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Streak creation using groove and heating patterns
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The use of streamwise grooves for intensification of streaks created by heating in shear
layers has been investigated. Three ranges of groove wave numbers were of interest: wave
numbers near the critical wave number of the Rayleigh-Bénard (RB) instability, wave
numbers characterizing drag-reducing grooves, and the optimal wave numbers. It is shown
that uniform heating of a grooved surface produces intense streaks only when the groove
wave number is near the critical RB wave number and the heating intensity exceeds the
critical RB intensity. The use of long-wavelength grooves reduces flow losses, but the
resulting streaks are less intense. The use of heating patterns tuned with groove patterns
can produce very intense streaks whose spatial distribution is easily controlled through
selection of the patterns’ wave number. An increase of flow losses due to patterned heating
can be compensated for using spatial groove distributions with drag-reducing capabilities.
It has been demonstrated that the most effective wave number producing high-intensity
streaks at low flow losses is between the RB wave number and the drag-reducing wave
numbers—this optimal wave number has been identified.

DOI: 10.1103/PhysRevFluids.7.083502

I. INTRODUCTION

Mixing is a process of importance in geophysics, astrophysics, engineering, physiology, and
other areas [1–4] but difficult to achieve in low Reynolds number flows [5–8]. It is known that rolls
and streaks play significant roles in shear layer instabilities and the transition to turbulence [9–14]
and thus could be utilized for mixing intensification. The natural formation of streaks generally
takes place in high Reynolds number flows indicating that an external forcing may be required to
generate streaks in low Reynolds number laminar flows. Various types of forcing schemes for active
stirring are discussed in [15].

Rolls are vortices in the flow cross-plane which transport high-speed fluid towards the wall
(downwash) and low-speed fluid away from the wall (upwash), thereby creating streaks in the main
flow velocity field [16]. These streaks are themselves subject to instabilities [14] which may lead to
optimal roll structures that maximize the transient temporal growth of streaks [17] or to the growth
of the normal modes leading to secondary instabilities [16]. The primary role of streaks in mixing
processes is either to induce known instabilities or to create new instabilities leading to saturation
states with desired properties.

Most of the existing studies are focused on naturally occurring rolls, which limits their use to
large-Re flows and does not provide the means for controlling their structure. Rolls with a specific
structure can be created by bypassing instability processes using various surface modifications
but at a significant “cost” measured in terms of pressure losses [5–7,18]. The search for suitable
methods for the formation of rolls at small Reynolds numbers, with minimal pressure losses
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and with a desired spatial structure, started very recently [19]. It is known that streaks can be
created using longitudinal grooves—these streaks activate an instability mode [20,21] which leads
to a saturation state producing chaotic stirring at small Reynolds numbers [22]. Remarkably, the
associated pressure losses decrease compared to a smooth channel [23]. We acknowledge that there
are other surface topographies capable of producing streaks [24] and chaotic mixing [25] but there
is not much information in the literature about the associated pressure losses.

This paper is focused on the analysis of the use of heating for streak formation. It is known that
uniform heating leads to natural convection in the form of Rayleigh-Bénard (RB) rolls [26,27] with
the RB instability dictating the form of these rolls in fully developed shear layers [28]. Uniform
heating can also be used to create rolls in developing shear layers [29–33] with their structure
dictated by the critical disturbance wave number. To move away from this restriction, patterned
heating was introduced—this heating created a horizontal field of buoyancy forces with the desired
spatial distribution and was quite effective in creating well-controlled rolls [19]. The rolls were
driven by horizontal temperature gradients and occurred regardless of the heating intensity—such
rolls represent a forced response rather than a bifurcation as is the case of rolls created by RB
convection. While our focus is on heating, we acknowledge that other natural instabilities can be
used for roll formation [34,35] but the spatial structure of such rolls is always determined by the
critical wave number at the onset of instability.

Heating patterns produce weak modifications of the velocity field which are significant in the
spanwise cross section but marginal in the streamwise direction [36,37], and are sensitive to the
fluid Prandtl number [38]. Because of that, it is preferable to consider streamwise and spanwise
heating patterns separately as they activate different physical mechanisms. The streamwise patterns
do not produce streaks but are known to reduce pressure losses at small Reynolds numbers [39,40]
and to decrease the flow resistance in the relative movement of plates [41]. The spanwise patterns
are known to produce streaks [19]. This analysis is therefore focused on the use of spanwise heating
patterns.

The starting point is the creation of streaks using different heating methods applied to smooth
surfaces [19]. We wish to explore if the addition of grooves can result in more intense streaks as
well as to determine the effect of heated grooves on flow losses. Grooves by themselves create flow
modifications which lead to chaotic mixing [22]. Long-wavelength grooves reduce pressure losses
[23]. The addition of heating to grooved surfaces may produce intense streaks at negligible pressure
losses. We are interested in small heating rates to reduce the energy cost; i.e., the relevant Rayleigh
numbers Ra are small. Large Ra convection is of no interest to this analysis—a recent review of
such convection over rough surfaces can be found in [42]. Streaks produce spanwise gradients of
the streamwise velocity component which are known to give rise to secondary flows driven by an
inviscid instability mechanism [20] leading to chaotic mixing [22]. This analysis can be viewed as
a step in the evaluation of potential heating patterns for creation of chaotic mixing; i.e., it deals with
determination of the primary state involving streaks which will be subsequently subject to stability
analysis.

Our presentation is organized as follows. Sec. II describes our model problem—flow in a channel
equipped with longitudinal grooves and exposed to a combination of uniform and spanwise-periodic
heating. In Sec. III we characterize streaks created by uniform heating of a grooved wall. In Sec. IV
we describe streaks created by spanwise-periodic heating of grooves. In Sec. V we describe streaks
created by a combination of uniform and periodic heating of grooved surfaces. In Sec. VI we provide
a short summary of the main conclusions.

II. PROBLEM FORMULATION

Consider flow in a channel formed by two horizontal plates extending to ±∞ in the x and z
directions (see Fig. 1), with the lower wall being equipped with longitudinal grooves and the upper
wall being smooth, and with gravity acting in the negative y direction. The mean distance between
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FIG. 1. Schematic diagram of the flow configuration.

the walls is 2h∗. The geometry of the channel is given as

yU = 1, yL(x) = −1 + A

2
cos (αx). (1)

where subscripts L, U refer to the lower and upper walls, respectively; A stands for the groove
amplitude; α denotes the wave number; the symbol λ = 2π/α is used to denote wavelength; h∗ is
used as the length scale; and stars denote dimensional quantities.

The upper wall is isothermal while the lower wall is heated with temperature variations being at
most of O(10) which leads to acceptability of the Boussinesq fluid model [43]. The fluid has thermal
conductivity k∗, specific heat c∗, thermal diffusivity κ∗ = k∗/ρ∗c∗, kinematic viscosity ν∗, dynamic
viscosity μ∗, and thermal expansion coefficient �∗ and it is driven in the positive z direction by a
fixed pressure gradient. The relative wall temperatures are

θU = 0, θL(x) = Rauni + RaP

2
cos (αx + 
), (2)

where θ = T − TU is the relative temperature with respect to the temperature of the upper wall, T
stands for the absolute temperature, κ∗ν∗/(g∗�∗h∗3) is the temperature scale, the uniform Rayleigh
number Rauni = g∗�∗h∗3θ∗

uni/(κ∗ν∗) determines the intensity of the uniform component of heating,
the periodic Rayleigh number RaP = g∗�∗h∗3θ∗

LP/(κ∗ν∗) determines the intensity of the periodic
heating component, and 
 is the phase shift between the topography and temperature patterns.
The groove and temperature patterns are perfectly tuned; i.e., they are described by the same wave
number, with the pattern interaction effect being driven by spatial positioning of these patterns.

Formation of rolls and streaks is described by the continuity, Navier-Stokes, and energy equations
of the form

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (3a)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂ p

∂x
+ ∇2u, (3b)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂ p

∂y
+ ∇2v + Pr−1 θ (3c)
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u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂ p

∂z
+ ∇2w, (3d)

u
∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= Pr−1∇2θ, (3e)

where U ∗
v = ν∗/h∗ is the velocity scale, ρ∗U ∗2

ν is the pressure scale, and Pr = ν∗/κ∗ is the Prandtl
number. The relevant boundary conditions are

u = v = w = 0 at y = yL and y = 1, (4a)

θ (x, yL, z) = θL(x), θ (x, 1, z) = 0. (4b)

The geometry and heating conditions result in ∂
∂z = 0, thus decoupling (3a)–3(c) and 3(e) from

(3d)—this leads to a two-step solution process starting with solution of the nonlinear problem
(3a)–3(c) and 3(e) followed by solution of a linear problem (3d). The linearity of (3d) permits the
elimination of Re as a parameter through a simple scaling. The cost of streak formation is quantified
by comparing properties of flow in the z direction with the isothermal form of this flow in a smooth
channel. This reference flow has the following form:

�u0(x, y, z) = [0, 0,w0] = [0, 0, Re(1 − y2)], p0(x, y, z) = −2 z Re, Q0 = 4
3 Re. (5)

In the above, subscript 0 denotes the isothermal quantities and the Reynolds number is defined
as Re = W∗

maxh∗/ν∗ = W ∗
max /U ∗

v where W ∗
max denotes the maximum of the z-velocity component.

We use two methods of assessing the cost of the streaks’ creation. In the first one, we assume
that the pressure gradient in the z direction remains the same with and without heating and grooves;
i.e., we impose the fixed pressure gradient constraint of the form

∂ p

∂z
|mean = −2Re, (6)

and determine change of the flow rate Qc, i.e.,

Qc = Q − Q0, Q = λ−1
∫ λ

0

∫ +1

yL

w dydx, (7)

where positive Qc corresponds to an increase of the flow rate. Alternatively, we impose the fixed
flow rate constraint of the form

Q = 4
3 Re, (8)

and determine the reduction of the required pressure gradient Pc, i.e.,

Pc = ∂ p

∂z
|mean − d p0

dz
, (9)

with the positive Pc corresponding to the reduction of pressure losses. We eliminate any external
forces which might drive the flow in the x direction by imposing the zero mean pressure gradient
constraint of the form

∂ p

∂x
|mean = 0. (10)

System (3)–(10) is solved numerically using spectrally accurate discretization relying on Fourier
expansions in the horizontal directions and Chebyshev expansions in the transverse direction. The
main challenge is posed by the irregularity of the solution domain dictated by the groove geometry.
The challenge becomes more pronounced by the need to consider a wide range of geometries
resulting from variations of the groove wave number and amplitude. This problem was handled
using a concept known as the immersed boundary conditions (IBC) method. This strategy uses the
fixed computational domain, while the specific flow domain is immersed inside this computational
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domain. The discretized flow equations remain unchanged across all geometries and are solved
simultaneously both inside and outside of the flow domain, but always inside the computational
region. It is ensured that the flow boundaries are located inside the computational domain and
the flow conditions at these boundaries are posed as constraints [44–46]. The Tau method has
been implemented in order to incorporate boundary conditions into the coefficient matrix. This
formulation avoids the need for the numerical construction of intricate grids that replicate the
groove geometry, which can be very labor intensive and error prone, and circumvents the need
for grid convergence studies. All the elements of the discretization have spectral accuracy. The
global accuracy of the algorithm is controlled by changing the number of Fourier modes and
Chebyshev polynomials—all results presented in this paper were obtained with an accuracy of
at least four digits. The groove shape is encoded within the algorithm by means of appropriate
Fourier expansions, which means that variations of groove geometry can be accounted for by
simply changing the Fourier coefficients. Alternative methods for handling the irregularity of the
flow domain are discussed by Cabal et al. [47]. Detailed implementation of the algorithm developed
for this study can be found in [48].

It is of interest to monitor the change in heat fluxes owing to the use of grooves. These fluxes are
presented in terms of the Nusselt number correction Nuc. This correction has been determined by
evaluating the Nusselt number Nu for the grooved channel and then subtracting the Nusselt number
associated with conduction in a smooth channel Nucond from it, i.e.,

Nuc = Nu − Nucond, Nucond = 1
2 Rauni. (11)

Positive Nuc corresponds to an increase of the heat flow. Our interest is in creation of strong
streaks while minimizing cost expressed either in terms of pressure losses or in terms of flow loses.
We shall explore three strategies: (i) use of the uniform heating of grooved surfaces, (ii) spanwise-
periodic heating of grooved surfaces, and (iii) use of a combination of uniform and periodic heating
of grooved surfaces. We note that the spatial distribution of streaks is dictated by the groove and
heating patterns.

III. UNIFORM HEATING—ISOTHERMAL GROOVES

Both walls are isothermal with the temperature of the lower wall being higher than the tem-
perature of the upper wall. Uniform Rayleigh number Rauni measures the temperature difference
between these walls. Two ranges of groove wave numbers are of interest for uniform heating: (i)
the long-wavelength grooves which are known to reduce flow losses [23,49], and (ii) grooves with
α ≈ 1.57 which is the critical wave number for the Rayleigh-Bénard (RB) instability [26,27]. The
former one is of interest as it implies lower flow losses associated with formation of streaks. The
latter one is of interest as it takes advantage of the RB instability to increase streak intensity—the
heating intensity must, however, reach the critical value (Rauni = 213.5) required for the instability
onset. We shall refer to the latter range of wave numbers as the RB range. Flow topology, which can
be created using isothermal grooves in the latter case, is illustrated in Fig. 2. Temperature contours
indicate the presence of the x-temperature gradients, which generate transverse movement [50,51]
resulting in the formation of rolls and streaks. Particle trajectories illustrate rolling up the fluid layers
in spirals. The spiral movement allows stretching of the fluid layers which is a characteristic feature
for chaotic mixing [22]. Topologies for the small-α streaks are similar and thus are not shown.

The strength of the streaks is measured in two ways: (i) using change of the fluid kinetic energy,

�Ek = Ek − Ek,0 = λ−1
∫ λ

0

∫ +1

yL

(u2 + v2 + w2) dy dx −
∫ +1

−1
w2

0 dy, (12)

and (ii) using the maximum of the spanwise gradient of the longitudinal velocity component,

ξ = max

(
dw

dx
/Re

)
, (13)
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FIG. 2. Flow topology in an isothermal grooved channel for α = 1.57, A = 0.4, Rauni = 150, RaP,L = 0,
and Pr = 0.71. Colors in the front (x, y) plane illustrate the temperature field while the black solid line illustrates
vector lines, colors in the rear (x, y) plane represent the w-velocity field, and dash-dotted lines show particle
trajectories.

in the midsection of the channel. The latter one is of interest as such shear is responsible for flow
instabilities leading to chaos [22]. In the above, Ek stands for the kinetic energy of the actual flow
while Ek,0 stands for the kinetic energy of the reference flow. Variations of �Ek displayed in Fig. 3(a)
for α = 1.57 demonstrate fairly weak streaks for small Ra′

unis. Their intensity rapidly increases
when Rauni approaches the critical value of 213.5 with grooves of higher amplitude producing
stronger streaks. Variations of ξ displayed in Fig. 3(b) illustrate the effect of the RB mechanism
on the intensification of streaks for α near α = 1.57 for a sufficiently large Rauni. Reduction of ξ at
large α′s is associated with formation of a convection boundary layer near the grooved wall while
ξ is evaluated in the channel midsection. Reduction of ξ at small α′s is due to the reduction of
horizontal x-temperature gradients. The reference results for the isothermal grooved channel and
uniformly heated smooth channel demonstrate the large advantage offered by uniformly heated
grooves.

150 200 250Rauni

0

6

12

(a) (b)

E k 21
3.

5

A = 0

0.06

0.12

Multiplied
by 10

FIG. 3. (a) Variations of the change in kinetic energy �Ek [Eq. (12)] as a function of Rauni for α = 1.57,

RaP,L = 0, Re = 5 and selected A′s. (B) Variation of the maximum of the spanwise velocity gradient ξ

[Eq. (13)] as a function of α for A = 0.06, RaP,L = 0, and selected Ra′
unis. Dashed lines provide results for

isothermal grooved channel. Red dotted line in (b) shows results for a smooth channel with RaP,L = 220. Gray
color identifies α′s leading to a reduction of pressure losses in a grooved isothermal channel.
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(a) (b) (c)

0.5×10−3

5.7×10−5

0.7×10−3

FIG. 4. Variation of the flow rate correction Qc [Eq. (7)] (a), the Nusselt number correction Nuc [Eq. (11)]
(b), and the pressure gradient correction Pc [Eq. (9)] 4(c) as functions of α for A = 0.06 and RaP,L = 0. The
dashed lines in (a,c) correspond to the isothermal grooved channel; gray shading identifies α′s leading to a
reduction of pressure losses (increase of the flow rate) in such channel.

Formation of streaks increases flow losses as illustrated in Fig. 4—reduction of the flow rate is
illustrated in Fig. 4(a) while increase of the pressure gradient is illustrated in Fig. 4(c)—these data
measure the energy cost associated with streak creation. Heating increases losses over the whole
range of α′s with a local peak forming for α ≈ 1.57. Figure 4(b) illustrates the heat transfer conse-
quences of streak formation. The region shaded in gray identifies conditions where introduction of
unheated grooves reduces flow losses. Addition of heating marginally increases losses for such α′s.
It is possible to use such heated grooves for streak creation without paying a penalty in the form of
increased losses—the overall energy cost of flows with streaks is still below the energy cost of flow
without heating and grooves.

Data displayed in Fig. 5 demonstrate increase of the effectiveness of streak formation for larger
groove amplitudes for both the drag-reducing α′s as well as for α′s in the RB zone. The energy cost
of using α′s in the RB zone monotonically increases with A while use of α′s in the drag-reducing
zone initially reduces losses but its excessive increase reverses this trend, and the losses begin to
increase rapidly.

Streaks are used to create spanwise shear layers which are expected to trigger a unique kind of
instability [20,21] which is the initial step towards chaotic stirring [22]. The spanwise distributions

FIG. 5. Variations of the maximum of the spanwise velocity gradient ξ [Eq. (13), dashed lines] and the flow
rate correction Qc [Eq. (7), solid lines] as functions of the groove amplitude A for α = 0.6 (green lines, the
drag-reduction zone) and α = 1.53 (red lines, the RB zone) for Rauni = 205, RaP,L = 0. Gray shading identifies
conditions leading to an increase of the flow rate.
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y x/  = 0

0.25
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(a) (b)

FIG. 6. Spanwise distributions of the w-velocity component at different y locations (a) and the transverse
distributions of the w-velocity component at different x locations (b) for α = 1.57, Rauni = 200, RaP,L = 0,
A = 0.1.

of the streamwise velocity component are displayed in Fig. 6(a) for α in the RB zone. They
demonstrate velocity increase near the groove trough and reduction around the groove crest resulting
in the formation of transverse shear layers. The spanwise gradients of the w-velocity component
decrease with distance away from the grooved wall—these gradients are responsible for activation of
the inviscid instability mechanism described in [20]. The wall-normal distributions of the w-velocity
component displayed in Fig. 6(b) demonstrate small changes in vertical shear concentrated close to
the grooved wall. They produce a minor modification of the classical shear-driven instability [21].
Plots of the w-velocity component for α′s in the loss reduction zone have a qualitatively similar
form and thus are not shown. The spanwise velocity gradient for such α′s is much smaller, but this
can be compensated for by using larger groove amplitudes (see Fig. 5).

IV. PERIODIC HEATING AND PATTERN INTERACTION EFFECT

The presence of grooves creates spanwise modulations in the flow and its uniform heating
produces streaks with the pattern dictated by the groove wave number. In this section we investigate
the use of periodic heating of a grooved surface which provides the means for creation of potentially
stronger streaks [19]. We focus attention on heating patterns perfectly tuned with the groove patterns
where both effects can potentially reinforce each other. The presence of patterns of distinct physical
quantities activates the pattern interaction effect [52] which may either weaken or amplify the streak
formation process. In this case, the interaction of groove and heating patterns creates net spanwise
flow which may be directed either to the left or to the right depending on the relative positions of
both patterns.

The relative position of both patterns is measured using phase difference 
 with 
 = 0 corre-
sponding to hot spots overlapping with the groove crests and 
 = π corresponding to hot spots
overlapping with groove troughs—the pattern interaction effect is not active for these two special
configurations [52]. Results displayed in Fig. 7(a) demonstrate that the strongest streaks are obtained
for the hot spots placed halfway between the groove crests and troughs for low heating, i.e.,
RaP,L = 200. Increase of heating to RaP,L = 400 shows a preference for placing hot spots closer to
the groove trough for α = 0.6 (drag-reducing zone) and α = 1 but retains the previous preference
for α = 1.57 (RB zone). Use of α ≈ 1 leads to the strongest streaks so α = 1 is viewed as optimal
and is added to the further discussion of potential gains due to periodic heating of grooved walls.
Distributions of ξ displayed in Fig. 7(b) lead to somewhat different conclusions as all α′s show
preference for placing hot spots approximately halfway between the groove crests and troughs.
Addition of grooves to a periodically heated wall increases flow losses for α′s in the RB zone and
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FIG. 7. Variations of the change in kinetic energy �Ek [Eq. (12)] (a), the maximum of the spanwise
velocity gradient ξ [Eq. (13)] (b), and the flow rate correction Qc [Eq. (7)] (c) as functions of 
 for
α = 1.57 (the RB zone, solid blue lines), α = 1 (solid green lines), and α = 0.6 (the drag-reduction zone,
solid red lines), Rauni = 0, A = 0.1, and Ra′

P,Ls are specified in the figures. Reference quantities for a smooth
channel exposed to the same periodic heating are illustrated using dotted lines. The reference quantities
for a grooved isothermal channel are α = 1.57: �Ek = −0.0515, ξ = 0.0326, Qc/Re = −0.0014; α = 1:
�Ek = 0.0095, ξ = 0.0334, Qc/Re = −0.0001; α = 0.6: �Ek = 0.0507, ξ = 0.0259, Qc/Re = 0.0007.

can decrease losses for α = 0.6 (drag-reducing zone) and α = 1 depending on 
 as illustrated in
Fig. 7(c).

The above discussion shows that the configuration of interest is α = 1 as it generates very strong
streaks without paying an excessive penalty in terms of flow losses. The reader may note that
positioning of hot spots halfway between the groove crests and troughs, which is the most effective
configuration at small heating rates, results in the strongest thermal drift [51,53]. The overall flow
topology for such conditions is presented in Fig. 8, showing net flow to the left.

Results displayed in Fig. 9 permit assessment of effects of the pattern wave numbers and
identification of the most effective α. Variations of �Ek displayed in Fig. 9(a) demonstrate that
streak intensity changes significantly as a function of α with α ≈ 1 being the most effective,
regardless if the smooth or grooved heated surfaces are used. Use of a grooved isothermal channel
produces an order of magnitude weaker streaks while use of a heated smooth channel produces
competitive streaks, but weaker than those obtained with a heated grooved channel with a proper

FIG. 8. Topology of flow in an isothermal grooved channel for α = 1, A = 0.1, Rauni = 0, RaP,L = 200,

 = π/2, and Re = 1. Colors in the front (x, y) plane illustrate the temperature field while the black solid line
illustrates velocity vector lines, and colors in the rear (x, y) plane represent the w-velocity field. Black dotted
and purple solid lines inside the plotted box show particle trajectories.
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(a) (b) (c)

FIG. 9. Variations of the change in kinetic energy �Ek [Eq. (12)] (a), the maximum of the spanwise velocity
gradient ξ [Eq. (13)] (b), and the flow rate correction Qc [Eq. (7)] (c) as functions of α for Rauni = 0, RaP,L =
250, A = 0.1, and selected 
′s. Dashed and dotted lines give reference results for the grooved isothermal and
smooth periodically heated channels, respectively. Gray shading identifies α′s leading to a reduction of pressure
losses in a grooved isothermal channel. Green lines mark α = 1.

relative position of both patterns. The same conclusions can be reached on the basis of variations
of ξ illustrated in Fig. 9(b). Variations of Qc illustrated in Fig. 9(c) demonstrate a small increase of
flow losses associated with addition of grooves for α′s in the RB zone for the best relative position
of both patterns. Use of α′s in the drag-reducing zone shows reduction of flow losses when grooves
are combined with periodic heating with the relative position of both patterns playing a minor role.
It becomes obvious that use of α ≈ 1 produces the most intense streaks according to Figs. 9(a)
and 9(b) but the energy cost is smaller than the maximum cost according to data in Fig. 9(c). The
reader may recall that weak streaks produced by isothermal grooves are sufficient to produce chaotic
stirring [22] which suggests that use of heating in combination with grooves should be a powerful
technique for stirring intensification.

V. COMBINED PERIODIC AND UNIFORM HEATING

The final question to be addressed is the assessment of potential gains associated with combining
the uniform and periodic heating of grooved surfaces. Use of α′s in the RB zone shows a rapid
increase of �Ek as Rauni increases but the difference between heating of smooth and grooved
surfaces is minor with a small preference for heating smooth surfaces at higher Ra′

unis [see
Fig. 10(a)]. Use of α = 1, which represents the optimal wave numbers, shows an advantage at
small Ra′

unis but use of α = 1.57 (the RB zone) is more effective at larger Ra′
unis. Use of α = 0.6

(drag-reducing zone) produces much weaker streaks with a significant advantage for grooved
surfaces in comparison to the smooth periodically heated channel. Use of ξ shows a similar pattern
of variations [see Fig. 10(b)] with optimal α′s and α′s in the RB zone being equally competitive.
The flow losses for the grooved and smooth surfaces are similar as shown in Fig. 10(c) and increase
with Rauni. The advantage of using the optimal α is due to its ability to produce strong streaks at a
much lower energy cost that increases with an increase of Rauni.

The reader should note that reduction of α leads to a reduction of flow losses [23] but its excessive
reduction combined with an excessive heating leads to formation of secondary convection near the
hot spots, which generates localized streaks [54,55]. Formation of such streaks was not of interest
in this study.

VI. SUMMARY

The creation of streaks in low Reynolds number laminar shear flows is of interest for the
intensification of stirring. This analysis is focused on the use of grooves for the intensification of
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FIG. 10. Variations of the change in kinetic energy �Ek [Eq. (12)] (a), the maximum of the spanwise
velocity gradient ξ [Eq. (13)] (b), and the flow rate correction Qc [Eq. (7)] (c) as functions of Rauni for A = 0.1,
RaP,L = 250, 
 = π/2. Blue identifies α = 1.57 (the RB zone), red identifies α = 0.6 (the drag-reducing
zone), and green identifies α = 1. Dotted and dashed lines illustrate results for smooth periodically heated
channels and for isothermal grooved channels, respectively. Gray shading in (c) identifies conditions leading
to a reduction of flow losses.

streaks created by heating. Grooves play two roles: (i) they produce spanwise flow modulations
which contribute to streak creation and (ii) they can reduce flow losses if their wavelength is long
enough. Heating patterns applied to smooth surfaces are known to produce streaks. The combination
of such heating and groove patterns leads to the formation of more intense streaks with smaller
losses compared to heated smooth surfaces. The interest in this analysis was focused on low heating
intensity and small groove amplitudes to control the energy “cost” associated with streak formation,
and on heating patterns perfectly tuned with groove patterns.

The model problem involves pressure-gradient-driven channel flow with the lower wall fitted
with streamwise grooves and exposed to a combination of uniform and spanwise-periodic heating
with the spatial distribution matching the groove distribution. The model allows for different relative
positions of the groove and heating patterns. The flow equations were solved numerically with
spectral accuracy with geometry modeling carried out using the immersed boundary conditions
concept which uses constraints equivalent to the imposition of boundary conditions at the borders of
the flow domain. The efficiency of the streak creation was measured either by the pressure gradient
correction when the fixed flow rate constraint was used or by the flow rate correction when the fixed
pressure gradient constraint was used.

It is shown that isothermal grooves create relatively weak streaks. Uniform heating of these
grooves results in the formation of intense streaks but only when the groove wave number is
near the critical RB wave number and when the heating intensity either meets or exceeds the
critical uniform Rayleigh number. The flow losses caused by such heating increase above the losses
associated with isothermal grooves. The need to match the critical RB wave number limits the
ability to create intense streaks with different spatial distributions. The need to match the critical
heating intensity prevents the use of this method for streak creation using weak heating. The use of
long-wavelength grooves reduces losses below those found in an isothermal smooth channel, but the
resulting streaks have a much lower intensity. The streak intensity can be increased by increasing
the groove amplitude.

Patterned heating of grooved surfaces demonstrates the potential for a significant increase of
streak intensity as compared to patterned heating of smooth surfaces and uniform heating of grooved
surfaces. It also provides the means for control of the spatial distributions of streaks and for the
creation of such streaks using low-intensity heating. The strongest streaks are formed using α ≈ 1
with these streaks being stronger than streaks formed by the RB instability mechanism and having
a much lower cost in terms of flow losses. Streaks formed by long-wavelength patterns remain
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of interest as they have a respectable intensity but much lower energy cost. The relative position
of both patterns plays an important role with the best effect obtained when hot spots are located
approximately halfway between the groove crest and trough.
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