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Spherical approximation is often adopted in modeling planetary and stellar fluid dynam-
ics, which implicitly assumes the rotational flattening effect is small. This simplification, to
the leading order of the basic reference state, makes gravity, pressure, chemical, and ther-
mal variables only depend on the radial coordinate. However, a rotating and self-gravitating
fluid body is necessarily nonspherical. In order to represent fundamental mechanical
equilibrium and thermal state of rapidly rotating planets or stars, where rotational flat-
tening is not to be neglected, we construct a nonspherical, stably stratified Boussinesq
fluid model of uniform rotation. Closed-form gravity and temperature formulations of
the basic reference state are derived in terms of oblate spheroidal coordinates. The key
emphasis of this paper is that the uniformly heated model is mathematically confirmed
to be motionless in the corotating frame of reference. Based on this hydrostatic model of
rotating stable stratification, we show that although treating the centrifugal terms within
a spherical geometry context is convenient, it can lead to incorrect flows. The neglected
terms produced by the oblateness are of the same order as the baroclinic terms included,
and can indeed cancel them out in some circumstances. This paper proposes a foundation
for the analysis of thermally driven flows in nonspherical geometries, which will be carried
on in a series of future papers.

DOI: 10.1103/PhysRevFluids.7.074803

I. INTRODUCTION

Flow and turbulence in a celestial body play a crucial role in chemical mixing, thermal evolution,
and magnetic field generation. It is widely accepted that buoyancy force in unstably stratified
convective zones can drive differential rotation, meridional circulation, nonaxisymmetric flow, and
turbulence that transport heat and power planetary and stellar dynamos in uniformly rotating planets
and stars. The problem of thermal convections, in which the radial buoyancy force plays a major
dynamical role, has been formulated and modeled in spheres and spherical shells by many authors
[1–13, e.g.]. However, there are also examples of stable stratification. The radiative region in a star is
a typical thermally stable stratification. In a gaseous giant planet, there could be a helium-hydrogen
immiscible layer also being stably stratified because of compositional separation [14]. In contrast
to an unstably stratified convective zone, fluid motions in stably stratified zones are not driven by
radial buoyancy force but could be caused by baroclinicity that is sensitive to thermal and geometric
conditions. As a result, there are fundamental differences in modeling the two distinct categories of
dynamics.

Von Zeipel theorem [15] is concerned with whether motionless stable stratification exists in a
uniformly rotating star. Von Zeipel reached a general conclusion that an equilibrium solution of a
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rotating radiative star would be possible only if

ε = C

(
1 − �2

2πGρ

)
, (1)

in which ε is the rate of heat generation per unit mass, C is a constant, � is the solid-body
rotation rate of the star, G is the universal gravitational constant and ρ is the mass density [15,16].
Equivalently, if the heat source distribution in a rotating stably stratified region does not obey Eq. (1),
fluid will not be at rest in the corotating frame of reference. Because the condition suggested by
Eq. (1) is not physically sound for stellar interior, Eddington in 1925 [17] first proposed there would
not be hydrostatic equilibrium in a rotating radiative star. Along this line, by far, there have been lots
of relevant analyses on rotationally induced baroclinicity, meridional circulations, and differential
rotations [18–24, e.g.].

More recently, Rieutord [25] developed a three-dimensional (3D) Boussinesq model of the
radiative envelope of rotating stars, in which rotational baroclinic flows are computed in spherical
geometry. Simitev and Busse [26,27] reported a 3D anelastic dynamo model in which magnetic
field is generated and sustained by rotational baroclinic flows that are computed in a stably stratified
spherical shell. In these models the basic state temperature is a function of radius r only, but
because the centrifugal force is not in the radial direction, it is impossible to balance the centrifugal
buoyancy with uniform rotation by pressure, so either a circulation is driven or there must be a
differential rotation that adjusts the centrifugal buoyancy so that it can balance a pressure gradient.
In Refs. [25–27] the differential rotation required is computed using the thermal wind equation in
spherical geometry. This nonzero differential rotation is found even in the uniform heating case
studied by von Zeipel, which is slightly surprising as von Zeipel showed this was the only case in
which no differential rotation is required to get hydrostatic equilibrium. This suggests that if the
problem is studied in oblate geometry rather than spherical geometry, the changes in the thermal
wind balance arising from the oblate geometry exactly balance the terms arising from the nonzero
curl of the centrifugal buoyancy. With more general heat sources than uniform heating or cooling,
these effects will no longer cancel each other exactly, and differential rotation will occur. However,
it is apparent that the errors made by neglecting the oblateness are of the same order of magnitude
as those arising from the nonzero curl of the centrifugal buoyancy, so that unfortunately the results
obtained from the spherical geometry approach may well be unreliable.

Reconsidering the problem of stable stratification is also for the purpose of studying the onset
of thermal instability. In order to carry out linear or nonlinear analysis of thermal instability, it is
desirable to first have a basic reference state on top of which convective variables can be regarded
as small perturbation [28]. Such a basic reference state is commonly stably stratified. Spherical
approximation of a rotating self-gravitating fluid, to the leading order of the basic reference state,
makes gravity, pressure, chemical, and thermal variables only depend on the radial coordinate. It
simplifies perturbation analysis and facilitates numerical modeling of convective motions. If the
geometrical flattening due to rotation is taken into account, the basic state will be much more
complicated. In this paper, we derive the first closed-form solution of a nonspherical basic reference
state in terms of oblate spheroidal coordinates and confirm motionless equilibrium exists in the
corotating frame of reference. The Boussinesq approximation is adopted, which is widely applied
in Earth and planetary contexts. The shape of a self-gravitating incompressible fluid that is rotating
uniformly can be described by an oblate spheroid [29]. For a fluid of internally differentiated
density, the rotational equilibrium figure will no longer be perfectly spheroidal. But the departure
from an oblate spheroid will be typically very small. For example, for Jupiter’s rotation rate and
density stratification, such nonspheroidal undulation on the 1-bar surface is no more than 0.01%
relative to the best-fit reference spheroid [30]. Therefore, an oblate spheroid also can be a good
first approximation to a rapidly rotating gaseous body. Based on the hydrostatic non-spherical basic
reference state of gravity and temperature, thermal instability of rotating Boussinesq fluid can be
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discussed in the ensuing papers. It will be interesting to understand how the symmetry, onset, and
structure of convective flow depend on nonsphericity.

In what follows, rotationally induced baroclinic torque in a spherical Boussinesq fluid model
is necessarily reviewed in Sec. II for a comparison purpose. Section III presents the mechanical
and thermal solution, as the basic reference state below the onset of convection, in a rapidly
rotating oblate spheroid. It is convincingly demonstrated that baroclinicity ought to vanish, which is
consistent with the von Zeipel theorem. The baroclinicity that appears in spherical models reported
in Refs. [25–27] is not physically sound. A numerical verification is presented in Sec. IV, followed
by extra discussions in Sec. V.

II. ROTATIONAL BAROCLINICITY IN A SPHERICAL MODEL OF STABLE STRATIFICATION

Consider first a stably stratified, nonrotating sphere under the Boussinesq approximation which
has been widely used in models of astrophysical stable stratification zones [1,25]. The Boussinesq
fluid is confined within a sphere of radius Re with constant thermal expansion α, thermal diffusivity
κ and kinematic viscosity ν, whose density ρ is described by ρ = ρ0(1 − αT ) where ρ0 is the
density at a reference temperature T = 0. It is assumed that fluid rotates uniformly with constant
angular velocity � = ẑ�, where ẑ denotes the unit vector, and is confined within a spherical bound-
ing surface S (r = Re) marked by the reference temperature T = 0. Analyses are to be carried out
using spherical coordinates (0 � r � Re, 0 � θ � π, 0 � φ < 2π ). The mechanical and thermal
equilibrium of the stably stratified sphere is governed by the equations

−d p0(r)

dr
+ ρ0(r)g0(r) = 0,

1

r2

d

dr

(
r2 dT0(r)

dr

)
− β = 0,

where the gravity

g0 = −(4πGρ0/3)r, (2)

and −β denotes uniform heat sink source with β > 0. r is the position vector. The pressure p0

is a passive variable. Usually the gravity factor is denoted by γ = 4πGρ0/3. The equilibrium
temperature in the sphere can be solved as

T0(r) = β

6

(
r2 − R2

e

)
. (3)

In the corotating frame, flow is driven by baroclinic torque, which can be shown by perturbation
analysis. Considering the flow inducing perturbations in pressure, density, and temperature as

p = p0(r) + p̃(r, θ ), ρ = ρ0(r) + ρ̃(r, θ ), T = T0(r) + T̃ (r, θ ),

and using the Boussinesq approximation, we find the governing equations for perturbation variables:[
∂u
∂t

+ u · ∇u + 2� × u
]

= − 1

ρ0(r)
∇ p̃ + α[� × (� × r) − g0(r)]T̃ + ν∇2u

+α[� × (� × r) − g0(r)]T0(r),

∇ · u = 0,

∂T̃

∂t
+ u · ∇[T0(r) + T̃ ] = κ∇2T̃ . (4)
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Taking the curl of Eq. (4) arrives at

∇ ×
[
∂u
∂t

+ u · ∇u + 2� × u + α(�2sŝ + g0)T̃ − ν∇2u
]

= −αβ�2

3
r2 sin θ cos θ φ̂,

def= Lsphere, (5)

where s is the distance from the rotation axis and ŝ is the cylindrical unit radial vector. Equation (5)
is exactly equivalent to Eq. (3) of [25] if Q is taken to be constant therein. The torque Lsphere

is connected with the centrifugal force � × (� × r), without which, namely � = 0, both the
baroclinicity and the torque will vanish. It looks as if flow is always driven by the torque as long as
rotation is present.

A key question is whether such flow is physically inevitable or only a result of the model
setting. Note that because of the choice of the spherical geometry, the isopycnals and isobars of
the obtained model are all spherical, but the equipotential levels depart from sphericity due to the
centrifugal force. To the leading order, mechanically speaking, such model configuration in fact
cannot represent a uniformly rotating equilibrium. Also, because the spherical isothermal surfaces
are also misaligned with the nonspherical equipotential surfaces, it is impossible to balance the
centrifugal buoyancy by pressure. The inconsistency suggests that the spherical approximation
needs to be reconsidered.

III. A NONSPHERICAL MODEL OF ROTATING STABLE STRATIFICATION
AND ITS IMPLICATIONS

The shape of a rotationally distorted self-gravitating fluid under the Boussinesq approximation is
described by oblate spheroid [29] characterized by its eccentricity e defined as e =

√
R2

e − R2
p/Re,

where 0 < e < 1 and Re and Rp are the equatorial and polar radius of an oblate spheroid, respec-
tively. In the mathematical analysis, it is convenient to introduce oblate spheroidal coordinates [31]
(ξ � 0,−1 � η � 1, 0 � φ < 2π ) linked to Cartesian coordinates via

x = Ree
√

(1 + ξ 2)(1 − η2) cos φ,

y = Ree
√

(1 + ξ 2)(1 − η2) sin φ,

z = Reeξη.

With the help of the above spheroidal coordinates, the free space Green’s function

Gfree(ξ, η, φ; ξ ′, η′, φ′) = − 1

4π

1

|r − r′|

= − 1

4πRee

∞∑
�=0

�∑
m=0

i(2 − δ0m)(−1)m(2� + 1)

×
[

(� − m)!

(� + m)!

]2

Pm
� (η)Pm

� (η′) cos m(φ − φ′)

×
{

Pm
� (iξ )Qm

� (iξ ′), ξ < ξ ′,

Pm
� (iξ ′)Qm

� (iξ ), ξ > ξ ′,
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and the Green’s function satisfying the homogeneous boundary condition on the spheroidal bound-
ing surface S (ξ = ξo =

√
1/e2 − 1)

Ghomo(ξ, η, φ; ξ ′, η′, φ′)

= − 1

4πRee

∞∑
�=0

�∑
m=0

i(2 − δ0m)(−1)m(2� + 1)

[
(� − m)!

(� + m)!

]2

Pm
� (η)Pm

� (η′) cos m(φ − φ′)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pm
� (iξ )Qm

� (iξ ′) − Qm
� (iξo)

Pm
� (iξo)

Pm
� (iξ )Pm

� (iξ ′), ξ < ξ ′,

Pm
� (iξ ′)Qm

� (iξ ) − Qm
� (iξo)

Pm
� (iξo)

Pm
� (iξ ′)Pm

� (iξ ), ξ > ξ ′,

in which i = √−1, δ denotes the Kronecker symbol, Pm
� (η) are Legendre polynomials, Pm

� (iξ ),
Qm

� (iξ ) are Legendre functions of imaginary argument, the rotational equilibrium equations

ρ0� × (� × r) = −∇p0(r) + ρ0g0(r), (6)

g0(r) = −∇Vg(r), (7)

∇2Vg(r) = 4πGρ0, (8)

∇2T0(r) − β = 0, (9)

subject to the boundary conditions on the spheroidal bounding surface

p0|S = constant,

T0|S = 0,

Vg|ξ→∞ = 0,(
Vg − 1

2
|� × r|2

)
S

= constant,

are solved by

ξ̂ · g0 = 4πGρ0Re

3

3ξ

2e2

√
1 + ξ 2

ξ 2 + η2
[e − 3eη2 − e3(1 − η2) +

√
1 − e2(3η2 − 1) sin−1 e], (10)

η̂ · g0 = 4πGρ0Re

3

3η

2e2

√
1 − η2

ξ 2 + η2
[−e + e3 − eξ 2(3 − e2) +

√
1 − e2(3ξ 2 + 1) sin−1 e], (11)

2Fr

3
=

√
1 − e2

e3
(3 − 2e2) sin−1 e − 3(1 − e2)

e2
. (12)

T0 = βR2
e

[1 − e2(1 − η2)][1 − e2(1 + ξ 2)]

4e2 − 6
. (13)

Note that in the nonrotating limit, � → 0 hence e → 0, eξ → r/Re, η → cos θ , Eq. (10)–(13)
return to Eqs. (2) and (3). Equation (12) is the classical Maclaurin spheroid relation [1,29] that
connects the spheroidal figure of a self-gravitating homogeneous fluid to its rotational parameter
Fr = 3�2/(4πGρ0). Equations (10)–(12) mark a mechanical equilibrium. Equation (13) establishes
the thermal state that is confined by such equilibrium.

It is tempting to think that when the strength of the sink source −β becomes sufficiently
strong, the corresponding baroclinic effect would drive a substantial flow u, similar to the problem
demonstrated in Sec. II. The problem of self-consistent baroclinically driven flow in a uniformly
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rotating oblate spheroid is governed by the dimensional equations that are defined in the oblate
spheroidal domain enclosed by the bounding surface S of eccentricity e:[

∂u
∂t

+ u · ∇u + 2� × u
]

= − 1

ρ0
∇ p̃ + α[� × (� × r) − g0(ξ, η)]T̃ + ν∇2u

+α[� × (� × r) − g0(ξ, η)]T0(ξ, η), (14)

∇ · u = 0, (15)

∂T̃

∂t
+ u · ∇(T0(ξ, η) + T̃ ) = κ∇2T̃ . (16)

Similar to Eq. (5), taking the curl of Eq. (14) arrives at the mathematical form of rotationally induced
baroclinic torque

∇ ×
[
∂u
∂t

+ u · ∇u + 2� × u + α(�2sŝ + g0(ξ, η))T̃ − ν∇2u
]

= L(ξ, η; e)φ̂

= −αβγ R2
e

3

6 − 4e2

ξη
√

(1 + ξ 2)(1 − η2)

ξ 2 + η2

×
{

[1 − e2(1 − η2)]

[
(1 + 3ξ 2)G(e) + (1 + ξ 2)e2

(
2Fr

3
− 1

)]

− [1 − e2(1 + ξ 2)]

[
(1 − 3η2)G(e) + (1 − η2)e2

(
2Fr

3
− 1

)]}
φ̂, (17)

where G(e) = 1 −
√

1−e2

e sin−1 e.
Although Eq. (17) looks complicated, it can be better understood via its dimensionless volumetric

mean

〈L〉 =
√

1

V

∫
V

∣∣∣∣ L
αβγ R2

e

∣∣∣∣
2

dV

=
√

3

4π
√

1 − e2

∫ 2π

0

∫ 1

−1

∫ ξo

0

∣∣∣∣L(ξ, η; e)

αβγ R2
e

∣∣∣∣
2

· e3(ξ 2 + η2)dξdηdφ,

= 3
√

1 − e2

√
70(3 − 2e2)

∣∣∣∣2Fr

3
−

[√
1 − e2

e3
(3 − 2e2) sin−1 e − 3(1 − e2)

e2

]∣∣∣∣. (18)

Equation (12), which establishes e = e(Fr), apparently leads to 〈L〉 = 0 and hence strongly implies

L(ξ, η; e = e(Fr)) = 0 (19)

for any 0 � ξ � ξo and −1 � η � 1. Mathematically, it means that the motionless state (the flow
velocity u = 0 everywhere in the rotating frame of reference) represent a solution to the governing
equations (14)–(16) in a stably stratified, rotating spheroid for any parameters of nonspherical
models when Fr > 0 and β > 0, as long as the eccentricity e of the bounding surface is specifically
determined by the Maclaurin spheroid relation. Physically speaking, the source of baroclinicity to
do with the centrifugal force � × (� × r) vanishes in nonspherical geometry when the mechanical
equilibrium condition is everywhere reached, including on the bounding surface S . Therefore
hydrostatic equilibrium is permitted in the corotating frame of reference.
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FIG. 1. The RMS torque in oblate spheroidal geometries. The horizontal axis represents the eccentricity e
of the outer spheroidal boundary. The vertical axis represents the rotational parameter Fr. The color bar shows
the size of 〈L〉 computed from Eq. (18). Black solid lines depict the contours of 〈L〉. The white dashed line
indicates the zero-torque curve, which exactly coincides with the Maclaurin spheroid relation as Eq. (12).

In fact, it is not surprising finding that the stable stratification is motionless because von Zeipel
theorem [15,16] has already indicated it. In our nonspherical Boussinesq model, the condition
Eq. (1) is obeyed. And also, the fundamental hypothesis (the nature of the fluid being constant
over every level surface) is also true as density, pressure, thermal, and potential level surfaces all
coincide throughout the whole nonspherical fluid domain.

On the other hand, the baroclinicity that appears in the spherical model of rotating stable
stratification (see Sec. II) can be better understood. Note that

L(ξ, η; e 	= e(Fr)) 	= 0 (20)

as also illustrated in Fig. 1. If spherical approximation is adopted, Fr 	= 0 but e → 0, eξRe → r,
η → cos θ , it can be shown that

L(ξ, η; e → 0 	= e(Fr))φ̂ → Lsphere.

As a matter of fact, the relation e = e(Fr) is equivalent to the fundamental hypothesis of the von
Zeipel theorem [15]. In the spherical model of a rotating stably stratified Boussinesq fluid [25],
isopycnals and isotherms differ from isobars, giving rise to baroclinicity. As a result, although it
seems that Eq. (1) is satisfied, fluid motion yet becomes necessary. But, obviously, the baroclinicity
and flow are not physical at all but a pure consequence of the choice of spherical approximation.

The above discussion is presented for a Boussinesq fluid model, which is the primary concern of
this paper. Simitev and Busse [26,27] reported a spherical shell gaseous model that is stably stratified
and close to an adiabatic state. In their model, the rotationally induced baroclinicity (see Eq. 1(b)
of [26]) also results in substantial flow and dynamo action. For a rotating compressible gas, it is
unlikely to derive analytical formulations that are similar to Eqs. (10)–(13), because the geometrical
figure of an equilibrium becomes irregular (even non-spheroidal) [30,32, e.g.]. But it is still possible
to prove, following the von Zeipel theorem, that there should not be rotational baroclinicity under
the assumption of an ideal gas and that the basic reference state is adiabatic. The same conclusion
can be drawn that the baroclinicity and fluid dynamics reported by Refs. [26,27] are nonphysical
but a pure consequence of the choice of spherical approximation. The relevant detailed proof can be
found in the Appendix.
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IV. NUMERICAL VERIFICATION

In this section, we carry out illustrative numerical simulations in order to verify the mathematical
speculations drawn in Sec. III. The dimensionless equations are solved

∂u
∂t

+ u · ∇u + 2ẑ × u = −∇ p̃ + St[Frẑ × (ẑ × r) − g0]T̃

+E∇2u + St[Frẑ × (ẑ × r) − g0]T0,

∇ · u = 0,

Pr

[
∂T̃

∂t
+ u · ∇(T0 + T̃ )

]
= E∇2T̃ ,

where the length is scaled by Re; time is scaled by �−1; pressure is scaled by ρ0R2
e�

2; and
temperature is scaled by βR2

e . The three nondimensional parameters, the Ekman number E , the
Prandtl number Pr and the stratification parameter St are defined as

E = ν

�R2
e

, Pr = ν

κ
, St = αβγ R2

e

�2
.

For computational convenience, we impose the no-slip and isothermal boundary condition at the
bounding surface of the oblate spheroid S:

T̃ (ξ = ξo) = 0, u(ξ = ξo) = 0.

With the above numerical settings, using a well-validated and benchmarked 3D finite-element
method [33], we conduct simulations for the parameters E = 10−3, Pr = 7, St = 102 and Fr =
0.05110777. Note that the choices of the above values of dimensionless parameters are of secondary
importance for the illustrative purpose. The self-consistent geometry satisfying the Maclaurin
spheroid relation Eq. (12) is marked by e(Fr = 0.05110777) = 0.3543 of the bounding surface
S , representing a self-consistent, nonspherical geometry of the rotating fluid. Simulations all start
with zero fluid motions and adopt different geometric shapes, ranging from near-spherical to highly
flattened. It is expected that zonal circulations will be driven for all cases whose geometrical shapes
are inconsistent with the Maclaurin spheroid condition Eq. (12). But, according to our analysis,
there ought to be no flow for the particular example, when a self-consistent geometry e = 0.3543 is
incorporated. Figures 2 and 3 clearly verify the expectations. With the exactly self-consistent shape
of the domain, no flow is driven and the model remains in hydrostatic rotational equilibrium. For
inconsistent shapes of the bounding surface, however, geometrically induced baroclinicity indeed
drives zonal circulations.

Note that in the calculations, the Boussinesq fluid is internally uniformly heated. In this cir-
cumstance, a self-consistent geometry results in a state free of baroclinicity, which is an exact
example of the von Zeipel theorem. However, with any choice of heating other than the von Zeipel
uniform heating, there will be a completely physical baroclinic flow even in the self-consistent
oblate spheroidal geometry, though it will not be the same as that is given by the spherical geometry
approximation.

V. CONCLUSION AND DISCUSSION

Since the 1920s, people doubt the existence of the hydrostatic equilibrium state of a radiative
star, mainly because baroclinicity seems always to appear when the star is rotating. The problem of
the von Zeipel paradox [20,22] – the effect of stellar rotation may induce a torque that drives strong
flow in the stably stratified radiative zone of a rotating star – was extensively studied. The previous
research has mainly focused on the generation of baroclinicity due to heat source distribution that
does not obey Eq. (1). This scenario is easy to understand in the case of radiative stars since
realistic energy production of nuclear fusion would not spontaneously obey the uniform heat source
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FIG. 2. Kinetic energy density of baroclinically driven flows, which is computed by the volumetric integral
Ek = 1

2V
∫
V |u|2 dV . (a) shows energy curves for several typical cases of different bounding surface eccen-

tricity values that are given in its legend. (b) plots the energy of each case when a steady zonal circulation is
reached. Both panels clearly show that there is no flow for the self-consistent geometry marked by e = 0.3543,
which exactly obeys Eq. (12) at Fr = 0.05110777.

requirement. In these cases there is no static equilibrium in the rotating frame, so some flow must
result. This might be a differential rotation, but it could be more complex as baroclinic flows may
well be unstable to Goldreich-Schubert-type instabilities and possibly others. But some very recent
numerical models [25–27,34,35, e.g.] employed another source of rotational baroclinicity, which
is caused by approximating the geometrical figure of a rotating stably stratified fluid body by a
sphere or a spherical shell. In this paper, we see that ignoring the oblateness and assuming spherical
geometry can lead to incorrect results.

FIG. 3. Isosurfaces of the azimuthal velocity φ̂ · u of baroclinically driven flows. (a) plots the case of
self-consistent geometry marked by e = 0.3543. There is no any large scale flow but some small numerical
fluctuations near zero. (b) is a near-spherical case (e = 0.01) whose baroclinically driven circulation is
westward. (c) is an overflattened case (e = 0.5) whose baroclinically driven circulation is eastward. Gray
partially transparent surfaces denote the bounding surfaces.
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Our nonspherical model reveals that (i) the rotation-induced torque Eq. (17) reaches a maximum
in spherical geometry but the spherical shape is physically unstable because of the condition
Eq. (12); (ii) when a nonspherical model satisfies the equilibrium condition Eq. (12), described
by the white dashed line in Fig. 1, the corresponding torque given by Eq. (17) vanishes exactly
and, hence, the motionless state of static equilibrium exists in the stably stratified zone; and (iii)
nonspherical geometry, although its treatment is mathematically and numerically challenging, is
vital to modeling and understanding the key dynamics taking place in the stably stratified zone of a
rotating star.

A motionless state of rotational equilibrium in the spheroidal geometry, given by Eq. (10)–(12),
also provides a reasonably simple reference state for perturbation analysis. It opens an important
new line of research in rotating astrophysical fluid dynamics, including stably stratified fluids
such as precession/nutation as well as unstably stratified fluids such as thermal instabilities. In
the immediately ensuing papers, nonspherical models of rapidly rotating unstable stratification are
to be explored for the onset of thermal instability, convective motions, and nonlinear dynamics.
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APPENDIX: MOTIONLESS ADIABATIC STATE OF ROTATING IDEAL GAS

Consider a rapidly rotating, self-gravitating ideal gas that is exactly in adiabatic equilibrium. The
mechanical and thermal equations for pressure p, density ρ, temperature T and heat source per unit
mass ε are

−∇p(r)

ρ(r)
− ∇Vg(r) − ∇

(
−1

2
�2s2

)
= 0, (A1)

∇2Vg(r) = 4πGρ(r), (A2)

p(r) = Kρ(r)γ , (A3)

p(r) = ρ(r)RT (r), (A4)

κ∇2T (r) + ρ(r)ε(r) = 0, (A5)

where γ is the adiabatic index of the gas, R is the ideal gas constant of the gas, and K is another
constant that is a function of the specific entropy of the gas. Note that secular cooling effect is not
considered, nuclear fusion heat generation is not considered and radiative transfer is not considered,
which are consistent with the model settings in [26,27,36]. The assumptions can better describe
interior state of Jupiter-like gaseous planets, rather than stars. The equations are defined in the
gaseous domain whose geometrical figure is assumed to be consistent with the equilibrium, as
required by von Zeipel theorem. Since we do not intend to solve the equations, the theory of
figure and boundary conditions are not discussed herein.

Applying ∇· to Eq. (A1), combined with Eqs. (A2) and (A3), yield

γ K∇ · (ργ−2∇ρ) + 4πGρ = 2�2. (A6)
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Equations (A3)–(A5) can be manipulated and reduced into

ε = −Kκ (γ − 1)

ρR
∇ · (ργ−2∇ρ). (A7)

Finally, it can be derived from Eqs. (A6) and (A7)

ε = 4πGκ (γ − 1)

Rγ

(
1 − �2

2πGρ

)
. (A8)

According to von Zeipel theorem, hydrostatic equilibrium does exist in the corotating frame of
reference because Eq. (A8) meets the requirement Eq. (1) with

C = 4πGκ (γ − 1)

Rγ
.
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