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Speed of fragments ejected by an expanding liquid tin sheet
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We experimentally investigate the speed of fragments produced by ligament breakup in
the laser-induced deformation of tin microdroplets into axisymmetric sheets. The experi-
ments were carried out covering a wide range of droplet diameters and laser-pulse energies.
In addition to fragments produced by end-pinching, we also observe fragments shed via
Rayleigh-Plateau breakup of long ligaments at late times. A double-frame backlit camera
was used to obtain the speeds of the fragments uf and the time of their detachment td . We
show that by normalizing uf to the initial expansion speed of the sheet Ṙ0, all data collapse
onto a single, universal curve that is a function of the dimensionless time td/τc only, where
τc is the capillary time. This universal curve is explicitly independent of the droplet’s Weber
number. The collapse of uf is supported by energy conservation arguments. Our findings
enable the prediction of the instantaneous speed and position of the fragments shed from
liquid tin targets used in state-of-the-art extreme ultraviolet nanolithography, facilitating
the design of effective mitigation strategies against microparticulate debris.
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I. INTRODUCTION

Liquid fragmentation caused by the impact of droplets is a ubiquitous process in nature that
is important in numerous industrial applications. In agriculture, the efficiency of the uptake of
nutrients by the leaves of a plant is affected by the splashing that originates from the impact of
droplets in pesticide sprays [1]. In the case of airborne-transmitted diseases, fragments of liquid that
originate from the respiratory system of animals can travel a long distance and transport biological
agents [2–4]. In the semiconductor industry, splashing and fragmentation processes also play a
key role [5,6]. Modern sources of extreme ultraviolet (EUV) light for nanolithography use liquid
tin to generate EUV light with a wavelength centered at 13.5 nm in a two-step process [7–11].
In the first step, a ns-laser prepulse illuminates a spherical microdroplet of liquid tin, inducing its
propulsion and deformation into an expanded target consisting of a thin sheet and a rim that bounds
the perimeter of the sheet [12,13]. This target is subsequently irradiated by a second laser main-pulse
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to produce a hot and dense plasma that emits EUV light [14–18]. The droplet deformation driven by
the prepulse also results in the generation of micron-sized fragment “debris,” which may drastically
reduce the lifetime of the collection optics within the commercial sources of EUV light [5,19–21].
Therefore, a thorough understanding of the shedding mechanism of fragmentation in the context
of laser-pulse impact on a droplet is highly relevant to optimize the performance and to extend the
lifetime of EUV sources.

To better understand the physics that dictates the fragmentation of tin droplets after prepulse
irradiation, we draw on analogies to canonical cases of droplets impacting onto solid substrates.
Such analogies were made in prior experimental work by Klein et al. [5,22] and in a theoretical
study by Gelderblom et al. [23] to describe the deformation and fragmentation of a sheet produced
from a laser-pulse-impacted droplet. Upon impact, a droplet deforms into a thin sheet, bounded by
a thicker rim. The liquid contained in the sheet flows outward towards the periphery, progressively
increasing the mass content of the bounding rim [24]. Due to the restoring force exerted by the
surface tension, the rim continuously decelerates. On the other hand, the fluid particles on the
sheet follow ballistic radial paths since there are only weak pressure gradients along the radial
direction [2,24]. Once coalesced with the decelerating rim, the velocity of the liquid flowing from
the sheet suddenly decreases [24]. This rapid change in speed leads to an increase of the static
pressure and to a loss of total energy [24]. In addition, the gradual deceleration of the rim leads to
Rayleigh-Taylor (R-T) instabilities, which, combined with the Rayleigh-Plateau (R-P) instabilities,
cause azimutal undulations that ultimately aggregate into ligaments fed by the pressurized liquid
contained in the rim [5,24,25]. Finally, the ligaments break into fragments via ligament pinch-off.
The produced fragments have a speed u f which equals the speed of the corresponding ligament tip
at one necking time prior to the pinch-off [2]. Overall, the fragmentation dynamics is the result of a
complex interplay of local rim destabilization and flow in the sheet, set in motion by the impact of
the droplet.

While splashing and fragmentation processes related to the impact of droplets on solids have been
widely studied, it is surprising that only a few studies deal with the velocity of the produced frag-
ments. Riboux et al. [26,27] and Thoroddsen et al. [28] investigated the speed of fragments produced
by the impact of mm-sized water droplets on a large solid surface. These works, however, focused
on the initial stage of the fragment’s behavior shortly after impact at t � ti, where ti = D0/U is the
inertial time with D0 and U the diameter and the initial speed of the impacting droplet, respectively.
In these cases, the distribution of fragment size and velocity are influenced by the capillary force
and the viscous stress at the lamella in contact with the surface. These effects on the fragmentation
process are expected to depend on the area of the solid on which the droplet impacts. Inspired
by the splashing effects occurring close to the edge of plant leaves, Wang et al. [2] investigated
the impact of mm-sized droplets on a pillar with a diameter similar to the droplets, studying
the speeds of fragments as shed from the growing and retracting sheet. They found experimental
evidence of a self-similar behavior of the speed of fragments, later supported by an analytical
work in Ref. [29]. In the case of tin microdroplets irradiated with a laser pulse, it is the violent
expansion of the laser-produced plasma near the droplet surface that provides a recoil pressure with
a magnitude of 100 kbar [23,30–32], which results in an effectively instantaneous (∼10 ns � ti)
momentum kick leading to propulsion and expansion velocities on the order of 100 m/s [30–32].
In this extreme context, where time and spatial dimensions significantly differ from those found in
droplet-impact-on-solid cases, the interplay of the parameters that condition the speed of fragments
is not obvious. The absence of a rigid surface implies that there is no solid contact—there is no
impactor. This difference in the boundary conditions will influence the fluid dynamic response of
the droplet [23], modifying the evolution of the sheet and its thickness [12,13,23,33]. Furthermore,
different magnitudes of initial perturbations, when comparing water and tin laser-impacted droplet
systems, appear to induce disparities in the capillary instabilities that govern the breakup of the
sheet [5,34]. The influence of the amplitude of such initial perturbations on the speed of shed
fragments is unknown. Therefore, there is a need for a systematic study of the speed of fragments
induced by a laser impact on tin microdroplets.
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In this paper, we experimentally investigate the speed u f of fragments that result from the
laser-induced deformation of tin microdroplets. We include droplets with different diameters D0

impinged by laser pulses of various energies Ep, which enables us to cover a wide range of Weber
numbers and relevant timescales. We employ stroboscopic microscopy using a double-frame camera
to capture the ballistic trajectory of fragments shed from ligaments protruding from the rim. Our
imaging systems, with the optical resolution enhanced with respect to our previous studies, allow
observations of fragments shed from ligaments not only by the canonical end-pinching mode, but
also by a R-P instability occurring on those long ligaments that appear at later moments. Our
benchmark studies of the dynamics of the sheet’s expansion and contraction underscore the validity
of using a global deformation Weber number to characterize these dynamics following Ref. [5].
Next, we present the results of our measurements of fragment speed u f and the dependence thereof
on detachment time td and Weber number. The speed of the fragments is shown to always exceed
the instantaneous expansion velocity of the rim Ṙr , where the difference u f − Ṙr increases with
time, starting at zero at the onset of the impact, i.e., u f → Ṙr at td → 0. Furthermore, we show that
normalizing u f to the initial expansion speed Ṙ0 provides a universal curve u f /Ṙ0 that is a function
of the dimensionless time td/τc only and is independent of the Weber number. This self-similar
behavior of u f is demonstrated to be supported by energy conservation arguments when considering
the fraction of the total energy taken by the fragmentation channel.

II. EXPERIMENTAL SETUP

Figure 1(a) presents a schematic top-view of the experimental setup. A detailed description of
the subsystems of the setup can be found in Refs. [12,30]. The laser-tin interaction experiments are
carried out in a vacuum chamber (10−7 mbar) with several ports that provide optical access. A tin
reservoir is situated on top of the chamber and is kept at a constant temperature of 260 ◦C that is
well above the melting point of tin (234 ◦C [35]). From the reservoir, a droplet generator dispenses a
vertically aligned train of liquid tin microdroplets, which retain the initial 260 ◦C temperature during
their in-vacuum flight with liquid density ρ = 7000 kg/m3, surface tension σ = 0.54 N/m, and
dynamic viscosity μ = 1.8 × 10−3 Pa s [36,37]. In the experiments, we systematically investigate
droplets with five diameters D0 = 27, 34, 39, 43, and 67 µm. A few millimeters above the center of
the chamber, the droplet stream passes through a horizontal light sheet produced by a helium-neon
(He-Ne) laser. The light scattered by the droplets is detected by a photomultiplier tube (PMT),
providing a signal with a repetition rate on the order of kHz. This signal is down-converted to
10 Hz, sent to a delay generator and used to trigger the data acquisition and laser systems.

Once a droplet reaches the center of the chamber, it is irradiated by a circularly polarized laser-
pulse at 1064 nm with a pulse duration of 10 ns at full width at half maximum (FWHM). The
laser pulses are delivered by a Nd:YAG laser system (Quanta-Ray, Spectra-Physics). The laser is
focused to a Gaussian-shaped beam profile with a diameter ≈135 μm (FWHM) at the surface of
the droplets. We employed two different laser pulse energies for each droplet size, enabling us to
cover a wide range of the relevant Weber number, which ranges from approximately 1100 to 5500.
In our experiments, the Ohnesorge number Oh = μ/

√
ρσD0 ∼ 10−3, which indicates a negligible

influence of viscosity to the impact dynamics compared to the surface tension. The droplet capillary
timescale τc =

√
ρD3

0/(6σ ) ranges from 6.5 to 25 μs. Detailed experimental conditions and the
parameters derived are summarized in Table I in the Appendix.

The expansion and fragmentation dynamics of the sheet are inspected using a stroboscopic
shadowgraphy imaging system, which consists of long-distance microscopes (K2 DistaMax, Infinity
Photo-Optical) attached to CCD cameras. We record the droplet dynamics at 90◦ and 30◦ with
respect to the laser propagation direction, as shown in Fig. 1(a), thus obtaining side- and front-view
images, respectively. The imaging systems use incoherent light pulses at 560 ± 10 nm with a
pulse duration of 5 ns (FWHM) to provide the backlighting of the image. These probe pulses are
generated within rhodamine 6G dye cells that are pumped with 532-nm-pulsed laser light. The
side-view system uses a CCD camera (Manta G145-B, AVT), which utilizes a CF-1/B objective
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FIG. 1. (a) Top-view schematic of the experimental setup including a vacuum chamber, synchroniza-
tion and trigger systems, Nd:YAG drive laser, and imaging systems. During the experiments, individual liquid
tin microdroplets are irradiated by single ns-laser pulses. The energy of the laser pulse is controlled by using a
half-wave plate and a thin-film-polarizer (TFP). The beam is dumped in a beam dump (BD). A quarter-wave
plate is used before the final focusing lens to set a circular polarization. The imaging systems employ a
double-frame CCD camera (PCO-4000) and a single-frame CCD camera (AVT Manta B145-G), which provide
front- and side-view images of the expanding tin sheet at 30◦ and 90◦ with respect to the laser direction,
respectively; see inset example front- and side-view shadowgraphy images as recorded by the PCO and Manta
cameras. Two consecutive shadowgraphy probe pulses SP1 and SP2 are used as illumination sources for the
front-view microscope, whereas a single pulse SP1 is used for the side-view system. (b) Time sequence of the
illumination pulses and their relation with the much longer exposure windows of the cameras. The time t = 0
sets the moment at which the drive laser pulse illuminates a droplet. At a time delay t , the first probe pulse SP1

illuminates the expanding tin, overlapping with the exposure windows of both PCO cameras (texp, 1) and Manta
(texp). After SP1, the second probe pulse SP2 is collected by the PCO camera at t + �t , within the second
exposure window texp, 2. The full temporal span of the target dynamics is obtained by scanning the time delay t .

(Infinity Photo-Optical) and captures single frames generated by a single shadowgraphy probe
pulse SP1 during the exposure of the camera texp. The front-view microscope is equipped with an
CF-3 objective (Infinity Photo-Optical) with a shorter working distance for an increased resolution
(∼3 μm), and is set up at a distance of 110 mm from the target sheet. This microscope uses a camera
(PCO-4000) capable of acquiring two consecutive frames of the same tin sheet with an effective
minimum interframe delay of 280 ns. This double-frame camera captures two consecutive probe
pulses SP1 and SP2 with a relative time delay �t , which is tunable and typically ranges from 1 to
5 μs in the experiments. The time sequence of the probe pulses SP1 and SP2 and the corresponding
exposure windows of the camera, texp, 1 and texp, 2, are shown in Fig. 1(b).

III. LIGAMENT BREAKUP

Figure 2 presents a set of high-resolution front-view images collected in this study that illustrates
the sheet expansion at different time delays. In this specific case, a droplet with an initial diameter of
D0 = 67 μm was irradiated using a laser pulse with an energy of Ep = 7 mJ. After laser excitation,
the droplet is propelled along the laser propagation direction and deforms into an axisymmetric
sheet, which expands, contracts, and fragments over time. The expansion and propulsion of the
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FIG. 2. Front-view shadowgraphy images of the laser-induced tin sheet expansion and fragmentation at
different time delays t , where t = 0 marks the onset of the ns-laser impact [each time delay, from panel (a) to
(f-f1), corresponds to a different laser-droplet impact event]. These images were obtained using droplets with
a diameter of D0 = 67 μm and a laser pulse energy of Ep = 7 mJ. (a) Shadowgraphy image of a droplet right
before laser exposure at t = 0, which serves as scale bar. (b) At t = 3 μs, the droplet promptly expands into an
axisymmetric sheet, with an initial expansion rate of Ṙ0 ≈ 38 m/s. The inset provides a zoom of the emergent
rim corrugations. (c) At t = 7 μs, corrugations further develop into ligaments. (d) At t = 10 μs, fragments
are shed via end-pinching, further illustrated in the inset zoom-in. (e) At t = 11 μs, some ligaments merge
together (also see zoom-in inset). (f-f1) At t = 13 μs, ligaments have grown to a typical length of several tens
of micrometer. The inset illustrates the formation of a fragment that has just detached from the tip of a ligament
with a length of ≈50 μm. (f-f2) The very same sheet shown in (f-f1), but 3 μs later. The inset shows the same
ligament as in (f-f1) here breaking into several fragments via R-P instability.

droplet are induced by the recoil pressure that results from the violent expansion of a laser-produced
plasma (see, e.g., Refs. [12,22,23,30]). As the sheet expands, a rim forms at the perimeter of the
sheet, typically reaching a rim thickness of several micrometers, as reported in Refs. [12,13]. Shortly
after the formation of the rim, it destabilizes due to the combined effect of R-T and R-P instabilities
that progressively enhances any initial perturbation on the rim to visible corrugations [24,25].

Figure 2(b) taken at t = 3 μs shows the initial corrugations a fraction of which [5,38] further
develop into ligaments that grow along the radial direction, as we illustrate in Fig. 2(c) at t = 7 μs.
Tin from the sheet continuously feeds the base of the ligaments, and thus these grow over time and
ultimately break into small fragments. This breaking process is first dominated by end-pinching [2],
shedding one droplet at a time as illustrated in Fig. 2(d) at t = 10 μs. The inset shows an enlarged
picture to exemplify the end-pinching event. We observe that the onset of fragment generation de-
creases with increasing Weber number. A detailed analysis will feature in a forthcoming work. Later
on, the ligaments merge [see Fig. 2(e)] and stretch, reaching lengths of several tens of micrometers.
Figure 2(f-f1) at t = 13 μs shows such a long ligament, with a length of approximately 50 μm. At
this stage, the fragments are generated not only via end-pinching, but also via R-P breakup, where
multiple droplets are produced nearly simultaneously. Such a ligament breakup event is presented
in the insets of Figs. 2(f-f1) and 2(f-f2), which illustrate the evolution of the exact same ligament
with over a time interval �t = 3 μs as recorded by our double-frame camera. The ligament shown
in the insets exhibits both an end-pinching event in Fig. 2(f-f1) and a R-P breakup in Fig. 2(f-f2).

Ligament breakup via R-P instability

To explain the occurrence of both the end-pinching and R-P breakup modes, we now dis-
cuss the relevant dynamics of the ligaments in more detail. Wang et al. [38], in their work on
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droplet-pillar impact, reported on ligaments breaking into fragments via end-pinching. They did not
observe ligaments growing into long liquid jets required for the R-P breakup mode. The absence
of this second mode of breakup was explained in the context of a critical Weber number Wec [38]
which was originally introduced by Clanet et al. [39] for the flow out of a stationary orifice and
was later refined by Ambravaneswaran et al. [40]. For droplet impact, at small ligament Weber
numbers Wel = ρu2

l wl/σ < Wec, fragments form from ligaments solely via end-pinching; here ul

is the ligament speed in the comoving frame following the expansion of the rim and wl is the mean
diameter of the ligament [38]. For cases Wel > Wec, we expect the transition from end-pinching
to jetting to occur. Here, long ligaments are formed which break into multiple droplets via R-P
instabilities [38,41].

In our experiments, we observe that end-pinching governs the ligament breakup for the dominant
fraction of the studied time interval. At late times, however, we clearly see the formation of long
ligaments which break up via R-P instabilities, i.e., a transition from end-pinching to jetting occurs.
This transition is expected considering the analytical prediction from Ref. [38], which indicates a
monotonic increase of Wel and a decrease of Wec with increasing t/τc, independent of the droplet’s
Weber number. As a corollary, the criterion of Wel ∼ Wec will be met at some constant time t/τc,
which is analytically given as t ≈ 0.76τc, as can be derived from Ref. [38]. The transition to jetting
appears to occur earlier in our experiments, cf. the example case shown in Figs. 2(f-f1) and 2(f-f2)
where the R-P breakup related to jetting starts to become visible around t ≈ 13 μs ≈ 0.5 τc. This
observation of an earlier transition to jetting should be compared to the fact that our experiments
exhibit an earlier apex time tmax/τc of the sheet expansion (see below) and a faster expansion rate
in the early stages. Therefore, the growth of Wel that is set by the sheet expansion will be faster
and may thus be expected to reach the critical Weber number at an earlier time, in line with our
observations of R-P breakup.

IV. SHEET EXPANSION

Figure 3(a) presents a front-view shadowgraphy image of an example sheet, which we use to
illustrate the steps taken to determine the radius of the sheet’s rim Rr and the radial position of the
ligaments Rl . In this section, we will first discuss the expansion trajectory of the rim radius Rr ; the
ligament radius Rl will be separately discussed in Sec.V B. The image in Fig. 3(a) was recorded
8 μs after illuminating a tin droplet (D0 = 67 μm) with a laser pulse (Ep = 20 mJ). In line with the
method used in Ref. [38], we first locate the outer contour that bounds the ligaments on the sheet
perimeter [see the red lines in Fig. 3(a)]. We then locate the inner contour — which is retrieved as
the baseline of the outer contour — as the position of the rim [see the blue lines in Fig. 3(a)]. The
radius of the rim Rr is thus defined as the radial distance from the inner contour to the center of the
sheet. Due to the axisymmetric geometry of the sheet, Rr does not show angular fluctuations: our
data shows a small 2 to 4% variation over the relevant angular interval. We can then identify Rr as
the average radius of the rim along the sheet’s perimeter.

Figure 3(b) presents the rim radius Rr as a function of time for the same experimental conditions
as used for Fig. 3(a). In Fig. 4, we further plot the results for Rr (t ) for all data available as sum-
marized in Table I. For a given parameter set, we record a stroboscopic time series by performing
a single laser experiment for each time delay t between laser impact and the illumination pulse
(see Fig. 1). To ensure the reliability and repeatability of our results, we perform 20–50 impact
events per parameter set for each time delay. The uncertainties shown in Figs. 3(b) and 4(a) equal
the standard deviation of the measurement ensembles. In Fig. 4(a), for a fixed droplet size, we
observe a faster initial expansion and a larger apex radius of the sheet Rmax when increasing the
laser energy. We also observe that the apex time tmax (at which the sheet reaches Rmax) increases
with the droplet size. After reaching Rmax, the sheet starts to shrink due to the surface tension. In
Ref. [38], a collapse of Rr onto a universal curve was reported, captured by the function y = f (x)
with variables x = t/τc and y = RrD−1

0 We−1/2 where We = ρU 2D0/σ is the Weber number with U
the impact speed. An earlier work by Villermaux et al. [24] suggested a similar collapse of Rr by
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FIG. 3. (a): Front-view shadowgraphy image (horizontally stretched to correct for the 30◦ observation
angle) of an expanding tin sheet to illustrate the radial position of the sheet’s rim Rr (blue inner contour)
and the ligaments Rl (red outer contour). On the same image, we overlay a polar coordinate system (r, θ )
with its origin at the center of the sheet. The picture was taken 8 μs after illuminating a D0 = 67 μm droplet
with a Ep = 20 mJ laser pulse. We restrict the ligament and fragment analysis to the region (see the main
text) comprising θ = 90◦ ± 10◦ and 270◦ ± 10◦ (dashed white lines). Within this azimuthal range, the
longest ligaments originating from the top and bottom of the sheet are highlighted by their radial positions Rl .
(b) Expansion trajectory of the ligaments from the top side Rl (red circles) and the rim Rr (blue diamonds) as a
function of time. The solid curve presents a polynomial fit to the Rl data. The dashed line presents a polynomial
fit to Rr data. The shaded area indicates the time regime t > 0.6τc(= 15.1 μs for D0 = 67 μm) that is excluded
in the fitting as sheet breakup may hinder accurate tracking of Rr . (c) Postprocessed shadowgraphy images
captured at t = 9 and 11 μs by the double-frame camera, overlapped with respect to the sheet’s center. Black
pixels indicate overlap regions, where tin is present in both frames. Yellow pixels account for the background
in the absence of tin. Green and red pixels indicate the presence of tin at either 9 or 11 μs, respectively. The
black lines connecting the same green- and red-colored fragments illustrate their ballistic trajectory over the
2 μs time interval. The inset (c.1) shows a close-up of the ballistic trajectory of fragments. One example of
a fragment trajectory is highlighted with its position at t = 9 and 11 μs, linked to the data markers in panel
(b). The intersection between the fragment’s trajectory in panel (b) and ligament expansion curve Rl is used to
determine the detachment time td as indicated by a vertical line.

scaling y = (Rr − R0)D−1
0 We−1/2 and x = t/τc, which is equivalent to the collapse proposed by the

authors of Ref. [38] when We � 1, applicable in our cases (see Table I). In line with Ref. [38], we
plot the data of Rr upon rescaling in terms of the similarity variables in Fig. 4(b). The speed used
in the Weber number in this panel is the center-of-mass speed U of the sheet along the laser pulse
direction. This speed is determined by measuring the displacement of the sheet’s center-of-mass
over a finite time interval (typically over a few microseconds) using side-view images (for further
details see Refs. [22,30,31]). It is evident that the normalization of t/τc successfully collapses the
apex time tmax. However, normalizing rim radii by the impact Weber number results in a systematic
disparity between the lower energies group (open symbols) and the higher energies (full symbols).
Therefore, the center-of-mass speed does not characterize the expansion dynamics of the droplet for
the full range of droplet sizes and pulse energies. In the case of droplet impact onto a pillar, the initial
expansion rate of the droplet Ṙr (t = 0) (referred to as Ṙ0 hereafter) may deviate from the orthogonal
speed of the impact U when varying the size of the drop relative to the pillar diameter [2,24,33,38].
Villermaux et al. [24] analytically proposed and further experimentally confirmed that Ṙ0 = U
under their experimental conditions. Wang et al. in Ref. [29], however, observed a much larger
deformation speed of Ṙ0 ≈ 2U . The physics origin of the factor of 2 difference between U and Ṙ0

in the latter case is not yet clear [29]. In case of laser-induced deformation, the correlation between
the two orthogonal speeds Ṙ0 and U is well understood. This correlation is jointly determined by the
droplet size, the laser pulse energy, and the beam profile and was shown to be captured by a single
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FIG. 4. (a) Rim radius Rr as a function of time t for several D0-Ep combinations. The error bars represent
the standard deviation of the binned data. (b) Scaled rim radius, RrD−1

0 We−1/2, as a function of the non-
dimensional time t/τc, with We = ρU 2D0/σ and τc the capillary time. (c) Scaled rim radius 2RrD

−1
0 We−1/2

d as
a function of t/τc, where the deformation Weber number is Wed = ρṘ2

0D0/σ . Solid lines in (b) and (c) show
the solution for Rr from Ref. [29] (†). The error bars were omitted both in (b) and (c) for better visibility.

dimensionless pressure impulse width exerted by the plasma on the surface of the droplet (for details
see Refs. [23,32]). In brief, the expansion speed Ṙ0 monotonically increases with increasing U and
is of the same order: Ṙ0 ∼ U . A narrower pressure impulse width leads to a larger ratio of Ṙ0/U
[23]. Typically, an increase in laser pulse energy leads to a reduction of Ṙ0/U [5,32]. In the current
study, this ratio varies from 1.4 to 1.8 over the studied range of droplet sizes and pulse energies. The
authors of Refs. [5,13] further demonstrated that it is the expansion speed Ṙ0 that should be taken as
the characteristic speed, defining the deformation Weber number Wed = ρṘ2

0D0/σ to describe the
expansion trajectory of the sheet. In line with those works, Fig. 4(c) shows the same data in Fig. 4(b),
but rescaled as 2RrD−1

0 We−1/2
d ; a factor of 2 is added in the numerator to enable a comparison with

Refs. [29,38] where Ṙ0/U ≈ 2 was observed. The speed of Ṙ0 used in Fig. 4(c) is determined by a
linear fitting of Rr data (following Klein et al. [22]) using the first three time delays after the onset
of the impact, typically up to 300 ns ∼ 1 μs. Figure 4(c) shows that the use of Wed successfully
collapses all the data, demonstrating that 2RrD−1

0 We−1/2
d can be described by a function depending

solely on t/τc. For droplet impact on a pillar, such a function was provided analytically in Ref. [29]
as 2RrD−1

0 We−1/2
d = 0.15(t/τc − 0.43)3 − 0.4(t/τc − 0.43)2 + 0.12. This function is depicted in

the graph. Wang et al. [29] further used this solution of Rr to predict the speed of fragments over
the full course of the shedding process. The comparison of Rr (t ) to the prediction thereof from
Ref. [29], as presented in Fig. 4(c), shows that the sheet expansion in our cases has (i) a larger apex
radius Rmax ≈ 0.14D0We1/2

d /2 at (ii) an earlier apex moment tmax ≈ 0.38τc, and also indicates (iii)
a faster initial expansion speed Ṙ0 compared to the model (note that the model approximations in
Ref. [29] were not aimed at describing the very early time response). These differences may be
expected to propagate to the dynamics of the fragment speeds as discussed in Sec. V.

V. FRAGMENT SPEED AND ITS EVOLUTION OVER TIME

A. Determination of fragment speed

The trajectories of the fragments are determined from the shadowgraphy images recorded by
the double-frame PCO camera (see the microscopy system details in Fig. 1 of Sec. II). Figure 3(c)
illustrates an example of our postprocessing procedure, where we overlap two consecutive images
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of the same sheet with a time delay of �t = 2 μs. We align both images by overlapping the pixels
with the coordinates of the center of the sheet. Black and yellow colors in the image indicate
the presence of tin or its absence at both frames, respectively. Green and red colors indicate the
presence of tin at either 9 or 11 μs, i.e., at first and second frames, respectively. Using these
overlapped images we can keep track of the ballistic trajectory of individual fragments, which
we draw using black lines that connect the location of single fragments at two moments in time.
Individual fragments that detach from the ligaments acquire a speed that is constant over time.
Therefore, the fragment speed u f can be readily determined by dividing the distance traveled
by a single fragment over the preset time interval �t . To avoid including the fragments that are
potentially out of focus and to obviate the need for correcting the finite imaging parallax caused by
the 30◦ front-view angle, we restrict the analysis of the fragments and their positions to a region of
interest at the top and bottom of the sheet that comprises θ = 90◦ ± 10◦ and 270◦ ± 10◦, see the
white dashed lines in Fig. 3(c). The inset in Fig. 3(c.1) illustrates an example of the detection of
a single fragment within this angular range at two moments in time, with its corresponding radial
positions plotted in Fig. 3(b). In our measurements, u f is dominated by its radial component, with
the contribution from the azimuthal component accounting for a few percent of u f . We therefore
refer to u f as the radial speed of the fragments hereafter.

B. Fragment speed versus detachment time

To understand the dynamics responsible for the fragment speeds, we need to establish the origin
of the fragments. The fragments are shed from their parent ligaments at a detachment time td . Given
that the short timescales involved prevent the tracking of the full dynamics of individual ligaments,
we determine td by individually finding the intersection between the ballistic trajectory of each
fragment and the expansion trajectory of the relevant ligaments.

The radial trajectory of the ligaments, Rl , is determined from the distance of the outer contour
to the center of the target as was illustrated in Fig. 3(a). Similarly to the analysis of the fragment
trajectory, we only consider the outer contour for the region of interest identical to that of the relevant
fragments, i.e., comprising θ = 90◦ ± 10◦ and 270◦ ± 10◦, as shown by the dashed white lines in
Fig. 3(a). For each image, we take the ligament whose tip is furthest from the center of the target
to be most relevant for the subsequent shedding, as these have a high chance to shed fragments.
Averaging sufficient images (typically 20 images) taken at one time delay yields the mean value of
the instantaneous radial positions of the ligament, which further enables a description of Rl over
time. In Fig. 3(b) we plot the expansion trajectory of the ligaments obtained by following this
procedure, for the same experimental conditions as those used to obtain the images in Figs. 3(a)
and 3(c) (D0 = 67 μm and Ep = 20 mJ). Both the ligament Rl and rim trajectories Rr show an
initial expansion, followed by a gradual decrease of their expansion rate. For each data set of a
D0-Ep combination, we fit a fourth-order polynomial to the expansion trajectory of the rim Rr with
its initial slope matching the corresponding Ṙ0. The results obtained allow us to determine the
instantaneous speed of the rim Ṙr [cf. the example case shown in Fig. 3(b)]. For the ligament, we fit
an unconstrained third-order polynomial to Rl to describe the continuous change of the position of
the ligament tips. From the intersection of the curve for Rl with the fragment trajectory, we obtain
the individual detachment time td . To gauge the uncertainty in obtaining td , we compared taking the
instantaneous average ligament length to the instantaneous averaged length of only the outermost
ligaments (most relevant for shedding), and found that this choice results in less than a 5% difference
in the obtained td values.

Figures 5(a) to 5(e) present the fragment speed u f as a function of the detachment time td
for different droplet diameters and pulse energies as summarized in Table I. The instantaneous
speed of the rim Ṙr is also plotted in Figs. 5(a) to 5(e). We observe that the fragment and rim
expansion speed Ṙr monotonically decrease over time. Furthermore, our data illustrate that higher
laser energies lead to faster fragment speeds for a given droplet size. At any given detachment
time, the speed of the fragments u f is larger than the instantaneous speed of the rim Ṙr (compare
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FIG. 5. (a)–(e): Fragment speed uf as a function of detachment time td for the various droplet diameters
D0. For each droplet size, results obtained using two different laser energies are presented, see Table I. The rim
expansion speed Ṙr is also plotted, with solid and dashed lines corresponding to the filled and open symbols,
respectively. (f) Same data as presented in (a)–(e), but now scaled by the initial expansion speed of the rim
uf /Ṙ0 as a function of the non-dimensional time t/τc. The black line presents the non-dimensional speed
Ṙr/Ṙ0 obtained from a fit of a polynomial to the data in Fig. 4 (c). In (a)–(e) the error bars represent the
standard deviation of binned data. These error bars are omitted in (f) for better visibility.

symbols to solid & dashed lines in Fig. 5). This quantitative finding is consistent with the results
reported in Refs. [2,29], where the fragment speed is described by a local velocity correlated to the
ligament dynamics added to the instantaneous expansion velocity of the rim Ṙr . Our data further
indicate that the initial expansion rate of the rim Ṙ0 sets the upper limit of the fragment speed
during the sheet expansion. With Ṙ0 setting the starting point of u f near td = 0, the moment at
which u f = 0 seems to be solely determined by the initial droplet size D0 and not by the laser
energy Ep. Figures 5(a) to 5(e) show how the time span (from the onset of the impact to the
moment when u f = 0) increases as we irradiate a larger droplet. These observations on both the
characteristic speed and the timescale of the shedding process inspire us to seek a self-similar
solution y = g(x) to explain the fragments’ speeds with similarity variables x = t/τc and y = u f /Ṙ0,
in line with the findings of Wang et al. [2]. Figure 5(f) shows the same data presented in Figs. 5(a)
to 5(e) but rescaled using Ṙ0 and τc. The graph indeed reveals a collapse of all data sets onto a
single master curve u f /Ṙ0 = g(t/τc). Moreover, as discussed in Fig. 4(c), the scaled evolution of
the rim 2RrD−1

0 We−1/2
d can be described by a function that solely depends on f (t/τc), hence one

expects a universal solution Ṙr/Ṙ0 = φ(t/τc) where φ(x) = √
3/2 f ′(x) following the definition of

the capillary time and the deformation Weber number. This curve, plotted in Fig. 5(f), is obtained by
a concatenated fourth-order polynomial fitting to all the available data of Rr (t ) shown in Fig. 4(c).
For consistency, the fit is performed with the constraint φ(0) = 1. Due to these two independent
collapses of Ṙr/Ṙ0 and u f /Ṙ0, the difference between the rim and the fragment speed scales as
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(u f − Ṙr )/Ṙ0 ∼ g(td/τc) − φ(td/τc), following a function that monotonically increases with time
and is independent of the deformation Weber number.

A self-similar behavior of the fragments’ speeds was also reported in Refs. [2,29] on droplet
impact on a pillar. In those works, the difference in velocities u f and Ṙr is attributed to (i) the
ligament growth and (ii) the speed difference between the tip of ligaments and the fragments due
to a one-necking-time shift (also see Appendix B). By using the expansion curve of the rim Rr

and by invoking mass conservation associated with the ligament and the rim, Wang et al. [29]
further analytically identified (i) that (u f − Ṙr )/Ṙ0 scales as We−3/8

d and is (ii) almost invariant over
time. These two theoretical findings are not supported by our observations, cf. Fig. 5. Moreover,
the fragment speeds from Refs. [2,29] may exceed Ṙ0 at t = 0, where the current study finds that
u f → Ṙr when td → 0. We note that the aforementioned description of u f in Ref. [29] was based on
their approximate solution for Rr ; the use of their full solution instead may have led to results that
are more in line with the current experimental work. The origin of the discrepancy of the current
(u f − Ṙr )/Ṙ0 scaling with the pillar impact case [2,29] is yet unclear. A dedicated experimental
campaign would be required to be aimed also at the detailed study of the necking process itself. We
hypothesize that part of the difference may originate from the very different original impact dynam-
ics, where the laser-impact case has no “impactor” present even on the early, inertial timescale. This
difference could cause different initial corrugations of the rim that further propagate to late-time
dynamics such as the formation of ligaments and the shedding of fragments [5].

Energy fraction taken by the fragments

Next, we aim to interpret the collapse of the fragment speed onto u f /Ṙ0 = g(t/τc) by considering
the energy partitioning. Once the droplet is set in motion by the laser pulse, the initial energy of the
droplet Etot can be described by its kinetic energy ∝ M0(Ṙ2

0 + U 2) ∼ M0Ṙ2
0 (as U ∼ Ṙ0) and its

surface energy ∝ σR2
0, where M0 is the mass of the original droplet. Given that Wed � 1 in our

experiments, the kinetic energy of the initial droplet is much larger than its surface energy, thus
leading to Etot ∼ M0Ṙ2

0. The total energy Etot is then distributed across the various channels, such
as the sheet, rim, ligaments, and the energy accumulated in the fragments. Wang et al. [42] showed,
both experimentally and theoretically, that the fraction of the total energy residing in the sheet, rim,
and in the fluid shed from the rim (i.e., the sum of ligaments and fragments) was a function of the
dimensionless time t/τc only and was independent of the Weber number. Inspired by their work,
we now further assume that the energy contained in each subsystem is Weber-number independent,
including those from ligaments and fragments (E f ) separately, i.e., E f /Etot = h(t/τc).

As we will explain below, the cumulative kinetic energy of the fragments can be determined by
integration of ṁ f u2

f over time, where ṁ f is the instantaneous shedding rate of the fragments mass m f

and is also independent of the Weber number. As a result, as we will see, u f /Ṙ0 solely depends on
t/τc. The relative importance of the kinetic energy of a fragment with a speed u f and a diameter d f to
its surface energy is captured by the fragment Weber number We f = (1/2)(ρπd3

f /6)u2
f /(πd2

f σ ) =
ρu2

f d f /12σ . The value of We f is then estimated by using the experimental data of u f from Fig. 5.
Following Wang et al. [38], d f is obtained from d f ≈ 1.7 br with the diameter of the bounding rim
br in turn determined from the universal criterion of the local Bond number Bo = ρb2

r (−R̈r )/σ = 1,
where R̈r is the instantaneous deceleration of the rim determined from Fig. 4(c). The relation Bo = 1
established in Ref. [25] is based on momentum conservation of the corrugations on the rim, and the
relation holds for high-Reynolds-number flows as applicable in our case where the Reynolds number
Re = D0Ṙ0/ν ∼ 104 given the kinematic viscosity ν = 0.26 × 10−6 m2s−1 of liquid tin [37]. In the
present work where the global Weber number Wed = ρṘ2

0D0/σ changes from approximately 1100
to 5500, We f is significantly larger than 1 at times up to roughly t/τc ∼ 0.4. Therefore, for those
fragments detached at td � 0.4τc, the kinetic energy is the dominant contributor to the fragment’s
energy. The cumulative energy fraction of fragments E f /Etot at time t is thus given by

E f (t )

Etot
∼

∫ t

0

(
ṁ f

M0

)(
u f

Ṙ0

)2

dt̃ ∼ h(t/τc). (1)
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Note that we neglect the (small) onset time of the shedding process and thus the integral in Eq. (1)
starts from td = 0 [29]. It was previously proposed and also experimentally supported in Ref. [38]
that for the case of pillar impact, the cumulative mass of fragments is independent of the Weber
number and is a function of t/τc only. In other words, the term ṁ f /M0 in Eq. (1) is a function
of t/τc alone. The instantaneous rate of liquid shed to fragments scales as ṁ f /M0 ∼ ρṄ f d3

f /M0,
with Ṅ f the instantaneous fragment shedding rate, and d f the diameter of fragments shed. Given
that Ṅ f ∼ We3/4

d [38], d f ∼ D0We−1/4
d [24,25,38,42], and M0 ∼ ρD3

0 we also obtain that ṁ f /M0 is
independent of the Weber number. Therefore, from Eq. (1) we conclude that u f /Ṙ0 is a function of
t/τc only and is independent of the impact Weber number, consistent with the collapse of all data
observed in Fig. 5.

VI. CONCLUSION

Laser pulse impact onto a tin microdroplet leads to an unsteady, fragmenting liquid sheet bounded
by a rim. We experimentally determined the speed of fragments u f that are formed upon breakup
of the ligaments protruding from this bounding rim. We observed that fragments are produced
by end-pinching for the most of the time interval relevant for the shedding process. In addition,
we observed fragments shed via Rayleigh-Plateau breakup of long ligaments at late times. A
double-frame camera was used to capture the ballistic trajectories of the fragments, from which their
speeds were determined. By finding the intersection of the ballistic trajectory of each fragment and
the expansion trajectory of the ligaments Rl , we were able to determine the time of detachment td
of each fragment. Our data show a monotonic decrease of u f with td . The characteristic detachment
time is set by the capillary timescale which depends on the initial droplet size. We observed
that the fragment speed is larger than the instantaneous expansion rate of the sheet Ṙr at any
given detachment moment td . The difference between the fragment and the rim speeds u f − Ṙr

monotonically increases over time, starting from u f − Ṙr → 0 when td → 0.
These observations enable us to identify a self-similar behavior, captured by u f /Ṙ0 = g(td/τc),

which collapses all available data. Such a self-similar behavior, combined with the similarity curve
for the sheet expansion speed Ṙr/Ṙ0 = φ(td/τc), indicates that the difference in speed between
u f and Ṙr is given by (u f − Ṙr )/Ṙ0 ∼ g(t/τc) − φ(t/τc). The self-similar curves are explicitly
independent of the deformation Weber number Wed that was introduced and shown to capture
the dynamics of the sheet expansion to a better accuracy than that one offered by the impact
Weber number. We further demonstrated that the collapse of u f is supported by energy conservation
arguments, with the assumption that the fraction of the initial energy of the droplet channelled to
the fragments is independent of the Weber number. The collapse of u f enables a model prediction
of the instantaneous speed and position of the fragments shed from tin sheets resulting from
laser-pulse impact, as employed in state-of-the-art extreme ultraviolet nanolithography. Such a
model, requiring as input just the initial droplet expansion speed, would enable the optimization
of mitigation strategies against contaminating microparticulate debris to the benefit of the lifetime
of industrial lithography tools. The finding that the speed of shed fragments has a robust upper limit
of u f = Ṙ0 is by itself particularly valuable in this regard. In addition, the correlation found between
the rim expansion rate and the fragment speed — covering the full time span of the shedding
process — may be applicable to impact scenarios ranging from agriculture, over pathogen transport,
to nanolithography.
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TABLE I. Parameters including the droplet diameter D0, the related capillary time τc = √
ρD3

0/(6σ ), laser
pulse energy Ep, and the resulting parameters such as the center-of-mass speed U , initial expansion rate of the
sheet Ṙ0, impact Weber number We = ρU 2D0/σ , and deformation Weber number Wed = ρṘ2

0D0/σ . Each data
entry comprises 20–50 individual laser-droplet events per time delay.

D0 (μm) τc (μs) Ep (mJ) U (m/s) Ṙ0 (m/s) We Wed

27 6.5 10 41.5 77.8 583 2091
30 84.6 126.8 2477 5556

34 9.2 10 33.4 61.3 487 1634
40 73.1 109.3 2323 5198

39 11.3 10 28.9 50.5 418 1274
40 62.5 92.2 1949 4240

43 13.0 10 25.4 45.1 355 1122
25 43.6 72.9 1047 2925

67 25.2 7 19.7 37.9 330 1231
20 36.6 62.7 1143 3354

APPENDIX A: SUMMARY OF THE EXPERIMENTAL CONDITIONS

To assure the robustness of our experimental results, we systematically study the fragmentation
process for five different droplet sizes. For each droplet size, we employ two different laser pulse
energies. Experimental details are summarized in Table I.

APPENDIX B: CORRELATION BETWEEN THE FRAGMENT SPEED AND THE SPEED
OF LIGAMENTS’ TIP

It was found in Ref. [2] that the fragment speed in the laboratory frame follows the velocity of
ligaments tip ul but one necking-time tneck prior to the detachment. In other words, the fragment
speed as a function of the detachment time u f (td ) relates to the ligament velocity following

u f (td ) = ul (td − tneck). (B1)
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FIG. 6. Speed of fragments uf and instantaneous velocity of the tip of ligaments ul as a function of
detachment time td , along with the expansion rate of the rim Ṙr , Ṙ∗

r . Two cases with the same droplet diameter
D0 = 39 μm for two laser pulse energies (a) Ep = 10 mJ and (b) Ep = 40 mJ are presented in the figure.
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The necking time tneck ∼
√

ρw3
l /σ is proportional to the local capillary timescale with the prefactor

varying between 2 to 5 (see, e.g., Refs. [2,39,43–45]). This relation yields a tneck ranging from
several hundreds of nanoseconds to microseconds in the context of our study where micrometer-
thick ligaments are formed.

With the double-frame camera employed in this study, we were able to estimate through visual
inspection the speed of a single ligament in the laboratory frame ul by dividing the traveling distance
of the ligament tip by the time delay �t between the two frames. This method thus provides an
average speed of ligaments within �t . Ligaments speeds ul obtained following this procedure are
presented in Fig. 6 for selected ligaments from the data sets with D0 = 39 μm at two different
energies Ep = 10 mJ and 40 mJ that correspond to Figs. 6(a) and 6(b), respectively. Each data
point of ul represents the mean value for typically 10 to 20 manually inspected ligaments in a
region of interest identical to that of the fragment speed, i.e., the region comprising θ = 90◦ ± 10◦
and 270◦ ± 10◦. The corresponding fragment speed [i.e., the same data presented in Fig. 5(c)] is
also plotted in the graph. Figure 6 shows that the ligament velocity ul indeed follows the fragment
speed, with a temporal shift, ranging from several hundreds of nanoseconds to microseconds, toward
earlier moments. Additionally, the distance traveled by the basis of each single ligament, i.e., the
local traveling distance of the rim (following the discussion in Sec. IV) can be obtained. These data,
labeled as R∗

r to be distinguished from the data set Ṙr , are also presented in Fig. 6. As expected, we
observe a close agreement between Ṙr and Ṙ∗

r , supporting the validity of our procedures to measure
both ul and Ṙ∗

r .
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