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Physical mechanisms of the linear stabilization of convection by rotation
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Despite the well-known limitations of linear stability theory in describing nonlinear and
turbulent flows, it has been found to accurately capture the transitions between certain non-
linear flow behavior. Specifically, the transition in heat flux scaling in rotating convective
flows can be well predicted by applying a linear stability analysis to simple profiles of a
convective boundary layer. This fact motivates the present study of the linear mechanisms
involved in the stability properties of simple convective setups subject to rotation. We
look at an idealized two-layer setup and gradually add complexity by including rotation,
a bounded domain, and viscosity. The two-layer setup has the advantage of allowing
for the use of wave interaction theory, traditionally applied to understand stratified and
homogeneous shear flow instabilities, in order to quantify the various physical mechanisms
leading to the growth of convective instabilities. We quantitatively show that the physical
mechanisms involved in the stabilization of convection by rotation take two different
forms acting within the stratified interfacial region, and in the homogeneous mixed layers.
The latter of these we associate with the tendency of a rotating flow to develop Taylor
columns (TCs). This TC mechanism can lead to both a stabilization or destabilization of
the instability and varies depending on the parameters of the problem. A simple criterion
is found for classifying the influence of these physical mechanisms.

DOI: 10.1103/PhysRevFluids.7.083501

I. INTRODUCTION

This paper provides a different view on understanding the stabilizing effects of planetary rotation
on convection. It resulted from discussions of the influence of planetary rotation, i.e., a rotating
frame of reference arising from the Earth’s rotation, on the flux of heat through oceanic double
diffusive staircases. This influence can be well described through the application of linear stability
analysis to the diffusive boundary layer of a double diffusive interface [1].

The stabilizing effect of rotation on convection was first studied theoretically by Chandrasekhar
[2] and Nakagawa and Frenzen [3] using a linear stability analysis; and by Veronis [4] using a
finite-amplitude stability analysis. The authors found that rotation inhibits the onset of convection by
increasing the critical Rayleigh number required to initiate instability, which depends on the rotation
rate. This was later confirmed in the fully nonlinear regime through the seminal tank experiments
of Rossby [5], where the convective heat flux was found to be inhibited in the presence of strong
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rotation. Later studies focused on the effect of rotation on flow pattern formation [e.g., [6–11]] and
heat flux scaling laws [e.g., [11–15]], with a review by Stevens et al. [16].

Despite this large body of work devoted to rotating convection, little attention has been given
to further elucidating the physical mechanisms of the stabilizing effect of rotation. The most
commonly cited physical explanation for the stabilization is a single paragraph in Chandrasekhar
[2]. This, however, offers only a qualitative description of the special case of a linearly stratified,
vertically bounded, viscous layer of rotating fluid. Such a setup is not generally present in the case
of a convective boundary layer (either double diffusive or purely thermal), where a relatively thin
gravitationally unstable stratification is bounded on one side with a large expanse of homogeneous
fluid in the adjacent mixed layer [e.g., [15,17]].

Here we examine the physical mechanisms responsible for the stabilization of convection by
planetary rotation in an idealized model of a convective boundary layer. Our goal is to construct a
quantitative analysis of different physical mechanisms that are operating, rather than to present new
linear stability results. The focus is on gaining physical insight into the stabilization of convection
by rotation. Specifically, by approximating the boundary layer as an infinitely thin interface with a
finite change in buoyancy across it, we are able to provide analytical insight to the instability physics
that is also qualitatively similar to the full stability analysis (requiring a numerical solution) that was
found to accurately describe the heat flux dependence on rotation from a double diffusive interface
[1]. It is also a similar configuration to the laboratory study of Baldwin et al. [18], where two
homogeneous layers of constant buoyancy are separated by a sharp convectively unstable interface
and subjected to varying levels of rotation. We start with the simplest setups, adding levels of
complexity stepwise, to see how each added feature (rotation, viscosity, a semibounded domain)
of the setup affects the stability and the physical mechanisms involved.

To aid in our physical interpretation, we borrow heavily from the wave interaction theory (WIT)
that is often used to provide a physical mechanism for various features of shear flow instabilities
[e.g., [19,20]] such as the presence of different instability types [21–23], optimal transient growth
[24], the general stability conditions [25], and the structure of the eigenvalue spectrum [26]. This
technique generally uses the vorticity field and its relation to the vertical velocity and interface
displacement fields in order to construct a visual, and mathematical, description of the relevant
interacting interfacial waves. Strict application of WIT requires that the flow be described by distinct
interfaces, and allows for a quantification of the influence of various mechanisms on the stability of
the convection so that the most important effects can be isolated. As we will show, this leads to a
different description of the physical mechanisms by which rotation stabilizes convection, and their
dependence on various parameters.

The paper is organized as follows. In the following section, we outline the general linear stability
problem and the simplifications that arise when a two-layer setup is adopted, as well as a brief
introduction to the wave interaction theory. In Sec. III, a number of simple setups are examined
when the flow is taken as inviscid. The essential physical mechanisms are described for the simplest
case of nonrotating, inviscid convection and its alteration by rotation and by a bounded domain. In
Sec. IV, we look at the viscous case, demonstrating that the inviscid mechanisms identified in the
previous section carry over. A summary and conclusions are presented in the final section.

II. LINEAR STABILITY ANALYSIS

A. Derivation

A general derivation of the linearized equations, and the linear stability problem, is first derived
for the full viscous, rotating, two-layer setup (see Fig. 1 for a visual guide). The basic equilibrium,
or background, state consists of a motionless hydrostatic balance with a vertical buoyancy profile
specified by B(z). We will neglect diffusion of the buoyancy scalar field throughout, compatible
with our two-layer model. This approximation is valid in the case of immiscible fluids (wherein a
neglected surface tension between the layers may arise), as well as in the limit of large Prandtl
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FIG. 1. Sketch of the relevant elements in the two-layer convection setup that is used.

numbers, ν/κ , where ν is the kinematic viscosity and κ the buoyancy diffusivity. The latter
can be seen through a nondimensionalization of the equations by ν and a length scale, whereas
nondimensionalization by κ and a length scale leads to a different (slow time) limit [27].

The linearized equations of motion for perturbations to this stratified, nondiffusive, Boussinesq
fluid from the equilibrium state are

ut − f v = −πx + ν∇2u, (1)

vt + f u = −πy + ν∇2v, (2)

wt = −πz + b + ν∇2w, (3)

in addition to continuity,

ux + vy + wz = 0, (4)

and buoyancy advection (without diffusion),

bt + wBz = 0. (5)

They consist of (in order) the three components of momentum, continuity, and an advection equa-
tion for the buoyancy, b ≡ −gρ/ρ0, with density perturbations represented by ρ, g the gravitational
acceleration, and ρ0 a representative fluid density. We use a Cartesian coordinate system �x = (x, y, z)
with z the vertical coordinate, opposing g, with velocities �u = (u, v,w). Other variables used are
time t , a density-scaled pressure π ≡ p/ρ0, with pressure p, and f which is twice the local vertical
rotation rate, commonly called the Coriolis frequency. Subscripts denote partial differentiation. The
only equilibrium (also called basic state or background) variable to appear in the equations is the
vertical gradient of the buoyancy profile Bz(z), and all other quantities represent a perturbation from
the equilibrium.

It is helpful to immediately simplify these equations by first taking the divergence of the
momentum equations to give

− f ζ = −∇2π + bz,

and to substitute this into the Laplacian of the vertical momentum equation to eliminate the scaled
pressure,

∂

∂t
∇2w = − f ζz + ∇2

H b + ν∇4w. (6)

Here we have defined the vertical relative vorticity (perturbation) as ζ ≡ vx − uy, and the horizontal
Laplacian ∇2

H ≡ ∂2/∂x2 + ∂2/∂y2. Second, the curl of the horizontal momentum equations can be
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taken to give

ζt − f wz = ν∇2ζ . (7)

These steps have reduced the equation set to three equations [(6), (7), and (5)] in the three variables
{w, ζ , b}.

In order to make analytical progress, we take all perturbation quantities to be represented by the
normal mode form, as in w(x, y, z, t ) = ŵ(z)eσ t+i(kx+	y) for the vertical velocity, with the real part
of this expression implicitly intended. We can then write our equation set as

(σ − νL)L(ŵ) = − f ζ̂ ′ − k̃2b̂, (8)

(σ − νL)ζ̂ = f ŵ′, (9)

σ b̂ = −Bzŵ, (10)

where we have defined the operator L ≡ d2/dz2 − k̃2, with k̃2 ≡ k2 + 	2 the squared amplitude
of the wave-number vector, �k = (k, 	). For all hatted normal mode variables, the primes denote
ordinary differentiation with respect to z. It is possible to eliminate b̂,

σ (σ − νL)L(ŵ) = −σ f ζ̂ ′ + k̃2Bzŵ, (11)

which can be combined with a differentiated (9) to give a single equation for ŵ of

σ (σ − νL)2L(ŵ) + σ f 2ŵ′′ = k̃2(σ − νL)(Bzŵ). (12)

In the following sections, we will consider solutions to this equation, and various simplifications
thereof. In addition, we will apply the boundary conditions

ŵ = 0 at z = +∞, zb (13)

in all variations of the setup. Two choices for the location of the lower boundary will be exam-
ined, zb ∈ {−∞,−H}, corresponding to infinite and semi-infinite (bounded from below) domains,
respectively.

B. Two-layer formulation

We simplify (12) immediately by substituting in our two-layer background the buoyancy profile
with Bz = −|
B|δ(z), where δ(z) is the Dirac delta function, and 
B < 0 the buoyancy difference
across the layers for a convectively unstable profile. This splits the problem up into one for the
layers (i.e., where z �= 0) and one for the interface (at z = 0) since in the layers we have eliminated
the right-hand side of (12), so

(σ − νL)2L(ŵ) + f 2ŵ′′ = 0. (14)

At the interface, the δ function singularity on the right-hand side of (12) requires that we integrate
across the interface and apply a series of “jump” conditions on the solution across it [see, e.g., [20]].
These correspond to the following physical principles, with the interfacial jump denoted [[X ]]0 ≡
X (0+) − X (0−):

(i) Continuity in vertical velocity: [[ŵ]]0 = 0.
(ii) Continuity in vertical stress, which can be expressed as [[π̂ ]]0 = 0. However, in practice, this

condition is not explicitly used. Instead, we integrate (12) across the interface in each case. The
Appendix describes the equivalence of these two approaches.

(iii) Continuity in horizontal velocity (for viscous flows): [[û]]0 = 0 and [[v̂]]0 = 0 implies
[[ŵ′]]0 = 0.

(iv) Continuity in horizontal stress (for viscous flows, see [28]): [[û′ + ikŵ]]0 = 0 and [[v̂′ +
i	ŵ]]0 = 0 implies [[ŵ′′]]0 = 0.
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(v) Continuity of vertical vorticity (for viscous, rotating flows): [[ζ̂ ]]0 = 0. In practice, this
condition (and the following one) is used in combination with (9) relating ŵ to ζ̂ .

(vi) Continuity of the vertical derivative of vertical vorticity (for viscous, rotating flows):
[[ζ̂ ′]]0 = 0.

C. Application of wave interaction theory

To understand the physical mechanism, we will adopt a WIT-type approach, by formulating
the interaction between the horizontal vorticity, vertical velocity, and vertical displacement of the
buoyancy interface. In past studies, this approach has been used to quantify the interactions between
interfaces that support stable wave motions, such as gravitationally stable buoyancy interfaces
(supporting internal gravity waves) and vorticity interfaces (supporting interfacial Rossby/vorticity
waves) [20,21,25]. Each wave has a vertical velocity field that can affect the growth and propagation
of the other wave; thus, when conditions are right, they are able to cause each other to propagate
in phase and experience mutual growth. Despite the setup considered herein, namely, that of a
single (gravitationally unstable) buoyancy interface, the techniques of WIT are used to quantify
how the interface interacts with itself and other sources of vertical velocity (e.g., the presence of
a boundary). Describing this self-interaction consists of quantifying the interplay of the vertical
velocity, interfacial vorticity, and vertical displacement fields, their relationship to each other, and
their relative orientations responsible for instability growth. Note that this self-interaction has also
been discussed in the context of stratified shear layer instabilities [23].

For an infinitely thin interface in an inviscid flow, it is not the vorticity, but rather the vortex
sheet strength that is relevant. The sheet strength is defined as the integrated horizontal vorticity
perturbation across the interface, i.e.,

�γ ≡
∫ 0+

0−
�qH dz ⇒ �̂γ = (−[[v̂]]0, [[û]]0, 0).

Here we use �qH ≡ (wy − vz, uz − wx, 0), and the last expression is the normal mode form of the
sheet strength. However, we will often refer to �γ as the “interfacial vorticity” since it is less
cumbersome than the “interfacial vortex sheet strength.”

Using the horizontal momentum equations in (1)–(3), we can derive a modal interfacial vorticity
equation, namely,

σ �̂γ = f �̂γ⊥ + i|
B|η̂�k⊥. (15)

Here we have denoted the vertical displacement of the interface as η, and used the normal mode form
of the relation, b = −Bzη, given by b̂ = |
B|δ(z)η̂. In addition, we have defined the perpendicular
vector to �X = (X1, X2) as �X⊥ ≡ (X2,−X1), and have neglected the viscous term since viscosity
eliminates the vortex sheet at the interface. The physical meaning of the various terms in this
equation will be discussed throughout the text below.

The last mathematical tool that we will need in our physical interpretation is to understand the
effect that the interfacial vorticity distribution has on the vertical velocity. Once this is known, we
can directly assess the changes in interface displacement through the linearised kinematic condition,

Dη

Dt
= w ⇒ σ η̂ = ŵ(0). (16)

The relationship between the interfacial vorticity and the vertical velocity at the interface must be
found in each particular setup considered, as is outlined below.
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FIG. 2. Schematic of the growth of a convectively unstable interface in a nonrotating frame. The red color
is chosen to highlight the relationship between interfacial vorticity and vertical velocity at the interface; they
are π/2 radians out of phase such that upwards (downwards) velocities are present in crests (troughs) of the
interface displacement, inducing a growth of the interface.

III. INVISCID SOLUTIONS AND THEIR PHYSICAL MECHANISMS

A. Inviscid, unbounded, nonrotating convective instability

We begin with the simplest case of an inviscid, unbounded, nonrotating two-layer setup, as
discussed in Smyth and Carpenter [20]. The equation governing the mixed layers is found by setting
ν = f = 0 in (14), i.e., L(ŵ) = 0. Note that this equation is simply an expression of the fact that in
this case, the mixed layers are irrotational since L(ŵ) is closely related to the horizontal vorticity
through L(ŵ) = i�k⊥ · �̂qH . A simple solution can be found taking ŵ(z) = Ae−k̃|z|, with A an arbitrary
constant amplitude. Here we have applied both jump condition (i) and the boundary conditions
(13). The dispersion relation for the growth rate is then found using jump condition (ii), obtained by
integrating (12) with ν = f = 0 across the interface, giving

σ 2[[ŵ′]]0 + k̃2|
B|ŵ(0) = 0, (17)

and substituting for ŵ(z), finally,

σ = ±
( |
B|k̃

2

)1/2

, (18)

as in [20,29].
A couple of features of this solution are worth noting. First, the entire range of k̃ has an unstable

(convective) mode and the growth rate increases with increasing k̃, as well as the buoyancy forcing
|
B|. This situation is often referred to as an ultraviolet catastrophe, and, as will be seen, is not
realistic in viscous fluids. Second, the spatial decay of the vertical velocity away from the interface
has a length scale proportional to k̃−1. This is a very general result of motion in an unbounded layer
of fluid that is irrotational. The same result is also found in, for example, the depth dependence of
ocean surface waves in deep water [30] or in interfacial Rossby waves (also called vorticity waves)
in shear flows [31,32].

Physical mechanism

The growth of the instability can be understood physically through a consideration of the
interfacial vorticity equation (15), which in this case reduces to

σ �̂γ = i|
B|η̂�k⊥. (19)

This describes the unsteady growth of interfacial vorticity (left-hand side, lhs) through the baroclinic
production (rhs) that arises from any horizontal gradients in buoyancy. The interfacial vorticity
generation is proportional to the buoyancy jump and is strongest at the nodes of the displacement
(due to the i that is present, which causes a π/2 phase shift;, see Fig. 2) where slopes, k̃η̂, are
strongest. The relationship between the displacement and the interface vorticity is sketched in Fig. 2,
where we also note that the generation of interfacial vorticity is in the direction of �k⊥.
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To understand the effect that this interfacial vorticity distribution has on the growth of the
interface displacement [through the kinematic condition in (16)], we quantify the connection to
the vertical velocity at the interface, ŵ(0). This can be done by using the definition of �̂γ and its
component in the �k⊥ direction, to give

�̂γ · �k⊥ = −i[[ŵ′]]0. (20)

Substituting from the solution for ŵ, this produces the result that i �̂γ · �k⊥ = −2k̃ŵ(0), which allows
us to solve for the vertical velocity at the interface,

ŵ(0) = − i

2
�̂γ · �e(k)

⊥ , (21)

where �e(k)
⊥ denotes the unit vector in the �k⊥ direction. This is an important result that shows it is the

component of the interfacial vorticity that is perpendicular to �k that is responsible for generating
vertical velocity at the interface. If, for whatever reason, the interfacial vorticity were oriented
entirely along �e(k), then no vertical velocity would be produced. However, in the present case, �̂γ
is oriented in the optimal configuration along �e(k)

⊥ . This can be verified by taking the dot product of
(19) with �k. Also note that the dispersion relation can be recovered by taking the dot product of (19)
with �k⊥, multiplying by σ , and substituting both the kinematic condition and (21).

In summary, we can construct the following chain of events to understand the growth of the
interface displacement (and other fields), with reference to Fig. 2. A small perturbation of the
interface with wave-number vector �k will generate interfacial baroclinic vorticity that is maximum at
the nodes of the displacement, and in the direction of �k⊥. In this optimum orientation, the interfacial
vorticity produces a vertical velocity that is in phase with the interface displacement, and thus the
displacement grows, creating a positive feedback between displacement, interfacial vorticity, and
vertical velocity. Although this physical explanation is considerably more indirect than the much
more common “heavy fluid tends to fall and lighter fluid tends to rise” approach, it will be helpful
in subsequent sections when quantifying the effects of rotation and boundaries. A similar physical
explanation has been described previously by Roberts and Jacobs [33].

B. Inviscid, unbounded, rotating convective instability

By now adding rotation while maintaining an inviscid, unbounded setup, we seek solutions for
(14) with ν = 0, i.e.,

σ 2L(ŵ) + f 2ŵ′′ = 0. (22)

These take the form of ŵ(z) ∝ erz, leading to a characteristic equation for the inverse length scale,
r, with solutions of

r = ± σ

(σ 2 + f 2)1/2
k̃.

By defining the dimensionless growth rate as σ∗ ≡ σ/ f , this can be written as

r = ± σ∗
(σ 2∗ + 1)1/2

k̃.

We now choose the correct sign of r to satisfy the boundary conditions that w should vanish as
|z| → ∞ to give ŵ(z) = Ae−r|z|, with r taken positive from now on. Note that there are two regimes
of r: (i) r ∼ σ∗k̃ for σ∗ � 1 so that for conditions where rotation dominates the growth rate (i.e.,
small σ∗), we recover “Taylor column”-like behavior, where the vertical velocity extends far beyond
the interface level, and (ii) r ∼ k̃ for σ∗ � 1 to give the standard exponential decay with a wave
number that is present in the nonrotating case.
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FIG. 3. (a) Plot of the dispersion relation for inviscid, unbounded, rotating convection in the two-layer
setup. (b) The effects of including a boundary at a dimensionless distance of H∗ ≡ H/LR from the interface.
The different colored solid curves in (b) represent growth rates at differing values of H∗. The dashed curves in
both panels are the rotating and nonrotating scalings.

The dispersion relation is found through jump condition (ii) by integrating across the interface,
to give

(σ 2 + f 2)[[ŵ′]]0 − k̃2
Bŵ(0) = 0. (23)

Substituting in our solution above, we find the following dimensional equation for the growth rate:

σ (σ 2 + f 2)1/2 + 
Bk̃

2
= 0,

in agreement with Chandrasekhar [29]. This can be written in dimensionless form as

σ∗(σ 2
∗ + 1)1/2 − k∗ = 0, (24)

where k∗ = LRk̃ with LR ≡ |
B|/(2 f 2) a length scale. Note that k∗ can be thought of as the
square of the ratio of two inverse timescales: the buoyant growth rate σbuoy ≡ (|
B|k̃/2)1/2 and the
Coriolis frequency f , with k∗ = (σbuoy/ f )2. There are again two limits: (i) σ∗ � 1 so that rotation is
dominant and σ∗ ∼ k∗, and (ii) σ∗ � 1 so that rotation is negligible and σ∗ ∼ k1/2

∗ , just as in the case
where f = 0 above. These two regimes can be seen in the solution of the full dispersion relation
shown in Fig. 3(a), with a transition region centered around σ∗ ≈ 1. Note that we can rewrite the
limits in terms of the length scale, LR, based on whether or not k̃ � LR (nonrotating) or k̃ � LR

(rotating).

Physical mechanism

It is clear from Fig. 3(a) that by including rotation, the growth of the instability has been damped
for σ∗ � 1 (or k∗ � 1). We now examine the physical mechanisms behind this damping, which can
be seen to arise from two competing effects: (i) a new source of vorticity in the layers that leads
to increases in vertical velocity at the interface, and (ii) a misalignment of the interfacial vorticity
and �k⊥ vectors that arises from rotation effects within the interface, and leads to reduced vertical
velocities. Each effect is examined in turn and referenced to the various processes sketched in the
visual aid of Fig. 4.
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FIG. 4. Illustration of the mechanisms acting in rotating convection that lead to increased vertical velocities
at the interface, as well as the misalignment of the interfacial vorticity with the �k⊥ direction of baroclinic
vorticity production. For brevity, only the interface and upper mixed layer are shown. Colors are used to group
the vorticity sources with their associated velocities.

Layer mechanism. New sources and sinks of perturbation vorticity must be considered in a
rotating frame of reference due to the presence of planetary vorticity, f . This effect manifests itself
first, in the layers, through a stretching/compression of the (vertical) planetary vorticity term, i.e.,
f ŵ′ in (9), rewritten here for convenience,

σ ζ̂ = f ŵ′.

This equation describes the production of vertical vorticity in the layers due to vertical gradients in
vertical velocity leading to stretching/compression of planetary vorticity, f . A sketch of this process
is shown in Figs. 4(a) and 4(b); in the crests (troughs) of the interface displacement, there is a
compression (stretching) of planetary vorticity. This results in horizontal velocities in the layers
[Fig. 4(a)]. Due to the decay of ŵ(z) away from the interface (i.e., such that ŵ′′ �= 0), vertical
gradients of ζ̂ are present in the layers. This has important consequences because it leads to the
production of horizontal vorticity in the layers through (11), modified for this particular case to

σL(ŵ) = − f ζ̂ ′ (25)

in the layers. To see this, we substitute the following relations involving the horizontal (layer)
vorticity ik̃ �̂qH · �e (k)

⊥ = L(ŵ), and the vertical vorticity ζ̂ = −ik̃ �̂uH · �e (k)
⊥ . This results in a rewritten

(25), namely,

σ �̂qH ·�e (k)
⊥ = f �̂u′

H ·�e (k)
⊥ , (26)

showing that horizontal vorticity is generated in the �k⊥ direction through the tilting of vertical
planetary vorticity by the vertical shear. This vertical shear arises due to the horizontal velocities
(along �k⊥) that accompany the stretching/compression process, as shown schematically in Fig. 4(c).
It is the phase of the produced horizontal vorticity that leads to upwards (downwards) velocities
at crests (troughs) of the displacement field, which, acting alone, causes an increase in the vertical
velocity compared to the nonrotating case [Fig. 4(d)].
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The increase in vertical velocity at the interface arising from vortex tilting in the layers can be
quantified using (20) and, substituting the solution for the rotating case,

�̂γ ·�k⊥ = 2irŵ(0) ⇒ ŵ(0) = − i

2
�̂γ ·�e (k)

⊥ (1 + σ−2
∗ )1/2. (27)

Thus, by comparing to (21), we see that the vertical velocity at the interface is increased by the factor
(1 + σ−2

∗ )1/2 above the nonrotating case. Acting alone, rotation would then lead to an increase in
growth rate above the nonrotating case, which is not found. The reason is due to the action of the
interfacial vorticity, which we now describe.

Interface mechanism. From inspection of the interfacial vorticity equation (15), we can see that
vorticity is produced by the baroclinic term in the direction of �k⊥, while the effect of rotation (in the
term f �̂γ⊥) is to rotate the vorticity vector away from this direction. The angle θ that �̂γ makes with
the direction of the baroclinic source term along �k⊥ can be found through taking · �e (k) of (15). We
find that �̂γ is perpendicular to σ �e (k) + f �e (k)

⊥ , and the angle that it departs from �k⊥ is

θ = tan−1(σ−1
∗ ),

as sketched in Fig. 4(e). This shows that for conditions where rotation is dominating the growth rate,
σ∗ � 1 and θ → π/2 so that �̂γ is aligned with �k. Therefore, rotation shifts �̂γ to a position where it
generates a reduced vertical velocity at the interface level, via (27). On the other hand, as we saw in
the nonrotating case, when buoyancy-driven growth dominates rotation, σ∗ � 1, θ → 0, and �̂γ is
closely aligned with the baroclinic forcing direction, along �k⊥. The source of this rotationally driven
misalignment of �̂γ from the baroclinic forcing direction of �k⊥ can be seen to arise from the vortex
tilting process that is occurring at the interface [Fig. 4(f)]. This comes directly from the definition
of �̂γ⊥ ≡ ([[û]]0, [[v̂]]0, 0), so that the term f �̂γ⊥ describes the tilting of planetary vorticity integrated
across the interface.

The final reduction in growth rates from the effects of rotation can be seen by comparing the
relative magnitudes of the layer- and interface-based vorticity mechanisms described above. This
can be done by writing the interfacial vorticity equation (15) into components that are in the basis
{�e (k), �e (k)

⊥ }, and substituting the �e (k) equation into that for �e (k)
⊥ , giving

(1 + σ−2
∗ )σ 2 �̂γ ·�k⊥ = i|
B|k̃ŵ(0).

We can then compare this directly to the nonrotating counterpart, found by multiplying (19) by σ

and using the kinematic condition σ η̂ = ŵ(0), to give

σ 2 �̂γ ·�k⊥ = i|
B|k̃ŵ(0).

Thus, the misalignment in the interfacial vorticity equation due to rotation causes a factor 1 + σ−2
∗

reduction in the effective vorticity (in the �e (k)
⊥ direction), which can be directly compared to an

increase in vertical velocity due to the layer-based mechanism by the factor (1 + σ−2
∗ )1/2. Overall

growth rates are therefore reduced by rotation effects, as seen in Fig. 3(a).
We also provide a heuristic interpretation of this interface mechanism that does not appeal to the

methods of wave interaction theory in the Appendix.

C. Inviscid, bounded, rotating convective instability

By placing a solid boundary a distance H , below the interface, it is possible to introduce an
explicit length scale into the problem. This is an idealization to a convective boundary layer in which
both a solid boundary condition and length scale are present. A solution for ŵ(z) can immediately
be written, once it is recognized that the boundary condition of ŵ(−H ) = 0 can be satisfied by
using the method of images [34]. An identical interface is placed equidistant from the boundary
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with opposite strength, i.e., the solution takes the form

ŵ(z) = A(e−r|z| − e−r|z+2H |) for z � −H.

The resulting dispersion relation is found through the jump condition in (23), which is altered only
in the value of the vertical velocity at the interface level, ŵ(0), giving

σ∗(σ 2
∗ + 1)1/2F (σ∗, k∗, H∗) − k∗ = 0. (28)

Here we have defined the dimensionless distance to the boundary as H∗ ≡ H/LR, and the function

F (σ∗, k∗, H∗) ≡ 1

2

{
1 + coth

[
k∗H∗

σ∗
(σ 2∗ + 1)1/2

]}
.

It is worth comparing (28) with the dispersion relation found above in (24) without a boundary.
They differ only in how F differs from unity. Since coth(x) → 1 as x → ∞, we recover the
unbounded case when H∗ becomes large (with the other variables held fixed). The results are plotted
as a series of curves for different values of H∗, shown in Fig. 3(b). The presence of a boundary
provides a complete stabilization of the lowest wave numbers, but otherwise does not alter the
growth rates away from the low-k∗ cutoff. For fixed values of f and |
B| (and therefore LR), as the
boundary is moved closer to the interface, shorter and shorter wavelengths are stabilized. This can
be seen in Fig. 3(b) as the relatively sharp cutoff in growth rate shifts to larger k∗ as H∗ decreases.

It may appear that the rotational regime can be completely eliminated by a boundary that is
sufficiently close. In this scenario, the lowest wave numbers are stabilized before a transition to the
rotational scaling regime is reached. However, the location of the cutoff wave number can be found
by taking the limit σ∗ → 0+ of the dispersion relation, and solving to give kc

∗ = (2H∗)−1/2. Note
that this limit is not independent of rotation, and the rotational regime (i.e., σ∗ < 1) must be crossed
to reach stabilization due to the boundary. This can be compared to the nonrotating, bounded case,
where there is an exponential decrease in the growth rate with σ∗ = k1/2

∗ (1 − e−2k∗H∗ )1/2 versus the
unbounded result of σ∗ = k1/2

∗ from (18).

Physical mechanism

The stabilization of the convective instability by the proximity of the boundary has a simple
physical explanation. As was apparent from the mathematical analysis, the presence of the boundary
altered the vertical velocities with the inclusion of the image source. This image has the effect of
reducing vertical velocities at the interface level, which in turn reduces the growth of the instability
directly through the kinematic condition, σ η̂ = ŵ(0). Therefore, for a given interface displacement
(η̂), there will be a lower growth rate (σ ) associated with the reduced vertical velocity at the
interface. In addition, as the boundary is moved closer to the interface, so too is the image source,
thus resulting in a stronger stabilization due to the monotonically increasing vertical velocities with
distance to the source. This effect will be more pronounced with increasing rotation rates (decreasing
σ∗) due to the reduced vertical decay of ŵ.

We note that the mechanism identified in the previous section, consisting of horizontal vorticity
production in the layers through tilting, and its reinforcing of the vertical velocity field, leads to
the reduced vertical decay of ŵ(z) from the interface. It may be interpreted as the mechanism for
the formation of a flow with vertical “rigidity,” which in the strongly rotating limit gives rise to a
Taylor-column (TC) structure with vanishing ŵ′(z). Although we showed that this mechanism will
lead to increased ŵ at the interface in the case of an unbounded flow, this is not necessarily the
case in a bounded flow since ŵ must vanish at the boundary. The influence that each of these two
processes has on the convection can be quantified by solving for ŵ(0), as done previously:

ŵ(0) = − i

2
�̂γ ·�e(k)

⊥ (1 + σ−2
∗ )1/2

{
1 − exp

[
− 2k̃H

σ∗
(σ 2∗ + 1)1/2

]}
.
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FIG. 5. Growth rates in bounded rotating convection using an alternate nondimensionalization with H as
the length scale. The different colored curves represent growth rates at differing values of � ≡ |
B|/(2 f 2H ) =
(0.100, 0.316, 1.00, 3.16, 10.0). The gray region corresponds to conditions where the Taylor-column (TC)
effect leads to a stabilization of convection, with destabilized convection at larger k̃H outside.

Here we see that the presence of a boundary modifies the equivalent unbounded expression in (27)
by the factor in the curly braces [35] and online, i.e., ŵ(0)bounded = ŵ(0)unbounded(1 − e−2rH ).

Therefore, there are two competing effects that we will group together into a Taylor-column
(TC) mechanism: (I) layer-based tilting of planetary vorticity that results in an increased ŵ(0) and is
destabilizing (when acting alone), and (II) the need to satisfy the boundary condition of ŵ(−H ) = 0
which reduces the ŵ(0) and stabilizes the convection. These two processes are related: since (I)
results in less decay of the image source with vertical distance, it will have larger amplitudes at the
interface. Hence the boundary has a greater influence on the growth of the interface through (II).
Whether the TC mechanism is leading to an increased or decreased vertical velocity at the interface,
and therefore is either helping or hindering the growth of the interface displacement in the presence
of a boundary, depends on whether

(1 + σ−2
∗ )1/2

{
1 − exp

[
− 2k̃H

σ∗
(σ 2∗ + 1)1/2

]}
≶ 1.

This can be rearranged to yield a condition for the stabilizing effect of the TC mechanism,

k̃H < − (σ 2
∗ + 1)1/2

2σ∗
ln

[
1 − σ∗

(σ 2∗ + 1)1/2

]
. (29)

Waves that are longer than this condition (k̃H smaller) have layer vorticity that stabilizes the growth
of the interface, whereas shorter waves (k̃H larger) destabilize. This condition is plotted in gray in
Fig. 5, where it is now convenient to nondimensionalize using H as the independent length scale
with k̃H the nondimensional wave number. This nondimensionalization results in the dependence of
σ∗ ≡ σ/ f on the parameter � ≡ |
B|/(2 f 2H ), rather than experiencing a collapse as in Fig. 3(b).
Note that as the convection stabilizes asymptotically with σ∗ → 0+, neither of (I) or (II) dominates;
rather, (I) increases ŵ(0) as rapidly as (II) decreases ŵ(0) (with other quantities held fixed) such
that their product is constant. This results in the TC stabilization boundary (dashed line separating
the gray region in Fig. 5) approaching a constant limit k̃H = 1/2 as σ∗ → 0+. Therefore, we find
that whether the TC mechanism is stabilizing or destabilizing depends on if � can be large enough
for long waves to penetrate into the gray region with k̃H < 1/2. This occurs for values of � � 2,
which is a simple condition for assessing the potential role of the TC mechanism.
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IV. THE EFFECTS OF VISCOSITY

In this section, we now include the viscous terms in the mixed layer differential equation (14),
while considering only unbounded domains. This is a sixth-order ordinary differential eigenvalue
problem for {σ, ŵ(z)}, and we can take eigenfunction solutions of the form ŵ(z) ∝ erz, resulting in
a characteristic equation for R ≡ r2 that is cubic with

a3R3 + a2R2 + a1R + a0 = 0, (30)

and coefficients given by

a3 = ν2, (31)

a2 = −(2σν + 3ν2k̃2), (32)

a1 = σ 2 + 4σνk̃2 + 3ν2k̃4 + f 2, (33)

a0 = −(σ 2k̃2 + 2σνk̃4 + ν2k̃6). (34)

It is helpful to nondimensionalize using the inverse timescale νk̃2, and defining R∗ ≡ R/k̃2 to give

a∗
3R3

∗ + a∗
2R2

∗ + a∗
1R∗ + a∗

0 = 0, (35)

with coefficients given by

a∗
3 = 1, (36)

a∗
2 = −(2σ∗ + 3), (37)

a∗
1 = σ 2

∗ + 4σ∗ + 3 + Ẽk
−2

, (38)

a∗
0 = −(σ 2

∗ + 2σ∗ + 1), (39)

after dividing by ν2k̃6. Here we have also defined σ∗ ≡ σ/(νk̃2) and a dimensionless number that
has a similar form to an Ekman number, Ẽk ≡ (νk̃2)/ f . Note that this definition of the dimensionless
growth rate, σ∗, differs from that used in the previous section for inviscid flows.

A. Viscous, nonrotating convective instability

The roots of the characteristic equation can easily be found for the nonrotating case with Ẽk =
∞. These are R∗ = 1 and the double root R∗ = σ∗ + 1. However, through inspection of (11), with
the right-hand side equal to zero, we see that one of the two σ∗ + 1 roots is spurious and this results
in r = ±k̃, ±√

σ∗ + 1k̃, with ŵ(z) ∝ erz forming a general solution. Most of these solutions can be
eliminated based on the boundary conditions that ŵ → 0 as |z| → ∞, so the solution is

ŵ(z) =
{

A1e−k̃z + A2e−(σ∗+1)1/2 k̃z, z > 0

B1ek̃z + B2e(σ∗+1)1/2 k̃z, z < 0.
(40)

We now can solve for the four unknown coefficients using the four jump conditions. The
condition for the continuity of vertical stress is equivalent to integrating (11) across the interface,
and gives

σν[[ŵ′′′]]0 − k̃2|
B|ŵ(0) = 0. (41)

It is useful to work with the dimensionless form of this jump condition,

σ∗
[[ŵ′′′]]0

k̃3ŵ(0)
= R̃a,

where we have defined a Rayleigh-number-like quantity, R̃a ≡ |
B|/(ν2k̃3).
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FIG. 6. Plot of the dispersion relation for viscous, nonrotating convection in the two-layer setup. Di-
mensional parameters are chosen to match the experiments of Davies-Wykes and Dalziel [37], namely,
|
B| = 0.0137 m s−2, ν = 1.0 × 10−6 m2 s−1. The two asymptotic scalings corresponding to inviscid buoyant
growth [i.e., as in (18)], and the viscous damping are shown as the indicated dashed lines.

These four conditions allow us to solve for the four unknown coefficients in (40) and lead to
a dispersion relation. In short, we use conditions (i) and (iii) to give A2 = B2 and, therefore, also
A1 = B1. Then, (ii) results in A1 = −(σ∗ + 1)1/2A2 so that the (normalized) solution becomes

ŵ(z) = e−(σ∗+1)1/2 k̃|z| − (σ∗ + 1)1/2e−k̃|z|.

The dispersion relation reduces to

G(σ∗) = R̃a with G(σ∗) ≡ 2σ 2
∗ (σ∗ + 1)1/2

(σ∗ + 1)1/2 − 1
,

a result previously found by Chandrasekhar [29,36] once the Boussinesq limit is taken. For
σ∗ � 1, we can identify the inviscid buoyant growth regime, since G(σ∗) ≈ 2σ 2

∗ , again giving
σ = (|
B|k̃/2)1/2. On the other hand, the effects of viscosity are felt at low σ∗, and to describe
this regime, we expand G(σ∗) about σ∗ = 0 to give G(σ∗) ≈ 4σ∗, so that σ = |
B|/(4νk̃). This
shows that the “roll-off” of σ with k̃ is proportional to k̃−1. It is interesting to note that viscosity
does not lead to completely stabilized perturbations at large k̃, as it does for convective systems with
thermal variations over a finite vertical domain and nonzero diffusivity [e.g., [20]].

As a specific example, we take the conditions used in the experiments of Davies-Wykes and
Dalziel [37], where careful effort was undertaken to produce convection in the two-layer configu-
ration. The results of the stability analysis for this setup are shown in Fig. 6. They show both the
inviscid buoyant growth scaling, as well as the viscous roll-off, and this results in a maximum growth
wavelength of 0.63 cm. Based on the width of their experimental tank, we would therefore expect
to observe approximately 32 developing wavelengths in the initial instability, and this appears to
be consistent with their Fig. 5(a) for the initial onset of the instability. However, as they note, this
wavelength may be influenced by the initial gate removal.

Physical mechanism

As the growth rate curve follows the inviscid buoyant scaling with a viscous roll-off, the physical
mechanism is identical to the inviscid case, but with a wave number of maximum growth set by the
onset of viscous damping. This damping is responsible for lower growth rates than would otherwise
occur in the absence of viscosity.
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FIG. 7. Plot of the dispersion relation for viscous, rotating convection in the two-layer setup. (a) and
(b) correspond to rotation rates of f = 0.3, 10 s−1, respectively. All other dimensional parameters are chosen as
in Fig. 6. The three asymptotic scalings corresponding to inviscid buoyant growth [i.e., as in (18)], the viscous
roll-off, and rotation-dominated convection are shown as the indicated dashed lines.

B. Viscous, rotating convective instability

By including the rotation term in the cubic equation (35), it can be shown that the roots are
no longer purely real; rather, they consist of one real number and two complex conjugate roots.
Solutions in the mixed layers then take the form of

ŵ(z) =
{

A1e−r1 k̃z + A2e−ak̃z cos(bk̃z) + A3e−ak̃z sin(bk̃z), z > 0

B1er1 k̃z + B2eak̃z cos(bk̃z) + B3eak̃z sin(bk̃z), z < 0,
(42)

where r1 denotes the real root, and a and b the real and imaginary parts of the complex conjugate
roots, respectively. Note that we have eliminated half of the terms in each layer that have unbounded
signs in the exponential function. Unfortunately, we were unable to derive closed-form analytical
solutions for the roots, and dispersion relation. These are therefore computed numerically, with
example solutions plotted in Fig. 7 for two different rotation rates, f . As far as we are aware, this
setup appears to have been solved previously only through approximate methods [38].

The growth rates that result from the viscous, rotating convection setup essentially mirror the
individual results from the cases examined so far. Depending on the choice of parameters (i.e.,
R̃a and Ẽk), all three scalings can be observed as k̃ is varied: a region at low k̃ where rotation is
limiting growth, a region of essentially inviscid buoyant growth at intermediate k̃, and the viscous
roll-off at high k̃. All of these regions can be seen in Fig. 7(a). In this case, we note that although
rotation alters growth rates, it will not affect the fastest growing mode that is expected to give rise
to nonlinear convection. At larger rotation rates (more precisely, smaller Ẽk), however, the rotating
growth scaling moves towards the k̃ of the fastest growing mode, and the stabilizing effects of
rotation will be felt during nonlinear convection; k̃ of the fastest growing mode shifts to larger values
and growth rates are diminished. The mechanism by which growth rates are reduced is essentially
inviscid and follows the same scaling as described in Sec. III B. The mechanism described there
also holds for the viscous case, but with viscosity responsible for limiting high k̃ growth, and setting
a fastest growing mode. Note that this is in contrast to a linearly stratified, vertically bounded layer
of rotating fluid, where viscosity has been found to destabilize convection [2].
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V. SUMMARY AND CONCLUSIONS

Stimulated by the close agreement between linear stability results and nonlinear convective heat
transports [1], in this paper, we have taken a different look at quantifying the physical mechanisms
involved in the linear stabilization of convection by rotation. We do this using an idealized two-
layer setup where we add increasing complexity stepwise, i.e., rotation, a semibounded domain,
and viscosity. This setup has the advantage of allowing for the quantification of different effects on
the growth of the instability using wave interaction theory from the stability of stratified shear flows
[25].

Application of this methodology to the inviscid, unbounded, rotating convection problem quan-
tifies two principal effects that contribute to altering the growth rates of convection by rotation:
(i) a source of planetary vorticity in the mixed layers that can contribute to an increase in growth,
that is (ii) more than compensated by decreasing growth due to a misalignment of the interfacial
vorticity with the interface displacement caused by the tilting of planetary vorticity by interfacial
shear. The effect in (i) is related to the development of Taylor columns (TCs) in the layers, and is
altered when one of the layers is bounded in the vertical. In this bounded case, the need to satisfy
the rigid lid boundary condition causes an additional stabilization, and an approximate condition
of � ≡ |
B|/(2 f 2H ) > 2 was developed to determine whether this TC mechanism was acting to
stabilize convection. Finally, by including viscosity in the problem, we find, unsurprisingly, that
the high wave numbers are stabilized, giving rise to a wave number of maximum growth, k̃max.
However, the mechanisms of stabilization by rotation, and rotational effects on k̃max, are essentially
set by the inviscid mechanisms (i), (ii) discussed above, with viscosity only serving to limit high
wave-number growth.

We can therefore summarize the central general result of this study: assessing the physical
mechanisms responsible for the linear stabilization of convection by rotation is not straightforward,
can be of various types, and depends on the parameters of the problem. For more realistic cases
with continuous buoyancy profiles with boundary and mixed layers, the simple setup of a linearly
stratified and vertically bounded layer, as in the often-cited paper of Chadrasekhar [2], cannot be
used as an idealized guide for a full understanding of the stability mechanisms. A more careful ap-
proach is required that accounts for the physical mechanisms identified herein and their dependence
on parameters.
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APPENDIX A: DERIVATION OF THE CONTINUITY OF VERTICAL STRESS JUMP CONDITION

In this Appendix, we demonstrate that the jump conditions obtained by integrating equation (12)
across the singularity at the buoyancy interface are equivalent to requiring a continuous vertical
stress. In general, the vertical stress across a horizontal interface is given by −π + 2ν∂w/∂z and in
normal mode form by −π̂ + 2νŵ′. In both the inviscid and viscous cases, the second term vanishes
since either ν = 0 or [[ŵ′]]0 = 0, respectively. Therefore, the continuity of vertical stress across the
interface reduces to [[π̂ ]]0 = 0. We now use this condition to recover the jump conditions obtained
in the main body of the text by integrating (12) across the interface.
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The divergence of the momentum equations in (1)–(3) gives

L(π̂ ) = b̂′ − f ζ̂ , (A1)

which can be used to solve for the pressure by using the Green’s function, G(z, s), for the linear
operator L, via

π̂ (z) =
∫ ∞

−∞
G(z, s)F̂ (s) ds, (A2)

where G(z, s) = −e−k̃|z−s|/2k̃ for an unbounded domain, which has been assumed here. The right-
hand side of (A1) is represented by F̂ (z) and is composed of the vertical derivative of a singular
term with b̂ = −Bzη̂ and Bz = 
B δ(z). We only consider this singular buoyancy term in F̂ since it
appears in the jump condition. It is possible to solve for the pressure contribution of this term, which
we will denote with the i subscript due to its interfacial jump. It can be written using integration by
parts as

π̂i(z) = 
B
∫ ∞

−∞

∂G

∂s
δ(s)η̂(s) ds, (A3)

and results in

π̂i(z) = 
B η̂(0)

2
sgn(z)e−k̃|z|, (A4)

giving a jump in pressure across the interface of [[π̂i]]0 = 
B η̂(0).
In addition to this hydrostatic pressure jump across the interface, there is also a contribution from

the layers, which will be denoted with the 	 subscript. This can be found by taking the horizontal
divergence of (1),(2) to find π̂	 as a function of ŵ and ζ̂ , i.e.,

π̂	(z) = (−σ + νL)ŵ′ − f ζ̂

k̃2
. (A5)

Setting the total pressure jump across the interface to zero, i.e., [[π̂i]]0 + [[π̂	]]0 = 0, gives a general
jump condition of

σ [[(−σ + νL)ŵ′ − f ζ̂ ]]0 + k̃2
B ŵ(0) = 0, (A6)

where we have used the kinematic condition σ η̂(0) = ŵ(0) from (16). It is possible to use this jump
condition to recover all cases examined in the body of the text.

(i) Inviscid convection. Setting ν = 0 and using (9) to write ζ̂ = f ŵ′/σ recovers the jump
condition in (23) from (A6). This contains the inviscid, nonrotating jump condition as a special
case with f = 0.

(ii) Viscous convection. For this case, we use [[ŵ′]]0 = [[ζ̂ ]]0 = 0 and the fact that [[L(ŵ′)]]0 =
[[ŵ′′′]]0 to recover the jump condition (41) from (A6).

APPENDIX B: HEURISTIC INTERPRETATION

We have largely based our physical interpretations on the interplay of the vorticity, vertical
velocity, and displacement fields, using wave interaction theory. However, in this section, we offer
a heuristic physical interpretation of the interfacial stabilization mechanism that is not intended to
be as formal and quantitative. It describes the stabilization at the stratified interface that comes from
including rotation into the inviscid, unbounded setup.

With reference to the sketch in Fig. 8, we see that at an interface growing from a convective
instability that is free from rotation, there are overturning circulation cells that are formed [Fig. 8(a)].
These transport mixed layer fluid horizontally away from crests and towards troughs, and are
confined to the �e(k) direction. This can also be thought of as the signature of the alignment of
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FIG. 8. Sketch of the heuristic interpretation of the interfacial mechanism of stabilization by rotation.
Labels (a), (b), and (c) refer to various aspects of the sketch that are referenced in the text, and colors indicate
the alterations that are present when rotation is included.

the interfacial vorticity vector with the �e(k)
⊥ direction. However, when rotation is included, these

horizontal motions are subject to the Coriolis force that will cause a deflection to the right [for f > 0,
Fig. 8(b)]. This has the effect of weakening the overturning circulation by creating a component
along the interface crests and troughs in the �e(k)

⊥ direction [Fig. 8(c)]. Again, this reflects the fact that
the interfacial vorticity vector is misaligned with �e(k)

⊥ . This weakening of the overturning circulation
reduces the growth of the interface displacement by weakening the vertical velocities associated
with the circulation (due to the requirement of satisfying continuity).

Note that in this explanation, we have discussed in terms of velocities and forces, and have
neglected to specify the effect of the pressure gradients. This is an advantage of vorticity-based for-
mulations, which eliminate the pressure gradient terms. For this reason, we refer to the explanation
as heuristic.
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