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A series of direct numerical simulations of the Euler equation are conducted using a
high-order spectral (HOS) method to investigate the nonlinear statistics and freak wave
occurrences in crossing sea states. Several crossing sea states with varying frequency spec-
tra, directional spreading, and crossing angles between two wave components are chosen
for the computations. The dynamical statistics of surface waves are reported, including the
wave spectra, the exceedance probability of wave crest amplitude, the probability density
distribution of surface elevation, the kurtosis and skewness, the freak wave occurrence
probability, and the freak wave shape. A Benjamin-Feir index, named as CBFI, is derived
to measure the third-order nonlinearity effects for crossing seas. This parameter allows us
to forecast the probability of freak waves, and it is validated by a series of HOS simulations.
Furthermore, the freak wave shape is more notably influenced by changes to the crossing
angle rather than each component’s frequency or directional spectral bandwidth. Increasing
the crossing angle reduces the vertical and horizontal asymmetries in the mean propagation
direction.
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I. INTRODUCTION

A freak wave (also called a rogue wave or extreme wave) is an anomalous, short-term wave that
is much higher than expected for the sea state. There are many reasons for the formation of freak
waves, such as the refraction due to bathymetry or currents, modulational instability, and directional
and dispersive focusing [1–4]. As one of the most possible mechanisms for the formation of freak
waves, modulational instability is a physical phenomenon in which a plane wave is unstable under
sideband perturbations (see the general overview in Ref. [5]). For the past 20 years, the effects
of modulational instability on the statistical properties of gravity waves and freak wave formation
in unimodal-spectra sea states have been studied theoretically, experimentally, and numerically.
Modulational instability plays a significant role in the occurrence of freak waves in sea states
featuring narrow-banded spectra in both the frequency and directional domains [6]. However, under
an increase in directional spreading, the importance of modulational instability is reduced [7–10].
In addition, the shallow water depth can suppress these effects of modulational instability [11,12].
Because the modulational instability appears to be present only in narrow-banded spectra and
sufficiently deep water, increasing concerns have been raised about whether modulational instability
still remains in realistic sea conditions (e.g., Ref. [13]).
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Although most of the previous studies have focused on sea states characterized by single-peaked
spectra, a significant percentage of sea states that are more complex than single-peaked spectral ones
[14]. Wave systems characterized by two spectral peaks with different propagation directions (also
known as crossing sea states) are considered to be a situation in which the effects of modulational
instability may be enhanced. The nonlinear interaction between two wave systems appears to
be a cause of freak wave occurrences. There is much evidence that unusual and extreme wave
phenomena occur in crossing seas. The famous Draupner wave was found to be generated when
swell waves propagate to the wind sea, according to the hindcast data from the European Centre for
Medium-Range Weather Forecasts by Adcock et al. [15]. Fedele et al. [13] successfully recreated the
Draupner wave and another two typical freak waves (the Andrea and Killard waves) in numerical
simulations. They found that the formation of those waves mainly results from the second-order
bound nonlinearities instead of the modulational instability. Mcallister et al. [16] successfully
recreated the Draupner wave in a circular wave basin and found that a crossing angle between
60◦ and 120◦ is needed to reproduce the waveform. Ferreira et al. [17] studied freak waves in the
Campos basin, off the coast of Brazil. They only observed freak waves in sea states assumed to
be those of crossing seas. Rosenthal [18] also found evidence that freak waves occur in crossing
sea states. In addition, numerous ship accidents have been reported in crossing sea conditions [19],
particularly when two wave systems have similar wave periods and noncollinear wave directions
[20]. Typical ship accidents that have occurred in crossing seas include the Suwa Maru accident
[21], the Louis Majesty accident [22], and the Prestige accident [23]. Fedele et al. [24] studied the
El Faro accident based on the third-order generation model and high-order spectral (HOS) method.
Their results showed the probability that the El Faro encounters a rogue wave while the drifting
is relatively large, around 1/400 over a time interval of 10 minutes. A complete understanding of
the modulational instability in crossing sea states can help us to better understand the freak wave
phenomenon and to avoid ship accidents.

Modulational instability has been investigated within the framework of nonlinear Schrödinger
(NLS) equations for crossing seas consisting of two identical long-crested wave systems. Onorato
et al. [25] studied the modulational instability of two wave systems with the same frequency but
different propagation directions, using the coupled nonlinear Schrödinger (CNLS) equations derived
from the Zakharov equation. Their results suggested that the existence of another wave system can
result in an increase of the instability growth rates and the expansion of the instability region, and
more freak waves can be expected in crossing sea states with crossing angles less than approximately
70◦. An extension of the obtained results in Onorato et al. [25] to the more general cases of
two-dimensional perturbations was performed by Shukla et al. [26]. Onorato et al. [27] presented a
further detailed derivation of the CNLS equations and a discussion of the coefficients in front of the
dispersive and nonlinear terms with the support of numerical simulations. The results showed that
crossing angles between 20◦ and 60◦ are the most likely to increase modulational instability and
establish a freak wave sea. These theoretical results based on the CNLS equations were validated
in Toffoli et al. [28], where both laboratory experiments and numerical simulations were performed
to study the effect of the crossing angle on the kurtosis, which can quantitatively describe the
third-order nonlinearity. The effects of the frequency spectrum and directional spreading were not
considered.

To include the effect of directional spreading in crossing seas, Bitner-Gregersen and Toffoli
[29] conducted numerical simulations of crossing directional seas based on hindcast data. Their
results showed that the maximum kurtosis occurred at a crossing angle of about 40◦. A more recent
experimental study on crossing directional seas was reported in Luxmoore et al. [30]; there, the
results showed that the third-order nonlinearity is more affected by the directional spreading of each
wave components, rather than the crossing angles between the two wave components.

Regarding crossing seas with separated peak frequencies, Gramstad and Trulsen [31] derived a
coupled version of the broadband modified NLS equations introduced by Trulsen and Dysthe [32],
and they studied the modulational instability of two interacting uniform wave trains. However, the
results derived from the NLS equations may suffer from nonphysical extensions of the instability
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regions beyond the bandwidth constraints of the equations. More recently, Gramstad et al. [33]
derived the nonlinear evolution equation for two crossing waves in the framework of Zakharov
equation, which is valid for arbitrary-bandwidth perturbations. Based on this equation, they con-
sidered both the case that two wave systems have the same peak frequency and the case that two
wave systems are very well separated in frequency. The values of maximum kurtosis were used to
assess the modulational instability in crossing waves. The effects of crossing angle, differences
in terms of dominant wave frequency and energy between the two wave systems, and spectral
shape on the modulational instability were investigated via numerical simulations. Their results
showed that maximum kurtosis is expected for relatively large or small crossing angles, with a
minimum of around 90◦; furthermore, the expected maximum crest height is almost independent
of the crossing angle. Brennan et al. [34] investigated the emergence of freak wave in crossing
seas based on the HOS method. Two classes of crossing sea states were considered: one using
the spectra of the Draupner wave crossing at different angles (“Draupner-Draupner”) and the other
using a Draupner’s spectrum crossed with a narrow-banded JONSWAP spectrum of a smaller peak
frequency (“Draupner-JONSWAP”). The effects of crossing angle on the evolution of kurtosis and
skewness were investigated. However, they only studied the crossing systems consisting of two
short-crested waves with crossing angle �θ = 22.5◦, 40◦, and 90◦.

The Benjamin-Feir index (BFI) is usually adopted to predict the importance of modulational
instability throughout the wave spectrum in a field. Janssen [6] introduced (for the first time) the
BFI in terms of the ratio between wave steepness and spectral bandwidth. Subsequently, further
extensions to include directional spreading (i.e., the two-dimensional Benjamin-Feir index, BFI2D)
have been made (e.g., Refs. [8,10,35]). To date, the BFI or BFI2D has been considered a good
indicator for estimating the third-order nonlinearity effect. However, most of the applications are
focused on unimodal waves. More recently, by using an empirical relationship based on the BFI2D

proposed by Mori et al. [35], it is found that the kurtosis can be estimated well from the directional
spreading [30]. However, that study only considered the crossing seas consisting of directional
waves with relatively small crossing angles (below 40◦). This motivated us to assess the performance
of the BFI from Mori et al. [35] under a wider range of crossing waves and to develop a robust
approach for estimating the modulational instability in a crossing wave field.

With the increase in modulational instability, the occurrence probability of freak waves increases;
meanwhile, the shape of the freak wave varies significantly. Because previous studies primarily
focused on the probability of freak wave occurrence, increasing concerns have been raised over the
past few years regarding the effect of modulational instability on freak wave shapes. Fujimoto et al.
[36] investigated the impact of the four-wave quasiresonance on freak wave shapes, using the HOS
model based on the observed and simulated directional spectra. Modulational instability is a special
case of four-wave quasiresonance. It was revealed that the kinematics of the freak wave groups seem
to be better indicators for the significance of the four-wave interaction, compared to the occurrence
probability. Xie et al. [37] performed numerical simulations of four-wave resonance between two
gravity waves and found that strong resonant interactions can lead to the bending and subsequent
splitting of crests and troughs. However, the features of the freak wave shape under crossing-wave
conditions are rarely mentioned. Furthermore, the effects of the crossing angle and spectral shape
on the freak wave shape remain unclear.

In the present study, we systematically investigated the effects of the frequency spectrum and
directional spreading of individual wave components, as well as the crossing angle on the wave
statistical properties and freak waves. We fully characterized the wave statistics, including the
wave spectra evolution, the probability density distribution of surface elevation, the exceedance
probability distributions of wave crests, kurtosis, and skewness. Unlike previous studies, which
mainly focused on the occurrence probability of freak waves, the freak wave shape is extensively
studied here. In addition, we derived a modified BFI for crossing seas; this is a valid spectral
parameter for quantification of the effect of modulational instability on wave statistical properties
and freak wave occurrence probability.
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The remainder of this paper is organized as follows. Section II presents the set-up for the
HOS simulations and initial conditions of the simulated crossing seas. In Sec. III, the validation
of the numerical simulations is demonstrated by comparison with the experiments. The results
and discussions for the statistical properties of waves including the evolution of wave spectrum,
skewness, kurtosis, the probability density function of the surface elevations, and the exceedance
probability of wave crests are presented and discussed in Sec. III. Section IV shows the probability
of freak wave occurrence and the derivation of a coupled BFI (CBFI) for crossing seas. Section V
investigates the freak wave shapes. Finally, our conclusions are provided in Sec. VI.

II. SET-UP FOR NUMERICAL SIMULATIONS

Numerical simulations of nonlinear crossing wave fields were performed using the HOS method
[38,39], which directly solves the field equations with the kinematic and dynamic boundary condi-
tions on the free surface, expressed in the Zakharov’s form [40]:

ηt = −∇η · ∇φs + (1 + |∇η|2) · φz at z = η(x, t ), (1)

φs
t + gη = − 1

2 · |∇φs|2 + 1
2 (1 + |∇η|2)φ2

z at z = η(x, t ), (2)

where φs(x, t ) = φ(x, η(x, t ), t ) is defined as the surface velocity potential, η is the free-surface
elevation, x = (x, y), and ∇ = (∂/∂x, ∂/∂y). The HOS method has been widely used to simulate
the evolution of surface gravity waves (e.g., Refs. [9,10,28,29,33,41,42]).

The computational domain is a square of 32λp × 32λp with periodic boundary conditions, where
λp is the peak wavelength. A small domain size in numerical simulations may lead to underestima-
tion of the statistics, e.g., kurtosis [33]. Kokina and Dias [43] have carefully tested the influence of
the size of the computational domain on the HOS simulation of Draupner wave. They suggested that
statistical properties should be computed over an area of at least 4 km2. Considering that the mean
wavelength of Draupner wave is around 200 m, the suggested computational domain size is around
10λp × 10λp. Therefore, the domain size of 32λp × 32λp adopted in the present study is sufficient
to generate convergent results. 1024 × 1024 nodes are selected to capture the free-surface elevation
and velocity potential (i.e., about 32 points per dominant wavelength). The nonlinear order M = 3
is adopted to consider the three-wave and four-wave nonlinear interactions [44]. A fourth-order
Runge-Kutta time integration with �t = Tp/50 is used (Tp is the period corresponding to the
dominant wavelength λp), which meets the condition for the nonlinear problem �t2 � 8/km (km

corresponds to the maximum wave number, see Dommermuth and Yue [38]). The total computation
duration of the HOS simulations is set as t = 100Tp. The obtained surface elevation and velocity
potential are measured at five-wave intervals (i.e., at t = 5, 10, . . . , 95, 100Tp). The higher-order
nonlinearity usually leads to a deviation from normality within a few peak periods [6]. The evolution
duration considered in this study is sufficient to capture the formation of extreme waves. The
obtained free-surface elevations are then used to calculate the statistical properties of the wave
field. To achieve results of statistical significance, 30 repetitions with different random phases are
performed for a given spectrum. By increasing the number of random realizations, we expected
to minimize the effects related to the size of the computational domains [45]. We verified that
the above-mentioned number of realizations can reliably estimate the statistical properties (see
Appendix for details).

An energy dissipation model suggested by Xiao et al. [10] is adopted to treat the energy
dissipation induced by wave breaking. The parameters of the filter are set to β1 = 8 and β2 = 30,
which means the components with wave number k > 8kp are filtered out. Kokina and Dias [43]
discussed the influence of these parameters by comparing the performance of a strong filter with
β1 = 8 and β2 = 30 and a weak filter with β1 = 30 and β2 = 10. They found that the patterns of
the evolution of the kurtosis and skewness in these filters are almost the same. But, with the use
of the weak filter, the kurtosis and skewness increase more quickly and their average values are
higher due to the reduced energy loss. The strong filter has been verified to correlate well with the
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laboratory measurements of unimodal irregular waves (see Xiao et al. [10]). Here, to compare with
the experiments of bimodal waves, we also used the strong filter.

The initial velocity potential used for the HOS model was obtained from the initial surface
elevation based on the linear wave theory. To ensure a stable simulation, the nonlinear terms in
the free-surface boundary conditions are ramped up smoothly over a short time ∼3Tp [46]. The
influence of the ramping period is examined and discussed in Appendix.

Herein, the initial wave field is composed of two identical irregular waves propagating in different
directions. Each of the irregular wave systems is described by the Joint North Sea Wave Project
(JONSWAP) spectrum with a cosine-squared directional distribution. Random phases are assigned
to the initial spectrum. The JONSWAP spectrum is defined as

F (ω) = αg2

ω5
exp

[
−5

4

(
ω

ωp

)−4]
γ

exp
−(ω−ωp )2

(2σ2ω2
p ) , (3)

where ω is the wave frequency, ωp the peak wave frequency, α the Phillips parameter, and γ the
peak enhancement factor specifying the frequency spectral bandwidth; σ has the standard values:
0.07 for ω < ωp and 0.09 for ω � ωp. The energy spreading in the directional domain is given by a
cosine-squared function [10],

D(θ ) =
{ 2


cos2

(
πθ


)
for |θ | � /2

0 for |θ | > /2
, (4)

where  is the directional spreading width (also called the spreading angle) and θ is the wave
propagation direction. For each wave system, the directional wave spectrum is obtained using
S(ω, θ ) = F (ω) · D(θ ).

We described each wave component with a fixed significant wave height Hs = 0.06 m and
dominant wave period Tp = 1 s. This configuration corresponds to a wave steepness of kpHs/4 =
0.06, where kp is the dominant wave number corresponding to the dominant wavelength. The
following crossing angles between the two wave systems are considered: �θ = 20◦, 40◦, 60◦, and
80◦. The wave propagation directions for each wave system are set as symmetrical to maximize
the uniformity in the numerical wave basin. To consider the directional spreading effect, different
values of the spreading angle  are adopted, ranging from fairly long-crested (small ) to fairly
short-crested (large ) waves. The following values are chosen:  = 5◦, 15◦, and 30◦. To consider
the effect of the spectral bandwidth, different values of the peak enhancement factor γ are used,
ranging from fairly narrow-banded (large γ ) to fairly broad-banded (small γ ) waves. The following
values are selected: γ = 2, 5, and 8. The corresponding directional distribution and frequency
spectra are shown in Fig. 1.

The selected test conditions are listed in Table I. The key parameters are the crossing angle
between the two wave components �θ , the peak enhancement factor γ , and directional spreading
width . In set A, the effect of the crossing angle on the modulational instability, and statistical
properties are tested by varying �θ between 20◦ and 80◦. Here the sea states consist of two nearly
long-crested waves. In set B, the effect of �θ in crossing short-crested sea states is tested. In set C,
the effect of frequency spectral bandwidth is tested by varying γ between 2 and 8. Finally, in set D,
we study the effect of directional spreading by changing .

III. MODEL VALIDATION

Before discussing the results, the wave statistical properties in HOS simulations are compared
with those from the experiments to test the reliability of the present numerical model. Two classes
of experiments are selected: one consists of two nearly long-crested waves by Toffoli et al. [28],
Sabatino and Serio [47], the other is crossing directional seas by Luxmoore et al. [30]. It should be
noted that the wave conditions in Sabatino and Serio [47] are the same as the crossing seas studied
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FIG. 1. The directional distribution and frequency spectra of the initial crossing sea state.

by Toffoli et al. [28]. The significant wave height of a single peak in Toffoli et al. [28] is 0.068 m
and around 0.058 m in Luxmoore et al. [30]. The peak wave period in both of them is fixed at 1 s.

Figure 2 compares the kurtosis and skewness. The left panel corresponds to the results for the
crossing long-crested waves compared with those in Toffoli et al. [28] and Sabatino and Serio [47],
and the right panel corresponds to the results for the crossing short-crested waves compared with
Luxmoore et al. [30]. The comparisons show that, in both long-crested and short-crested cases, the
HOS data are in good agreement with the experiments. These tests demonstrate the reliability and
accuracy of the present HOS model for crossing wave simulations.

Figure 3 compares the variation of the zeroth-order moment of wave spectrum between HOS
simulations and experimental observations. The left and right panels show the nearly long-crested
cases and short-crested cases, respectively. It is found that the present HOS simulations obtained
satisfactory agreement over the reported range of crossing angles.

To examine the numerical results, the exceedance probability distribution of the wave crests is
compared with the experimental results reported by Sabatino and Serio [47]. Two examples recorded
at different times are shown in Fig. 4. Note that the experimental data used here are recorded at two
different positions x/λp = 9.5 and 22.3. The corresponding times should be t/Tp = 19.0 and 44.6

TABLE I. Selected crossing wave tests.

Test No. Hs (m) Tp (s) �θ (◦) γ  (◦)

Set A 01 0.06 1 20 5 5
02 0.06 1 40 5 5
03 0.06 1 60 5 5
04 0.06 1 80 5 5

Set B 05 0.06 1 40 5 30
06 0.06 1 60 5 30
07 0.06 1 80 5 30

Set C 08 0.06 1 40 2 5
02 0.06 1 40 5 5
09 0.06 1 40 8 5

Set D 02 0.06 1 40 5 5
10 0.06 1 40 5 15
05 0.06 1 40 5 30
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FIG. 2. Comparisons of the kurtosis and skewness between HOS results and experiments. Hs = 0.068 m
and Tp = 1 s in Toffoli et al. [28] and Sabatino and Serio [47]. Hs = 0.058 m and Tp = 1 s in Luxmoore et al.
[30].
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FIG. 3. Comparisons of the zeroth-order moment wave spectrum m0 between HOS simulations and exper-
imental observations. m0

0 is the initial value. Hs = 0.068 m and Tp = 1 s in Toffoli et al. [28] and Sabatino and
Serio [47]. Hs = 0.058 m and Tp = 1 s in Luxmoore et al. [30].
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FIG. 4. Exceedance probability of the wave crest compared with previous experimental results [47] at
different times.
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FIG. 5. Evolution of wave spectrum in crossing seas with �θ = 80◦, γ = 5, and  = 5◦.

according to the relationship between the spatial and temporal variations determined by the group
velocity. Considering the slowly varying wave crest distribution, we select t/Tp = 20 and 45. As
shown in the comparison, our numerical results are consistent with the experimental observations.

IV. SPECTRAL EVOLUTION AND NONLINEAR WAVE STATISTICS

A. Wave spectrum evolution

Herein we discuss the temporal evolution of the wave number spectra. Two examples for
directional spectra at different nondimensional times t/Tp = 0, 50, and 100 are presented in Figs. 5
and 6. The spectra are obtained based on ensemble averaging over all realizations using a standard
fast Fourier transform algorithm. When the waves propagate, the tail level of the wave number
decreases. This can be attributed to the use of an energy dissipation low-pass filter. The directional
spreading is slightly broadened, especially in the long-crested case, as can be observed in Fig. 5.

Figure 7 presents the temporal variation of zeroth-order moment m0 of the wave spectrum
rescaled by its initial value m0

0. The significant wave height depends on the zeroth-order moment
by Hs = 4

√
m0. The left and right panels show the nearly long-crested  = 5◦ cases (set A) and

short-crested  = 30◦ cases (set B), respectively. As shown, in set A or set B, m0 decreases as the
waves propagate, and it eventually reaches a quasisteady state. A similar trend was observed in the
HOS simulation of unimodal seas [10]. Under an increasing crossing angle, the decreasing of m0

becomes more significant. Comparing the left and right panels, the decrease of m0 becomes more
significant for smaller .

B. Temporal evolution of kurtosis and skewness

Here we investigate the higher-order statistics, including the kurtosis λ4 and skewness λ3. The
former suggests an indication of the occurrence of extreme events, and the latter describes the
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FIG. 6. Evolution of wave spectrum in crossing seas with �θ = 40◦, γ = 5, and  = 30◦.
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FIG. 7. Temporal variation of zeroth-order moment m0 rescaled by the initial value m0
0. The left and right

panels show the results for the nearly long-crested  = 5◦ cases (set A) and short-crested  = 30◦ cases (set
B), respectively. The peak enhancement factor of the frequency spectrum is fixed at γ = 5.

vertical asymmetry of the wave profile. It should be noted that, in linear wave fields, the kurtosis
and skewness are equal to 3 and 0, respectively [10,48].

The ensemble kurtosis and skewness, as a function of nondimensional time, are presented in
Figs. 8 to 11. Huge datasets are needed to minimize the statistical uncertainty of these two statistics,
especially the kurtosis. To quantify this, the 95% confidence bands are plotted, and these bands
are calculated using the standard deviation over different random seeds. In all cases, the kurtosis
increases from the Gaussian value of λ4 = 3 over a timescale of around 50Tp; then, it generally
decreases to a quasistationary value. For the skewness, the growing stage is relatively short, ∼10Tp.
The observed tendencies of kurtosis and skewness are in reasonably good agreement with theoretical
predictions by Fedele [49], as well as the experimental and numerical results [7,10,28]. Furthermore,
we analyze the effects of the crossing angle, frequency spectral bandwidth, and directional spreading
bandwidth on kurtosis in each figure, respectively.

Figure 8 illustrates the effect of the crossing angle between different wave systems, for long-
crested ( = 5◦) and moderate-banded (γ = 5) cases in set A. The kurtosis is smaller at crossing

FIG. 8. Temporal evolution of kurtosis and skewness. The results show the effect of the crossing angle
between different wave systems in nearly long-crested ( = 5◦) and moderate-frequency bandwidth (γ = 5)
seas. The shaded regions denote 95% confidence intervals.
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FIG. 9. Temporal evolution of kurtosis and skewness. The results show the effect of the crossing angle
between different wave systems in nearly short-crested ( = 30◦) and moderate-frequency bandwidth (γ = 5)
seas. The shaded regions denote 95% confidence intervals.

angles �θ = 20◦ and 80◦ but are significantly increased for �θ = 40◦ and 60◦. This observed
dependency of the kurtosis on the crossing angle is consistent with the predictions derived from the
coupled NLS equations by Onorato et al. [25] and Onorato et al. [27], where it was suggested that
the maximum value was achieved for 40◦ < �θ < 60◦. According to the right panel of Fig. 8, the
numerical results of skewness also agree with the experiments. Generally, waves with small crossing
angles seem to possess larger skewness. The skewness is significantly smaller at �θ = 80◦, which
indicates that the waves are more vertically symmetric in this case.

Figure 9 illustrates the effect of the crossing angle in nearly short-crested wave fields ( = 30◦).
Unlike the results of the long-crested cases (see Fig. 8), the increase in kurtosis for 40◦ < �θ < 60◦
seems to disappear for short-crested crossing systems. This is remarkably consistent with the results
of previous studies [30,33]. In terms of skewness, when the crossing angle increases, the skewness
value decreases.

Figure 10 shows the effect of the frequency bandwidths of the individual components on the
ensemble kurtosis and skewness under a constant directional spreading  = 5◦ and crossing angle
�θ = 40◦. For a narrow-banded frequency spectrum of individual components, the effects of

FIG. 10. Temporal evolution of kurtosis and skewness. The results show the effect of the frequency
spectrum bandwidth but with a constant directional spreading bandwidth  = 5◦ and crossing angle �θ = 40◦.
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FIG. 11. Temporal evolution of kurtosis and skewness. The results show the effect of the directional
spectrum bandwidth but under a constant frequency spectral bandwidth γ = 5 and crossing angle �θ = 40◦.

higher-order nonlinearity are more significant. Thus, it is not surprising to observe that both the
kurtosis and skewness increase under a narrower frequency spectral bandwidth.

Figure 11 shows the effect of directional spreading of the individual components under a constant
frequency bandwidth with γ = 5 and a crossing angle �θ = 40◦. We see that the kurtosis value
decreases when the directional spreading angle  increases. This is because the effect of free-wave
dynamics is usually less pronounced in a broad directional-spreading wave field [7,8]. Nevertheless,
the value of skewness (which is less influenced by free-wave effects) is nearly independent of ,
showing a slightly decreasing trend under an increase of .

In addition, the evolution of kurtosis values in bimodal and unimodal seas are compared in
Fig. 12. The initial conditions of the bimodal case are �θ = 40◦ and  = 5◦. To examine the
unimodal results of HOS, the experimental data of unimodal wave from Onorato et al. [7] are also
plotted for reference. The initial condition of Onorato et al. [7] (Hs = 0.06 m, Tp = 1 s, γ = 3) is
almost the same as that used in the present HOS (Hs = 0.06 m, Tp = 1 s, γ = 5). It is found that
the kurtosis values in the bimodal and unimodal seas are very close, even though the wave steepness
of the bimodal case is much larger than that of the unimodal case. This may be because the energy
loss due to wave breaking in the bimodal case is more significant.

FIG. 12. The evolution of kurtosis in bimodal and unimodal seas. The experimental results of unimodal
wave from Onorato et al. [7] are also presented for reference.
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FIG. 13. Probability density function of the surface elevation at different times t/Tp = 20, 40, 60, and
80. The results show the effect of the crossing angle between different wave systems but under a constant
directional spreading angle  = 5◦ and frequency bandwidth γ = 5. The solid and dashed lines denote the
Rayleigh and Tayfun distributions, respectively.

C. The probability density function of the surface elevation

In Figs. 13 to 16, we show the probability density function of the surface elevation at different
times t/Tp = 20, 40, 60, and 80. For convenience, we scale the surface elevation using the standard
deviation σ of the wave field at the concurrent time point. The numerical probability density
functions are compared with the normal (Gaussian) and second-order distributions. The latter
distribution was first derived by Tayfun [50]; an approximation of the expression can be found
in Socquet-juglard et al. [51] and is expressed as

p(η) = 1 − 7σ 2k2
p/8√

2π (1 + 3G + 2G2)
exp

(
− G2

2σ 2k2
p

)
, (5)

with

G =
√

1 + 2k2
pση − 1, (6)

where σ is the standard deviation of the surface elevations.
The second-order effect produces higher crests and shallower troughs. As a result, the tails of the

probability density function deviate from the normal distribution. Here both the second- and third-
order nonlinearity effects are included in the present numerical simulation. As can be observed in
Figs. 13 to 16, for all the tested cases, the upper tail is on or just above the Tayfun distribution (shown
in the inset of the figures), and the lower tail is between the Rayleigh and Tayfun distributions.
These results indicate that the crests are higher and the troughs are deeper than the second-order
solutions. The discrepancy with the second-order model can be attributed to the effect of third-order
nonlinearity.
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FIG. 14. Probability density function of the surface elevation at different times t/Tp = 20, 40, 60, and 80.
The results show the effect of the crossing angle between different wave systems but with constant directional
spreading  = 30◦ and frequency bandwidth γ = 5. The solid and dashed lines denote the Rayleigh and
Tayfun distributions, respectively.

The third-order effects can be measured quantitatively by the kurtosis value. Therefore, coincid-
ing with the evolution of kurtosis, the lower and upper tail of the probability density function show
a significantly increasing tendency during the initial stage t/Tp = 20 and 40.

Furthermore, Fig. 13 shows that the crossing angle between the two wave components plays an
important role in the probability density function of the surface elevation. The probability of higher
and deeper wave elevations is more pronounced for the crossing seas with �θ = 40◦ and 60◦, and
they are less enhanced for �θ = 20◦ and 80◦. The upper and lower tails of probability density dis-
tribution for �θ = 40◦ and 60◦ are closely grouped. These features correlate reasonably well with
the kurtosis value. The cases with higher kurtosis show higher levels in the upper and lower tails.

In addition, Fig. 14 shows the effect of the crossing angle in nearly short-crested crossing
seas. The influence of directional spreading of each wave component is included. As shown, the
probability density distribution is nearly identical for different crossing angles. The upper tail
is well described by the second-order Tayfun distribution, whereas the lower tail is above the
Tayfun distribution. Again, the kurtosis is consistent with the feature of the probability density
distribution—the kurtosis is closely grouped in the range from 3.1 to 3.2 (see Fig. 9) and the
probability density distribution is nearly identical for the tests.

Figures 15 and 16 show the effects of the frequency spectral and directional spreading bandwidth,
respectively. Under a narrower frequency spectrum or directional spreading, the probabilities of both
higher and deeper wave elevations are increased. The kurtosis also correlates well with this feature
(see Figs. 10 and 11).

D. Exceedance probability of wave crests

The traditional linear wave theory predicts Gaussian statistics for the wave surface. However,
real waves are nonlinear, with the wave crests being sharper and the troughs being flatter. The
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FIG. 15. Probability density function of the surface elevation at different times t/Tp = 20, 40, 60, and 80.
The results show the effect of the frequency spectral bandwidth of individual components but with constant
directional spreading  = 5◦ and crossing angle �θ = 40◦. The solid and dashed lines denote the Rayleigh
and Tayfun distributions, respectively.

Rayleigh distribution underestimates the probability of large crests. To overcome this problem,
several semiempirical formulas have been proposed to describe the nonlinear wave crest distri-
bution. Tayfun [50] has derived a second-order model for wave crest distribution. The exceedance
probability is expressed as

p(ηc > η) = exp

[
− 8

H2
s k2

p

(
√

1 + 2kpη − 1)2

]
, (7)

where ηc is the wave crest amplitude, which is defined as the local maximum of the wave surface.
In Figs. 17 and 18, the wave crest distributions at different times t/Tp = 20, 40, 60, and 80

are presented and compared with the Rayleigh and Tayfun distributions. For all the cases, when
the waves propagate in the early stage the exceeding probability increases from the Rayleigh
distribution, especially in the tail of the wave crest distribution. Once the waves are fully developed,
the tail is on or above the second-order Tayfun distribution.

Furthermore, Fig. 17 illustrates the effect of the crossing angle on the wave crest distribution,
but constant directional spreading angle  = 5◦ and frequency spectral bandwidth γ = 5 of each
component. It is found that the large crests are more likely to be formed at �θ = 40◦ and 60◦, where
the kurtosis is larger. For short-crested crossing systems, the crest distribution is almost independent
of the crossing angle, still underestimated by the Tayfun distribution as shown in Fig. 18. The reason
for the underestimation is that the second-order Tayfun distribution is based on the narrow-banded
hypothesis and does not include the third-order nonlinear effects. In addition, it cannot distinguish
between uni- and bimodal seas. The effects of the frequency spectral and directional spreading
bandwidth on the wave crest distribution are also investigated. In a narrower frequency spectral or
directional spreading wave field, the probability of large crests is higher. Similarly to the probability
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FIG. 16. Probability density function of the surface elevation at different times t/Tp = 20, 40, 60, and 80.
The results show the effect of the directional spreading angle of individual components but constant frequency
spectral bandwidth γ = 5 and crossing angle �θ = 40◦. The solid and dashed lines denote the Rayleigh and
Tayfun distributions, respectively.

density distribution of surface elevations, the features of the exceedance probability of wave crests
generally correlate reasonably well with the kurtosis value.

V. THE OCCURRENCE PROBABILITY OF THE FREAK WAVE

A. Evolution of freak wave occurrence probability

To identify a large freak wave and investigate the evolution of its occurrence probability, we
require that the crest height exceeds a certain threshold related to the sea state: ηc > 1.25Hs.

The freak wave probability Pf is calculated by the exceedance probability for ηc > 1.25Hs.
Figure 19 illustrates the evolution of Pf under varying �θ . The left and right panels are for the nearly
long-crested ( = 5◦) and short-crested ( = 30◦) cases, respectively. To estimate the convergence
of Pf , the error bar is computed by Pf /

√
Nf , where Nf is the number of freak waves. We can

observe that Pf increases over a relatively small timescale, owing to the initial strong modulational
instability of the wave field. The obtained maximum values are much larger than the second-order
prediction obtained by the Tayfun distribution PT = 1.28 × 10−4. The effect of the crossing angle
is significant in the long-crested crossing wave field. For the cases considered here, freak waves
are most likely to be formed when �θ = 40◦ or �θ = 60◦. However, for the broad-spreading
cases, the Pf with different �θ is closely grouped, and the effect of crossing angle is almost
negligible.

Figure 20 shows the effect of frequency spectral and directional spreading bandwidth by
varying the γ and , respectively. As shown, the Pf generally increases under increasing γ or
decreasing .

074805-15



S. LIU, T. WASEDA, J. YAO, AND X. ZHANG

0 0.5 1 1.5
10-4

10-2

100

0 0.5 1 1.5
10-4

10-2

100

0 0.5 1 1.5
10-4

10-2

100

0 0.5 1 1.5
10-4

10-2

100

FIG. 17. Exceedance probability of the wave crests at different times t/Tp = 20, 40, 60, and 80. The results
show the effect of changing the crossing angle between different wave systems but under a constant directional
spreading  = 5◦ and frequency bandwidth γ = 5. The solid and dashed lines denote the Rayleigh and Tayfun
distributions, respectively.

B. Dependence of freak wave probability on kurtosis

The probability of freak wave occurrence is considered to depend on the kurtosis of the wave
field. A theoretical function called the modified Edgeworth-Rayleigh (MER) distribution [48] is
typically used to describe this relation. However, when the directional spreading effect is included,
numerical simulations of a large number of wave fields (about 200) by Xiao et al. [10] showed
that the MER distribution appears to underestimate the occurrence probability. They proposed a
new semiempirical formula for the freak wave occurrence probability from the numerical results.
However, their simulations only include unimodal sea states. To the best of our knowledge, few
studies have validated the correlation between the probability of freak wave occurrence and kurtosis
in crossing wave fields, where freak waves are more likely to be formed.

To assess the dependence of the freak wave probability on kurtosis in crossing wave fields, the
nondimensional probability of freak wave occurrence Pf /PT at every output time for each tested
case are plotted as a function of the corresponding kurtosis in Fig. 21. We see that Pf /PT shows a
good correlation with the kurtosis. A linear fit holds:

Pf /PT = 10.275 × (Kur − 3), (8)

where the coefficient of determination is R2 = 0.925.
We also computed the maximum probability of freak wave occurrence Pmax

f and maximum
kurtosis value Kurmax in each test case. As listed in Table II, the maximum probability Pmax

f is
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FIG. 18. Exceedance probability of the wave crests at different times t/Tp = 20, 40, 60, and 80. The results
show the effect of changing the crossing angle between different wave systems but constant directional
spreading  = 30◦ and frequency bandwidth γ = 5. The solid and dashed lines denote the Rayleigh and
Tayfun distributions, respectively.
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FIG. 19. Evolution of the freak wave probability Pf under varying crossing angle �θ . The left and right
panels are for the nearly long-crested ( = 5◦) and short-crested ( = 30◦) waves, respectively. The dashed
lines represent the second-order prediction obtained by the Tayfun distribution PT = 1.28 × 10−4.
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FIG. 20. Effect of the frequency spectrum (left) and directional spreading (right) bandwidth on the evolu-
tion of the freak wave occurrence Pf .

larger for larger Kurmax. Therefore, the maximum kurtosis Kurmax is a good indicator of the freak
wave occurrence probability.

C. BFI and CBFI for prediction of freak wave occurrence

To assess the importance of modulational instability in the wave field, a BFI was proposed by
Janssen [6] for a narrow-banded wave field:

BFI =
√

2ε

δω

. (9)

Here ε is the wave steepness, and δω is the frequency spectrum bandwidth which can be expressed
as:

δω = 1

π
√

Qp
, Qp = 2

∫∫
f S2( f , θ )d f dθ( ∫∫
S( f , θ )d f dθ

)2 , (10)

where S( f , θ ) is directional frequency spectrum.

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
0

2

4

6

8

FIG. 21. Dependence of the freak wave occurrence probability on kurtosis. The nondimensional probability
of freak wave occurrence Pf /PT is plotted as a function of the corresponding kurtosis. The dashed line indicates
the linear regression result.
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TABLE II. The maximum probabilities of freak wave occur-
rence and the corresponding kurtosis values for all tests.

Test Kurmax Pmax
f

01 3.2790 2.22 × 10−4

02 3.4824 6.98 × 10−4

03 3.4759 6.72 × 10−4

04 3.3489 5.05 × 10−4

05 3.1539 1.17 × 10−4

06 3.1691 1.95 × 10−4

07 3.1359 1.99 × 10−4

08 3.3204 4.08 × 10−4

09 3.6012 9.05 × 10−4

10 3.2900 3.37 × 10−4

For waves with significant directional spreading, Mori et al. [35] derived a two-dimensional BFI
denoted as BFI2D; it is written as

BFI2D = BFI√
1 + α2R0

, R0 = δ2
θ

2δ2
ω

, (11)

where δω is the directional spreading bandwidth, and α2 is constant α2 = 7.10 for homogeneous and
weakly nonlinear waves. The directional bandwidth δθ is calculated via

δθ = 180
√

2

π
(1 −

√
a2 + b2)1/2, (12)

with

a =
∫∫

sin θS( f , θ )d f dθ∫∫
S( f , θ )d f dθ

, b =
∫∫

cos θS( f , θ )d f dθ∫∫
S( f , θ )d f dθ

. (13)

Other attempts to include directional spreading effect have been made in Waseda et al. [8] and Xiao
et al. [10].

In Table III, the indexes BFI and BFI2D are computed according to Eqs. (9) and (11), respectively.
The spectral quantities δω, δθ , BFI, and BFI2D are obtained for the crossing wave system and single
component, respectively. To distinguish between them, the parameters for the single component are

TABLE III. Values of the spectral parameters of the selected crossing wave tests. The parameters for the
single component are marked with an overline.

Test �θ (◦) γ (◦) δw δθ BFI BFI2D δw δθ BFI BFI2D

01 20 5 5 0.14 0.016 0.61 0.59 0.14 0.18 0.86 0.34
02 40 5 5 0.14 0.016 0.61 0.59 0.14 0.35 0.86 0.18
03 60 5 5 0.14 0.016 0.61 0.59 0.14 0.52 0.86 0.12
04 80 5 5 0.14 0.016 0.61 0.59 0.14 0.70 0.86 0.09
05 40 5 30 0.14 0.095 0.61 0.38 0.14 0.36 0.86 0.18
06 60 5 30 0.14 0.095 0.61 0.38 0.14 0.53 0.86 0.12
07 80 5 30 0.14 0.095 0.61 0.38 0.14 0.70 0.86 0.09
08 40 2 5 0.23 0.016 0.38 0.38 0.23 0.35 0.54 0.17
09 40 8 5 0.11 0.016 0.79 0.76 0.11 0.35 1.12 0.19
10 40 5 15 0.14 0.047 0.61 0.51 0.14 0.35 0.86 0.18
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FIG. 22. The maximum observed kurtosis in the total duration versus the directional spreading at the same
time/distance.

marked with an overline, i.e., δω, δθ , BFI, and BFI2D. As shown, as the crossing waves consist of two
wave groups with the same peak wave frequency, the δω of total crossing waves is equivalent to that
of each component. However, the propagation directions of the two components are different and,
correspondingly, δθ are much different from δθ . Comparing the tests 02, 05, and 10, the δθ changes
slightly with the variation of the spreading angle . In contrast, as the crossing angle �θ is varied
(i.e., tests 01, 02, 03, and 04), the δθ changes significantly.

A robust correlation between BFI/BFI2D and kurtosis was established for unimodal sea states
[35,48] as follows:

Kur = π√
3

BFI2
2D + 24ε2 + 3. (14)

Combining Eqs. (9) and (11), it is suggested that the kurtosis depends on the values of ε and δω

for unidirectional sea states, and on ε, δω, and δθ for directional sea states. Luxmoore et al. [30]
validated that the kurtosis value in a crossing wave field can be well evaluated from the directional
spreading δθ using Eq. (14).

We summarize our numerical simulation results and the experimental data [28,30] in Fig. 22,
where the maximum observed kurtosis is plotted with respect to the directional spreading. The solid
line denotes the theoretical prediction from Eq. (14). For the crossing seas under relatively broad-
banded directional spreading  = 15◦ and 30◦, the value of kurtosis can be estimated reasonably
well from δθ using BFI2D. However, for the nearly long-crested tests (the experiment in Toffoli et al.
[28] and our HOS simulations with  = 5◦), it is seen that the Eq. (14) underestimates the kurtosis.
This can be attributed to the fact that BFI2D cannot well capture the effect of crossing angle, which
is more substantial in nearly long-crested crossing waves. To overcome this, we derived a new form
of BFI for crossing seas (named as CBFI) based on the CNLS equations.

To describe the evolution of crossing waves with two identical and symmetrical components,
Onorato et al. [25] derived the CNLS equations from the Zakharov equation, based on the assump-
tion that both wave systems are narrow banded. Considering the stability analysis of perturbations
along the x axis, and using a frame of reference moving with the group velocity (referring to
Ref. [25] for more details), the CNLS equations are written as

∂A

∂t
− iα

∂2A

∂x2
+ i(ξ |A|2 + 2ζ |B|2)A = 0, (15)

∂B

∂t
− iα

∂2B

∂x2
+ i(ξ |B|2 + 2ζ |A|2)B = 0, (16)
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where A and B are the complex amplitudes of the two-wave system, respectively. The corresponding
wave numbers are kA = (k, l ), kB = (k,−l ), propagating symmetrically along the x axis at an angle
±θ (θ = �θ/2). The coefficients of the CNLS equations are defined as

α = ω(κ )

8κ4
(2l2 − k2), (17)

ξ = 1

2
ω(κ )κ2, (18)

ζ = ω(κ )

2κ

(
k5 − k3l2 − 3kl4 − 2k4κ + 2k2l2κ + 2l4κ

−2k2 − 2l2 + kκ

)
, (19)

where κ = √
k2 + l2 and ω is the corresponding angular frequency. To further analytically investi-

gate the crossing wave system, it is hypothesized that the evolution of two envelopes A and B are
identical. Thus, Eqs. (15) and (16) are reduced to

∂A

∂t
+ i

1

8

ω(κ )

κ2
β

∂2A

∂x2
+ i

1

2
ω(κ )κ2(1 + γ )A|A|2 = 0. (20)

The coefficients are written as

β = k2 − 2l2

κ2
, (21)

γ = 2k5 − 2k3l2 − 6kl4 − 4k4κ + 4k2l2κ + 4l4κ

(k − 2κ )κ4
. (22)

Equation (20) allows us to derive a BFI for crossing seas. First, we rewrite the equation in a
nondimensional form by introducing the following nondimensional quantities:

A′ = A√
2a

, x′ = �kx, t ′ = ω(κ )�k2β

8κ2
t . (23)

Here �k denotes the spectral bandwidth and a corresponds to the wave amplitude. The nondimen-
sional form of Eq. (20) becomes (the primes are omitted for brevity)

∂A

∂t
+ i

∂2A

∂x2
+ i

(
2
√

2κa

�k/κ

)2
γ + 1

β
A|A|2 = 0. (24)

A new expression of BFI (denoted as CBFI), is introduced here for crossing waves, according to
the ratio of the nonlinear and dispersive terms:

CBFI = 2
√

2κa

�k/κ

√
γ + 1

β
. (25)

For more general two-dimensional cases, we obtain

CBFI2d = BFI2d

√
γ + 1

β
. (26)

The CBFI2d allows us to evaluate the kurtosis (considered an important indicator of freak wave
occurrence), using the linear relationship between kurtosis and the squared BFI.

The comparison of the dependence of kurtosis on CBFI2d and BFI2d in crossing seas is shown
in Fig. 23. For all data (including the present HOS simulations and previous experiments), when
using CBFI2d the scatter in the data is greatly reduced, resulting in a clear and almost linear
parametrization of kurtosis and CBFI2d

2 over a wide range of crossing sea states. Based on a linear
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FIG. 23. Dependence of kurtosis on CBFI2d and BFI2d. The black solid line corresponds to the theoretical
prediction from Eq. (14). The dashed line represents the linear regression results Kur = 0.17 × CBFI2

2d + 3.14
with a coefficient of determination of R2 = 0.67.

regression analysis, the semiempirical formula is established as

Kur = 0.17 × CBFI2
2d + 3.14, (27)

with a coefficient of determination R2 = 0.67. This result shows that CBFI2d is a satisfactory
indicator of third-order nonlinearity. To the best of our knowledge, this is the first study to develop a
modified BFI for two-component crossing seas in accordance with Onorato et al. [27] and validate
its relationship with the kurtosis value.

VI. FREAK WAVE SHAPE

The freak wave shape is also an essential parameter in engineering applications. It is well known
that the effect of nonlinearity produces high crests and shallow troughs. This feature of vertical
asymmetry has been shown in the probability density distribution of surface elevations (see Figs. 13
to 16). Meanwhile, because of the four-wave quasiresonant interaction, the wave amplitude becomes
horizontal (front-rear) asymmetric along the mean wave direction [36,52].

FIG. 24. Examples of average freak wave shape: top (left) and side (right) views. Conditions: �θ = 20◦,
γ = 5, and  = 5◦.
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FIG. 25. Effect of varying crossing angle on average wave shape under a constant frequency width γ = 5
and directional spreading  = 5◦.

The average freak wave shape is defined as [36]

η̄(x, y) = 〈η′
freak (x, y)〉, (28)

where η′
freak (x, y) is the surface elevation after shifting the freak wave crests to x = 0 and y = 0.

A typical example is shown in Fig. 24. In the left panel of Fig. 24, contour maps of the surface
elevation are shown; in the right panel, the side view of the averaged freak wave is taken along the
mean propagation direction. Vertical and horizontal asymmetries are observed: The front trough (to
the right of the crest) is shallower than the rear trough (left of the crest) and its modulus is much
smaller than the crest amplitude.

To compare the freak wave shapes in different cases, we analyzed the wave profile in the
mean wave direction, as shown in Fig. 25; this indicates the effect of the crossing angle with
a constant frequency spectral and directional spreading bandwidth in long-crested seas. For the
smallest crossing angle seas (�θ = 20◦), the rear trough is deeper than the front trough. With the
increasing crossing angle, the difference between the front and rear trough is significantly reduced.
The wave shape in the case of the largest crossing angle (�θ = 80◦) seems symmetric: The depth of
the rear trough nearly matches that of the front trough. For the feature of vertical asymmetry related
to the effect of second-order nonlinearity, the freak wave with the higher crest and deeper trough
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FIG. 26. The horizontal (left) and vertical (right) asymmetry indices as a function of the crossing angle for
constant directional spreading  = 5◦ and frequency width γ = 5.
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FIG. 27. Effect of crossing angle on average wave shape under a constant frequency width γ = 5 and a
constant directional spreading  = 30◦.

is observed in the sea condition of larger crossing angle. From this observation, it is conjectured
that the effect of second-order nonlinearity is suppressed when the crossing angle increases. This is
consistent with the results for skewness (see Fig. 8).

To investigate the freak wave shape more quantitatively, following Dysthe et al. [53], the vertical
asymmetry is measured using the ratio between the crest height η3 and the nearest trough depth
(i.e., the rear trough depth η1). The asymmetry of the wave amplitude in the mean wave direction
is defined as the ratio between the depth of the front trough η2 and that of the rear trough η1.
These two asymmetry indexes are plotted as a function of the crossing angle in Fig. 26. It is more
apparent that the vertical and horizontal asymmetries are reduced with the increasing crossing angle.
For the largest-angle case (�θ = 80◦), the vertical asymmetry index is |η3/η1| = 2.4 and the wave
is nearly symmetrical in the mean horizontal direction with |η2/η1| = 1.0. Here, the value of the
vertical asymmetry index |η3/η1| exceeds that of the unimodal sea, which is typically ∼2.3 [51,54].
This result suggests that the four-wave quasiresonant interaction is enhanced by the nonlinear
interactions between the two wave systems. As discussed in Fujimoto et al. [36], a front-rear
symmetrical freak wave shape is observed in the JKEO-Broad case. They explained this finding
from the perspective of the directional spectrum bandwidth. Our results provide another way of
understanding the symmetrical freak wave shape in the JKEO-Broad case: the large crossing angle
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FIG. 28. Effect of crossing angle on average wave shape under a constant directional spreading  = 30◦

and a constant peak enhancement factor γ = 5.
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FIG. 29. The wave shape in the mean propagation direction for a varying peak enhancement factor γ but a
constant crossing angle �θ = 40◦ and a constant directional spreading  = 5◦.

between the two wave systems. For short-crested crossing systems (as shown in Figs. 27 and 28),
increasing the crossing angle reduces the vertical and horizontal asymmetries.

Figure 29 shows the averaged wave shape for the varying frequency peak enhancement factor
γ . As γ increases, the frequency spectrum becomes narrow, and the nonlinear effect intensifies,
resulting in a slight increase in the crest height. However, the trough depth is reduced, which is
consistent with the probability density distribution of the troughs (see Fig. 15). Quantitatively, the
asymmetry indexes are |η3/η1| = 2.93, 2.80, 2.72 and |η2/η1| = 1.36, 1.38, 1.36 for γ = 2, 5, 8,
respectively.

Figure 30 illustrates the effect of directional spreading on the wave shape. Interestingly, no
significant difference was observed in behavior as a function of the directional spreading angle
. The asymmetry indexes are approximately |η3/η1| = 2.73 and |η2/η1| = 1.30, respectively.

A comparison of the wave profiles in Figs. 25, 29, and 30 clearly shows that the crossing angle
between the two components rather than the frequency or directional spectrum bandwidth of each
wave component has a greater effect on the freak wave shape.
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FIG. 30. The wave shape in the mean propagation direction for a varying directional spreading  but a
constant crossing angle �θ = 40◦ and a constant peak enhancement factor γ = 5.
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VII. CONCLUDING REMARKS

We studied the nonlinear wave statistics and freak waves in crossing seas. Direct numerical
simulations of several typical crossing seas were performed using the HOS method. The dynamical
statistics of surface waves are fully characterized, including the wave spectra, exceedance probabil-
ity of wave crests, probability density distribution of surface elevation, the kurtosis and skewness,
freak wave occurrence probability, and the freak wave shape which has received less attention in
previous studies. The accuracy and reliability of the present numerical model in describing the
wave statistics are demonstrated by extensive comparisons with the experiments [28,30,47].

The effects of the crossing angle between the two components, directional spreading, and fre-
quency spectrum of individual systems on nonlinear statistics are investigated. For the crossing seas
consisting of two long-crested waves, our numerical results confirmed that the kurtosis increases
when the angle is close to 40◦ or 60◦. As a result, the lower and upper tails of the probability
density distribution of the surface elevation, and the tail of the exceedance probability of wave crest
amplitude are significantly higher than the second-order results. For the crossing seas consisting of
two short-crested waves, the kurtosis is closely grouped and independent of the angle. The surface
elevation and crest distribution are generally in agreement with the second-order results. In addition,
the kurtosis increases for a narrower directional spreading or frequency spectrum, and the tails of
the surface elevation and crest distribution are enhanced.

To assess the effect of third-order nonlinearity and thereby predict the probability of freak
wave occurrence, we confirmed that the kurtosis can be generally estimated by the overall mean
directional spreading for crossing directional seas, which is first applied by Luxmoore et al. [30].
However, when both of the two components are long-crested, the kurtosis tends to be underesti-
mated. To overcome this, a Coupled BFI (CBFI) is derived for crossing seas to capture the effect of
third-order nonlinearity in accordance with Onorato et al. [27]. Our numerical results show that the
kurtosis can be estimated reasonably well from CBFI over a broad range of frequency bandwidths
and directional spreading values.

The freak wave shape is more affected by the crossing angle between the two wave components
than the frequency or directional spectrum bandwidth of each component. Under an increase in the
crossing angle, both the vertical and horizontal asymmetries are reduced.
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APPENDIX: CONVERGENCE TEST

A large number of datasets are required to minimize the level of statistical uncertainty in the
surface-wave statistical properties. Convergence tests of the present numerical simulations have
been performed for the kurtosis, skewness, and wave shape factor. Figure 31 shows the 95%
confidence intervals and the ensemble value of the achieved maximum kurtosis as a function of
the number of realizations for the three typical sea states. The result for skewness is presented in
Fig. 32. We verified that 30 realizations can produce stable estimates of the statistical moments. The
95% confidence intervals are smaller than ±0.08 for the kurtosis and ±0.02 for the skewness.

To test the influence of the ramping period ta, the evolutions of the crossing seas with different ta
are simulated and compared. The results of kurtosis are shown in Fig. 33. It is found that, the value
of ta only affects the evolution of the kurtosis during the initial stage. The maximum values in which
we are most interested are very close. This is because the second-order and third-order harmonics are
well captured in all the cases. In addition, referring to Dommermuth [46], the amplitude oscillations
of second-order and third-order harmonics are nonsignificant, even when ta = 2Tp.
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FIG. 31. Convergence tests of the maximum kurtosis as a function of the number of realizations. The left
and right panels show the 95% confidence intervals and the ensemble value, respectively.
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FIG. 33. The effect of the ramping period ta on the evolution of the kurtosis.

074805-27



S. LIU, T. WASEDA, J. YAO, AND X. ZHANG

[1] J. R. Halliday and D. G. Dorrell, Review of wave energy resource and wave generator developments in
the UK and the rest of the world, in Proceedings of the 4th IASTED International Conference on Power
and Energy Systems (IASTEN, Calgary, 2004), Vol. 442, p. 136.

[2] B. S. White and B. Fornberg, On the chance of freak waves at sea, J. Fluid Mech. 355, 113 (1998).
[3] J. L. Bona and J. C. Saut, Dispersive blowup of solutions of generalized Korteweg-de Vries equations,

J. Differ. Equ. 103, 3 (1993).
[4] E. Pelinovsky, T. Talipova, A. Kurkin, and C. Kharif, Nonlinear mechanism of tsunami wave generation

by atmospheric disturbances, Nat. Hazards Earth Syst. Sci. 1, 243 (2001).
[5] V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Physica D 238, 540 (2009).
[6] P. A. E. M. Janssen, Nonlinear four wave interactions and freak waves, J. Phys. Oceanogr. 33, 863 (2003).
[7] M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi,

M. Serio, and C. T. Stansberg, Statistical properties of mechanically generated surface gravity waves: A
laboratory experiment in a three-dimensional wave basin, J. Fluid Mech. 627, 235 (2009).

[8] T. Waseda, T. Kinoshita, and H. Tamura, Evolution of a random directional wave and freak wave
occurrence, J. Phys. Oceanogr. 39, 621 (2009).

[9] A. Toffoli, O. Gramstad, K. Trulsen, J. Monbaliu, E. Bitner-gregersen, and M. Onorato, Evolution of
weakly nonlinear random directional waves: Laboratory experiments and numerical simulations, J. Fluid
Mech. 664, 313 (2010).

[10] W. Xiao, Y. Liu, G. Wu, and D. K. P. Yue, Rogue wave occurrence and dynamics by direct simulations of
nonlinear wave-field evolution, J. Fluid Mech. 720, 357 (2013).

[11] P. A. E. M. Janssen and M. Onorato, The intermediate water depth limit of the Zakharov equation and
consequences for wave prediction, J. Phys. Oceanogr. 37, 2389 (2007).

[12] A. Toffoli, L. Fernandez, J. Monbaliu, M. Benoit, E. Gagnaire-Renou, J. M. Lefèvre, L. Cavaleri,
D. Proment, C. Pakozdi, C. T. Stansberg, T. Waseda, and M. Onorato, Experimental evidence of the
modulation of a plane wave to oblique perturbations and generation of rogue waves in finite water depth,
Phys. Fluids 25, 091701 (2013).

[13] F. Fedele, J. Brennan, S. Ponce de León, J. Dudley, and F. Dias, Real world ocean rogue waves explained
without the modulational instability, Sci. Rep. 6, 27715 (2016).

[14] C. G. Soares and T. Moan, Model uncertainty in the long-term distribution of wave-induced bending
moments for fatigue design of ship structures, Mar. Struct. 4, 295 (1991).

[15] T. A. A. Adcock, P. H. Taylor, S. Yan, Q. W. Ma, and P. A. E. M. Janssen, Did the Draupner wave occur
in a crossing sea? Proc. Math. Phys. Eng. Sci. 467, 3004 (2011).

[16] M. L. Mcallister, S. Draycott, T. Adcock, P. H. Taylor, and T. S. Van den Bremer, Laboratory recreation
of the Draupner wave and the role of breaking in crossing seas, J. Fluid Mech. 860, 767 (2019).

[17] U. F. de Pinho, P. C. Liu, and C. E. P. Ribeiro, Freak waves at Campos Basin, Brazil, Geofizika 21, 53
(2004).

[18] W. Rosenthal and S. Lehner, Rogue Waves: Results of the MaxWave Project, J. Offshore Mech. Arct.
Eng. 130, 021006 (2008).

[19] A. Toffoli, J. M. Lefèvre, E. Bitner-Gregersen, and J. Monbaliu, Towards the identification of warning
criteria: Analysis of a ship accident database, Appl. Ocean Res. 27, 281 (2005).

[20] Z. Zhang and X. Li, Global ship accidents and ocean swell-related sea states, Nat. Hazards Earth Syst.
Sci. 17, 2041 (2017).

[21] H. Tamura, T. Waseda, and Y. Miyazawa, Freakish sea state and swell-windsea coupling: Numerical study
of the Suwa-Maru incident, Geophys. Res. Lett. 36, 329 (2009).

[22] L. A. Cavaleri, L. A. Bertotti, L. B. Torrisi, E. C. Bitner-Gregersen, and M. D. Onorato, Rogue waves in
crossing seas: The Louis Majesty accident, J. Geophys. Res. Oceans 117, C00J10 (2012).

[23] K. Trulsen, J. C. N. Borge, O. Gramstad, L. Aouf, and J. M. Lefèvre, Crossing sea state and rogue wave
probability during the Prestige accident, J. Geophys. Res. Oceans 120, 7113 (2015).

[24] F. Fedele, C. Lugni, and A. Chawla, The sinking of the El Faro: predicting real world rogue waves during
Hurricane Joaquin, Sci. Rep. 7, 11188 (2017).

[25] M. Onorato, A. R. Osborne, and M. Serio, Modulational Instability in Crossing Sea States: A Possible
Mechanism for the Formation of Freak Waves, Phys. Rev. Lett. 96, 014503 (2006).

074805-28

https://doi.org/10.1017/S0022112097007751
https://doi.org/10.1006/jdeq.1993.1040
https://doi.org/10.5194/nhess-1-243-2001
https://doi.org/10.1016/j.physd.2008.12.002
https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
https://doi.org/10.1017/S002211200900603X
https://doi.org/10.1175/2008JPO4031.1
https://doi.org/10.1017/S002211201000385X
https://doi.org/10.1017/jfm.2013.37
https://doi.org/10.1175/JPO3128.1
https://doi.org/10.1063/1.4821810
https://doi.org/10.1038/srep27715
https://doi.org/10.1016/0951-8339(91)90008-Y
https://doi.org/10.1098/rspa.2011.0049
https://doi.org/10.1017/jfm.2018.886
https://doi.org/10.1115/1.2918126
https://doi.org/10.1016/j.apor.2006.03.003
https://doi.org/10.5194/nhess-17-2041-2017
https://doi.org/10.1029/2008GL036280
https://doi.org/10.1029/2012JC007923
https://doi.org/10.1002/2015JC011161
https://doi.org/10.1038/s41598-017-11505-5
https://doi.org/10.1103/PhysRevLett.96.014503


STATISTICAL PROPERTIES OF SURFACE GRAVITY …

[26] P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, Instability and Evolution of
Nonlinearly Interacting Water Waves, Phys. Rev. Lett. 97, 094501 (2006).

[27] M. Onorato, D. Proment, and A. Toffoli, Freak waves in crossing seas, Eur. Phys. J. Spec. Top. 185, 45
(2010).

[28] A. Toffoli, E. M. B. Bitner-Gregersen, A. R. Osborne, M. Serio, and M. Onorato, Extreme waves in
random crossing seas: Laboratory experiments and numerical simulations, Geophys. Res. Lett. 38, 122
(2011).

[29] E. M. Bitner-Gregersen and A. Toffoli, Occurrence of rogue sea states and consequences for marine
structures, Ocean Dyn. 64, 1457 (2014).

[30] J. Luxmoore, S. Ilic, and N. Mori, On kurtosis and extreme waves in crossing directional seas: A
laboratory experiment, J. Fluid Mech. 876, 792 (2019).

[31] O. Gramstad and K. Trulsen, Fourth-order coupled nonlinear Schrödinger equations for gravity waves on
deep water, Phys. Fluids 23, 062102 (2011).

[32] K. Trulsen and K. B. Dysthe, A modified nonlinear Schrödinger equation for broader bandwidth gravity
waves on deep water, Wave Motion 24, 281 (1996).

[33] O. Gramstad, E. M. Bitner-Gregersen, K. Trulsen, and J. Nieto-Borge, Modulational instability and rogue
waves in crossing sea states, J. Phys. Oceanogr. 48, 1317 (2018).

[34] J. Brennan, J. Dudley, and F. Dias, Extreme waves in crossing sea states, Int. J. Ocean Coast. Eng. 1,
1850001 (2018).

[35] N. Mori, M. Onorato, and P. A. E. M. Janssen, On the estimation of the kurtosis in directional sea states
for freak wave forecasting, J. Phys. Oceanogr. 41, 1484 (2011).

[36] W. Fujimoto, T. Waseda, and A. Webb, Impact of the four-wave quasi-resonance on freak wave shapes in
the ocean, Ocean Dyn. 69, 101 (2019).

[37] J. J. Xie, Y. Ma, G. Dong, and M. Perlin, Numerical investigation of third-order resonant interactions
between two gravity wave trains in deep water, Phys. Rev. Fluids 6, 014801 (2021).

[38] D. G. Dommermuth and D. K. P. Yue, A high-order spectral method for the study of nonlinear gravity
waves, J. Fluid Mech. 184, 267 (1987).

[39] B. J. West, K. A. Brueckner, R. S. Jand, D. Milder, and R. Milton, A new method for surface hydrody-
namics, J. Geophys. Res. 92, 11803 (1987).

[40] V. Zakharov, Stability of period waves of finite amplitude on surface of a deep fluid, J. Appl. Mech. Tech.
Phys. 9, 190 (1968).

[41] S. Stole-Hentschel, K. Trulsen, B. Lisa, and R. Anne, Extreme wave statistics of counter-propagating,
irregular, long-crested sea states, Phys. Fluids 30, 067102 (2018).

[42] S. Liu and X. Zhang, Extreme wave crest distribution by direct numerical simulations of long-crested
nonlinear wave fields, Appl. Ocean Res. 86, 141 (2019).

[43] T. Kokina and F. Dias, Influence of computed wave spectra on statistical wave properties, J. Mar. Sci. Eng.
8, 1023 (2020).

[44] M. Tanaka, Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical
simulations of primitive equations, J. Fluid Mech. 444, 199 (2001).

[45] M. Tanaka and N. Yokoyama, Effects of discretization of the spectrum in water-wave turbulence, Fluid
Dyn. Res. 34, 199 (2004).

[46] D. G. Dommermuth, The initialization of nonlinear waves using an adjustment scheme, Wave Motion 32,
307 (2000).

[47] A. D. Sabatino and M. Serio, Experimental investigation on statistical properties of wave heights and
crests in crossing sea conditions, Ocean Dyn. 65, 707 (2015).

[48] N. Mori and P. A. E. M. Janssen, On kurtosis and occurrence probability of freak waves, J. Phys. Oceanogr.
36, 1471 (2006).

[49] F. Fedele, On the kurtosis of deep-water gravity waves, J. Fluid Mech. 782, 25 (2015).
[50] M. A. Tayfun, Narrow-band nonlinear sea waves, J. Geophys. Res. Oceans 85, 1548 (1980).
[51] H. Socquet-juglard, K. Dysthe, K. Trulsen, H. E. Krogstad, and J. Liu, Probability distributions of surface

gravity waves during spectral changes, J. Fluid Mech. 542, 195 (2005).

074805-29

https://doi.org/10.1103/PhysRevLett.97.094501
https://doi.org/10.1140/epjst/e2010-01237-8
https://doi.org/10.1029/2011GL046827
https://doi.org/10.1007/s10236-014-0753-2
https://doi.org/10.1017/jfm.2019.575
https://doi.org/10.1063/1.3598316
https://doi.org/10.1016/S0165-2125(96)00020-0
https://doi.org/10.1175/JPO-D-18-0006.1
https://doi.org/10.1142/S252980701850001X
https://doi.org/10.1175/2011JPO4542.1
https://doi.org/10.1007/s10236-018-1234-9
https://doi.org/10.1103/PhysRevFluids.6.014801
https://doi.org/10.1017/S002211208700288X
https://doi.org/10.1029/JC092iC11p11803
https://doi.org/10.1007/BF00913182
https://doi.org/10.1063/1.5034212
https://doi.org/10.1016/j.apor.2019.01.018
https://doi.org/10.3390/jmse8121023
https://doi.org/10.1017/S0022112001005389
https://doi.org/10.1016/j.fluiddyn.2003.12.001
https://doi.org/10.1016/S0165-2125(00)00047-0
https://doi.org/10.1007/s10236-015-0831-0
https://doi.org/10.1175/JPO2922.1
https://doi.org/10.1017/jfm.2015.538
https://doi.org/10.1029/JC085iC03p01548
https://doi.org/10.1017/S0022112005006312


S. LIU, T. WASEDA, J. YAO, AND X. ZHANG

[52] T. A. A. Adcock and P. H. Taylor, Fast and local non-linear evolution of steep wave-groups on deep water:
A comparison of approximate models to fully non-linear simulations, Phys. Fluids 28, 016601 (2016).

[53] K. Dysthe, H. E. Krogstad, and P. Müller, Oceanic rogue waves, Annu. Rev. Fluid Mech. 40, 287
(2008).

[54] C. G. Soares, Z. Cherneva, and E. M. Antao, Characteristics of abnormal waves in north sea storm sea
states, Appl. Ocean Res. 25, 337 (2003).

074805-30

https://doi.org/10.1063/1.4938144
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1016/j.apor.2004.02.005

