions of these features, which are dominant in the long-term fate of these currents, that are
robust to changes in numerical parameters and compare well to previously published results in
two-dimensional simulations, for example, in Ref. [16].

The Froude number, as the ratio of the vehicle speed to a typical current speed, controls the
shape of the current. For Fr2 > 2, the supercritical regime, the vehicle travels faster than the current
spreads, resulting in more elongated currents with a pointed shaped near the vehicle. As recently
shown by Ref. [8] and confirmed by our SWE simulations, the currents in this regime spread away
from the vehicle in a manner similar to two-dimensional currents with a given initial area and
no source term. Conversely, the subcritical regime, Fr2 < 2, results in rounder currents, where the
vehicle remains within its own particle cloud.

The effect of the particle settling speed on the current shape is relatively small, since the inertial
components of the currents are dominant when us � 1. However, the breadth of the deposits, as
well as their shape in the direction of the vehicle’s motion are sensitive to us. Larger settling speeds
result in deposits that are higher near the vehicle’s path and have a smaller transversal extent. Smaller
settling speeds generate broader deposits which also show a higher deposit near the starting point
of the vehicle. At long times, an equilibrium mass of suspended particles can be reached (it was
reached in some of our simulations but not all) where the resuspension of particles due to the vehicle
balances the particles settling from the current. This equilibrium mass is smaller and is reached faster
for large values of us and small values of Fr.

The insight obtained from both sets of simulations and from the results of Ref. [8] allows us
to quantify the maximum extent of the deposits resulting from turbidity currents due to a moving
source in both the subcritical and the super-critical regimes. First, in the super-critical regime Fr2 >

2, where the vehicle always moves faster than the current spreads, the spanwise spread is effectively
that of a two-dimensional turbidity current. In this case, it is known [16] that the maximum extent
of the deposit can be approximated as

rm ≈ 2

(
C0A0

Fr2 u2
s

)1/5

if Fr2 > 2, (23)
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FIG. 24. (a) Spanwise deposit heights at time t = 26 for various settling speeds us at high Froude number,
Fr2 = 8, at streamwise location x = 2.5. (b) Maximum extent of the deposits, defined, over all values of x, as
the greatest value of y where the deposit exceeds 0.001, as a function of settling speed. Results are compared
to Eq. (23), shown as the red line.

where A0 is the initial area of the current and C0 its initial concentration. For a moving vehicle, the
initial area is one (dimensionally L2) and the initial particle concentration is also one (dimensionally
D/L). In dimensional form, we therefore have a maximum spread of approximately

Rm ≈ 2 L

(
gDCp�ρs

U 2
s

)1/5

if Fr2 > 2. (24)

We note that in this regime the width of the deposit is independent of the vehicle’s speed, a rather
counterintuitive result. Simulations of the SWE in this regime, shown in Fig. 24 agree well with the
prediction of Eq. (23), though for smaller us the SWE again over-predicts the spread of the current.
Here the spread was taken as the distance where the deposit reached a height above 0.001. The
currents for the smallest two settling speed eventually interacted with the computational domain
boundaries, slowing their advance, and for us = 0.005 a large fraction of particles remained in
suspension, resulting in a shorter recorded spread than what would have been reached in a larger
domain. However, for us � 0.02, this was not an issue.

If Fr2 � 2, the spread initially resembles that of a quasisteady axisymmetric current due to a
fixed source, which is well described by a box model. To approximate the maximum deposit extent
in this regime, we first consider the box model of a current spreading from a stationary source. Using
a constant dimensionless source of one, the volume of the current is simply the time t . Its area is
πr2

b and its height is then t/πr2
b . We can therefore write the rate of change of the current’s area and

particle concentration, cb, as

d (πr2
b )

dt
= 2πrbCF

Fr

√
cbt

πr2
b

= 2
√

πCF

Fr

√
cbt, and

dcb

dt
= 1 − (1 + usπr2

b )cb

t
.

An approximate solution to these equations valid at long times is

πr2
b =

(
4πC2

F

Fr2us

)1/3

t, cb =
(

Fr

2
√

πCF us

)2/3 1

t
. (25)

We thus find that the rate at which the radius of the current spreads is

drb

dt
=

(CF

4π

)1/3 1

Fr1/3u1/6
s

1

t1/2
.
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To estimate the time beyond which the effects of the source become negligible, tM , we equate the
spreading rate to the vehicle speed, which is one. At times greater than tM , the source will move
away faster than the current spreads, and its effects will therefore be negligible. We find that the
spreading rate equals the vehicle speed for a radius rM of

rM =
(

CF√
2π

)2/3 1

(Fr2us)1/3
≈ 0.42

1

(Fr2us)1/3
, (26)

which occurs at a time tM = rM/2. The concentration of particles at that time, cM , can be estimated
from Eq. (25) and the current volume is then VM = tM (because current volume is generated at a
nondimensional rate of one). The average current height is therefore hM = VM

πr2
M

= 1
2πrM

.
After tM , the current will continue to spread as a two-dimensional current of fixed area, reaching

a maximum extent given by Eq. (23) where the initial concentration is cM and the initial area is
rMhM = 1

2π
. We thus find an additional spreading of

r+ ≈ 2

(
rMhMCM

Fr2 u2
s

)1/5

≈ 1.6
1

Fr2/15 u7/15
s

.

This additional spreading is therefore like to be dominated by the contribution of u−7/15
s , since the

Froude number is raised to such a small power.
The total spread is then approximated by rm = rM + r+, which is, in dimensional form,

Rm ≈ 0.42 L

(
gDCp�ρs

UvUs

)1/3

+ 1.6

(
gDCp�ρsU 5

v

U 7
s

)1/15

if Fr2 � 2. (27)

This estimate neglects the initial size of the current and so is only expected to be valid if Rm � L.
Our SWE results, shown in Fig. 16, show a dependency on us that is consistent with this scaling.
However, to directly verify this criterion in the rm � 1 regime where it is expected to be applicable
would require using values of Fr and us that are smaller than what is currently accessible with our
SWE simulations.

To see how these estimates can apply to deep-sea mining, we compute sample values of the
maximum deposit extent for silt particles, with settling speed Us = 0.1 mm/s, and for sand particles,
with settling speed Us = 30 mm/s [21]. We assume a vehicle size of L = 2 m and a scouring depth
of D = 10 cm and consider inorganic particles with �ρs = 1.5. In this case Fr ≈ Uv if the vehicle
speed is expressed in m/s. We show in Fig. 25(a) the maximum deposit extent as a function of the
vehicle speed. The transition from low to high Froude number occurs at Uv ≈ 1.4, and the solid lines
indicate the relevant maximum deposit, while the dashed lines are their continuations in the regime
where they are no longer applicable. We note that in the low Fr regime, a minimum spread can be
achieved by selecting the vehicle speed that minimizes Eq. (27). For vehicle speeds that are too
slow, the deposit spreads effectively as from a stationary source to distances that can theoretically
be boundless. For vehicle speeds that are sufficiently large to correspond to the high Froude number
regime, the maximum deposit extent Rm becomes independent of Uv . We show in Fig. 25(b) how
Rm depends on the particle settling speed in the high Fr regime, finding deposit extents of the order
of tens of meters for sand particles and hundreds of meters for silt particles.

Future research should be aimed at quantifying the maximum spread of the deposits more
accurately, especially in the intermediate regime where Fr2 ≈ 2 and for small settling speeds that
require larger computational domains. Our current implementation of the SWE is satisfactory, but
it can be accelerated by considering a nonuniform or adaptive grid. This would allow to focus
computational resources where they are most needed, i.e., in the vicinity of the vehicle and of the
current’s front, and overall would result in less computationally expensive simulations. Our models,
both SWE and BM, may be used in the future to study more complex and realistic setups. Notably,
one could incorporate the presence of a background current that may cause a drift of the particle
cloud. The estimates of the deposit extent given here all assume a quiescent ambient fluid, but the
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FIG. 25. (a) Maximum deposit extent, Rm, in meters for two different settling speeds corresponding to silt
(top) and sand (bottom). The solid lines are the relevant maximum deposit curves based on the Froude number
and the dashed lines are their continuations. Computations are made at high Froude number for Uv > 1.4 m/s
using Eq. (24), and at low Froude number for Uv < 1.4 m/s using Eq. (27). Other parameters are �ρs = 1.5,
L = 2 m and D = 10 cm, so that Fr ≈ Uv if Uv is in m/s. (b) Maximum deposit extent in meters in the high
Froude number regime, where Rm is independent of the vehicle speed, as a function of particle settling speed.
Other parameters are as in panel (a).

presence of currents and regions of upwelling could significantly increase the size of the region over
which particles may be redeposited, particularly silt and bacteria. The maximum extent described
here thus provide a lower bound on the size of the region where particulates may be relocated. In
addition, polydisperse systems can be simulated using the same approaches in a straightforward
manner by considering several types of particles, each with their own concentration and settling
speed. Such simulations can help determine if the presence of several particle sizes results in a
behavior that is simply an average of what each type of particle would cause individually or whether
the results are more complex. We may also study and even optimize more complex vehicular travel
patterns to minimize the spread of suspended particles. This last problem requires very long time
simulations and so is probably better tackled with the box model, provided the path chosen is
relatively compact, such as a spiral. Studying final deposits as a function of path and vehicle speed
is particularly helpful in selecting the least destructive manner to exploit deep-sea mining resources.
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