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Wave-packet modulation in shock-containing jets
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We propose an approach to predict the modulation of wave packets in shock-containing
jets. With a modeled ideally expanded mean flow as input, an approximation of the
shock-cell structure is obtained from the parabolized stability equations (PSE) at zero
frequency. This solution is then used to define a new shock-containing mean flow,
which is a function of the shock-cell wave number at each streamwise station. Lin-
earization of the Navier-Stokes equations around this quasiperiodic mean flow allows
us to postulate a solution based on the Floquet ansatz, and further manipulation of the
equations leads to a system called the parabolized Floquet equations [PFE; Ran et al.,
Phys. Rev. Fluids 4, 023901 (2019)] that bears several similarities to PSE. The modulation
wave numbers are marched spatially together with the central Kelvin-Helmholtz wave
number, leading to a modulated wave packet as the final solution. The limitations of
PFE are highlighted, and the method is applied to two sample cases: a canonical slowly
diverging jet at low supersonic Mach number and a heated overexpanded jet, for which
large-eddy simulation (LES) data are available. Good agreement is observed between the
wave packets predicted by PFE and the leading spectral proper orthogonal decomposition
(SPOD) modes from the LES, suggesting that the method is able to capture the underlying
physical mechanism associated with wave-packet modulation: the extraction of energy
from the mean flow by the Kelvin-Helmholtz mode and a redistribution of energy to
modulation wave numbers due to the interaction of this mode with the shock-cell structure.
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I. INTRODUCTION

Understanding the relevant physical mechanisms in jet noise generation has long been a topic
of great interest in the fluids community, with the goal of developing quieter engines. Starting with
Mollo-Christensen [1], attention has been given to large-scale coherent structures in these flows
and their connection with the far-field sound. Crow and Champagne [2] identified these structures,
using smoke visualizations, which revealed trains of “puffs” with a clear amplitude modulation,
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comprising regions of growth, saturation, and decay. These wave-packet structures have been shown
to be responsible for most of the downstream acoustic radiation in turbulent jets [3–5].

The genesis of these coherent structures was found to be in the stability characteristics of the flow:
in jets and shear layers, the presence of an inflection point in the base flow leads to the appearance of
an inviscid instability, namely, the Kelvin-Helmholtz (KH) mode [6,7]. This mode extracts energy
from the mean flow, resulting in the highly amplified structures observed experimentally [2,8]. This
clear instability mechanism inspired the development of several modeling methods to predict the key
features of wave packets. While the application of locally parallel linear stability analysis resulted
in only qualitative agreement with experimentally educed KH modes [9,10], models that consider
the jet development were shown to quantitatively capture the overall behavior of these waves. For
instance, Crighton and Gaster [11] proposed a theoretical method based on a WKB approximation
to overcome the limitations of the local analysis, obtaining the solution for a slowly varying mean
flow. The parabolized stability equations (PSE), introduced by Bertolotti and Herbert [12], improved
upon the WKB approach by tracking the slow downstream evolution of the shape function and wave
number [13,14]. Application of PSE to predict wave-packet shapes and phase velocities was first
performed by Gudmundsson and Colonius [15] for subsonic jets, which led to good agreement with
modes extracted from data via spectral proper orthogonal decomposition (SPOD, Towne et al. [16])
at frequencies relevant to jet noise. This comparison has since been extended to higher frequencies
and azimuthal wave numbers [17], ideally expanded supersonic jets [18], and jets with azimuthal
nonhomogeneity [19].

Even though PSE provides a good approximation of the overall behavior of wave packets in
turbulent jets at low computational cost, it also has several limitations, such as its inability to
predict the wave-packet characteristics at low frequencies [15]. This problem is addressed by more
advanced methods, like resolvent analysis [20]. As shown by Towne et al. [16], response modes
predicted by resolvent analysis are closely related to the most energetic structures in the flow educed
using SPOD; in fact, if the nonlinear terms in the Navier-Stokes equations expanded about the
mean flow are uncorrelated in space and time, SPOD and resolvent response modes are identical.
This provides a rigorous explanation for the success of resolvent analysis in predicting coherent
structures in various turbulent flows [21–27].

While these modeling approaches are well suited for the study of subsonic or ideally expanded
supersonic jets, their applicability to shock-containing flows is less straightforward. As summarized
in recent reviews [28,29], these flows are usually subject to a resonance phenomenon called screech,
which leads to the appearance of sharp tones in the acoustic fields of imperfectly expanded jets.
As shown recently by Nogueira et al. [30], this phenomenon is caused by an absolute instability
mechanism triggered by the flow periodicity induced by the shock cells, which causes disturbances
to grow in both space and time until they reach a saturated state. This absolute instability leads
to unstable global modes, as shown in Beneddine et al. [31] (or marginally stable ones, as in
Edgington-Mitchell et al. [32]). The high computational cost and the often intricate numerics
associated with computing global modes in these flows limits their utility for wave-packet modeling.
The presence of sharp discontinuities in the flow prohibits the application of PSE and other
WKB-based methods as well. As shown by Bertolotti et al. [33], the PSE approach is beneficial
only when the flow properties are slowly varying in the streamwise direction, and when the flow
is only convectively unstable (in the absence of absolute instability); none of these conditions are
satisfied in shock-containing jets. For that reason, most of the broadband shock-associated noise
(BBSAN) prediction models are based either on first principles (as in Harper-Bourne and Fisher
[34], Tam and Tanna [35], Tam [36]) or numerical simulations [37,38]. As the key mechanism of
BBSAN is the interaction between instability waves and the shock-cell structure, a low-order model
for predicting the equivalent shock-modulated wave packet in these jets would be useful.

Some alternatives to solve this issue have been proposed in the literature. In Ray and Lele [39],
following the ideas of Tam [36], the authors build a BBSAN source term based on the interaction
between a shock cell predicted from linear stability analysis, and a wave packet obtained using PSE.
Even though the final source term may have the expected spectral shape (with higher energy content
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at wave numbers associated with the shock-cell structure modulation), since the instability waves are
computed using a shock-free mean flow, this modulation may not correspond to that observed in real
flows. A similar approach was used by Wong et al. [40], who obtained the characteristics of the wave
packet using either PSE or SPOD modes from an ideally expanded jet, and the shock-cell structure
from experimental data. In both cases, the modulation of the source term of BBSAN (namely,
the modulated wave packet) was obtained a posteriori, and the actual effects of the shocks on the
KH mode could not be obtained. The periodic, locally parallel formulation developed by Nogueira
et al. [30] is able to capture the modulation of this unstable wave under the assumption of spatial
periodicity, leading to good agreement with experimental results. However, the effect of shear-layer
spreading and shock-cell variation/weakening cannot be obtained using a periodic model.

In this work, the modulation of wave packets in shock-containing jets is explicitly obtained using
the parabolized Floquet equations (PFE). This formulation was first developed by Ran et al. [41]
for the study of transition mechanisms in boundary layers and is applied in the present paper to
study the coherent structures supported by imperfectly expanded jets. Here the effect of the mean
flow development is directly estimated, providing a low-cost method for predicting the overall
characteristics of the KH wave packets in these jets.

The paper is organized as follows: in Sec. II we review the PSE formulation, which lays the
foundations for the present method, and derive the PFE method for shock-containing jets. The
limitations of the PFE formulation are also highlighted in Sec. II. The results provided by PFE
for two sample cases are analyzed in Secs. III and IV, where comparisons with SPOD modes are
also performed. The paper is concluded in Sec. V.

II. MATHEMATICAL FORMULATION

A. Parabolized stability equations

We start from the PSE formulation as reviewed by Herbert [14]. In summary, solutions are sought
for the compressible linearized Navier-Stokes (N-S) equations, which can be written in operator
form as

∂q
∂t

+ Aq + B
∂q
∂x

+ C
∂q
∂r

+ D
∂q
∂θ

+ 1

Re
Er,θ q = 0. (1)

The state vector q = [ν u v w p]T contains specific volume, streamwise, radial, and tangential
velocity components and pressure, respectively. Re is the Reynolds number. All spatial coordinates
are normalized by the jet diameter D, the velocity is normalized by the free-stream sound speed
c∞, and the specific volume is normalized by its value far from the jet (ν∞). Following the PSE
formulation, the second streamwise derivative of the disturbance vector was neglected, and the
matrix Er,θ is a function of the first and second radial/azimuthal derivatives of the state vector.
All the operators are a function of the mean flow q̄0 and its spatial derivatives. To solve Eq. (1),
disturbances are written in the frequency (ω) and azimuthal wave-number (m) domain as

q(x, r, θ, t ) = q̃(x, r, m, ω)e−iωt+imθ . (2)

The PSE ansatz considers solutions of the form

q̃(x, r, m, ω) = q̂(x, r, m, ω)ei
∫ x

α(ξ )dξ = q̂(x, r, m, ω)�(x) (3)

with

�(x) = ei
∫ x

α(ξ ) dξ , (4)

where both q̂(x, r, m, ω) and α(x) are slowly varying functions of x. This ansatz (and the Leibniz
rule) allows us to write the equations as

−iωq̂ + Aq̂ + B
∂q̂
∂x

+ iαBq̂ + C
∂q̂
∂r

+ imDq̂ + 1

Re
Er,mq̂ = 0 (5)
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or

−iωq̂ + Lq̂ + B
∂q̂
∂x

+ iαBq̂ = 0, (6)

where L = A + C ∂
∂r + imD + 1

Re Er,m. All matrix operators are written explicitly in Appendix A for
a specific volume-pressure formulation of the linearized Navier-Stokes equations [42].

In order to remove the ambiguity between the slowly varying variables q̂ and α, the normalization
condition ∫ rmax

0
q̂

∂q̂∗

∂x
r dr = 0 (7)

is imposed in the method (see Herbert [13] for further details), where the asterisk superscript
represents the complex conjugate. By discretizing the streamwise derivatives using first-order
implicit Euler differences, (6) and (7) can be written as [15]

[	x(−iωI + L + iαB) + B]j+1q̂j+1 = Bj+1q̂j (8)

and

α
(n+1)
j+1 = α

(n)
j+1 − i

	x

∫ ∞
0 (q̂(n)

j+1)∗(q̂(n)
j+1 − q̂j)r dr∫ ∞

0 |q̂(n)
j+1|2r dr

. (9)

Thus, given an initial solution q̂x=x0 , αx=x0 obtained close to the nozzle, the PSE system can be
marched in the downstream direction from station x j to x j+1 by solving the resulting discretized
linear system shown in (8). The wave number α is then updated at each station using (8) and (9)
until convergence. This leads to the final solution of the PSE for each frequency and azimuthal wave
number.

B. Parabolized Floquet equations

The modulation of wave packets caused by the shock-cell structure will be modeled using the
parabolized Floquet equations (PFE), first introduced by Ran et al. [41] for the study of interactions
between different modes in boundary layer transition. To this point, the PSE analysis has considered
an ideally expanded supersonic mean flow. A first-order approximation [43] of an equivalent shock-
containing flow can be obtained from the zero-frequency PSE solution as

q̄ = q̄0 + q̄s�s + q̄∗
s �

∗
s , (10)

where q̄s and �s are related to the zero-frequency/zero-azimuthal wave-number PSE solution by

q̄s(x, r) = q̂(x, r, ω = m = 0)e− ∫ x
αi (ξ ) dξ , (11)

�s(x) = ei
∫ x

αs (ξ ) dξ , (12)

where αi is the imaginary part of the wave number α obtained from the zero-frequency PSE and
αs is the real part. Considering that the shock cells decay slowly (around the same rate of the mean
flow spreading), q̄s is also a slowly varying function of x. The separation in (11) and (12) is done
such that the term �s is associated with the streamwise variation of the shock-cell wave number
only. Also, since αs is a real function, �∗

s = e−i
∫ x

αs (ξ ) dξ .
Since the shock-containing mean flow has a component associated with the shock-cell structure

(with nonzero streamwise wave numbers), we may propose a slightly different solution for (1).
Using the Floquet anzats [44], a solution that considers a central wave number and the modulation
by the shock cells can be written as

q̃(x, r) =
N∑

j=−N

q̂j(x, r)�(x)� j
s (x), (13)
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where N is the number of harmonics considered in the analysis (the frequency/azimuthal wave-
number dependence of the solution is implied). In contrast to PSE, our objective is to find not only
�(x) and q̂0(x, r), but also the slowly varying parts associated with the modulation wave numbers
α ± jαs (which are due to the product �(x)� j

s (x)). The outputs of the formulation are the slowly
varying parts of the central q̂0 and modulated q̂±j wave numbers and the streamwise development of
the central wave number α(x). Thus, the solution will account for the downstream-traveling Kelvin-
Helmholtz mode and the modulation components related to the shock-cell wave number (which
is allowed to vary slowly in the streamwise direction). By inserting (13) into the linearized N-S
equations, a set of equations for each modulation component can be written (the detailed process
for N = 1 is shown in Appendix A), which allows us to write the equivalent PFE system as

−iωq̂ + Ltq̂ + Bt
∂q̂
∂x

+ iαBtq̂ + iαsBstq̂ = 0, (14)

where the vector q̂ = [q̂−N · · · q̂0 · · · q̂N]T comprises all the modulation components. The explicit
form of the matrix operators is shown in Appendix A.

The above system has exactly the same form as (6) and will be solved in the same fashion. The
spatial marching method is implemented as in PSE, with the wave number α being updated in a
similar manner by imposing ∫ rmax

0
q̂0

∂q̂∗
0

∂x
r dr = 0. (15)

Equation (15) can be viewed as a first approximation of (7) and assumes the amplitude of the
modulation components to be small. Overall, PSE and PFE share several technical similarities, in-
cluding the fact that both methods are based on a separation of scales of the flow. Thus, the resulting
wave packets are quasimodal, with slowly varying phase velocities and local growth rates [41,45].
These assumptions may hinder the application of the method in cases where nonmodal/multimodal
behavior is expected (especially if more than one unstable mode is present in the flow, such as in
coaxial jets). It may also find issues in cases where there are sudden variations in the flow. However,
both PSE and PFE are expected to work fairly well in problems where a single KH instability is
the dominant mechanism [17,46]. The connection of both methods to locally parallel linear stability
analysis and some of their underlying limitations are highlighted in the next sections.

C. The initial step of PFE

Both PFE and PSE (which can be regarded as a special case of PFE for N = 0) requires an initial
perturbation to be marched downstream using implicit Euler differences. This solution is obtained
by solving the eigenvalue problem defined by

−iωq̂ + Ltq̂ + iαBtq̂ + iαsBstq̂ = 0 (16)

or, defining F = −(−iωI + Lt + iαsBst ),

Fq̂ = iαBtq̂, (17)

which is obtained by neglecting the streamwise derivatives in (14), and assuming the mean flow to
be either spatially periodic (if N > 0) or locally parallel (N = 0). If N > 0, (17) is equivalent to the
spatially periodic linear stability analysis (SPLSA) formulation described in Nogueira et al. [30],
now written in terms of each modulation component of the resulting eigenmode, and truncated to
the number of harmonics considered in the problem. The main differences between locally parallel
linear stability analysis (LSA) and SPLSA spectra are shown schematically in Fig. 1. Similar to
the description of Towne et al. [45], Fig. 1 highlights the two acoustic branches (associated with
waves traveling downstream and upstream), the upstream-traveling stable guided jet (GJ) mode, the
downstream-traveling unstable KH mode, and their complex conjugates. In the PSE/LSA case, the
KH mode is readily identified in the spectrum and used as initial solution in the spatial march. This is
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FIG. 1. Sketch highlighting the differences between LSA and SPLSA spectra. Both upstream- and
downstream-traveling acoustic branches are shown (blue and red lines), together with the discrete Kelvin-
Helmholtz (×) and guided jet (◦) modes.

not as straightforward in the PFE/SPLSA case. As detailed in Nogueira et al. [30], if αp is a complex
eigenvalue of the problem and αs is the spatial periodicity wave number, eigenvalues following
αp ± nαs (with integer n) will also be solutions, leading to an αs-periodic spectrum. That periodic
behavior leads to the appearance of upstream modes close to the KH mode in the spectrum, allowing
for interactions between these modes if the shock-cell amplitude is nonzero; in fact, it is exactly this
kind of interaction that underpins the appearance of screech tones in the flow [30,47]. Since PFE
is applicable to convectively unstable modes due to its inability to account for upstream-traveling
waves intrinsic to absolute instability [48], this mode interaction is undesirable and may lead to
instabilities in the numerical method. This phenomenon is further detailed in the next section.

One should also note that the resulting eigenfunctions from SPLSA will also follow the same
spatial periodicity as the mean flow, and may have energy at modulation wave numbers Re[αp ±
nαs]. This is also in contrast with LSA, which results in modes with a single wave number. This
distinction between LSA and SPLSA is also extended to PSE and PFE: while PSE computes modes
with a single wave number (and small variations around it), PFE modes are composed by a central
slowly varying streamwise wave number and several modulation wave numbers associated with the
oscillatory part of the shock-cell structure. Thus, while LSA/PSE may be suitable for the study of
waves in ideally expanded flows, their periodic counterparts (SPLSA/PFE) form an alternative set
of tools to be applied in shock-containing jets.

D. Step-size restriction for PFE

As shown by Li and Malik [49] and further explored by Towne et al. [45], the presence of stable
upstream-traveling waves in the spectrum of PSE may lead to an instability in the spatial march. A
stability analysis of the PSE march leads to the minimum step-size restriction (or the minimum step
one can choose and still avoid instability)

	x > 	x0 = max

(
−2

Im[αu − α0]

|αu − α0|
)

, (18)

where α0 is the wave number of the mode being marched downstream, Im stands for imaginary
part, and the maximum is taken over all upstream-traveling modes αu. Usually, the αu mode that
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TABLE I. Minimum step size of PFE as function of number of harmonics considered and the ideally
expanded Mach number for St = 0.7.

Mj 	x0 (N = 0) 	x0 (N = 1) 	x0 (N = 2)

1.086 0.1592 0.1972 0.1972
1.2 0.1592 1.0335 1.0335
1.7 0.1592 0.3591 1.4010

maximizes the expression is part of the upstream-traveling free-stream acoustic branch, which for
zero free-stream velocity can be approximated as

αu = −ω
√

1 − z2, (19)

where z ∈ [0,∞) is equivalent to a transverse wave number. Using this expression for αu and
working with the inequality (18) leads to the classic PSE step-size requirement

	x0 = 1

|Re[α0]| . (20)

As in PSE, PFE also has requirements regarding the stability of the spatial march. Similar to
the spatially periodic analysis [30], the spectrum from PFE is composed of the main PSE spectrum
(with wave numbers αPSE ) and modes related to the inclusion of the harmonics (wave numbers
αPSE ± nαs), as shown schematically in Fig. 1. This leads to the appearance of upstream acoustic
modes in the spectrum with wave numbers

αu = −ω
√

1 − z2 ± nαs. (21)

Thus, the requirement of (18) can now be reworked to consider the repetition of the spectrum, which
leads to a minimum step size of

	x0 = max

(
1

|Re[α0] ± nαs|
)

, (22)

with the maximum taken for −N � n � N , with N the number of harmonics considered in the
problem.

While the PFE formulation was derived for an incompressible boundary layer in Ran et al. [41],
the authors did not derive the minimum step size of the formulation in that previous work; this is
the first time that it is presented. The equation above shows that the minimum step size of PFE can
be larger than the one from PSE, depending on the shock-cell wave number. This means that the
issues from the PSE method are aggravated in PFE, which sets some limits for its applicability. It is
expected that PFE would work as well as PSE for low supersonic Mach numbers in underexpanded
jets issuing from purely convergent nozzles (which have high αs). As the Mach number is increased,
the shock-cell wave number decreases, leading to more strict step-size requirements. For example,
Table I shows the minimum step size of PFE assuming the march of a Kelvin-Helmholtz mode with
phase velocity 0.7Uj (Uj is the ideally expanded jet velocity) for N = 0, 1 and 2 and normalized
frequency St = 2πωD/Uj = 0.7. It is clear that, while 	x0 does not change much with N for
low supersonic Mach numbers, it increases substantially for higher Mj . Table I shows how the
minimum step size can be strongly affected by the presence of the acoustic branches, depending
on the position of the mode in the spectrum and the shock-cell wave number. For some cases, the
step-size restriction renders the method impractical, as will be exemplified in the next sections.
In order to mitigate the issue, the stabilization procedure described in Andersson et al. [50] was
also implemented. This relaxes the step-size restriction by replacing the dissipation from the large
implicit steps with a damping term whose magnitude is proportional to the minimum step size. One
should note that, even though this method addresses one of the issues of the spatial march, it still
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FIG. 2. Flowchart depicting the different processes undertaken to obtain shock-modulated wave packets
using PFE.

relies on the knowledge of a minimum step size and is not expected to solve all the problems with
the PSE/PFE formulations [45].

The present lower bounds were derived assuming that the destabilizing upstream modes belong
to the continuous acoustic branch. However, as will be shown in the next sections, other upstream
modes may arise in the spectrum, further restricting the minimum step size. As discrete upstream-
traveling modes arise at specific bands of frequencies in high-subsonic and supersonic jets [51,52],
additional care must be taken to avoid these modes in the spatial march.

III. MODEL PROBLEM: UNDEREXPANDED Mj = 1.086 jet

With the method outlined, we now proceed to the analysis of the results generated by PFE.
The analysis is performed for two sample cases: an Mj = 1.086 underexpanded jet issuing from a
converging nozzle and a heated Mj = 1.35 overexpanded jet issuing from a converging-diverging
nozzle (design Mach number Md = 1.5). In both cases, the mean temperature profile is obtained
using a Crocco-Busemann approximation. The radial coordinate is discretized using Chebyshev
polynomials [53] with the radial mapping proposed by Lesshafft and Huerre [54]; the number of
radial collocation points was Nr = 200 for all the cases studied herein. Boundary conditions were
implemented as in Lesshafft and Huerre [54], and the maximum radial position of the domain was
chosen as rmax/D = 50.

The overall process to obtain shock-modulated wave packets using PFE is shown in Fig. 2.
Spatial linear stability analysis is applied at the initial station of the flow to estimate the initial
solution to be marched using PSE. As described in Tam et al. [43] and Choi and Lele [55], the spatial
eigenspectrum of the linearized equations for ω = m = 0 possess a family of ductlike eigenmodes
close to the real axis. These eigenvalues have a real part similar to the solution of Pack [56], and
the shapes of the eigenfunctions are also comparable to this vortex-sheet-like model (especially
if the shear layer is thin, and the Reynolds number is high). These eigenvalues are associated with
the different shock-cell modes. For this case, the PSE spatial march captures both the variation
in spacing of the shock cells and their amplitude decay. Still, preliminary results suggest that this
variation in spacing may be better captured by using an eddy-viscosity model and by the addition
of several shock-cell modes [55]. As modes predicted using PSE have a free amplitude, the scaling
of the shock-cell structure must be defined a posteriori. Here we take advantage of the fact that the
pressure mismatch at the nozzle plane in imperfectly expanded jets is only a function of the ideally
expanded Mach number and the nozzle design Mach number. Thus, the amplitude and phase of
these modes can be obtained directly by imposing the theoretically predicted pressure mismatch at
the nozzle plane, as in Tam et al. [43]. Choosing the first shock-cell mode as the initial solution for
PSE, the mode is marched from the nozzle (x = 0) until the desired position downstream. In this
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FIG. 3. Development of the mean streamwise velocity with (bottom) and without (top) the shock-cell
structure (a) and mean velocity at the centerline (b) for the shock-containing case. The shock-containing
solution is obtained by superposing the PSE solution with the ideally expanded mean flow.

work, a spatial step of 	x = 1/kshock is used for the shock-cell computation, where kshock is the first
approximation of the shock-cell wave number obtained by Pack [56]. This step is required to obtain
the slowly varying functions that represent the shock-cell structure, which will be used in PFE. In the
PFE step, solutions are marched for N = 0 and 4, where N is the number of harmonics considered in
the problem (N = 0 is equivalent to PSE); increasing the number of harmonics beyond N = 4 does
not lead to significant changes in the resulting modes. The SPLSA eigenvalue problem is solved
using the Arnoldi method as implemented in the Matlab function eigs, which is used as input
for PFE. After the spatial march is finished, the resulting slowly varying functions (q̂ and α) are
interpolated onto a finer equispaced mesh for plotting purposes. The final modulated wave-packet
shape is obtained at this step. The step sizes chosen for PSE and PFE are given by (20) and (22),
with α0 = kshock (the shock-cell wave number from Pack [56]) and α0 = 2πSt/0.7 (which considers
a KH mode with phase velocity 0.7Uj), respectively. In all cases, KH wave packets were computed
in the Re → ∞ limit. Since all mean flows are obtained using analytical models, the mean radial
velocity was neglected in all cases studied herein [45,57].

We start with the low-supersonic underexpanded case. As in Crighton and Gaster [11], the shock-
free mean streamwise velocity is modeled as

U (x, r) = M

2

{
1 + tanh

[
a1

a2x + a3

(
0.5

r
− r

0.5

)]}
, (23)

where M = Uj/c∞ is the acoustic Mach number, and a1 = 10, a2 = 2.5, a3 = 1. Using this equiv-
alent ideally expanded mean flow, the shock-cell structure is computed using PSE, as described
in Sec. II A, setting Re = 200. This Reynolds number may appear very low; however, this value
functions as the equivalent turbulent Reynolds number for the zero-frequency equation, which is
subject to high-amplitude Reynolds stresses. These terms will effectively damp the shock cells in
the streamwise direction, affecting its variation in spacing. This value is also close the one used by
Tam et al. [43] in a similar computation. The mean streamwise velocity with and without shock
cells is shown in Fig. 3(a). For this low-supersonic case, the shock cells are very weak, and most of
their effect on the mean flow is in the potential core of the jet; the shear layer is not significantly
modified in this case. As expected, the development of the mean flow and the action of viscosity lead
to a decrease in the shock-cell amplitude further downstream, which is also highlighted in Fig. 3(b),
where the mean streamwise velocity at the centerline is shown. The growth of the shear layer shifts
the sonic line towards the centerline, shortening the distance between shock reflection points, which
leads to an increase in the shock-cell wave number. These effects were already observed in previous
works [43,55] and are highlighted here for clarity.
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FIG. 4. Eigenspectra of the truncated spatially periodic linear stability analysis for St = 0.4 and 0.7, with
N = 4. Only 500 eigenvalues are shown for each frequency.

Following the PFE method, the flow is now linearized around the resulting mean flow obtained
from the ideally expanded mean flow and the PSE solution for the shock cells. In this example
case, only axisymmetric disturbances (m = 0) will be analyzed. As mentioned earlier, the initial
step of PFE requires a SPLSA solution truncated to the number of harmonics (N) considered in the
formulation, where the wave number associated with the periodicity is defined by the wave number
of the shock-cell structure at the initial streamwise station. Figure 4 shows sample eigenspectra
for the present flow at St = 0.4 and 0.7, where similar features to those described in Nogueira
et al. [30] are observed. First, the same modes that appear in the locally parallel case are also
evident here; however, these modes now appear several times in the spectrum, with repeated modes
offset from each other by αs. This is exemplified by the evanescent acoustic branch: for both
frequencies, this branch arises at Re(α) = 0 and Re(α) = αs = 11.6, with the equivalent occurring
for the discrete upstream mode and the KH mode. As mentioned in Sec. II D, this repetition of the
spectrum leads to the stable/evanescent upstream modes being interpreted by the spatial march as
unstable downstream-traveling modes. Frequencies where the KH mode is close to the guided jet
mode are also expected to be close to the screech frequency, as shown in Nogueira et al. [30]. Due
to the presence of both downstream- and upstream-traveling waves in frequencies where absolute
instability occurs, the PFE method is not appropriate to analyze the resulting flow structures involved
in this phenomenon. Thus, these frequencies will be avoided in the present analysis.

Figure 5 shows the shapes of the KH modes considered as the initial solution of PFE for St = 0.4
and 0.7. Overall, the shapes of the solutions are similar to the ones presented in Nogueira et al. [30],
with the effects of the modulation observed mainly around the centerline. Comparing Figs. 5(a)
and 5(b), it seems that the lower frequency is more affected by modulation components associated
with higher harmonics; this is confirmed in Fig. 5(c), where the streamwise velocity fluctuations
at the centerline are shown. It is also clear that the modulation wave numbers for both frequencies
are exactly the same, which is a consequence of the ansatz used in the formulation. Figure 5 also
suggests that, even though there is a modulation for both frequencies, this modulation is fairly weak
at the initial step.

The solution shown in Fig. 5 is marched downstream using the PFE method, which allows us to
obtain the modulated wave packets supported by the shock-containing mean flow at each frequency.
Figures 6 and 7 show, respectively, streamwise velocity and pressure fields obtained using PFE for
St = 0.4 and 0.7, where both the real part (top) and absolute value (bottom) are shown to highlight
the oscillatory behavior and the modulation of the wave packets. In these figures, the first row (a,
b) depicts the total field obtained from PFE, and the subsequent rows show isolated components
q̂0 (c, d), q̂+1 (e, f), and q̂−1 (g, h). Overall, the structures are very similar to previous PSE results
(see Sinha et al. [18], for instance): the initial KH solution grows exponentially in the early stations
of the jet, then it saturates and decays as the shear layer thickens further downstream. While the
oscillatory behavior and the growth/decay of the solution are similar to KH wave packets in ideally
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(a)

(c)

(b)

FIG. 5. Spatial reconstruction of the streamwise velocity fluctuations associated with the initial perturba-
tion (KH) eigenfunctions for St = 0.4 (a) and 0.7 (b); both real part (top) and absolute value (bottom) are
shown. Absolute value of the streamwise velocity fluctuations at the centerline subtracted from its streamwise
mean (c). In all cases the imaginary part of α was neglected to highlight the effect of the modulation.

expanded jets [21], some features of the solutions are unique to PFE, and these are better seen in the
absolute value of the reconstructed fields in Figs. 6(a) and 6(b) and 7(a) and 7(b). In all cases, the
amplitude envelope of the wave packet has an oscillatory behavior, especially close to the centerline
(where the shock-cell structure has maximum amplitude). These oscillations are associated with
the modulation wave numbers included in the spatial march which, for this case, leads to the high-
wave number structures observed in the total field (due to the number of harmonics considered in
the analysis).

The wave-packet modulation can be more clearly evaluated by analyzing the structure of each
modulation component, which can be isolated from the total field in (13). The zeroth, first positive
and first negative components of the modulation are shown in Figs. 6(c)–6(h) and 7(c)–7(h). As the
modulation of the wave packet comes from the modulation wave numbers, the zeroth component
is directly comparable to an equivalent PSE solution computed around a shock-free mean flow,
possessing the same qualitative features. Comparing with the total field, it is also clear that this
component is the most energetic one, defining the shape of the final solution. Overall, the shapes of
the positive modulation components are very similar for both frequencies, with a single peak close to
the centerline and almost zero amplitude in the subsonic region of the jet. This behavior is consistent
with the hypothesis that the effect of the shock cell on the KH mode should be more evident close
to the peaks of the shocks in the simplified model. These components also follow the growth/decay
behavior of the KH mode, which agrees with the theory developed by Tam and Tanna [35]; as the
KH mode is the only structure capable of extracting energy from the mean flow, the energy growth
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FIG. 6. Streamwise velocity fields predicted by PFE for St = 0.4 (a, c, e, g) and 0.7 (b, d, f, h). Both
real part (top) and absolute value (bottom) are shown. Fields are reconstructed in space using all modulation
components and N = 4 in (a) and (b). Components q̂0 (c, d), q̂+1 (e, f), and q̂−1 (g, h) are also shown.

of the modulation wave numbers must be chained to the growth of the unstable mode. As expected,
the positive part of the modulation is associated with higher wave numbers. The spatial support of
the negative component of the modulation is similar to the positive one for St = 0.4. However, as the
wave number of this structure is given by the difference between the wave number of the KH mode
and the local wave number of the shocks, this modulation leads to structures with larger wavelength
when compared to the positive modulation. Interestingly, the negative part of the modulation for
St = 0.7 [Figs. 6(h) and 7(h)] differs from its low frequency counterpart, having a double-peak
structure. Considering that the second radial order guided jet mode is propagative at this frequency
and that the resulting shape of this modulation component is very similar to the cited mode [58], it
is possible that the presence of the neutral upstream mode in the spectrum is affecting the spatial
march, leading to the appearance of this mode for negative wave numbers, instead of the modulation
of the KH mode. This is also supported by the apparent switch from single- to double-peak structure
at the early stations of the jet, also seen in Fig. 6(h).

This sample case mimics the conditions of the Mj = 1.086 underexpanded jet analyzed in
Edgington-Mitchell et al. [32]. Due to experimental limitations, no time-resolved data could be
obtained in the cited work (as is often the case in shock-containing jets), hindering the identification
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FIG. 7. Pressure fields predicted by PFE for St = 0.4 (a, c, e, g) and 0.7 (b, d, f, h). Both real part (top)
and absolute value (bottom) are shown. Fields are reconstructed in space using all modulation components and
N = 4 in (a) and (b). Components q̂0 (c, d), q̂+1 (e, f), and q̂−1 (g, h) are also shown.

of wave packets at off-resonance frequencies. In this previous case, proper orthogonal decompo-
sition (POD) was applied to particle-image velocimetry data of the screeching jet, which allowed
for the extraction of the most energetic coherent structure associated with the resonance process.
This resonance process leads to the appearance of strongly amplified upstream waves, resulting
in flow structures whose main features, such as the strong modulation around the shear layer,
are captured by the absolute instability analysis [30]. As mentioned earlier, the presence of both
upstream- and downstream-traveling waves in the flow at the resonance condition prohibits the
application of PFE [33], and the resulting modulated wave packet close to the screech frequency
can only be analyzed as if there were no screech. With that in mind, the structure of the wave packet
for St = 0.7 also possesses a similar modulation around the centerline, suggesting that some of
the features of the modulated wave packet are preserved in the resonance condition. As mentioned
earlier, the structures of the main modulation components [Figs. 6(f) and 6(h)] are also very similar
to the wavelike structures highlighted in Edgington-Mitchell et al. [32] for St = 0.7. This may be
due to the presence of both downstream- and upstream-traveling neutral modes in the spatial march,
or simply due to the difficulty in separating the structure of the modulation from the different waves
supported by the flow.
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FIG. 8. Amplitude of the different components for St = 0.4 (a) and 0.7 (b) for r/D = 0. Ratio between
positive and negative components of the modulation [log(|p+1|/|p−1|)] for a range of frequencies and r/D = 0
(c) and x/D = 2 (d) with 	St = 0.1.

As mentioned in Sec. II D (and exemplified in Fig. 4), the PFE method is subject to the same
issues as PSE, where any stable upstream-traveling mode in the spectrum is considered as an
unstable downstream-traveling mode, which may lead to a spurious growth of these modes. This
becomes even more serious with the repetition of the spectrum in the PFE method: the spatial step
must be chosen to damp the evanescent acoustic branch at Re(α) = 0 at low frequencies, and also
its replica at Re(α) = αs at higher frequencies. Still, other modes may arise in the analysis that
could impact the spatial march. In particular, the neutral upstream acoustic branch may lead to the
inclusion of an upstream wave in the march, as shown in the previous section; since this wave is not
evanescent, this does not lead to the growth of spurious waves, but may lead to nonphysical results
due to the parabolization of the equations. In theory, the correct behavior of the upstream waves
(including their respective modulation) could only be obtained using the equations parabolized in
the opposite direction, which would march the desired mode from a given position downstream until
the nozzle. This issue with upstream waves becomes worse for frequencies at which the guided
jet mode becomes stable [51,52,58], which usually occurs at frequencies higher than the screech
frequency. In those cases, the PFE method must be further stabilized to avoid considering this mode
in the march, which also affects the resulting modulated wave packet.

This is further explored in Fig. 8. In Figs. 8(a) and 8(b), the magnitude of the central solution
and the different modulation components at the centerline are shown for St = 0.4 and 0.7. For
St = 0.4, the amplitude of the positive modulation |p+1| is higher than the negative one |p−1| at all
streamwise stations. That is not the case for St = 0.7: even though |p+1| is dominant very close to
the nozzle, |p−1| increases substantially after reaching low amplitudes; at this point, the source of
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this change in shape of the negative modulation is unclear. It is possible that the presence of the
neutral guided jet mode at this frequency may influence the shape of the final solution, while the
spatial march is kept stable due to the stabilization procedure [50]. Figure 8(c) shows the logarithm
of the relative magnitude of positive and negative modulation [log(|p+1|/|p−1|)] at the centerline
for several frequencies and streamwise stations. Even though these wave components decay quite
strongly further downstream, they never reach zero amplitudes in the domain studied herein. In
Fig. 8(c), red and blue regions should be interpreted as dominance of the positive and negative
modulation components, respectively. This result shows the dominance of the positive modulation
up to St = 0.6, supporting the hypothesis that the neutral guided jet mode (which is propagative for
St > 0.67 at the initial station x/D = 0) starts to influence the spatial march at higher frequencies.
For the present case, this wave becomes stable at the initial streamwise station for St = 0.8; thus,
for that frequency, the damping factor of Andersson et al. [50] had to be further increased to avoid
a dominance of the stable guided jet mode. Overall, the radial structure of the negative modulation
component is still very similar to the one for St = 0.7, but its streamwise behavior is less clear. Due
to the underlying limitations of PFE, there is no guarantee that the results at these high frequencies
will correspond to the physics of the problem. A similar trend is observed in Fig. 8(d), where
the radial behavior of the modulation ratio is shown for several frequencies: for low St, |p+1|
dominates over |p−1| until positions close to the shear layer, suggesting that positive modulation
decays faster in the radial direction. For St � 0.7, a red peak which could be associated with the
phase change of the neutral upstream wave is observed around r/D = 0.2. Again, it is possible
that the negative modulation for these high frequency cases is contaminated by stable upstream
waves, which may change its radial shape. However, a confirmation of the source of this change
in spatial support of the negative part of the modulation can only be performed if the upstream
modes are completely removed from the spatial march, which can be attained by using a one-way
Navier-Stokes formulation [59].

In summary, these results suggest that PFE is able to capture some of the main features associated
with wave-packet modulation, providing a predictive model to be applied to shock-containing jets.
However, one should be cautious when applying the method for high frequencies, especially when
the shock-cell wave number is small (as is usually the case in highly underexpanded jets). With that
in mind, we can now proceed to a validation case, where the PFE results will be compared to SPOD
modes of an overexpanded jet.

IV. VALIDATION: OVEREXPANDED Mj = 1.35 jet

Next, we explore a large-eddy simulation database similar to the one described in Brès et al.
[60] generated using the compressible flow solver “Charles,” developed by Cascade Technologies.
It comprises an overexpanded jet issuing from a round converging-diverging nozzle with design
Mach number Md = 1.5, operating at an ideally expanded jet Mach number Mj = 1.35 and nozzle
temperature ratio NTR = 2.53. The main differences compared to this previous simulation are the
Reynolds number (Re j = 760 000), the presence of wall modeling inside the nozzle, and a near-wall
adaptive mesh refinement (see Brès et al. [61]). The total simulation time was 	tc∞/D = 500, and
fields were saved at a sampling frequency of f D/c∞ = 10, resulting in 5000 snapshots. The data are
interpolated onto a structured cylindrical grid with dimensions Nx × Nr × Nθ = 698 × 136 × 128,
ranging 0 � x/D � 30, 0 � r/D � 6, and an azimuthal decomposition is performed using n f f t,θ =
128. Further details about the LES simulation can be found in Brès et al. [60].

As in several previous works [15,17,18,21,62], PFE results will be compared to the most en-
ergetic structures extracted from the flow using spectral proper orthogonal decomposition (SPOD).
Following Towne et al. [16], these structures are obtained by solving the integral eigenvalue problem

∫
�

S(x, x′, r, r′, m, ω)ψ(x′, r′, m, ω)r′ dr′ dx′ = σ (m, ω)ψ(x, r, m, ω), (24)
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FIG. 9. First six spectral proper orthogonal decomposition eigenvalues as function of Strouhal number.

where S is the two-point cross-spectral density (CSD) tensor of flow fluctuations (which can be
built using any of the available variables), and � is the computational domain. Solution of (24)
leads to real, positive eigenvalues σ (which are associated with the relative energy of each mode),
and orthogonal eigenfunctions ψ. Thus, the most energetic structures of the jet are associated with
the first eigenvalue σ1, and its respective eigenfunction ψ1 for each frequency. The CSD tensor is
computed for a reduced domain (0 � x/D � 10, 0 � r/D � 2) using n f f t = 512 and 75% overlap,
leading to 36 blocks in the Welch method, and a discretization in frequency of 	St ≈ 0.01. In the
present case, we will focus on helical (m = 1) pressure disturbances.

The SPOD eigenspectrum is shown in Fig. 9. Unlike subsonic and ideally expanded supersonic
jets [21], the spectrum displays a sharp peak around St = 0.26, associated with the screech tone.
This tone is a direct consequence of an absolute instability mechanism induced by the shock-cell
periodicity, where flow disturbances grow in both downstream and upstream directions [30]. Since
PFE can only obtain downstream-traveling waves, the flow structure associated with this tone will
not be further analyzed herein.

Following the same methodology described in Sec. II, we define a realistic flow model as an
input for both PSE and PFE. In this case, the equivalent ideally expanded streamwise velocity is
based on the expression proposed by Sandham and Salgado [63], which is given by

U (x, r) = M

2

[
tanh

(
r + a(x)

δ(x)

)
− tanh

(
r − a(x)

δ(x)

)]
, (25)

where

a(x) = Dj
[
0.59 + 0.09 tanh

(√
x/κ − 2.9

)]
(26)

and

δ(x) = 7 + 70(x/κ ) + 0.15(x/κ )4

1000 + (x/κ )3
. (27)

The coefficients in (27) were chosen to provide a similar development of the sonic line when
compared to the LES (as zero-frequency PSE results are very sensitive to that parameter, especially
concerning the variation in shock-cell spacing further downstream). The value κ = 1.475 was
obtained by means of a least-squares-based fit of the mean streamwise velocity at the centerline.
The ideally expanded diameter Dj (normalized by D) is obtained as in Tam et al. [43]. As in
the previous case, the temperature and density profiles were obtained using a Crocco-Busemann
approximation and the ideal gas law. In the absence of a model for the shock-free mean radial
velocity, this component was also neglected, and the Reynolds number for the PSE march was
defined as Re = 175 (which is considered to be equivalent to a turbulent Reynolds number for the
mean flow equation).
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FIG. 10. Mean streamwise velocity computed from the LES (top) and by a superposition of a modeled ide-
ally expanded flow and the shock-cell structure predicted using zero-frequency PSE (bottom) (a). Comparison
between the mean streamwise velocity at the centerline from LES and the present method (b).

The resulting mean streamwise velocity predicted from zero-frequency PSE is compared to the
LES results in Fig. 10. As shown in Fig. 10(a), the overall behavior of the mean flow is well captured
by the model, especially concerning the shock cells. The shear layer from the LES is thicker at some
streamwise stations, but the sonic lines for the two cases are comparable, which led to favorable
agreement for the shock cells further downstream. The PSE is unable to account for the Mach
reflection near the centerline of the first shock cell, leading to an overprediction in the streamwise
velocity. However, both the amplitude and spacing of subsequent shock cells is predicted well,
in line with the results of Harper-Bourne and Fisher [34]. This is confirmed in Fig. 10(b), where
the mean streamwise velocities at the centerline are compared. PSE seems to capture the general
behavior of the shock cell, including its amplitude, until about x/D = 6; after that, this structure is
strongly damped in the LES, an effect that is not captured by the model. Considering the differences
in the mean flow characteristics, the absence of a streamwise varying turbulent viscosity, and that
only a single shock-cell mode is included in the analysis, these results can be considered as a good
first approximation of the shock-cell train in this turbulent jet. Better agreement with the simulation
data (including the sharper changes associated with the shocks) can be obtained if more modes are
included in the analysis [43,55]. For the expansion conditions of the present jet, Pack [56] predicts
a shock-cell wave number of kshockD = 5.3, which is significantly smaller than the case studied in
the previous section. Thus, it is expected that PFE may struggle to produce good predictions at
mid-high frequencies, since the range of frequencies where the KH mode is far from any upstream
mode in the PFE eigenspectrum is rather small. Furthermore, since only a single shock-cell mode is
included in the mean flow computation, the current PFE results will only consider the modulation
associated with that specific mode. Higher order shock-cell modes, which are known to play an
effect on BBSAN [40] are not included, even though they may be present in the SPOD modes.

The amplitude scaling of the PFE results is not as straightforward as the zero-frequency PSE. It
is also more involved compared to the scaling for shock-free mean flows; the smoothness of the so-
lution for ideally expanded jets allows one to obtain their amplitude using experimental/simulation
data at a given point of the flow (see Gudmundsson and Colonius [15], Cavalieri et al. [62],
for instance). In contrast, the final PFE solutions are not smooth (even though each modulation
component is); they are composed by several modulation wave numbers, which leads to final modes
that have fast variations in the streamwise direction after spatial reconstruction. For that reason, a
scaling using a single point in the flow may hinder the comparison between PFE and SPOD, as any
small mismatch in the phase of the modulation components at a given upstream position may lead
to large differences in the amplitude of the final mode at positions further downstream. Here both
SPOD and PFE modes are scaled to have the same maximum amplitude. Even though this scaling
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FIG. 11. Comparison between leading SPOD modes from LES (top) and the flow structure predicted by
PFE (bottom) using N = 4 and several frequencies. Absolute value of the modes are shown for St = 0.19 (a),
0.4 (b), 0.74 (c), and 0.91 (d).

is not as robust as the one used for shock-free jets, it is sufficient for a comparison of wave-packet
shapes.

A comparison between the first SPOD mode from LES and the wave packets predicted using PFE
is shown in Fig. 11 (absolute value) and Fig. 12 (real part), for four sample frequencies (St = 0.19,
0.4, 0.74 and 0.91, chosen as to avoid the cases where the KH mode is close to upstream waves in
the spectrum). For this case, given the step-size restrictions and the repetition of the spectrum, the
lowest frequency (St = 0.19) is expected to provide the most favourable comparison, as no upstream
waves strongly affect the spatial march. For this frequency, the PFE captures the overall behavior of
the amplitude envelope, which extends until the end of the domain. While the modes do not seem to
capture the modulation particularly well at the early stations of the jet, it performs very well closer
to the peak of the KH mode, especially near the centerline (where the shocks are strongest). The
three other frequencies are higher than the screech tone, and will potentially be more affected by

FIG. 12. Comparison between leading SPOD modes from LES (top) and the flow structure predicted by
PFE (bottom) using N = 4 and several frequencies. Real part of the modes are shown for St = 0.19 (a), 0.4
(b), 0.74 (c), and 0.91 (d).
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FIG. 13. Absolute value of leading SPOD modes from LES compared to PFE (N = 4) and PSE results for
several frequencies. Magnitude of the modes extracted at r/D = 0.1 for St = 0.19 (a), 0.4 (b), 0.74 (c), and
0.91 (d). All curves are normalized by their maximum.

upstream modes. Nevertheless, the overall envelope length is very similar for all cases, and PFE
also manages to capture some key features of the modulation, including the oscillations close to the
centerline. For St = 0.4, the SPOD mode has a clear standing wave pattern, suggesting the presence
of strong upstream waves in the flow; obviously, PFE is not able to capture these waves, and the
modulation around the shear layer is underpredicted as a result. A similar behavior is observed for
St = 0.74, where a modulation due to upstream acoustic waves is also observed in the outer part of
the shear layer. For St = 0.91, multiple acoustic beams are identified in both SPOD and PFE (better
seen in Fig. 12), with the latter being modulated by the presence of vertical waves in the flow (again,
due to the proximity of the KH mode to the evanescent acoustic branch). These acoustic waves are
damped in the PFE results due to the stabilization methods intrinsic to the formulation, as explained
in Towne et al. [45]. As in previous cases [17], a second structure is observed further downstream
for the highest frequency in the SPOD, which is not captured by the present model.

The real part of both SPOD and model results are shown in Fig. 12, where the wavelengths of the
structures can be compared. As mentioned in Sinha et al. [18], PSE can predict moderately different
wavelengths due to its normalization condition, and this is also shown to occur for PFE (which
relies on the same condition). However, PFE still manages to predict the dominant wave numbers of
these structures, especially for the lowest frequency. The presence of higher wave number structures
at St = 0.19 is also clear in Fig. 12 for both PFE and SPOD, which is an effect of the strong
modulation for this case. The radial structures of both the model and the SPOD modes are also in
good agreement (similar to PSE) for all frequencies. Acoustic waves are more clearly observed in the
near field of the jet for St = 0.74 and 0.91, but these are poorly predicted by the PFE, as highlighted
earlier. Thus, while the present analysis may be able to predict the modulation characteristics of the
hydrodynamic field, the method may not be suitable for the analysis of the near acoustic field. Due
to the absence of upstream modes close to the KH mode, PSE may actually perform better in the
direct prediction of the downstream noise generated by Mach wave radiation. Some sample results
of PSE using the shock-containing mean flow from the LES as input are shown in Appendix B.

Figure 11 suggests that, in most cases, the PFE manages to reasonably approximate the mod-
ulation of wave packets closer to the centerline. This is confirmed in Fig. 13, where the absolute
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FIG. 14. Absolute value of leading SPOD modes from LES compared to PFE (N = 4) and PSE results for
several frequencies. Magnitude of the modes extracted at r/D = 0.7 for St = 0.19 (a), 0.4 (b), 0.74 (c), and
0.91 (d). All curves are normalized by their maximum.

value of the modes predicted from PFE are compared to SPOD modes at r/D = 0.1. Wave-packet
shapes predicted by PSE computations using the same ideally expanded mean flow (without shocks)
are also plotted for reference. The positions of the peaks in the modulated wave packets are in
fair agreement with the SPOD in most cases. For lower frequencies, these peaks are either in the
same position (as in most streamwise stations for St = 0.19) or shifted slightly downstream. This
shift may be due to the difficulty of PSE (and PFE) in predicting the exact wave numbers of the
structures; since the modulation is obtained in the model by constructive/destructive interference of
the wavelike structures related to the different harmonics, a slight shift in the wave numbers of these
structures will lead to a mismatch in the position of the peaks in the reconstructed wave packet.
The prediction of these peaks is slightly improved for higher frequencies, as shown in Figs. 11(c)
and 11(d), where the bulk of the modulation seems to be captured. Keeping in mind that only the
modulation associated with the first shock-cell mode is represented in PFE, an overall qualitative
agreement is observed between model and SPOD. It is also clear that PFE outperforms PSE in
the prediction of the envelope of these coherent structures, especially for higher frequencies. For
those cases, PSE consistently predicts wave packets with a faster downstream decay. As PFE models
the energy flux between different wave numbers due to consideration of quasiperiodicity, it is
possible that this interaction induces a slower decay of the KH mode for those high frequencies.
Considering the good agreement between PSE and SPOD modes for ideally expanded jets shown
in Sinha et al. [18], this also suggests that the presence of a shock-cell structure is the cause for the
increase of the wave-packet length for this case, and that PFE is able to capture such a mechanism.

Since the model struggles to predict the near acoustic field of shock-containing jets, the
agreement for higher radial positions deteriorates, especially for higher frequencies (where strong
Mach-wave radiation is observed). This is shown in Fig. 14, where r/D = 0.7 is chosen. At this
position, the model still seems to capture the overall growth of the wave packet in a similar fashion
to PSE for low frequencies, with a reduced modulation effect. In particular, the standing wave
pattern is absent from the model for St = 0.4 for reasons already highlighted. The modulation is
more strongly captured at the higher frequencies, where peaks in the envelope of the structure are
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FIG. 15. Logarithm of the absolute value of leading SPOD modes from LES compared to PFE (N = 4)
and PSE results for several frequencies in the wave-number domain. Magnitude of the modes extracted at
r/D = 0.1 for St = 0.19 (a), 0.4 (b), 0.74 (c), and 0.91 (d). Dotted lines indicate the acoustic wave numbers.
All curves are normalized by their maximum.

comparable to SPOD modes. A very good agreement for St = 0.91 is observed at this position,
despite the inability of the model to correctly capture acoustic waves.

To evaluate the ability of PFE to capture the spectral energy content of the resulting wave packets,
a comparison with SPOD modes in the wave-number domain is shown in Fig. 15. Since results were
generated for x/D � 10, the spatial Fourier transforms may be contaminated by domain truncation;
a Hann window was applied to both SPOD and PFE modes to minimise these effects. For all
frequencies, PSE performs reasonably well in capturing the peak wave number of wave packets
in this flow, but other energetic wave numbers observed in the SPOD modes are suppressed due to
the absence of a shock-cell structure and the PSE regularization [45]. The energy of the PSE results
at negative wave numbers (responsible for upstream noise radiation) is several orders of magnitude
lower than the peak for low St, and almost negligible for higher frequencies. While not perfectly
aligned, the PFE wave-number spectra bear several similarities with the SPOD spectra, including
the presence of peaks at similar wave numbers. The absence of upstream waves in the PFE leads
to a less energetic spectrum for negative wave numbers, especially for higher frequencies. Still,
both PFE and SPOD have significant energy content at propagative wave numbers (indicated by the
dotted lines in Fig. 15), suggesting that propagation of PFE wave packets to the far-field using an
acoustic analogy [64] may lead to the correct acoustic directivity [4] and that wave-packet-shock
modulation is the dominant source of BBSAN.

Flow structures coming from SPOD have no restriction about which kind of waves will be
present in the flow; in fact, it is expected that strong upstream acoustic waves are present in this
flow for mid-high frequencies (where BBSAN is active), such as the ones analyzed herein. These
waves are the source of the modulation of the resulting modes at r/D > 1, which is absent in the
PFE solution; this is one of the causes of the disparity observed between PFE and SPOD. This
is also highlighted in Fig. 15, where it is clear that PFE struggles to capture the negative part of
the spatial spectrum due to its inability to correctly represent upstream-traveling waves in the flow.
There is no practical way of separating the contribution of upstream waves and the modulation
associated with negative wave numbers in SPOD, complicating fair comparison of wave packets
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FIG. 16. Comparison between leading SPOD modes from LES (top) and the flow structure predicted by
PFE (bottom) using N = 4 and several frequencies. Absolute value of the modes are shown for St = 0.19 (a),
0.4 (b), 0.74 (c), and 0.91 (d). Only positive wave numbers are allowed in the SPOD, and the PFE reconstruction
is performed using nonnegative components.

from PFE and SPOD. One way to approximate that separation is to neglect the negative part of
the spectrum altogether, and evaluate if the positive part of the spectrum is well represented in the
physical domain. To analyze that, SPOD modes are next filtered to consider only positive wave
numbers (using a rectangular bandpass filter), and PFE modes were reconstructed using only their
nonnegative components (in this case, q̂0 and q̂+n, with n = 1, 2, 3, 4). One should keep in mind
that even though the negative wave numbers are not considered in this comparison directly, their
effect on the central and modulation wave numbers will still be present; for instance, q̂0 is still
affected by q̂−1 in the solution, as all components are marched together. This filtering process will
only minimise the errors related to the poor prediction of the negative part of the modulation in
the reconstructed mode at higher frequencies. Figures 16 and 17 show the comparison between

FIG. 17. Comparison between leading SPOD modes from LES (top) and the flow structure predicted by
PFE (bottom) using N = 4 and several frequencies. Real part of the modes are shown for St = 0.19 (a), 0.4
(b), 0.74 (c), and 0.91 (d). Only positive wave numbers are allowed in the SPOD, and the PFE reconstruction
is performed using nonnegative components.
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FIG. 18. Absolute value of leading SPOD modes from LES compared to PFE (N = 4) and PSE results for
several frequencies. Magnitude of the modes extracted at r/D = 0.1 for St = 0.19 (a), 0.4 (b), 0.74 (c), and
0.91 (d). Only positive wave numbers are allowed in the SPOD, and the PFE reconstruction is performed using
nonnegative components. All curves are normalized by their maximum.

filtered SPOD and nonnegative components of PFE. Compared to Figs. 11 and 12, the modulation
of the SPOD modes seems consistently weaker for all frequencies, suggesting that the negative wave
numbers are responsible for a stronger modulation effect than their positive counterparts, or that the
presence of upstream waves is responsible for a substantial part of the observed modulation; at this
point, it is impossible to separate these two effects. PFE modes are also less strongly modulated,
and most of the observed oscillations are concentrated around the centerline in Fig. 11. The filter
is shown to improve the overall agreement, which can also be seen in the radial structure and
wavelengths of the wave packet, shown in Fig. 17. The amplitude of the modulations are compared
for r/D = 0.1 in Fig. 18. Without the presence of the negative component of the modulation, the
agreement between PFE and filtered SPOD improves, especially at the early stations of the jet (see
Fig. 13, particularly the position of the peaks). Due to the presence of higher harmonics, the model
is able to predict the position of both medium and large peaks, as smaller oscillations are associated
with higher-order modulation components.

These results show that, despite its limitations, PFE can be used as a prediction tool for shock-
containing jets. At this point, it is worth highlighting all the modeling steps taken to obtain these
results: (1) a consideration of a mean flow that is not exactly what is observed in the LES; (2) the
approximation of a train of shock cells (which are related to steep variations of fluid properties)
as a ductlike mode predicted using a linear stability model; (3) the truncation of the solution to
a limited number of harmonics (only the modulation associated with the leading shock-cell mode
is computed); (4) the absence of turbulent forcing/viscosity in the flow, with coherent structures
being predicted using a linear model; and (5) the application of the model to a case where it is not
supposed to perform ideally. Despite all these steps, many features of the modulated wave packets
are captured by this severely simplified model. As in PSE, the PFE formulation does not need any
input from experiments, except for an equivalent ideally expanded flow (which can be modeled as
in the present analysis). This makes the method suitable for the prediction of coherent structures
where no time-resolved data are available, as is the case in the vast majority of shock-containing
jets.

074608-23



PETRÔNIO A. S. NOGUEIRA et al.

V. CONCLUSIONS

In this work, we propose a formulation to predict modulated coherent structures in shock-
containing jets based on the method developed by Ran et al. [41]. First, the shock-cell structure
for a given flow condition is approximated using the parabolized stability equations (PSE) applied
to a modeled ideally expanded jet. This solution is then used to define a shock-containing mean
flow, around which the Navier-Stokes equations are linearized. By means of a Floquet ansatz, a set
of equations is obtained, in which the positive and negative components of the modulation (related to
the local shock-cell wave number) are considered in the response vector. The final equations have the
same shape as in PSE and are solved in the same fashion, rendering the name parabolized Floquet
equations (PFE) [41]. We show that the formulation constitutes the quasiperiodic counterpart of
PSE, therefore bearing several similarities. It is also shown that PFE is more restrictive than PSE
due to the repetition of the modes in the eigenspectrum of the linear operators (as also noted by
Nogueira et al. [30]), potentially requiring substantially larger spatial steps for the march, depending
on the flow conditions and the frequency of analysis.

The method was applied to two cases. The first considered an underexpanded jet at low super-
sonic Mach number, modeled as a canonical slowly diverging flow. The solution procedure was
shown in detail for two frequencies, which included a description of the process of obtaining
the initial solution to be marched downstream. The modulation characteristics of the resulting
axisymmetric wave packet were explored, and the initial results suggested that the modulation can
be very sensitive to the different modes supported by the flow at a given frequency. Overall, some
characteristics of the flow structures obtained using PFE were similar to results in the literature,
providing a first validation of the method. After that, the same methodology was applied to predict
the most energetic (nonscreeching) helical structures from an LES of an overexpanded jet. For that,
a slightly more complex mean flow model was chosen to better match the LES data. Using such
a model, PSE was able to predict the overall behavior of the shock-cell structure, especially its
leading wave number and its variation in spacing further downstream. Using this solution, PFE
modes were computed and compared to pressure SPOD modes for azimuthal wave number m = 1.
Qualitative agreement was obtained, especially closer to the centerline of the jet, suggesting that the
method is able to capture the underlying physical mechanisms for the generation of these structures:
the extraction of energy from the mean flow by the Kelvin-Helmholtz mode, and a redistribution
of energy to modulation wave numbers due to the interaction with the shock-cell structure, as
predicted by Tam and Tanna [35]. The model outperforms the classic PSE method, providing a
good first approximation of the wave packets supported by the flow, despite its several limitations.
No experimental input is needed for the predictions of wave-packet shapes, but a representative
ideally expanded mean flow must be provided. While zero-frequency PSE is used to predict
the overall behavior of the shock-cell structure, a decomposition of an experimentally obtained
shock-containing mean flow following the same structure as in the present case could also be used
as input in the analysis. The model also provides an alternative to global methods: as a spatial
marching method, PFE demands less memory and produces results much faster than global resolvent
analysis, especially considering the high Reynolds numbers of these flows. At this point, it is unclear
how nonlinear PSE would perform compared to linear PFE for shock-containing jets, especially
considering that no such formulation is available in the literature for this case. However, as the
present PFE formulation does not focus on the interaction between modes at different frequencies,
nonlinear PSE may not be the appropriate tool to study these flows. Furthermore, as highlighted by
Ran et al. [41], PFE avoids the complexity induced by the computation of the nonlinear terms in the
physical space, making it a simpler approach to these problems.

The present framework opens avenues for modeling and control of shock-containing jets. The
modulated wave-packet model can be used for BBSAN source modeling [40] and similar installed
jet noise [65] predictions for generic flow conditions. It can also be used as input for real-time flow
predictions that could be applied in designing control strategies for noise reduction [66]. Finally, the
general Floquet formulation used to obtain the PFE could also be used to build other high-fidelity
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prediction models, such as the one-way Navier-Stokes equations [59,67]. The explicit filtering of
upstream waves in the one-way method has the potential to solve most of the issues of the present
formulation, allowing for a clear separation between upstream waves and negative wave-number
modulation.
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APPENDIX A: LINEAR OPERATORS FOR THE PARABOLIZED FLOQUET EQUATIONS

We can exemplify how the PFE solution is obtained by working with the linearized continuity
equation. Neglecting the mean radial velocity, this equation can be written as

−iων + ū
∂ν

∂x
+ u

∂ν̄

∂x
+ v

∂ν̄

∂r
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∂ ū

∂x
− ν̄

(
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+ im
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w

)
= 0. (A1)

Inserting (13) (using N = 1) into (A1) and ignoring all the terms in �±2
s , we can write the

continuity equation as a function of the different modulation components. In other formulations,
such as nonlinear PSE (or even SPLSA [30]), the explicit dependence on a single wave number αs

allows us to write three different equations from the equation above: one dependent on �0
s = 1, one

on �s and another one on �∗
s = �−1

s . The same argument is used here, by considering the collection
to be performed at each streamwise station (since the shock-cell wave number is slowly varying,
this approximation should still be representative of the phenomenon). Using that assumption, we
can separate the evolution of disturbances related to the different powers of �s. Namely, for �0
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and equivalently for �∗
s .

The symmetry of the equations above becomes apparent by comparing the terms inside square
brackets with (A1), which helps us to build the equivalent system. By applying the same process to
the Navier-Stokes and energy equations, we obtain
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which is the explicit form of system (14) for N = 1, with
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The operators L0, Ls, Ls∗ , B0, Bs, and Bs∗ are given by
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r ν̄s	 0 0 0

0 0 ν̄s(	 − 1
r2 ) − 2imν̄s

r2 0
0 0 2imν̄s

r2 ν̄s(	 − 1
r2 ) 0

γ

Pr ( p̄s	 + ∂2
r p̄s + ∂r p̄s

r ) 0 0 0 γ

Pr (ν̄s	 + ∂2
r ν̄s + ∂r ν̄s

r )

⎤
⎥⎥⎥⎥⎦

074608-26



WAVEPACKET MODULATION IN SHOCK-CONTAINING …
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B0 =

⎡
⎢⎢⎢⎣
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where Dr is the radial differential operator, ∂x,r indicates streamwise and radial derivatives of the
mean flow quantities (including the shock-cell components) and γ is the specific heat ratio. One
should also note that, for the PSE case, the operators L and B reduce to L0 and B0. The operator 	

is given by

	 = D2
r + 1

r
Dr − m2

r2
. (A12)

As usual in PSE formulations, the second streamwise derivatives of flow disturbances were
ignored. The second streamwise derivatives of the ideally expanded mean flow and of the slowly
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FIG. 19. Pressure fields predicted by PSE using the LES mean flow. Both real part (top) and absolute value
(bottom) are shown for St = 0.19 (a), 0.4 (b), 0.74 (c), and 0.91 (d).

varying part of the shock-cell structure were also neglected, but all the other terms were retained,
including the terms associated with the second derivative of the oscillatory part of the mean flow.
The tridiagonal structure of the operators above remain the same for the N > 1 cases; specifically,
the operator Bst for arbitrary N is given by
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...
. . .

...
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O O O · · · (N − 2)Bs∗ (N − 1)B0 NBs
O O O · · · O (N − 1)Bs∗ NB0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A13)

APPENDIX B: PSE RESULTS FOR SHOCK-CONTAINING MEAN FLOW

Application of PSE requires a slowly varying mean flow and that the resulting functions q̂
and α are also slowly varying. While these conditions can be satisfied in perfectly expanded jets,
shock-containing jet are usually considered to break these hypotheses a priori. The fast streamwise
variation of these flows prohibits the coarse spatial marching of PSE, and results are more subject
to numerical instability due to the sharp radial variations of the mean velocity caused by the shocks.
Here we ignore these assumptions and evaluate the PSE solution when the shock-containing mean
flow shown in Fig. 10(a) is given as input. Note that the streamwise variation of the mean flow is
not small, especially due to the presence of the shock-cell structure and of the small Mach disk
close to the nozzle. Sample pressure fields for the same frequencies studied in this work are shown
in Fig. 19. Interestingly, some modulation is observed in these wave packets, mainly due to small
local variations in the wave number α. Still, since PSE only supports a single peak wave number
(and small streamwise variations of it), this modulation is not comparable with the SPOD results,
which are severely affected by the shock cells. Overall, these results bear more resemblance to
the shock-free PSE, with smooth variations of the resulting modes in the streamwise direction.
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That said, Fig. 19 shows that PSE captures the near-field sound generated by the wave packets at
these frequencies. As no quasiperiodicity is considered in this formulation, the distance between the
KH and upstream modes in the eigenspectrum for higher frequencies is large, allowing for smaller
spatial steps and, as a result, for a better representation of the sound generation mechanism.

[1] E. Mollo-Christensen, Jet noise and shear flow instability seen from an experimenter’s viewpoint (Sim-
ilarity laws for jet noise and shear flow instability as suggested by experiments), J. Appl. Mech. 34, 1
(1967).

[2] S. C. Crow and F. H. Champagne, Orderly structure in jet turbulence, J. Fluid Mech. 48, 547 (1971).
[3] A. V. G. Cavalieri, P. Jordan, T. Colonius, and Y. Gervais, Axisymmetric superdirectivity in subsonic jets,

J. Fluid Mech. 704, 388 (2012).
[4] P. Jordan and T. Colonius, Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech. 45, 173(2013).
[5] A. V. G. Cavalieri, P. Jordan, and L. Lesshafft, Wave-packet models for jet dynamics and sound radiation,

Appl. Mech. Rev. 71, 020802 (2019).
[6] A. Michalke, On the inviscid instability of the hyperbolic tangent velocity profile, J. Fluid Mech. 19, 543

(1964).
[7] A. Michalke, On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech. 23, 521 (1965).
[8] G. L. Brown and A. Roshko, On density effects and large structure in turbulent mixing layers, J. Fluid

Mech. 64, 775 (1974).
[9] A. Michalke, Instabilitaet eines kompressiblen runden Freistrahis unter Beruecksichtigung des Ein-

flusses der Strahigrenzschichtdicke (instability of a compressible circular jet considering the influence
of the thickness of the jet boundary layer), DEUTSCHE FORSCHUNGS-UND VERSUCHSANSTALT
FUER LUFT-UND RAUMFAHRT EV BERLIN (West Germany, 1971), https://apps.dtic.mil/sti/citations/
AD0739069.

[10] G. E. Mattingly and C. C. Chang, Unstable waves on an axisymmetric jet column, J. Fluid Mech. 65, 541
(1974).

[11] D. G. Crighton and M. Gaster, Stability of slowly diverging jet flow, J. Fluid Mech. 77, 397 (1976).
[12] F. Bertolotti and T. Herbert, Analysis of the linear stability of compressible boundary layers using the

PSE, Theor. Comput. Fluid Dyn. 3, 117 (1991).
[13] T. Herbert, Parabolized stability equations, Spec. Course Progr. Transition Modell. (AGARD) 793, 1

(1994).
[14] T. Herbert, Parabolized stability equations, Annu. Rev. Fluid Mech. 29, 245 (1997).
[15] K. Gudmundsson and T. Colonius, Instability wave models for the near-field fluctuations of turbulent jets,

J. Fluid Mech. 689, 97 (2011).
[16] A. Towne, O. T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship

to dynamic mode decomposition and resolvent analysis, J. Fluid Mech. 847, 821 (2018).
[17] K. Sasaki, A. V. G. Cavalieri, P. Jordan, O. T. Schmidt, T. Colonius, and G. A. Brès, High-frequency

wavepackets in turbulent jets, J. Fluid Mech. 830, R2 (2017).
[18] A. Sinha, D. Rodríguez, G. A. Brès, and T. Colonius, Wavepacket models for supersonic jet noise, J. Fluid

Mech. 742, 71 (2014).
[19] A. Sinha, K. Gudmundsson, H. Xia, and T. Colonius, Parabolized stability analysis of jets from serrated

nozzles, J. Fluid Mech. 789, 36 (2016).
[20] B. J. McKeon and A. S. Sharma, A critical-layer framework for turbulent pipe flow, J. Fluid Mech. 658,

336 (2010).
[21] O. T. Schmidt, A. Towne, G. Rigas, T. Colonius, and G. A. Brès, Spectral analysis of jet turbulence,

J. Fluid Mech. 855, 953 (2018).
[22] L. Lesshafft, O. Semeraro, V. Jaunet, A. V. G. Cavalieri, and P. Jordan, Resolvent-based modeling of

coherent wave packets in a turbulent jet, Phys. Rev. Fluids 4, 063901 (2019).

074608-29

https://doi.org/10.1115/1.3607624
https://doi.org/10.1017/S0022112071001745
https://doi.org/10.1017/jfm.2012.247
https://doi.org/10.1146/annurev-fluid-011212-140756
https://doi.org/10.1115/1.4042736
https://doi.org/10.1017/S0022112064000908
https://doi.org/10.1017/S0022112065001520
https://doi.org/10.1017/S002211207400190X
https://apps.dtic.mil/sti/citations/AD0739069
https://doi.org/10.1017/S0022112074001534
https://doi.org/10.1017/S0022112076002176
https://doi.org/10.1007/BF00271620
https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1017/jfm.2011.401
https://doi.org/10.1017/jfm.2018.283
https://doi.org/10.1017/jfm.2017.659
https://doi.org/10.1017/jfm.2013.660
https://doi.org/10.1017/jfm.2015.719
https://doi.org/10.1017/S002211201000176X
https://doi.org/10.1017/jfm.2018.675
https://doi.org/10.1103/PhysRevFluids.4.063901


PETRÔNIO A. S. NOGUEIRA et al.

[23] E. Pickering, G. Rigas, P. A. S. Nogueira, A. V. G. Cavalieri, O. T. Schmidt, and T. Colonius, Lift-up,
Kelvin–Helmholtz and Orr mechanisms in turbulent jets, J. Fluid Mech. 896, A2 (2020).

[24] P. A. S. Nogueira, A. V. G. Cavalieri, P. Jordan, and V. Jaunet, Large-scale streaky structures in turbulent
jets, J. Fluid Mech. 873, 211 (2019).

[25] L. I. Abreu, A. V. G. Cavalieri, P. Schlatter, R. Vinuesa, and D. S. Henningson, Spectral proper orthogonal
decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows, J. Fluid
Mech. 900, A11 (2020).

[26] P. A. S. Nogueira, P. Morra, E. Martini, A. V. G. Cavalieri, and D. S. Henningson, Forcing statistics in
resolvent analysis: Application in minimal turbulent Couette flow, J. Fluid Mech. 908, A32 (2021).

[27] P. Morra, P. A. S. Nogueira, A. V. G. Cavalieri, and D. S. Henningson, The colour of forcing statistics in
resolvent analyses of turbulent channel flows, J. Fluid Mech. 907, A24 (2021).

[28] G. Raman, Advances in understanding supersonic jet screech: Review and perspective, Prog. Aerosp. Sci.
34, 45 (1998).

[29] D. Edgington-Mitchell, Aeroacoustic resonance and self-excitation in screeching and impinging super-
sonic jets—A review, Int. J. Aeroacoust. 18, 118 (2019).

[30] P. A. Nogueira, P. Jordan, V. Jaunet, A. V. Cavalieri, A. Towne, and D. Edgington-Mitchell, Absolute
instability in shock-containing jets, J. Fluid Mech. 930, A10 (2022).

[31] S. Beneddine, C. Mettot, and D. Sipp, Global stability analysis of underexpanded screeching jets, Eur. J.
Mech. B 49, 392 (2015).

[32] D. Edgington-Mitchell, T. Wang, P. Nogueira, O. Schmidt, V. Jaunet, D. Duke, P. Jordan, and A. Towne,
Waves in screeching jets, J. Fluid Mech. 913, A7 (2021).

[33] F. P. Bertolotti, T. Herbert, and P. R. Spalart, Linear and nonlinear stability of the Blasius boundary layer,
J. Fluid Mech. 242, 441 (1992).

[34] M. Harper-Bourne and M. J. Fisher, The noise from shock waves in supersonic jets, Agard Cp-131 11, 1
(1974).

[35] C. K. W. Tam and H. K. Tanna, Shock associated noise of supersonic jets from convergent-divergent
nozzles, J. Sound Vib. 81, 337 (1982).

[36] C. Tam, Stochastic model theory of broadband shock associated noise from supersonic jets, J. Sound Vib.
116, 265 (1987).

[37] P. J. Morris and S. A. E. Miller, Prediction of broadband shock-associated noise using Reynolds-averaged
Navier-Stokes computational fluid dynamics, AIAA J. 48, 2931 (2010).

[38] D. Tan, D. Honnery, A. Kalyan, V. Gryazev, S. Karabasov, and D. Edgington-Mitchell, Equivalent shock-
associated noise source reconstruction of screeching underexpanded unheated round jets, AIAA J. 57,
1200 (2019).

[39] P. K. Ray and S. K. Lele, Sound generated by instability wave/shock-cell interaction in supersonic jets, J.
Fluid Mech. 587, 173 (2007).

[40] M. H. Wong, P. Jordan, I. A. Maia, A. V. Cavalieri, R. Kirby, T. C. Fava, and D. Edgington-Mitchell,
Wavepacket modelling of broadband shock-associated noise in supersonic jets, J. Fluid Mech. 918, A9
(2021).

[41] W. Ran, A. Zare, M. J. Philipp Hack, and M. R. Jovanović, Modeling mode interactions in boundary layer
flows via the parabolized Floquet equations, Phys. Rev. Fluids 4, 023901 (2019).

[42] A. S. Towne, Advancements in jet turbulence and noise modeling: Accurate one-way solutions and empir-
ical evaluation of the nonlinear forcing of wavepackets, Ph.D. thesis, California Institute of Technology,
2016.

[43] C. K. W. Tam, J. A. Jackson, and J. M. Seiner, A multiple-scales model of the shock-cell structure of
imperfectly expanded supersonic jets, J. Fluid Mech. 153, 123 (1985).

[44] T. Herbert, Secondary instability of boundary layers, Annu. Rev. Fluid Mech. 20, 487 (1988).
[45] A. Towne, G. Rigas, and T. Colonius, A critical assessment of the parabolized stability equations, Theor.

Comput. Fluid Dyn. 33, 359 (2019).
[46] S. Beneddine, D. Sipp, A. Arnault, J. Dandois, and L. Lesshafft, Conditions for validity of mean flow

stability analysis, J. Fluid Mech. 798, 485 (2016).

074608-30

https://doi.org/10.1017/jfm.2020.301
https://doi.org/10.1017/jfm.2019.365
https://doi.org/10.1017/jfm.2020.445
https://doi.org/10.1017/jfm.2020.918
https://doi.org/10.1017/jfm.2020.802
https://doi.org/10.1016/S0376-0421(98)00002-5
https://doi.org/10.1177/1475472X19834521
https://doi.org/10.1017/jfm.2021.887
https://doi.org/10.1016/j.euromechflu.2014.05.006
https://doi.org/10.1017/jfm.2020.1175
https://doi.org/10.1017/S0022112092002453
https://doi.org/10.1016/0022-460X(82)90244-9
https://doi.org/10.1016/S0022-460X(87)81303-2
https://doi.org/10.2514/1.J050560
https://doi.org/10.2514/1.J057400
https://doi.org/10.1017/S0022112007007306
https://doi.org/10.1017/jfm.2021.324
https://doi.org/10.1103/PhysRevFluids.4.023901
https://doi.org/10.1017/S0022112085001173
https://doi.org/10.1146/annurev.fl.20.010188.002415
https://doi.org/10.1007/s00162-019-00498-8
https://doi.org/10.1017/jfm.2016.331


WAVEPACKET MODULATION IN SHOCK-CONTAINING …

[47] P. A. S. Nogueira, V. Jaunet, M. Mancinelli, P. Jordan, and D. Edgington-Mitchell, Closure mechanism of
the A1 and A2 modes in jet screech, J. Fluid Mech. 936, A10 (2022).

[48] P. Huerre and P. A. Monkewitz, Absolute and convective instabilities in free shear layers, J. Fluid Mech.
159, 151 (1985).

[49] F. Li and M. R. Malik, Mathematical nature of parabolized stability equations, in Laminar-Turbulent
Transition, edited by R. Kobayashi (Springer, Berlin, 1995), pp. 205–212.

[50] P. Andersson, D. Henningson, and A. Hanifi, On a stabilization procedure for the parabolic stability
equations, J. Eng. Math. 33, 311 (1998).

[51] C. K. W. Tam and F. Q. Hu, On the three families of instability waves of high-speed jets, J. Fluid Mech.
201, 447 (1989).

[52] A. Towne, A. V. G. Cavalieri, P. Jordan, T. Colonius, O. Schmidt, V. Jaunet, and G. A. Brès, Acoustic
resonance in the potential core of subsonic jets, J. Fluid Mech. 825, 1113 (2017).

[53] J. A. Weideman and S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Softw.
(TOMS) 26, 465 (2000).

[54] L. Lesshafft and P. Huerre, Linear impulse response in hot round jets, Phys. Fluids 19, 024102 (2007).
[55] M.-R. Choi and S. K. Lele, Prediction of shock-cell structure using parabolized stability equations, in

AIAA Paper 2001-0744 presented at the 39th Aerospace Sciences Meeting and Exhibit, 8–11 January
(Reno, NV, USA, 2001), p. 744.

[56] D. C. Pack, A note on Prandtl’s formula for the wave-length of a supersonic gas jet, Q. J. Mech. Appl.
Math. 3, 173 (1950).

[57] D. Rodríguez, M. R. Jotkar, and E. M. Gennaro, Wavepacket models for subsonic twin jets using 3D
parabolized stability equations, C. R. Mec. 346, 890 (2018).

[58] D. Edgington-Mitchell, V. Jaunet, P. Jordan, A. Towne, J. Soria, and D. Honnery, Upstream-travelling
acoustic jet modes as a closure mechanism for screech, J. Fluid Mech. 855, R1 (2018).

[59] A. Towne and T. Colonius, One-way spatial integration of hyperbolic equations, J. Comput. Phys. 300,
844 (2015).

[60] G. A. Brès, F. E. Ham, J. W. Nichols, and S. K. Lele, Unstructured large-eddy simulations of supersonic
jets, AIAA J. 55, 1164 (2017).

[61] G. A. Brès, P. Jordan, V. Jaunet, M. Le Rallic, A. V. G. Cavalieri, A. Towne, S. K. Lele, T. Colonius,
and O. T. Schmidt, Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets, J. Fluid
Mech. 851, 83 (2018).

[62] A. V. G. Cavalieri, D. Rodríguez, P. Jordan, T. Colonius, and Y. Gervais, Wavepackets in the velocity field
of turbulent jets, J. Fluid Mech. 730, 559 (2013).

[63] N. D. Sandham and A. M. Salgado, Nonlinear interaction model of subsonic jet noise, Philos. Trans. R.
Soc. A 366, 2745 (2008).

[64] M. J. Lighthill, On sound generated aerodynamically. I. General theory, Proc. R. Soc. London, Ser. A 211,
564 (1952).

[65] P. A. Nogueira, A. V. Cavalieri, and P. Jordan, A model problem for sound radiation by an installed jet, J.
Sound Vib. 391, 95 (2017).

[66] K. Sasaki, S. Piantanida, A. V. G. Cavalieri, and P. Jordan, Real-time modelling of wavepackets in
turbulent jets, J. Fluid Mech. 821, 458 (2017).

[67] M. Zhu and A. Towne, Recursive one-way Navier Stokes equations with PSE-like cost, arXiv:2111.10040.

074608-31

https://doi.org/10.1017/jfm.2022.58
https://doi.org/10.1017/S0022112085003147
https://doi.org/10.1023/A:1004367704897
https://doi.org/10.1017/S002211208900100X
https://doi.org/10.1017/jfm.2017.346
https://doi.org/10.1145/365723.365727
https://doi.org/10.1063/1.2437238
https://doi.org/10.1093/qjmam/3.2.173
https://doi.org/10.1016/j.crme.2018.07.002
https://doi.org/10.1017/jfm.2018.642
https://doi.org/10.1016/j.jcp.2015.08.015
https://doi.org/10.2514/1.J055084
https://doi.org/10.1017/jfm.2018.476
https://doi.org/10.1017/jfm.2013.346
https://doi.org/10.1098/rsta.2008.0049
https://doi.org/10.1098/rspa.1952.0060
https://doi.org/10.1016/j.jsv.2016.12.015
https://doi.org/10.1017/jfm.2017.201
http://arxiv.org/abs/arXiv:2111.10040

