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The Arctic Ocean’s main thermocline may be characterized by a series of fine-scale
thermohaline staircase structures that are present in a wide range of regions, the formation
mechanism of which remains unclear. Recent analysis has led to the proposal of a the-
oretical model which suggested that these staircase structures form spontaneously in the
ocean when the turbulent intensity determined by the buoyancy Reynolds number Reb

is sufficiently weak. In the current work, we have designed a series of Reb controlled
direct numerical simulations of turbulence in the Arctic Ocean thermocline to test the
effectiveness of this theory. In these simulations, the staircases form naturally when Reb

falls in the range predicted by the instability criterion. The exponential growth rate of the
layering mode matches well with the prediction of the theoretical model. The staircases
formed in our simulations are further compared with the classical diffusive interface model,
which argues that stable staircase structures can only form when the density ratio Rρ is
smaller than the critical value of Rcr

ρ = τ−1/2. Here τ is the ratio of haline diffusivity over
thermal diffusivity. We show that the staircase structure can stably persist in our model
regardless of whether or not Rρ < Rcr

ρ is satisfied.

DOI: 10.1103/PhysRevFluids.7.083801

I. INTRODUCTION

Thermohaline staircases are strikingly organized structures in the oceans which are characterized
by a series of vertically well-mixed layers of both heat and salt separated by sharp interfaces
(see Chap. 8 of [1] for a recent review). Depending on whether the relatively warmer and saltier
waters are lying above or below the relatively colder and fresher waters, the thermohaline staircases
can be classified into salt-fingering staircases which are usually observed in low- and mid-latitude
oceans (e.g., [2,3]) and the diffusive-convection staircases which are mainly observed in the polar
oceans (e.g., [4,5]). The first observations of these two types of thermohaline staircases were
reported in the late 1960s [6,7] and their origins were quickly connected with the two types of
double-diffusive convection: salt fingering and diffusive convection. However, half a century later,
we are only “halfway” towards a complete understanding of their formation mechanisms. While
we have already gained the ground-breaking understanding of the detailed mechanism for the
salt-fingering staircases, it is still unclear what the key mechanism is that is responsible for the
formation of the diffusive-convection staircases.

On the salt-fingering side of the story, the formation of the staircases has been explained using
the instability of the flux-gradient laws, initially discussed in [8]. In this work, the author used the
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parametrized diapycnal diffusivities for heat, K�, and salt, KS , to describe the large-scale effect of
the stochastic field of salt fingers and assumed that K� and KS are determined solely on the density
ratio RSF

ρ ≡ �z/Sz (here � and S are the potential temperature field and salinity, both in density
units). Following this assumption, the author analyzed the linear stability of the parametrized mean-
field model and derived the criterion for the layering instability. The dependence of K� and KS on
RSF

ρ has been calibrated using direct numerical simulations (DNSs) (e.g., [9–12]) and accumulating
evidence has established that layers will spontaneously form from homogeneous salt-fingering fields
once this criterion is satisfied, which includes DNSs (e.g., [13]), basin-scale model simulation (e.g.,
[14]), and mean-field model simulations (e.g., [15–17]). Most importantly, the multiscale version
of the flux-gradient model proposed in [16] successfully solved the ultraviolet catastrophe problem
that existed in the original theoretical framework of [8]. The growth rate of the instability in this new
model is shown to decrease to a very small value after Rρ reaches the value of 1.8, which perfectly
explains why nearly all the salt-fingering staircases observed in the ocean have the density ratio RSF

ρ

smaller than 2 (see [18] or [1] for a review).
The above theory for salt-fingering staircase formation suggests that the salt-fingering fluxes

formed from salt-fingering instability are sufficient to drive the system into a layered state. How-
ever, this simple picture does not suffice to provide an explanation of staircase formation in the
diffusive-convection regime. While most diffusive-convection staircases have been found to exist
in a large range of density ratio 2 < Rρ < 9 (see [5,19], for example; here Rρ ≡ Sz/�z is the
density ratio for the diffusive convection system), the linear diffusive-convection instability is
only active in a tiny window of the parameter space 1 < Rρ < 1.16 (see [1]). This mismatch
strongly suggests that the linear diffusive-convection instability cannot be regarded as the origin
of diffusive-convection staircases, for example, that are observed in the Arctic Ocean. At least
another critical element has to be introduced to “react” with the diffusive convection to explain
the observations. One of the most promising candidates for the explanation has been that associated
with thermohaline-shear instability theory initially proposed in [20], and in this case this critical
element is “shear.” In this work and the following work of [21,22], it is demonstrated that a flow
that is stable to both shear instability and diffusive-convection instability might become unstable
under the joint action of diffusive convection and different forms of shear. It has been further
shown that these instabilities are able to develop into layered structures in the nonlinear evolution of
DNSs [20]. While the thermohaline-shear instability perfectly solves the problem of the mismatch
between the different ranges of density ratio, the development for the instability is still currently
dependent on some specific form of the shear (e.g., a vertically sinusoidal form is considered in
[20] and the time-dependent form is considered in [21,22]). Another candidate explanation for
the diffusive-convection staircases is the thermohaline intrusion mechanism discussed in [23,24]
where the critical element added to the picture is the “horizontal gradient.” This theory was first
discussed to explain the formation of salt-fingering staircases in [23] and it was extended to explain
the diffusive-convection staircases in [24]. While the coexistence of thermohaline intrusion and
double-diffusive staircases are often apparent in the observational data as shown in [24], it remains
a challenging question as to whether the presence of horizontal gradients is a necessary condition
for staircases to form in the diffusive-convection regime, considering that salt-fingering staircases
have now been shown to be able to form without horizontal gradients (e.g., [8]).

While these two candidate theories described above may significantly contribute to our under-
standing of the problem, we believe that a more general theory should exist for the formation of
diffusive-convection staircases which is also based on the instability of certain flux-gradient laws.
Recently, such a new theory for the formation of staircases in the diffusive-convection regime
was proposed in [25] (hereafter referred to as MP21), in which the critical element added to the
picture is the “stratified turbulence.” In this paper the effective turbulent diapycnal diffusivities
for heat, K�, and salt, KS , in the diffusive-convection regime are parametrized as being solely
dependent upon the buoyancy Reynolds number Reb = ε/(νN2) (here ν is the kinematic viscosity, ε
is the viscous dissipation rate, and N = √−g/ρ0〈dρ/dz〉 is the buoyancy frequency). By analyzing
the linear stability of the parametrized mean-field model and assuming the specific functional
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dependence of K�(Reb) and KS (Reb) described in [26], MP21 demonstrated that the system will be
susceptible to layering instability if the turbulence intensity characterized by the buoyancy Reynolds
number is at an intermediate level. The key idea that underlies this theory is that the formation
of the diffusive-convection staircases originates from the background stratified turbulence instead
of diffusive-convection instability. One mechanism that leads to layer formation from stratified
turbulence is the “Phillips mechanism” previously proposed in [27], which was extended most
recently in [28]. These analyses apply to a fluid in which density is determined by only a single
advecting and diffusing species. Since Arctic Ocean staircases involve perfectly correlated steps
in both temperature and salinity it is clear that no analysis based upon the assumption of a single
component fluid can suffice to solve to the problem. Nevertheless, as explicitly discussed in MP21,
the Phillips mechanism for the staircase in the salinity component of Arctic staircases is “lurking” in
the background of the results for the two-component system. Because the theory described in MP21
is based on stratified turbulence parametrization that involves both temperature and salinity, we will
refer to this theory as the thermohaline-turbulence instability theory in what follows for simplicity.

There are three lines of evidence that strongly support the thermohaline-turbulence instability
theory as a highly plausible mechanism for the formation of staircase structures in the diffusive
convection environment. First, the critical assumption employed in MP21 that K� and KS can be
parametrized based on the parametrization scheme in [26] is confirmed to be highly accurate by
the DNSs of Kelvin-Helmholtz engendered turbulence simulations of [29]. Second, the mean-field
model simulation performed in MP21 confirmed that the initially fastest growing mode developed
from the thermohaline-turbulence instability mechanism does grow into the layered state in the
nonlinear stage of evolution. Third, the criterion in MP21, which states that the formation mech-
anism is strongly determined by Reb and weakly dependent on Rρ , is consistent with a series of
oceanographic measurements (e.g., [19,30]), as discussed in detail in MP21.

Despite the supporting evidence there remain two critical questions upon which we will focus
in the present paper. First, we will test whether the development of the thermohaline-turbulence
instability will inevitably lead to the formation of a thermohaline staircase structure in a DNS of a
three-dimensional fully developed turbulent flow. It needs to be kept in mind that the current form
of thermohaline-turbulence instability theory described in MP21 is a linear stability theory that
relies on a series of idealized assumptions. Therefore it is crucial for us to evaluate its effectiveness
using simulations that resolve the smallest scales of fluid dynamics. Second, we want to understand
whether the thermohaline staircases formed from the thermohaline-turbulence instability will re-
main as stable structures and what mechanism is responsible for keeping such interfaces robust. In
the early literature a comprehensive theoretical analysis of the diffusive interfaces was developed in
[31], hereafter LS. The model developed in LS has been widely used as the basis for the analyses on
the diffusive interface structure by researchers in this field (e.g., [32,33]). An important prediction
of LS’s theory is that no steady interface structure can exist when Rρ > τ−1/2 (τ = κs/κθ is the
ratio of molecular diffusivities for salt and heat; τ−1/2 ≈ 10 in the Arctic Ocean). In contrast, the
thermohaline-turbulence instability theory predicts that the system can be unstable to the layering
mode at any Rρ that is larger than 1. Therefore, the second major goal of this paper is to explore the
conditions under which stable staircase structure can persist in our DNSs and compare them with
the classical theory of LS. It should be noticed that although most of the diffusive interfaces have
been found in regions with Rρ < 10 in the measurements of ocean and lakes (see review of [34], for
example), observed diffusive staircases with Rρ > 10 do exist occasionally (e.g., [35,36]).

In addressing this paper’s primary goals, we will conduct a series of body-forced DNSs driven
by the stochastic forcing of large-scale vortical modes. Vortical mode body forcing has been
implemented in previous work to study homogenous stratified turbulence (e.g., [37–40]). It is well
suited for the exploration of layer formation occurring through thermohaline-turbulence instability
since it allows us to properly control the energy input into the system that is required to control the
averaged Reb of the system. As we will demonstrate in what follows, if and only if the averaged Reb

lies in the unstable regime predicted by MP21 will the system develop into a layered state.
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The remainder of the paper will be arranged as follows. In Sec. II we will briefly review the
derivation of the thermohaline-turbulence instability theory. The settings of the DNSs employed
in this work will be presented in Sec. III. In Sec. IV we will describe the time evolution of the
system and illustrate how the layered structure forms in the system. These simulation results will be
analyzed and compared with the theoretical prediction of MP21 in various different ways. In Sec. V
we will analyze the interface structure formed in our numerical system in detail to illustrate how
the stable staircase state is maintained and compare it with the classical theory of LS. Finally we
summarize our conclusions in Sec. VI.

II. SUMMARY OF THERMOHALINE-TURBULENCE INSTABILITY THEORY

In this section, we will briefly review the original formulation of the thermohaline-turbulence
instability theory discussed in MP21 in order to provide context for the discussion to follow that
begins in section 3.

The theory of MP21 considers the evolution of the stratified turbulence that develops in a back-
ground state in which the stratifications of temperature and salinity lie in the diffusive-convection
regime. In this circumstance it is assumed that the average effect of microscale stratified turbulence
on the larger scale background can be adequately captured by the effective turbulent diapycnal
diffusivities for temperature, K�, and salinity, KS . It is then further assumed that both K� and KS

are only dependent upon the buoyancy Reynolds number Reb of the system so that the governing
mean-field equations for the one-dimensional averaged temperature profile �(z, t ) and salinity
profile S(z, t ) have the forms

∂�

∂t
= − ∂

∂z
F� = ∂

∂z

(
K�(Reb)

∂�

∂z

)
,

∂S

∂t
= − ∂

∂z
FS = ∂

∂z

(
KS (Reb)

∂S

∂z

)
. (1)

In the above equations, � and S are defined in density units so that the equation of state can be
written as ρ = ρ0 + S − �. The system is initialized with uniform gradients �(z, t = 0) = −�z0z
and S(z, t = 0) = −Sz0z (here �z0 > 0 and Sz0 > 0), which determines a background density ratio
Rρ = Sz0/�z0. �(z) and S(z) at later times are decomposed into a combination of background fields
� = −�z0z, S = −Sz0z and weak perturbations �′, S′, as

�(z) = �(z) + �′(z), S(z) = S(z) + S′(z). (2)

These perturbations �′(z) and S′(z) will then lead to a variation of Reb(z) by the amount

Re′
b(z) = ∂Reb

∂ρz

∂ρ ′

∂z
= −ρ0

νg

ε0
∂ρ

∂z

∂ρ ′
∂z
∂ρ

∂z

≡ −Reb

∂S′
∂z − ∂�′

∂z
∂ρ

∂z

. (3)

In the above equation, the viscous dissipation ε0 in the system is assumed to be a constant which
determines the background buoyancy Reynolds number of the system, Reb. Re′

b(z) feeds back on
the time evolution of �(z) and S(z) through the governing equations (1). Positive feedback for
certain modes will lead to the general instability of the system. By expanding the perturbations
in normal modes (�′, S′) = (�̂, Ŝ) exp(λt ) exp(ikz) and keeping only the first-order terms, the
original equation set (1) will be transformed to an eigenvalue problem with the growth rate λ as the
eigenvalue of the resulting 2 × 2 matrix. The value of λ is then determined by solving the quadratic
equation resulting in

λ2 + k2

(
K� + KS + ∂KS

∂Reb

∣∣∣∣
Reb

Reb
Rρ

Rρ − 1
− ∂K�

∂Reb

∣∣∣∣
Reb

Reb
1

Rρ − 1

)
λ

+ k4

(
K�KS + ∂K�

∂Reb

∣∣∣∣
Reb

KSReb
1

Rρ − 1
− ∂KS

∂Reb

∣∣∣∣
Reb

K�Reb
Rρ

Rρ − 1

)
= 0. (4)
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A positive value of λ, which represents instability of the system, will be obtained if and only if the
following criterion is satisfied:

K�KS + ∂K�

∂Reb

∣∣∣∣
Reb

KSReb
1

Rρ − 1
− ∂KS

∂Reb

∣∣∣∣
Reb

K�Reb
Rρ

Rρ − 1
< 0. (5)

If we assume that KS and K� have a local power law dependence on Reb as KS ∼ Reβs

b and
K� ∼ Reβθ

b , the above criterion will be simplified to

βs − 1 >
βθ − 1

Rρ

. (6)

Therefore the precise criterion for the instability depends on the details of the parametrization
scheme employed to describe the dependence of the turbulent diffusivities upon the buoyancy
Reynolds number in the stratified turbulent flow. Parameterization of the diapycnal diffusivities (or
mixing efficiency) of stratified turbulence has remained a significant scientific challenge. Various
forms of such turbulence parametrization have been proposed based on different combinations of
nondimensional parameters in the past two decades. The list of these contributions would include
[41], which proposed a parametrization of diapycnal diffusivities that was solely based on Reb; in
[42] a multiparameter parametrization was discussed that depends on Reb and gradient Richardson
number Ri. In [39] it was found that at large Reb the mixing efficiency is sensitive to horizontal
Froude number Fr. Although all these parametrization schemes highlight some aspects of the
turbulent mixing, that in the Arctic Ocean is special in the sense that it is weak energetically so
that the diapycnal diffusivities for heat and salt become dramatically different due to their different
values of molecular diffusivity (see, e.g., [43]). To take this effect into account, the parametrization
scheme employed in the Arctic Ocean environment must depend explicitly on the molecular Prandtl
number Pr. To our knowledge, the only parametrization that explicitly discusses the dependence on
Pr comes from the work of [26]. In MP21 we employed the empirically calibrated parametrization
scheme for single-component fluids of [26] as the candidate parametrization. This is based on the
somewhat bold assumption that the temperature and salinity field will be relatively independent in
the state and therefore this pair of single-component parametrizations should provide an accurate
description of the doubly diffusive turbulent system. The effectiveness of this description has been
confirmed in our recent work [29] and it will also be tested in the current numerical model in
Sec. IV B below. The specific functional form of the parametrization scheme of [26] is as follows:

KBB
ρ (Reb, Pr) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ if Reb < 10
2
3 Pr−

1
2

0.1

Pr
1
4
νRe

3
2
b if 10

2
3 Pr−

1
2 < Reb < (3 ln

√
Pr)2

0.2νReb if (3 ln
√

Pr)2 < Reb < 100

2νRe
1
2
b if Reb > 100.

(7)

If we substitute Pr = 700 and Pr = 7 (typical Prandtl values for salinity and temperature in seawa-
ter) into the above equations to obtain the forms of KS (Reb) and K�(Reb), respectively, the criterion
described in Eq. (6) can be evaluated to obtain the following condition:

0.17 < Reb < 97. (8)

Once this criterion is satisfied, the layering mode of instability will continually grow until diffusive-
convection staircases form, as demonstrated by the nonlinear mean-field model simulation in MP21.
However, as will be discussed in detail in what follows, we will employ a smaller value of Schmidt
number (Prandtl number for salinity), Sc = 70, for salinity in the DNSs to be discussed herein due
to the constraints on computational resources. In this circumstance, Eq. (7) gives a different formula
for the salinity diffusivities which will lead to a revised Reb criterion of

0.55 < Reb < 41. (9)
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While Eq. (8) is still the criterion that should be applied to the real oceanographic environment
(upper-bound and lower-bound values may change slightly in regions where Schmidt number
deviates from 700), the effectiveness of the theory should be tested based on criterion (9) under
the choice of parameters in our DNSs.

III. DIRECT NUMERICAL SIMULATIONS

In this section we discuss the design of DNS analyses to be employed to study the development
of the layering structures that form from the thermohaline-turbulence instability. In what follows,
we will first discuss the governing equations and critical physical quantities in Sec. III A. Then, in
Sec. III B we will discuss the detailed numerical settings of our DNSs.

A. Governing equations and physical quantities

In order to develop a state of homogeneous stratified turbulence in the diffusive-convection
regime, we consider the temperature �(x, y, z, t ) and salinity S(x, y, z, t ) fields that are composed
of background temperature and salinity fields characterized by negative vertical gradients −�z0 and
−Sz0 and perturbation fields �pt (x, y, z, t ) and Spt (x, y, z, t ), namely,

�(x, y, z, t ) = −�z0z + �pt (x, y, z, t ),

S(x, y, z, t ) = −Sz0z + Spt (x, y, z, t ). (10)

Subject to the Boussinesq approximation, the scalar fields �pt (x, y, z, t ), Spt (x, y, z, t ) and the ve-
locity field u(x, y, z, t ) = (u(x, y, z, t ), v(x, y, z, t ),w(x, y, z, t )) are governed by the Navier-Stokes
equations as in

∂u
∂t

+ u · ∇u = −∇p − J

(
Rρ

Rρ − 1
Spt − 1

Rρ − 1
�pt

)
ez + 1

Re
∇2u + F,

∇ · u = 0,

∂�pt

∂t
+ u · ∇�pt = 1

RePr
∇2�pt + w,

∂Spt

∂t
+ u · ∇Spt = 1

ReSc
∇2Spt + w. (11)

In the above equations, ez is the unit vector in the positive vertical direction. The “+w” terms on
the right-hand side of the latter two equations come from the vertical advection of the background
vertical gradients −�0z and −S0z. We have nondimensionalized the above equations using the length
scale L0, velocity scale U0, temperature scale �� = �z0L0, salinity scale �S = Sz0L0, and density
scale �ρ = �S − ��. Here L0 and U0 are characteristic scales of the shear modes we employ to
initialize the system, which will be discussed in detail in the next section.

The critical nondimensional parameters are the Reynolds number Re, bulk Richardson number
J , inverse density ratio Rρ , Prandtl number Pr, and Schmidt number Sc, which can then be defined
explicitly as

Re = U0L0

ν
, J = g�ρL0

ρ0U 2
0

, Rρ = �S

��
, Pr = ν

κθ

, Sc = ν

κs
, (12)

where ν is the kinematic viscosity, κθ and κs are molecular diffusivities for heat and salt, and ρ0 is
the reference density. We also assume that the system is subject to an external body forcing F whose
specific form will be discussed in detail in the next section.

Based on Eqs. (11), we can straightforwardly derive the time derivative of the volume-averaged
kinetic energy of the system Klin ≡ 1/2〈|u|2〉 as (here and below 〈·〉 represents the volume averages):

dKlin

dt
= P − (Fbθ + Fbs) − ε, (13)
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where

P = 〈u · F〉, ε = 2

Re
〈si jsi j〉, Fbθ = − J

Rρ − 1
〈w′�′〉, Fbs = JRρ

Rρ − 1
〈w′S′〉 (14)

are defined to be the energy input from external forcing, viscous dissipation ratio, and buoyancy flux
associated with temperature and salinity, respectively. si j = 1/2(∂ui/∂x j + ∂u j/∂xi ) is the strain
rate tensor. In the last two equations and in the rest of the paper, we decomposed a given field
f (x, y, z, t ) into f = f + f ′ so that f represents the horizontal average of that field (except for Reb

which represents the background buoyancy Reynolds number as will be introduced below) and f ′
represents perturbation to it. It should be noticed that the unstably stratified background temperature
field continues to release energy to the system through the heat flux (Fbθ < 0); meanwhile the energy
of the system continues to be invested in mixing the stably stratified salinity gradient through the
salt flux (Fbs > 0).

When the system remains in a quasisteady state, the right-hand side of Eq. (13) should be
approximately zero. Considering that the absolute value of buoyancy fluxes Fbθ and Fbs are usually
much smaller than the viscous dissipation ε in our system (as will be demonstrated below), the
balance of the Klin budget is mainly kept by the first and last terms of the right-hand side of Eq. (13),
namely,

P ∼ ε. (15)

The background buoyancy Reynolds number Reb, which is controlled directly by ε, can then be
estimated through

Reb ≡ Re

J
ε ∼ Re

J
P. (16)

By controlling the energy input rate P, we can control the value of Reb of the system. This allows
us to test our criterion for staircase formation in thermohaline-turbulence instability theory which is
based solely on Reb.

B. Numerical methods

Governing equations (11) are integrated in a triply periodic cubic domain of length 2π using
the open-source computational fluid dynamics software NEK5000 [44]. NEK5000 was developed at
Argonne National Laboratory based on the spectral element method (e.g., [45,46]) which is a useful
tool for simulating transitional and turbulent flow.

For the system to achieve a quasisteady state, we choose to apply very similar initial fields and
forcing with the settings of the recent body-forced simulations [40]. Specifically the initial fields are
defined as a superposition of randomly phased horizontal shear modes ushear and randomly phased
three-dimensional internal wave modes (uinternal,�internal, Sinternal). The shear modes are confined to
large-scale modes m � mc = 7 only and the amplitude for a mode with vertical wavenumber m
is allocated to be proportional to 1/m in order to follow the initial energy spectrum of m−2. The
detailed functional form of ushear is as follows:

(ushear, vshear, 0) = 1√
mc

mc∑
m=1

1

m
(cos(φm + mz), sin(φm + mz), 0), (17)

where φm is the phase chosen randomly for each vertical mode. It should be noticed that these shear
modes have been nondimensionalized by their characteristic velocity scale U0 and length scale L0, in
such a way that the velocity amplitude of these shear modes has a nondimensional scale of O(1) and
the volume-averaged nondimensional squared shear 〈S2〉 = 〈(∂ushear/∂z)2 + (∂vshear/∂z)2〉 is equal
to 1. The form of the internal wave modes (uinternal,�internal, Sinternal), on the other hand, is initialized
based upon the algorithm discussed in Appendix B of [47] to satisfy the three-dimensional Garrett-
Munk spectrum. These internal wave modes contribute 10% of the initial energy and they are only
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TABLE I. Governing parameters for the direct numerical simulations performed in this paper.

No. Lz P Rρ Pr Sc Re J

1 2π 0.01 2 7 70 1000 1
2 2π 0.01 5 7 70 1000 1
3 2π 0.01 8 7 70 1000 1
4 2π 0.01 ∞ N.A. 70 1000 1
5 2π 0.1 2 7 70 1000 1
6 4π 0.01 5 7 70 1000 1

nonzero for modes with |k| � 7. For recent discussions of the Garrett-Munk spectrum of internal
waves in the oceans and the ability of high-resolution ocean models forced by both the atmosphere
and the astronomical tidal potential to replicate this spectrum see [48,49].

We first integrate the system without body forcing to 20 time units in order for the energy
contained in the initial larger scale modes to cascade to the small scales, a strategy previously
employed in [40]. Then we begin to introduce body forcing with an appropriate form to represent
the stochastic forcing of the large-scale modes. As employed in previous DNSs (e.g., [38–40]), these
vortical modes of forcing only act on the horizontal component of the velocity and can be written
in the following form:

(Fx, Fy) = A
∑
(k,l )

Ak,l (l,−k)ei(kx+ly), (18)

where k and l are the wavenumbers in the x and y directions, respectively. The forcing is only
nonzero for modes whose horizontal wavenumber kh = √

k2 + l2 lies in the small parameter
window of 2.5 � kh � 3.5, as optimized in [40]. The complex action for each mode Ak,l is chosen
randomly at each time step, after which a normalization constant A is determined so as to control
the energy input rate P at each time step to be a constant (we used the method proposed in [39] to
avoid accidental energy inputs due to the finite time steps).

We have performed six different simulations that will be discussed in this paper, whose governing
parameters are summarized in Table I. While fixed values of Re = 1000, J = 1, Pr = 7, and Sc =
70 were employed for all these simulations, we vary the density ratio Rρ for simulations 1–4 to
investigate how Rρ will influence the dynamics of the system’s equilibrium state. It will be important
to note that Rρ → ∞ for simulation 4 is achieved by integrating the system in the single-component
stratification case with Sc = 70. In these simulations, we set the energy-input rate P = 0.01 so that
the Reb ∼ 10 of each simulation is within instability criterion (9). For control simulation 5, we
switched P to the value 0.1 which leads to a larger value of Reb ∼ 100 that is well beyond the upper
limit of the instability criterion. We could not afford to test our theory for Reb � 10 by making
simulations with P � 0.01 because the layering mode is predicted to grow too slowly for small Reb

to be verified in the numerical simulations. For control experiment 6, we double the vertical extent
of the domain with Rρ = 5 to investigate how the layer formation process is dependent upon this
characteristic of the model.

For simulations 1–5 in this paper, we first apply an intermediate resolution of 350 × 350 × 350
grid points in the simulation domain (for simulation 6, in which the vertical domain is doubled, the
vertical resolution is always doubled for consistency). From a theoretical perspective this resolution
cannot reach the requirement of DNS as the mesh could not reach the Batchelor’s scale for the
slower diffusing salinity. However, in order to represent the layer formation process, both the large
domain size and the long integration time are necessary for our simulations, which restricts the
resolution that can be applied. In the Appendix, we compared simulations with different resolutions
to show that the layer formation we report in this paper is resolution independent. Once the steady
layered structure forms in the numerical simulations (the corresponding time is marked as t = t1),
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we then double the resolution in each direction to 700 × 700 × 700 grid points for simulations 1–5,
which allows us to better resolve the structure of the staircase state that forms. This system is then
integrated for a short time until the system stabilizes again at t = t2. In what follows, we will first
analyze the layer formation process characterized by the long integration of intermediate resolution
in Sec. IV. Then we will analyze the staircase states in detail by focusing on the subsequent high-
resolution evolution to be discussed in Sec. V.

IV. SPONTANEOUS FORMATION OF THERMOHALINE STAIRCASES IN THE DIRECT
NUMERICAL SIMULATIONS

In this section, we will focus on discussing the process of spontaneous formation of layered
structures in our system. In Sec. IV A we will first describe the layer formation process in simula-
tions with different Reb and Rρ . Then in Sec. IV B we will provide a detailed comparison between
the layer formation rate in the simulations and the linear growth rate derived from Sec. II. By doing
this, we will be able to evaluate whether the thermohaline-turbulence instability theory is indeed
dominating the nonlinear evolution process of our DNSs. The discussion in this section is confined
to the layer-formation phase of the evolution that is characterized by time t � t1.

A. Thermohaline layering state in the direct numerical simulations

In our simulations, well-defined layered structures form spontaneously in all simulations except
for simulation 5 in which a stronger forcing is applied. As an example, the layer formation process
for simulation 1 is illustrated in Fig. 1, in which we show the state of the temperature and
salinity fields in pseudocolor plots [Figs. 1(a)–1(f)] and the horizontally averaged vertical profiles
[Figs. 1(g)–1(i)]. At t = 100 [Figs. 1(a), 1(d), and 1(g)], the constant energy input from the vortical
modes keeps the system in a homogeneously stratified turbulent state in which the temperature and
salinity fields remain in the linear-gradient configuration. After a long integration time, the first sign
of the formation of the vertical structure occurs at approximately ti = 1000 (ti represents the time
that the initial layered structure forms). As shown in Figs. 1(b), 1(e), and 1(h), the system develops
into a four-step staircase state at this time of its evolution. These four-step staircases then gradually
merge to form a well-defined two-step layered state at approximately tm = 2100 (tm represents the
time that the layers merge into higher steps in our system), which is then retained in the system until
the end of the simulation at t1 = 3098. The layered state at t = t1 is illustrated in Figs. 1(c), 1(f),
and 1(i). By comparing Figs. 1(h) and 1(i), we can notice that the merged two-layer state has much
sharper interfaces and more homogenized mixed layers than the four-layer state. In what follows,
we will use the phrase “staggered layered state” to describe the layered state that is not very well
shaped, as in Fig. 1(h).

These different phases of the layer formation process can also be viewed in the time variation
of Fbθ and Fbs depicted in Fig. 2. In this figure, three different phases, namely, the initial staircase
formation stage, layer merging stage, and equilibrium stage, are separated by three characteristic
times (ti, tm, t1) which are denoted using the vertical lines. Generally speaking, both |Fbθ | and |Fbs|
experience a continuous increase during the layer formation stage and layer merging stage until they
become stabilized in the final equilibrium stage of evolution. This trend of increasing |Fbθ |, |Fbs| as
layers form and merge is consistent with previous numerical simulations of thermohaline staircases
of the salt-fingering system [13] and the low-Pr diffusive-convection system [50]. Meanwhile, the
net buoyancy flux Fb = |Fbs| − |Fbθ | keeps decreasing from positive values to negative values in the
entire evolution process. As we will discuss in the next section, this increase of energy flow to the
kinetic energy reservoir will increase viscous dissipation in the system.

The above-described evolution process generally applies also for simulations 2–4 (whose Rρ is
changed to Rρ = 5, Rρ = 8, and Rρ = ∞, respectively). In these simulations, however, the first
formed staggered layered state has two steps, which then merge into the single-step layered state
and the mixed layer occupies almost the entire domain. An example of such evolution can be seen in
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FIG. 1. The pseudocolor plots of (a–c) the salinity field Spt (x, y, z, t ) and (d–f) the temperature field
�pt (x, y, z, t ) at three different time slices t = 100, t = ti = 1000, and t = ti = 3098 for simulation 1. (g–i)
The horizontally averaged profiles of salinity S(z) (blue) and temperature �(z) (red) as a function of depth for
the same time slices.

FIG. 2. Evolution of the temperature-induced buoyancy flux Fbθ (red) and salinity-induced buoyancy flux
Fbs (blue) in the evolution of simulation 1. Temperature-induced buoyancy flux is plotted with the absolute
(negative) value for comparison. The three characteristic times ti, tm, and t1 represent the time that the first
layered structure forms, the time that layers merge into higher steps, and the end of the intermediate resolution
simulation, respectively (their definitions are discussed in detail in the text).
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FIG. 3. Pseudocolor plots of the salinity field Spt (x, y, z, t ) for simulation with Rρ = 5 at time slices (a, c)
t = ti = 1500 and (b, d) t = tm = 5000. (a, b) The normal box simulation (simulation 2) and (c, d) the tall box
simulation (simulation 6).

the pseudocolor plot in Figs. 3(a) and 3(b), where we showed the salinity field at the initially formed
staggered layered stage (t = ti = 1500) and merged layered stage (t = tm = 5000) for simulation
2. In order to test whether the layer formation process in the simulations is dependent upon the
height of the domain, we compare the staircase state formed in simulation 2 (this will be referred
to as the “normal box”) with that in simulation 6 that has twice the vertical domain height (this
will be referred to as the “tall box”) while all other conditions remain the same. In the tall box
simulation shown in Figs. 3(c) and 3(d), the staircases formed are somewhat unevenly distributed
with step sizes varying at different vertical levels. There are five steps formed at time t = 1500
which later merged into three steps at t = 5000. This makes the averaged step sizes slightly lower
but comparable with that of the normal box simulation at both these time slices. Furthermore, the
turbulence characteristics also appear similar for the normal box domain and the tall box domain
as can be seen in Fig. 3. Therefore we conclude that the time scale and the length scale of the
staircase formation are not sensitive to the vertical domain height we have chosen. For this reason
we will only discuss the normal box simulation of Rρ = 5 in what follows to be consistent with other
simulations. It is worth mentioning that although the three-step configuration shown in Fig. 3(d) is
stable within our integration time of 6500 time units, we do not rule out the possibility that these
staircases will eventually merge if this simulation is integrated much longer.

The important quantities for the layer formation and layer merging process are summarized in
dimensional units in Table II. The unit transformation is made by relating the controlled nondi-
mensional viscous dissipation rate with the typical value of viscous dissipation ε = 5 × 10−9 W/kg
(see [30], for example) in the Canada Basin. Using the typical value of molecular viscosity of
ν = 1.8 × 10−6 m2/s in the Arctic Ocean, we calculate the characteristic length scale for simula-
tions 1–4 to be approximately L0 = 0.33 m and the time scale to be approximately L0/U0 = 60 s.
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TABLE II. Basic simulation results summarized for the five simulations performed. In this table, layering
with “yes” or “no” indicates whether a layered structure observed to form in the system. ti and tm represent
the time that the initially (staggered) layered state forms and the well-merged layered state is observed in the
simulation, respectively. L is the step size in the finally merged layering state, and hIθ and hIs are the interfacial
thicknesses of the temperature profile and salinity profile in the equilibrium layered state.

No. P Rρ Reb Layer Steps ti (day) tm (day) t1 (day) t2 (day) L (m) hIθ (m) hIs (m)

1 0.01 2 9.5 Yes 4 → 2 0.7 1.5 2.15 2.26 0.6 0.07 0.05
2 0.01 5 8.8 Yes 2 → 1 0.9 3.6 5.05 5.27 1.3 0.11 0.08
3 0.01 8 8.8 Yes 2 → 1 0.8 3.1 3.16 3.38 1.3 0.12 0.09
4 0.01 ∞ 8.7 Yes 2 → 1 1.4 6.6 6.94 7.10 1.3 N.A. 0.10
5 0.1 2 83.0 No N.A. N.A. N.A. 1.81 N.A. N.A. N.A. N.A.

After transforming the characteristic times (ti, tm, t1, t2) to physical units as shown in Table II, we
can see that it takes a time scale of several days for the layered structure to develop and merge into an
equilibrated staircase. In our simulations, the step sizes L of these equilibrium staircase structures
have a physical length scale of approximately 1 m. This is consistent with the measurements of
the staircases in the Arctic Ocean, whose step sizes typically range from 1 to 5 m (e.g., [5]). This
also shows that the choice of our vertical domain height in the numerical simulations is capable
of capturing the real staircases formed in the Arctic Ocean. The interfacial thicknesses hIθ and
hIs formed in our simulations have been evaluated as the depth range within which |�z| > 1 and
|Sz| > 1 are satisfied, respectively. The interfacial thicknesses have the order of 0.1 m, with the
temperature interfaces generally thicker than the salinity interfaces due to the higher molecular
diffusivity at the interface. These values match well with the interfacial thicknesses measured
in the Canada Basin [51], where it was found that the temperature interfacial thicknesses are
approximately 0.15 m. These consistencies in physical scales of the staircase structures suggest that
the layered structures formed in our numerical simulations not only provide guidance for theoretical
studies of the layer formation mechanism, but are also physically relevant for the actual staircases
observed in the Arctic Ocean.

B. Comparison between the layer formation process in DNS analyses
and theoretical predictions of thermohaline-turbulence instability

While we have shown that the thermohaline staircase structures do form naturally in our nu-
merical system, in this section we will provide the analyses required to answer the question as to
whether these layered structures form because of the thermohaline-turbulence instability discussed
in MP21. In this process we will provide three tests on the basis of which to compare our numerical
simulations with the predictions of thermohaline-turbulence instability theory in what follows. First,
we will investigate whether the stability criterion derived from the theory is consistent with the layer
formation process observed in our numerical simulations. Second, we will analyze whether or not
the assumption of the parametrization scheme that lies at the heart of the thermohaline-turbulence
instability [26] is operating in the current numerical system. Third, we will investigate whether
the growth rate of the layering mode in our system is consistent with the growth rate predicted by
the linear stability analysis. As we will demonstrate in what follows, the thermohaline-turbulence
instability theory of MP21 provides rather good predictions for all these three aspects of the layer
formation process.

We will start by evaluating the instability criterion of the thermohaline-turbulence instability. As
we have reviewed in Sec. II, the thermohaline-turbulence instability theory predicts the layering
instability of the system to occur only when the buoyancy Reynolds number satisfies the criterion
0.55 < Reb < 41 [shown in Eq. (6)] for Pr = 7 and Sc = 70. In order to evaluate whether the
instability criterion is satisfied, in Fig. 4 we show the evolution of Reb in the five different
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FIG. 4. Evolution of the volume-averaged buoyancy Reynolds number Reb in simulations 1–5.

simulations we have performed. As expected, Reb of the system self-adjusts to the level of approxi-
mately ReP/J = 1000P [as discussed in Eq. (16)] soon after the introduction of the vortical modes
forcing at t = 20. The fact that Rebs of simulations 1–4 satisfy the criterion and Reb of simulation
5 exceeds the criterion is consistent with our observations described in the last section that the
layered structure forms in simulations 1–4 but not in simulation 5. Another interesting thing to
notice in Fig. 4 is that the level of Reb is slightly higher for Rρ = 2 than for the other simulations
with P = 0.01. This is a consequence of the buoyancy flux becoming negative in this case (shown
previously in Fig. 2) which provides an additional net energy source to be dissipated. The time-
averaged value of Reb for the layer growing stage of each simulation is averaged over time periods
of t = 50 to t = ti to be shown in Table II.

Next we turn to evaluate the effectiveness of the parametrization scheme described in Eq. (7)
in the current numerical system. To do this we need to compute the diapycnal diffusivities K� and
KS at different vertical depths of our system and evaluate whether they are strongly correlated with
the local buoyancy Reynolds number Reb. To reduce the influence of advection that varies strongly
with time, we evaluate the time-averaged one-dimensional buoyancy Reynolds number R̃eb(z) and
diapycnal diffusivities K̃�(z) and K̃S (z) following

�̃z(z) ≡
〈
∂�(z, t )

∂z

〉
t

, S̃z(z) ≡
〈
∂S(z, t )

∂z

〉
t

, Ñ2(z) ≡ −1

J

(
Rρ

Rρ − 1
S̃z − 1

Rρ − 1
�̃z

)
,

ε̃(z) ≡ 〈2si jsi j (z, t )〉t , R̃eb(z) ≡ ε̃(z)

Ñ2(z)
, F̃�(z) ≡ 〈w′�′(z, t )〉t − 1

RePr
�̃z(z),

F̃S (z) ≡ 〈w′S′(z, t )〉t − 1

ReSc
S̃z(z), K̃�(z) ≡ − F̃�(z)

�̃z(z)
, K̃S (z) ≡ − F̃S (z)

S̃z(z)
. (19)

In the above equations and throughout the rest of the paper, 〈·〉t represents the time averages over
the chosen time intervals and the tilde symbol over a physical quantity represents that it is averaged
in (x, y, t ) but not in z. F̃� and F̃S represent time-averaged vertical heat and salt fluxes which include
the contribution from both the convective fluxes and the diffusive fluxes.

In order to focus on the layer formation stage of the evolution, we evaluated K̃�(z), K̃S (z), and
R̃eb(z) over 40 nondimensional units of time intervals centered at t = 0.5ti for simulations 1–4 and
at t = t1 − 20 for simulation 5. These depth-dependent data are further averaged into 50 small depth
intervals for the correlation study. In Figs. 5(a) and 5(b), we plot the depth variations of dissipation
ratio ε̃(z) and R̃eb(z) defined in Eqs. (19) above. By comparing these two figures, we conclude that
the variations of R̃eb(z) = ε̃/Ñ2 are mainly contributed from Ñ2(z) instead of ε̃(z) since ε̃(z) shows
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(a) (b)

(c) (d)

FIG. 5. Depth dependence of (a) ε̃ and (b) R̃eb. Scatter plot of (c) (R̃eb, K̃�) and (d) (R̃eb, K̃S ) in (Reb, K )
parameter space at different vertical coordinates. The black solid line shows the parametrization scheme of
Eqs. (7) for (c) temperature and (d) salinity. The vertical dashed lines represent the critical Reb values that
separate different parametrization regions in Eqs. (7). All physical quantities are evaluated at the time interval
(0.5ti − 20, 0.5ti + 20) for simulations 1–4 and at (t1 − 40, t1) for simulation 5.

very small vertical variations. This fact suggests that the assumption we made in the derivation
of Eq. (3) described in Sec. II, namely, the viscous dissipation is a constant and only N2(z) feeds
back on Reb(z), is a fair assumption in describing the current numerical system. In Figs. 5(c) and
5(d) we further plot K̃�(z), K̃S (z), and R̃eb(z) in the (Reb, K ) parameter space to be compared
with the parametrization [26] evaluated from Eqs. (7). It can be clearly seen in this figure that
the distribution of R̃eb(z) at different depths spans approximately an order of magnitude due
to the growth of perturbations in the system [also shown in Fig. 5(b)]. In such a wide range of R̃eb(z)
the diapycnal diffusivities K̃�(z) and K̃S (z) follow the predictions of [26] very well, except for slight
deviations of K� in the small Reb regions. Most importantly the key element of the parametrization
from [26] needed to support the thermohaline-turbulence instability theory, namely, the existence of
the buoyancy-controlled regime for KS that scales as Re3/2

b , is well captured in the current system
as shown in Fig. 5(d). This strongly implies that the theoretical derivations in MP21 are based on
reasonable assumptions which are confirmed in our current numerical system.

Finally, we will perform a detailed analysis of the vertical wavenumber spectrum for temperature
and salinity to compare the theoretical predictions of MP21 with the growth rate of the layering
mode of instability. Specifically, we perform the vertical Fourier transformation of the horizontally
averaged salinity field (or temperature field) following

Sm(t ) = 1

V

∫
V

S(x, y, z, t )eimzdV,

�m(t ) = 1

V

∫
V

�(x, y, z, t )eimzdV,

(20)

where m must take integer values as constrained by our triplet periodic domain with size 2π .
In Figs. 6(a)–6(d) we show the evolution of the vertical wavenumber spectrum of salinity Sm

(temperature spectrum looks similar) for simulations 1–4. The evolution of the spectrum confirms
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(a)

(c)

(b)

(e)

(d)

FIG. 6. Evolution of the vertical spectrum of salinity for various modes Sm as a function of time in
simulations 1–5. The dash-dotted line [in (a)–(d)] represents the growth rate λ for each mode predicted
from the linear stability analysis calculated from formulas (4). The vertical dashed line [in (a)–(d)] marks
the characteristic time ti and tm sequentially.

our observations described in the last section concerning the different stages of the evolution: for
simulation with Rρ = 2 shown in Fig. 6(a), the system is first dominated by the m = 4 mode until
the growth of the m = 2 mode finally dominates the system and stays steady. We can also see
the formation of the two-layer state for Rρ = 5, Rρ = 8, and Rρ = ∞ before the final formed
single-layer staircase in Figs. 6(b)–6(d). For comparison simulation 5, however, there is no sign
of layer formation in Fig. 6(e).

The evolution of the vertical wavenumber spectrum can be compared with the growth rate
predicted by the theory described in Sec. II. The linear growth rates are calculated based on
Eq. (4) using Reb and Rρ for each simulation and they are represented as the dash-dotted lines
in Figs. 6(a)–6(d). It can be seen from the figure that the thermohaline-turbulence instability theory
offers a fairly good prediction for the growth of the first two vertical modes m = 1 and m = 2 before
saturation. This fact further supports the effectiveness of the theory of MP21.

To summarize the results of this section, we have demonstrated the effectiveness of the
thermohaline-turbulence instability theory from three perspectives. First, we showed that the in-
stability criterion provided correct predictions of whether the layers would form in the system.
Second, we justified the key assumption made in the theory, namely, the parametrization scheme of
[26] provides an accurate description of our system. Finally we have demonstrated that the growth
of the governing layering mode is consistent with the prediction of the linear stability analysis.
Therefore, we conclude that the spontaneous formation of the layered structure in our system is
indeed triggered by the thermohaline-turbulence instability theory described by MP21.

It should also be clear on the basis of the previous discussions that while Reb solely determines
whether the layered structure will form in the DNS system, it seems that Rρ plays a role in
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FIG. 7. Density fields for the equilibrium staircases at t = t2 for simulation with (a) Rρ = 2, (b) Rρ = 5,
and (c) Rρ = 8 . The pseudocolor plot is performed for the x-z plane at the y midpoint of the three-dimensional
domain.

determining the step size of the initially formed layering mode, considering that the number of
layers formed in our simulations varies with Rρ . The explanation of the depth of the first formed
layers in the system is not predictable on the basis of MP21 and goes beyond the scope of the
present paper. In order to fully understand this problem, we need a multiscale model that captures
the response of gradients at smaller scales, an example of which is provided in the work of [16] that
focused upon the salt-fingering regime of double-diffusive convection.

V. DIFFUSIVE CONVECTION STAIRCASE STRUCTURE
IN THE DIRECT NUMERICAL SIMULATIONS

As we have demonstrated above, the thermohaline staircase structures form spontaneously in our
continuously forced system. A natural and critical further objective of the present work is to analyze
the detailed steady structure of the formed diffusive convection staircases. In order to achieve this,
we have integrated the staircase state of the system (t = t1) with the doubled resolution for an
additional short period until the system reaches its steady state with this high resolution at t = t2 (the
values of t2 have been summarized in Table II). The better resolved domain allows us to look closely
at the morphology and the vertical transport, which will be discussed in Sec. V A. In Sec. V B, we
will compare our simulated interfaces with the existing theory of diffusive interfaces proposed by
LS.

A. Staircase structure

In Fig. 7, we show the vertical cross sections of the density field at the equilibrium state of the
high-resolution run for simulations with Rρ = 2, 5, and 8. As discussed previously, while the two-
step layered state forms with Rρ = 2 at the end of our numerical simulation, simulations with Rρ =
5 and Rρ = 8 have the single-layer structure across the vertical domain. In all these simulations,
very sharp interface(s) can be observed to separate well-mixed convective layers below and above.
Thin plumes can be observed in these fields to rise from the interfaces to transport scalars into
the mixed layers. These plumes have also been observed in the previous numerical simulations of
diffusive interfaces (e.g., [32,52]) and they have been argued as the crucial structure in transporting
scalars from the interface into the mixed layers [53].

In order to facilitate a further quantitative analysis of the layered structure, in Fig. 8 we show
the vertical distribution of heat and salt fluxes (F̃�(z), F̃S (z)), vertical gradients of temperature and
salinity (�̃z(z), S̃z(z)), as well as the effective vertical diffusivities for temperature and salinity
(K̃�(z), K̃S (z)) of the system, all evaluated at the nondimensional time interval of (t2 − 40, t2) in
the steady state of the high-resolution run for our simulations with Rρ = 2, 5, and 8. As shown
in Figs. 8(c), 8(f), and 8(i), the vertical diffusivities are significantly different in the mixed layers
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

FIG. 8. Time-averaged vertical fluxes for heat and salt, F̃�(z) and F̃S (z), vertical gradients for temperature
and salinity, �̃z(z) and S̃z(z), and diapycnal diffusivities for heat and salt, K̃�(z) and K̃S (z), evaluated at the
nondimensional time interval (t2 − 40, t2) for simulation with (a–c) Rρ = 2, (d–f) Rρ = 5, and (g–i) Rρ = 8.
In this figure, we use red to represent the temperature-related physical quantities and blue to represent the
salinity-related physical quantities.

compared with the interface regions, suggesting entirely different dynamics in those regions: in the
mixed layers, mixing is driven by strong turbulent convection which leads to the same values of
diffusivities for heat and salt. In the interface region(s), however, the turbulent diffusivities for heat
and salt are the same order as the molecular diffusivities for temperature and salinity, suggesting
the absence of turbulent motions at the interface region. Furthermore, the turbulent diffusivities
at the interfaces are lower for Rρ = 5 and 8 compared with Rρ = 2. This is possibly because the
scalar variations across the interfaces are higher for Rρ = 5 and 8 compared with Rρ = 2 (as shown
in Fig. 7), which makes it more difficult for the turbulence in the mixed layers to penetrate the
interfaces.

Even though the vertical diffusivities in the mixed layer regions are two to three orders of
magnitude higher than in the interface regions, the vertical scalar gradients in the mixed layers
are two to three orders of magnitude lower than in the interface regions [shown in Figs. 8(b), 8(e),
and 8(h)], which leads to the crude balance of vertical fluxes shown in Figs. 8(a), 8(d), and 8(g).
The maintenance of flux balances between the mixed layers and interface regions suggested that the
staircase structures formed in our system can stably persist.

B. Comparison with the classical diffusive-interface model

While we have illustrated how the steady staircase structure is maintained by the balance of heat
and salt flux between interface regions and mixed layers, we will compare these structures with the
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(a) (b) (c)

FIG. 9. Time-averaged buoyancy frequency Ñ2 in the mixed layers as a function of depth evaluated at the
nondimensional time interval (t2 − 40, t2) for simulations with (a) Rρ = 2, (b) Rρ = 5, and (c) Rρ = 8.

classical theoretical model of diffusive interfaces of LS. LS presented a time-independent model
of diffusive interfaces, which provides significant insights concerning the following theoretical and
numerical simulations of diffusive interfaces studies (see review of [34,50]). In this model, the
interface consists of two boundary layers from which fluctuations arise on the outer edge of the
interfaces and a diffusive core cross in which transport takes place only by molecular diffusion.
This theoretical model describes a diffusive-interface structure that can only remain stable when
the density ratio Rρ is smaller than the critical value of Rcr

ρ = τ−1/2. The LS model was later been
extended in [54,55] to include the run-down evolution of the diffusive interfaces in the Rρ > Rcr

ρ

regime. As the diffusive interface structure is spontaneously formed and kept stable in our numerical
simulations, the run-down model of [54,55] will be irrelevant to our current discussions. Therefore
we will focus on comparing our interface structures only with the original time-independent model
of LS.

In our system, Rcr
ρ = τ−1/2 = 3.16 so that the small Rρ simulation Rρ = 2 satisfies the criterion

while the large Rρ simulations with Rρ = 5 and 8 are outside of the criterion. To investigate whether
the unstably stratified boundary layers described in the LS theory are formed in these simulations,
we plot in Fig. 9 the time-averaged and horizontally averaged buoyancy frequency Ñ2 defined in
Eq. (19) for Rρ = 2, 5, and 8. As shown in Figs. 9(b) and 9(c), the unstably stratified boundary
layers, which are characterized by the N2 < 0 region above and below the interface, do not exist
for the large Rρ staircases Rρ = 5 and Rρ = 8. For Rρ = 2, on the other hand, N2 takes negative
values in a wide range of depth regions. While this fact shows that the boundary layer structure
is not special in keeping the staircases stable in our model, it does not contradict the LS theory
considering that the water columns do become unstably stratified below and above the interface
core.

In order to further test whether our Rρ = 2 simulation is consistent with LS’s model, in Fig. 10
we plot the time-averaged density ratio R̃ρ (z) ≡ S̃z/�̃z and γ̃ (z) ≡ F̃S/F̃� in the steady state of our
system. LS’s original theory predicted that the value of R̃ρ and γ̃ at the interface will be determined
by 1/

√
τ and

√
τ , respectively. As later pointed out in [56] and developed in the recent work of [33],

the molecular diffusivity ratio τ in LS’s original theory should be replaced by the ratio of effective
diffusivity τ eff = KS/K� across the interface when the interface is influenced by turbulence. The
predicted values from this slightly revised theory are evaluated and plotted as the vertical dash-
dotted line in Fig. 10. From this figure it can be observed that the predicted values of interface Rρ

and interface γ are approximately 10% and 20% lower than the simulated values, respectively.
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(a) (b)

FIG. 10. (a) Time-averaged density ratio R̃ρ (z) and (b) flux ratio γ̃ (z) (solid lines) evaluated at the
nondimensional time interval (t2 − 40, t2) for simulation 1 (Rρ = 2), in comparison with the predicted value of
from LS’s theory (vertical dash-dotted lines).

As discussed above, while our small Rρ simulation with Rρ = 2 is still more or less consistent
with LS’s model, our simulations with Rρ = 5 and Rρ = 8 cannot be explained by LS’s model. In
order to understand this inconsistency, two important distinctions between our numerical model
and the original theoretical model of LS should be recognized: First, the theoretical model of
LS assumed perfectly homogenized mixed layers above and below the interfaces. As shown in
Figs. 8(b), 8(e), and 8(h), however, a fully equilibrated staircase structure requires finite values
(although small) of vertical gradients for both temperature and salinity in the mixed layers. In this
circumstance, as discussed above, the balance between vertical fluxes in the mixed layers and those
in the interfaces is the key to maintaining the staircase structure. This clearly goes beyond the
description of the simplified LS model which only discussed the interface transportation. Second,
the theoretical model of LS is a purely buoyancy-driven model which does not include any effect
of dynamically driven stratified turbulence. Without stratified turbulence, the unstably stratified
boundary layer becomes necessary for their model to transport the diffusive fluxes at the sharp
interfaces into the mixed layers. However, when the effect of stratified turbulence is properly taken
into account in our model, the flux balance between interface and mixed layers can be established
(see Fig. 8) without the presence of any unstably stratified boundary layer. Therefore the staircase
structure can stably exist in our systems with Rρ > Rcr

ρ even though they are predicted to be unstable
by LS’s theory.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have performed a series of DNS analyses of the continuously forced stratified
turbulence system comprised of two different scalars stratified in the diffusive-convection config-
uration. We found that the thermohaline layered structure forms spontaneously in the simulations.
We then considered three different aspects of this process to show that it is indeed well explained
by the theory of thermohaline-turbulence instability proposed by MP21. First, we showed that the
controlled parameter Reb in the layering simulations does satisfy the criterion derived by MP21.
Second, we have demonstrated that the key assumption of the thermohaline-turbulence instability
theory of MP21, namely, that the parametrization scheme [26] determines the vertical transports
of the system, is indeed the case in the layer formation stage of the evolution of our system.
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Third, we have found good consistency between the exponential growth of the layering mode
and the predicted growth rate from the linear theory of MP21. These results strongly suggest that
the thermohaline-turbulence instability theory is the highly plausible explanation of thermohaline
staircase formation in the diffusive convection regime, for example, in the Arctic Ocean.

The staircases formed in our DNSs were next examined and compared with the model proposed
by LS. We explained how the vertical fluxes are kept balanced vertically in our model despite the
fact that the boundary layer structure, which has been regarded as critical in stabilizing the interface
structure, is missing in our model. We have argued that the reason for the discrepancies between the
classic model and our simulations is that the effect of stratified turbulence at the boundary layers
and mixed layers has not been considered in this classic model.

There are several limitations of the numerical simulations discussed in this paper. First, we have
assumed a Schmidt number Sc = 70 in our simulations which is at least an order of magnitude
smaller than the actual Schmidt number in the ocean. This prevents us from directly comparing
the values of fluxes obtained from our simulations with the empirical interface flux laws calibrated
previously (e.g., [53,57,58]). Second, we do not yet know whether the steady staircase state we
observed is in its final equilibrium state. It is possible that after a much longer integration time
(and higher domains) the current stable stabilized staircases will continue to merge. Observing such
trends in DNSs requires a considerable number of computational resources.

From the theoretical perspective, the current thermohaline-turbulence instability is still based on
the mean-field equation (1) which suffers from the ultraviolet catastrophe (same caveats as [8]) in
the small-scale limits. This fact restricts our ability to predict the step sizes that initially form in
our system (as we have mentioned previously at the end of Sec. IV B). It also prevents us from
applying the parametrization from [26] directly to the thin diffusive interface structure to infer its
vertical fluxes. Therefore, we believe that a properly captured multiscale theory as has been done
in the salt-fingering staircase [16] is the key to a deeper understanding of the diffusive-convection
staircases.
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APPENDIX: INFLUENCES OF RESOLUTION ON THE DIRECT NUMERICAL SIMULATIONS

As discussed in the main text, the long integration time needed for the system to develop into the
staircase state exerts a strong constraint on the resolution available for our numerical simulations. In
order to understand the influences of resolution in our numerical system, we performed three control
experiments for simulations 1–3 with the same numerical settings except for a coarser resolution
with half the number of grid points in each of three spatial dimensions (175 × 175 × 175 grid
points). In what follows, we will use “low-res,” “mid-res,” and “high-res” to refer to the resolutions
of 175 × 175 × 175, 350 × 350 × 350, and 700 × 700 × 700 grids, respectively.

In Figures 11(a)–11(c) we compare the evolution of the vertical spectrum of salinity for the
critical layering mode between “low-res” simulation and “mid-res” simulation (spectrum evolution
of “mid-res” has been shown and discussed in the main text) for Rρ = 2, 5, and 8 with P = 0.01.
Although the systems take a different path and different periods towards the equilibrium as we
switched the resolution, the equilibrium states for the vertical structure they reach are almost
identical. This can be seen in Figs. 11(d)–11(f), which show the comparison of vertical profiles
for temperature and salinity between “low-res” simulations and “mid-res” simulations in the
equilibrium state. These vertical profiles show almost the same structure except for the fact that
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(a) (b) (c)

(d) (e) (f )

FIG. 11. (a–c) Comparison of vertical spectrum of salinity between “low-res” simulation (dash-dotted
lines) and “mid-res” simulation (solid lines) for (a) Rρ = 2, (b) Rρ = 5, and (c) Rρ = 8. For Rρ = 2 we use
black to represent the m = 2 mode and red to represent the m = 4 mode. For Rρ = 5 and Rρ = 8 we use black
to represent the m = 1 mode and red to represent the m = 2 mode. (d–f) Comparison of vertical profiles of
�(z) and S(z) in the equilibrium staircase state between “low-res” simulation (dash-dotted lines) and “mid-res”
simulation (solid lines). The temperature profile is shown in red and the salinity profile is shown in blue.

the interface gradients for low-res simulation are slightly smaller for Rρ = 2. This suggests that the
formation of the staircase state in our numerical system is a robust result instead of a numerical
artifact.

Although the variation of resolution does not influence the final equilibrium staircase state of our
numerical simulations, the vertical heat flux and salt flux in the equilibrium state are found to be
sensitive to the resolutions. To see this, we evaluate the Nusselt numbers for heat and salt, which are
the commonly used nondimensional numbers that reflect the ratio of convective flux over diffusive
flux defined as

Nu� = RePr〈w′�′〉, NuS = ReSc〈w′S′〉. (A1)

In Fig. 12, we plot the variation of the Nusselt numbers as a function of three different resolutions
applied in the equilibrium layered stage in our simulations with Rρ = 2, 5, and 8, respectively. Both
Nu� and NuS vary with the increased resolution for all our simulations, especially for the strong
increase of NuS from low-res simulation to mid-res simulation. The fact that only mild variations
of fluxes occur during the improvement of resolution from “mid-res” to “high-res” suggests that
further increase of resolution will not bring significant variation to the equilibrium transport we have
simulated. However, it still needs to be remembered that these values of fluxes we have obtained are
under limited resolution and should be viewed cautiously.
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(a) (b) (c)

FIG. 12. (a–c) Comparison of Nusselt numbers Nu� (red) and NuS (blue) in the equilibrium layered stage
at different resolutions for simulations with (a) Rρ = 2, (b) Rρ = 5, and (c) Rρ = 8. The lower and upper error
bars are calculated based on the 5% quantile and the 95% quantile of the Nu data, respectively.
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