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For the steady state of Burgers turbulence, Saffman [in Topics in Nonlinear Physics
(Springer, Berlin, 1968), pp. 485–614] derived analytical expressions for the second-order
structure function and energy spectrum in the inertial-dissipation range. By nondimension-
alizing these quantities, we derive universal functions for the structure function and the
energy spectrum and flux. We simulate Burgers turbulence with large-scale forcing for
various injection rates and viscosity. For all these runs, the nondimensionalized structure
functions and the energy spectra and fluxes collapse to the respective universal functions.
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I. INTRODUCTION

The celebrated Burgers equation [1,2] is an important equation of nonlinear dynamics. It has
been studied extensively because of its wide application, such as pressure-less gas dynamics [3],
modeling vehicular traffic system [4], nonlinear acoustics [5–9], and cosmology (see [10,11] and
the references therein). Using analytical tools, Saffman [12], Tatsumi and Kida [13], and Burgers
[14] showed that, in the limit of vanishing viscosity and at large times, the asymptotic velocity field
of Burgers turbulence can be expressed by a series of linear profiles separated by sharp jumps called
shocks. Most of the energy dissipation occurs in these shocks because of strong velocity gradients
[15–20].

Saffman [12] solved the Burgers equation analytically and derived the energy dissipation rate and
root mean square (rms) velocity. He also computed the second-order structure function and energy
spectrum, which is applicable to all lengthscales, that is, in the inertial range (larger than shock
width) as well as dissipation range (less than or equal to shock width). In this paper, we generalize
the Saffman’s formulas to derive universal functions for Burgers turbulence. We also verify these
universal functions using numerical simulations.

There are many more works on Burgers turbulence, but mostly for the inertial range. The
analytical solution of Kida [15], computational results of decaying Burgers turbulence by Ohkitani
and Dowker [21] and Tran and Dritschel [22], and closure studies of decaying Burgers turbulence
by Gotoh and Kraichnan [16] and Gotoh [23] showed that the energy spectrum E (k) ∼ k−2 in
the inertial range, where k is the wave number. They argued that the k−2 scaling of the energy
spectrum is due to the presence of the shocks in the velocity field. Gupta and Scalo [9] observed
the k−2 spectrum in the numerical study of decaying compressible turbulence. In addition, Gotoh
[23], Bouchaud, Mézard, and Parisi [24], and Verma [17] computed the qth-order structure func-
tions Sq(r) = 〈|u(x + r, t ) − u(x, t )|q〉 and found that all Sq(r) ∝ rζq with exponent ζq = 1, where

*Corresponding author: shadab@iitk.ac.in
†praveensahu173@gmail.com
‡mkv@iitk.ac.in

2469-990X/2022/7(7)/074605(14) 074605-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2511-6256
https://orcid.org/0000-0003-0688-2748
https://orcid.org/0000-0002-3380-4561
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.074605&domain=pdf&date_stamp=2022-07-22
https://doi.org/10.1103/PhysRevFluids.7.074605


ALAM, SAHU, AND VERMA

u(x, t ) and u(x + r, t ) are the velocity fields at points separated by distance r. The exponent ζq is
independent of q; thus, Burgers turbulence exhibits intermittency.

Verma [17], Chekhlov and Yakhot [25], Hayot and Jayaprakash [26], Fleischer and Diamond
[27], and Zhang and She [28] performed numerical simulations of Burgers turbulence forced with
force spectrum of k−2α . Fleischer and Diamond [27] simulated Burgers turbulence for α = 0 and
obtained E (k) ∼ k−1. They argued that the k−1 spectrum (instead of k−2) is due to the small scale
white-noise forcing that inhibits shock formation. Chekhlov and Yakhot [25], Verma [17], and
Zhang and She [28] studied the system for α = 1/2 and found that Burgers turbulence resembles
Kolmogorov turbulence [E (k) ∼ k−5/3] with constant energy flux �(k). Verma [17] observed that
the energy flux remains constant for all α � 1/2 and that the energy spectrum follows k−2 scaling
for α � 3/2. Thus, for α � 3/2, the small scale forcing is insignificant to inhibit shock formation.
Hayot and Jayaprakash [26] also studied the system for a range of α and observed the following
spectrum:

E (k) ∼ k−β ; β = 1 + 4
3α (1)

for −3/4 � α � 1/2; they also showed that Sq(r) grows linearly for positive α, indicating strong
intermittency in Burgers turbulence due to the shocks.

Girimaji and Zhou [29], Das and Moser [30], Ni, Shi, and Chen [31], Moradi, Teaca, and
Anderson [32], Buzzicotti et al. [33], and Murray and Bustamante [20] simulated Burgers turbulence
forced at large scales, and observed that E (k) follows only k−2 scaling. Thus, the energy spectrum
of Burgers turbulence is independent of the exponent α when the forcing is active only at large
scales. However, the spectrum depends on α when the forcing wave number band extends to small
scales [see Eq. (1)].

Most papers cited above focus on the inertial range. Shalimov [34] and Girimaji and Zhou
[29] studied the energy spectrum in the dissipation range of Burger turbulence. They argued that
Saffman’s formula for the dissipation range overpredicted the spectrum. In this paper, we show that
Saffman’s formula (apart from a typographical error) is correct. The discrepancy between Girimaji
and Zhou [29]’s numerical results and Saffman’s formula was due to a typographical error. To
derive the energy spectrum for the inertial-dissipation range of hydrodynamic turbulence, Pao [35]
assumed that the ratio of the energy spectrum and energy flux is independent of viscosity. Using a
similar assumption, Verma [36] derived an expression for the inertial-dissipation range of Burgers
turbulence. Unfortunately, Verma’s [36] formula differs from that of Saffman [12]. Shalimov [34]
also derived a formula for the dissipation range of Burgers turbulence.

We remark that decaying Burgers turbulence has a similar behavior as forced Burgers turbulence.
A critical difference, however, is that the energy decreases in time for decaying turbulence. Inviscid
Burgers turbulence has a very different behavior. Ray et al. [37] and Murugan et al. [38] simulated
the Galerkin-truncated inviscid Burgers equation with smooth initial conditions and observed
strongly localized short-wavelength oscillations called tygers. Tygers grow with time, and the
solution thermalizes asymptotically. Recently, Verma et al. [39] showed that the equilibrium state
of the inviscid Burgers equation is delta-correlated noise. The energy spectrum for the equilibrium
state is a flat spectrum (k0).

The outline of the paper is as follows. In Sec. II, we present Saffman’s formalism, as well as
universal functions for Burgers turbulence. Our numerical procedure is described in Sec. III. In
Sec. IV, we present the numerical verification of universal functions. We conclude the paper in
Sec. V.

II. BURGERS TURBULENCE: SAFFMAN’S FORMULAS AND UNIVERSAL FUNCTIONS

A. Saffman’s analytical formulas

The forced Burgers equation is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ F, (2)
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FIG. 1. At Re = 105, the plot of the normalized velocity profile u(x)/μ versus x/L for Eq. (4).

where u(x, t ) is the velocity field, ν is the kinematic viscosity, and F (x, t ) is the random external
force that injects energy into the system to maintain its steady state. Saffman [12] employed the
following definition of the Reynolds number, Re, for Burgers turbulence:

Re = μL

ν
, (3)

where L is the length of the periodic domain and μ is the velocity jump across the shock, also called
the shock strength. For Re → ∞ and t → ∞ limit, Saffman [12] derived the following solution:

u(x) = μ

[
−1

2
tanh

(
Re

4

x

L

)
+ x

L

]
; −L

2
< x <

L

2
. (4)

In Fig. 1, we plot u(x)/μ for Re = 105. The figure shows that the velocity field is represented by
a series of straight lines connected by sharp vertical shocks. The distance between two consecutive
shocks is L (see Fig. 1), and the thickness of the shock δ is of the order of 4ν/μ, which is the
lengthscale of dissipation. In this paper, we readopt Saffman’s formula for a box length of L (not
2L, as used by Saffman). We also correct several typographical errors of Saffman’s paper.

Using Eq. (4), Saffman derives the following relations:

〈u〉 = 1

L

∫ L/2

−L/2
u(x)dx = 0, (5)

urms =
√

〈u2〉 = μ√
12

, (6)

〈ε〉 = ν

〈(
∂u

∂x

)2〉
= μ3

12L
, (7)

where 〈u〉, urms, and 〈ε〉 are, respectively, the mean velocity, rms velocity, and mean energy
dissipation rate. Saffman also derived the second-order structure function as

S2(r) = 〈[u(x + r) − u(x)]2〉 = μ2

L

[
r coth

(μr

4ν

)
− 4ν

μ

]
. (8)

For small r, using the approximation coth x ≈ 1/x + x/3, we derive that

S2(r) ≈ μ3r2

12νL
. (9)
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However, for large r, using coth x ≈ 1, we deduce that

S2(r) ≈ μ2r

L
. (10)

An important quantity for studying local scaling properties of the structure function is its
logarithmic local slope ζ2(r), which is defined as (Buzzicotti et al. [40])

ζ2(r) = d logS2(r)

d logr
. (11)

The substitution of S2(r) from Eq. (8) into Eq. (11) leads to the following expression of ζ2(r):

ζ2(r) =
[

coth
(

μr
4ν

) − μr
4ν

cosech2
(

μr
4ν

)
coth

(
μr
4ν

) − 4ν
μr

]
. (12)

Using Eq. (8), we derive

〈u(x + r)u(x)〉 = 〈u2〉 − 1

2
S2(r) = μ2

12
− μ2

2L

[
r coth

(μr

4ν

)
− 4ν

μ

]
, (13)

Hence, the energy spectrum of Burgers turbulence is

E (k) = 1

π

∫ ∞

0
〈u(x + r)u(x)〉cos(kr)dr = 2πν2

L
cosech2

(
2πνk

μ

)
. (14)

The inertial range corresponds to 2πνk/μ 
 1. Using sinh x ≈ x for small x, we derive the inertial-
range energy spectrum as

E (k) = μ2

2πL
k−2. (15)

For large x, sinh x ≈ exp x. Using this asymptotic relation we derive the dissipation range E (k) as

E (k) = 8πν2

L
exp

[
−4πνk

μ

]
. (16)

Interestingly, Saffman’s [12] formulas are applicable to the inertial-dissipation range of Burgers
turbulence, unlike the majority of earlier works that focused on the inertial range [15,17,23]. Apart
from Saffman’s work, there are only a small number of works on the dissipation range of Burgers
turbulence. Recently, Verma [36] generalized Pao’s hypothesis for hydrodynamic turbulence to
Burgers turbulence and derived that E (k) = (μ2/L)k−2 exp(−2νk/μ). This formula differs from
that of Saffman.

In the next subsection, we derive the energy flux using the expression of the energy spectrum
[Eq. (14)].

B. Energy flux

The energy flux �(k0) is defined as the net nonlinear energy transfer from all the modes inside
the band −k0 � k′ � k0 to the modes outside the band. We compute �(k0) using the formula
([36,41,42])

�(k0) = −
∑

|k′ |�k0

T (k′), (17)

where

T (k′) = k′

2

∑
p

Im[û(q)û(p)û∗(k′)]. (18)
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Here, q = k′ − p, û(p), û(q), and û(k′) are the Fourier amplitudes of the velocity field, and Re, Im,
and ∗, respectively, represent the real part, imaginary part, and complex conjugate of a complex
quantity. The energy flux and spectrum are linked to the following dynamical equation [36]:

∂

∂t
E (k) = − ∂

∂k
�(k) − D(k) + F (k), (19)

where D(k) = 2νk2E (k) and F (k) = [F̂ (k)û∗(k)] are, respectively, the energy dissipation rate and
the energy injection rate at wave number k. We consider the force F̂ (k) to be active at large scales.
Hence, the energy injection rate F (k) = 0 in the inertial-dissipation range. In addition, ∂t E (k, t ) =
0 for the steady state. Under these conditions, following Eq. (19), we deduce that in the inertial-
dissipation range, the energy flux �(k) satisfies the following equation:

d

dk
�(k) = −D(k) = −2νk2E (k). (20)

In Eq. (20), we substitute E (k) from Eq. (14) and derive

�(k) = μ3

2π2L

[
Li2

{
exp

(−4πνk

μ

)}
−

(
4πνk

μ

)
log

{
1 − exp

(
−4πνk

μ

)}

−
(

2πνk

μ

)2{
1 − coth

(
2πνk

μ

)}]
, (21)

where

Lin(z) =
∞∑

m=1

zm

mn
, (22)

where |z| � 1 represents the nth-order polylogarithm function [43]. Note that the formulas of
Eqs. (8), (14), and (21) are the exact relations that are applicable to the entire range of lengthscales
or wave numbers.

In the following subsection, we construct universal functions for the structure function, energy
spectrum, and energy flux.

C. Universal functions

The formulas of Eqs. (8), (12), (14), and (21) are complex functions of parameters ν, μ, L, and
k. In this subsection, we derive compact relations by nondimensionalizing them. For the same, we
employ r0 = ν/μ as the lengthscale and u0 = √

μν/L as the velocity scale. Note that r0 is 1/4th of
the shock width proposed by Saffman and u0 is the velocity at small scales. Based on these scales,
the nondimensional distance r̃ and wave number k̃ are defined as

r̃ = r

r0
= μ

ν
r, (23)

k̃ = kr0 = ν

μ
k. (24)
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Using the above scales, we define the nondimensional structure function S̃2(r̃), logarithmic local
slope ζ̃2(r̃), energy spectrum Ẽ (k̃), and energy flux �(k̃) as

S̃2(r̃) = 1

u2
0

S2(r) = L

μν
S2(r) = r̃ coth

( r̃

4

)
− 4, (25)

ζ̃2(r̃) = d logS̃2(r̃)

d logr̃
=

[
coth

(
r̃
4

) − r̃
4 cosech2

(
r̃
4

)
coth

(
r̃
4

) − 4
r̃

]
, (26)

Ẽ (k̃) = 1

u2
0r0

E (k) = L

ν2
E (k) = 2πcosech2(2π k̃), (27)

�̃(k̃) = r0

u3
0

�(k) =
√

Re
L

μ3
�(k)

=
√

Re

2π2
[Li2{exp(−4π k̃)} − 4π k̃ log{1 − exp(−4π k̃)}

− (2π k̃)2{1 − coth(2π k̃)}]. (28)

In the inertial range (large r̃), Eqs. (25) and (27) transform to

S̃2(r̃) = r̃ and Ẽ (k̃) = 1

2π
k̃−2. (29)

In the dissipation range (r̃ � 1), the structure function and energy spectrum are

S̃2(r̃) = 1
12 r̃2 and Ẽ (k̃) = 8π exp[−4π k̃]. (30)

In addition, it can be shown that in the inertial range

�̃(k̃) = 1

12

√
Re, (31)

which is consistent with the fact that the maximum value of the energy flux �max = 〈ε〉 = μ3/12L
[see Eq. (7)].

The functions S̃2(r̃), Ẽ (k̃), and �̃(k̃)/
√

Re given above are functions of r̃ and k̃, not of ν and μ.
Hence they are universal functions. In Sec. IV, we show that the structure functions, energy spectra,
and energy fluxes of many runs collapse to these universal functions. We describe our numerical
procedure in the following section.

III. NUMERICAL PROCEDURE

We numerically solve the Burgers equation, Eq. (2), with large-scale forcing. We consider a
periodic domain of size L = 2π . We employ a pseudospectral method for our simulation, and two-
third rule for dealiasing. We apply the forcing F̂ (k) in such a way that the energy supply rate

εinj =
∑

k

Re[F̂ (k)û∗(k)] (32)

is constant. Following Stepanov and Plunian [44], we employ

F̂ (k) = εinj

n f [|û(k)| cos (φk − θk )]
exp (iφk ), (33)

where n f is the total number of forcing modes and θk and φk represent the phases of û(k) and F̂ (k),
respectively. We choose random φk from the uniform distribution in the interval (0, 2π ). The forcing
wave-number band is |k f | ∈ [1, 3], hence n f = 6.

We carry out nine numerical runs whose parameters are listed in Table I. The energy supply rate
varies from 0.1 to 1, while ν from 10−4 to 10−3. All the runs have grid size N = 216, except for Run
5 which has N = 218. We employ the fourth-order Runge-Kutta scheme for time advancement with
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TABLE I. The parameters used in our simulations: Grid size N ; energy supply rate εinj; kinematic viscosity
ν; and Reynolds number Re = μL/ν.

Run N εinj ν Re

1 216 1.00 1.0 × 10−3 2.65 × 104

2 216 1.00 7.5 × 10−4 3.54 × 104

3 216 1.00 5.0 × 10−4 5.31 × 104

4 216 1.00 2.5 × 10−4 1.06 × 105

5 218 1.00 1.0 × 10−4 2.66 × 105

6 216 0.75 5.0 × 10−4 4.82 × 104

7 216 0.50 5.0 × 10−4 4.21 × 104

8 216 0.25 5.0 × 10−4 3.34 × 104

9 216 0.10 5.0 × 10−4 2.46 × 104

constant time step δt = 5.0 × 10−5 for all the runs, except for Run 5 for which δt = 2.5 × 10−5. We
start the runs with Gaussian-random velocity field with zero mean and a standard deviation of 1.5.
We perform all our simulations until t = 100. We observe transients during the early stages, after
which the system reaches a steady state. In Sec. IV, we report our results, primarily the universal
functions, for the steady state.

IV. NUMERICAL VERIFICATION OF UNIVERSAL FUNCTIONS

In this section, we numerically verify the properties of global quantities, the dissipation rate, and
rms velocity, as well as the universal functions, such as structure function, energy spectrum, and
energy flux.

A. Global quantities

In this subsection, we present the numerical results on global quantities—the mean energy
dissipation rate, rms velocity, and the strength of the shock.

The energy supplied at large scales cascades to the smaller scales and eventually gets dissipated
by the viscous effects. The instantaneous energy dissipation rate ε(t ) is determined by summing

80 90 100
t

0.9

1.0

1.1

ε(
t)

/ε
in

j

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Run 9

FIG. 2. Plots exhibiting the time evolution of the normalized energy dissipation rate for the steady states.
The horizontal dashed line represents 〈ε〉/εinj = 1.0.
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t = 3.0 t = 3.5

0 π/2 π 3π/2 2π
x

−3

−1

1

3

(b)

t = 89.5

t = 95.8

t = 91.6

t = 97.9

t = 93.7

FIG. 3. Plot of exhibiting the velocity field u(x, t ) (a) in the transient period in the time interval [2.5, 4.0]
and (b) at steady state in the time interval [89.5, 97.9] for Run 5.

D(k) for all k’s:

ε(t ) =
∑

k

D(k). (34)

In Fig. 2, we exhibit the time series of the normalized dissipation rate ε(t )/εinj during the steady
state. We observe that 〈ε〉 ≈ εinj.

Figure 3 illustrates the time series of the velocity field in the transient period and at a steady
state for Run 5. As shown in Fig. 3(a), we observe that the velocity field exhibits two shocks in
the transient period. These shocks move towards each other as time passes, and eventually merge
together and create a single large shock. We demonstrate the merging process of the shocks in
Fig. 3(a). Murray and Bustamante [20] also observed a similar merging process which results in
the formation of a single large shock. At steady state, Fig. 3(b) shows that the large shock moves
leftward with a constant velocity. We note that the steady-state velocity profile of our results is
different from that reported in Buzzicotti et al. [40]. We believe that it is possibly because of the
difference in the forcing used for supplying energy into the system. As shown in Fig. 3(b), u at t =

2 3 4 5
μ

10−1

100

〈ε〉

(a)

〈ε〉
〈ε〉 = μ3

12L

2 3 4
μ

0.0

0.5

1.0

c s

(b)

cs

cs = 0.175μ

FIG. 4. Plots of the (a) dissipation rate 〈ε〉 and (b) shock-front velocity cs as a function of the shock
strength μ.
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12
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FIG. 5. Plot of the mean velocity 〈u〉 and rms velocity urms as a function of the shock strength μ.

89.5 and at t = 97.6 overlap with each other. Hence, the speed of the shock front is cs ≈ 2π/8.4 ≈
0.75 units. A more formal way to compute cs and μ are ([13,15])

cs =
∣∣∣∣∣1

n

n∑
i=1

[
max[u(x, ti )] + min[u(x, ti )]

2

]∣∣∣∣∣, (35)

μ = 1

n

n∑
i=1

{max[u(x, ti )] − min[u(x, ti )]}, (36)

where n is the number of frames used for averaging (here n = 500). Note that the error, which is
estimated using the standard deviation with respect to the mean, is less than 0.04 for μ and 0.02 for
cs for all the runs.

In Fig. 4, we plot 〈ε〉 and cs against μ. As shown in Fig. 4(a), our results verify the relation
〈ε〉 = μ3/12L derived by Saffman [see Eq. (7)]. Figure 4(b) illustrates a linear relationship between
the shock-front velocity cs and the shock strength μ, in particular, cs = 0.175μ. Note that both μ

100 102 104

r̃

10−2

100

102

104

S̃
2(

r̃)

(a)

S̃2(r̃) = r̃ coth
(

r̃
4

) − 4

100 102 104

r̃

10−2

100

102

104 (b)

r̃T

S̃2(r̃) = r̃2

12

S̃2(r̃) = r̃100 102 104

1.0

1.5

2.0

ζ̃ 2
(r̃

)

FIG. 6. Plots of the numerically and theoretically computed universal structure function S̃2(r̃) and their
associated logarithmic local slopes ζ̃2(r̃) [inset of (a)]. Note that the legend for numerical S̃2(r̃) and ζ̃2(r̃) are
the same as that of Fig. 2. The black dashed line in the inset of (a) represents theoretical ζ̃2(r̃) of Eq. (26).
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FIG. 7. Plots of (a) the energy spectrum Ẽ (k̃) in (a) the inertial range (k̃ < k̃T ) and (b) the dissipation range
(k̃ > k̃T ). Legend for numerically computed results is same as that of Fig. 2.

and cs are independent of viscosity. We also compute the mean velocity 〈u〉 and rms velocity urms

and plot them against μ in Fig. 5. As shown in the figure, the numerically computed 〈u〉 and urms

are in agreement with their values calculated using theoretically derived formulas by Saffman [12]
[see Eqs. (5) and (6)].

B. Structure function

We numerically compute S̃2(r̃) for all the run, and plot them in Fig. 6. We observe that S̃2(r̃) for
various runs collapse to a single curve and the universal S̃2(r̃) of Eq. (25) describes the numerical
curve very well, except for large r̃ [see Fig. 6(a)]. The discrepancy at large r̃ occurs due to the
large-scaling forcing, which is not universal. We also plot ζ̃2(r̃) in the inset of Fig. 6(a). As shown
in the figure, the numerically computed ζ̃2(r̃) of all the runs follows the universal ζ̃2(r̃) of Eq. (26)
very well. In addition, we observe that ζ̃2(r̃) ≈ 2 in the dissipation range and ζ̃2(r̃) ≈ 1 in the inertial
range. Also, the overall variation of ζ̃2(r̃) is consistent with that reported in Fig. 3(a) of Buzzicotti
et al. [40]. However, one major difference is that Buzzicotti et al.’s [40] results showed ζ̃2(r̃) < 1
in the inertial range and this is because their results were for the decimated Burgers equation. In

10−4 10−2 100

k̃

10−8

10−4

100

Ẽ
(k̃

)k̃
2

k̃T

Ẽ(k̃)k̃2 = 1
2π

Ẽ(k̃)k̃2 = 8πk̃2 exp(−4πk̃)

FIG. 8. Plots of the normalized energy spectrum Ẽ (k̃)k̃2. Legend for numerically computed results is the
same as that of Fig. 2.
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FIG. 9. Plots of the normalized energy flux �̃(k̃)/
√

Re in (a) the inertial range (k̃ < k̃T ) and (b) the
dissipation range (k̃ > k̃T ). Legend for numerically computed results is same as that of Fig. 2. The black
dashed lines in (a,b) represent theoretical �̃(k̃)/

√
Re of Eq. (28).

Fig. 6(b), we compare the numerical results with the theoretical predictions that S̃2(r̃) = r̃ and
S̃2(r̃) = r̃2/12 in the inertial and dissipation ranges, respectively [see Eqs. (29) and (30). We observe
good agreement between the theoretical and numerical results. Note that the transition between the
two regimes occurs near r̃ = r̃T = 12.

C. Spectral quantities

Here we compare the numerical results on energy spectrum and flux with the corresponding
universal functions.

We numerically compute Ẽ (k̃) for all the runs and plot the inertial range regime of the computed
Ẽ (k̃) in Fig. 7(a) and dissipation range regime in Fig. 7(b). The figure shows that Ẽ (k̃) for all the runs
collapses to a single curve in the inertial-dissipation range, and the collapsed curve matches with
the universal curve for the energy spectrum [Eq. (27)] quite well. In addition, as shown in Fig. 8,
Ẽ (k̃) = 1/(2πk2) for the inertial range, while Ẽ (k̃) = 8π exp(−4π k̃) in the dissipation range are
acceptable approximations. The transition between the two regimes occurs near k̃ = k̃T = 1/r̃T =
1/12. These results are consistent with Eqs. (29) and (30). Note that the difference in Girimaji
and Zhou’s [29] numerical results and Saffman’s predictions was due to the typographical error in
Saffman’s formula. We also compute �̃(k̃)/

√
Re for all the runs. We plot the inertial range regime

of �̃(k̃)/
√

Re in Fig. 9(a) and dissipation range regime in Fig. 9(b). The figure shows that the fluxes
of various runs collapse to a single curve, except at small k̃ due to the forcing function at large scale.
In addition, the collapsed curve is in good agreement with the universal function of Eq. (28). Also,
for the inertial range, �̃(k̃)/

√
Re = 1/12 or �max = μ3/12L = εinj = 〈ε〉, consistent with Eq. (7).

Thus, we verify the applicability of the universal functions of the structure function, energy
spectrum, and energy flux for the forced Burgers equation. We conclude the paper in Sec. V.

V. CONCLUSION

Saffman [12] derived an analytical solution for forced Burgers turbulence in the asymptotic limit
of ν → 0 and t → ∞. Using the solution, he computed urms, the average dissipation rate, as well
as the structure function and energy spectrum for the Burgers equation. In this paper, we compute
the energy flux using Saffman’s energy spectrum. The energy flux, energy spectrum, and structure
function describe the inertial and dissipative ranges of Burgers turbulence. This is remarkable
because most works on Burgers turbulence focus on the inertial range only.
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Saffman’s formulas are complex functions of ν, μ, L, r, and k. In this paper, we nondimen-
sionalize these formulas and derive universal functions. To verify these universal functions, we
simulate the Burgers equation for different parameters. We force the equation with large-scale
random forcing. We observe that the numerical results collapse to the respective universal functions,
except at large length scales, which is due to the forcing.

Saffman’s formulas and the corresponding universal functions are important advance in the
field. For many years, researchers have been attempting to construct the inertia-dissipation en-
ergy spectrum for hydrodynamic turbulence. The proposed dissipation-range spectra are exp(−k),
exp(−k2/3), exp(−k4/3), and exp(−k2), but there is no convergence at this stage (e.g., see [45–48]).
We believe that Saffman’s successful model may provide valuable ideas for modeling the inertial-
dissipation range of hydrodynamic turbulence.
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