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A major drawback of Boussinesq-type subgrid-scale stress models used in large-eddy
simulations is the inherent assumption of alignment between large-scale strain rates and
filtered subgrid-stresses. A priori analyses using direct numerical simulation (DNS) data
have shown that this assumption is invalid locally as subgrid-scale stresses are poorly cor-
related with the large-scale strain rates [J. Bardina, J. Ferziger, and W. Reynolds, Improved
subgrid-scale models for large-eddy simulation, in Proceedings of the 13th Fluid and
Plasmadynamics Conference, AIAA (1980); C. Meneveau and K. Katz, Scale-invariance
and turbulence models for large-eddy simulation, Ann. Rev. Fluid Mech. 32, 1 (2000)].
In the present work, a new, non-Boussinesq subgrid-scale model is presented where the
model coefficients are computed dynamically. Some previous non-Boussinesq models
have observed issues in providing adequate dissipation of turbulent kinetic energy [e.g.,
Bardina et al., Proceedings of the 13th Fluid and Plasmadynamics Conference (1980);
R. A. Clark, J. Ferziger, and W.C. Reynolds. Evaluation of subgrid-scale models using
an accurately simulated turbulent flow, J. Fluid Mech. 91, 1 (1979); S. Stolz and N. A.
Adams, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids
11, 1699 (1999)]; however, the present model is shown to provide sufficient dissipation
using dynamic coefficients. Modeled subgrid-scale Reynolds stresses satisfy the consis-
tency requirements of the governing equations for large-eddy simulation (LES), vanish
in laminar flow and at solid boundaries, and have the correct asymptotic behavior in the
near-wall region of a turbulent boundary layer. The new model, referred to as the dynamic
tensor-coefficient Smagorinsky model (DTCSM), has been tested in simulations of canon-
ical flows: decaying and forced homogeneous isotropic turbulence, and wall-modeled
turbulent channel flow at high Reynolds numbers. The results show favorable agreement
with DNS data. It has been shown that DTCSM offers similar predictive capabilities as
the dynamic Smagorinsky model for canonical flows. In order to assess the performance
of DTCSM in more complex flows, wall-modeled simulations of high Reynolds number
flow over a Gaussian bump (Boeing speed bump) exhibiting smooth-body flow separation
are performed. Predictions of surface pressure and skin friction, compared against DNS
and experimental data, show improved accuracy from DTCSM in comparison to existing
static coefficient (Vreman) and dynamic Smagorinsky model. The computational cost of
performing LES with this model is up to 15% higher than the dynamic Smagorinsky model.
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I. INTRODUCTION

The most commonly used class of subgrid-scale stress models is the eddy-viscosity formulation.
Smagorinsky [1] developed a subgrid-scale (SGS) stress closure model in which the subgrid-scale
stress are assumed to be aligned and scaled with the local strain rate of the large-scale eddies. This
model produces satisfactory results in simulations of decaying homogeneous isotropic turbulence
[2,3]; however, the modeled SGS stress does not vanish in laminar regions nor near solid walls,
making it unsuitable for simulating transitional or wall-bounded flows. To account for near-wall
scalings, the model was modified by prescribing damping functions [4,5] that return the correct
asymptotic behavior near solid boundaries. Germano et al. [6] developed the dynamic Smagorinsky
model (DSM) in which the model coefficient is dynamically computed from the local flow state
without any prescribed coefficients, improving the predictive capability of large-eddy simulation
(LES). The dynamic variant of the Smagorinsky model was shown to accurately dissipate energy
from the large scales in simulations of isotropic decaying turbulent flow, and appropriately vanish
in laminar and transitional flows [7]. However, to ensure numerical stability, a regularization
procedure, such as clipping or spatial averaging, is often required to be applied to the dynamically
computed model coefficient [8].

To avoid challenges that arise in complex flows and on unstructured grids, such as the con-
struction of test filters or the definition of homogeneous averaging operations, more sophisticated
static-coefficient models have been proposed. These models attempt to embed properties such as
appropriate asymptotic near-wall scaling [9], vanishing eddy viscosities in laminar regions [10,11],
or minimum but sufficient dissipation of small-scale turbulence [12]. While these models have
reduced computational complexity compared to their dynamic counterparts, they have been seen
to have relatively weaker predictive capability in complex flows. For instance, recent simulations of
flows around realistic aircraft models have shown that the dynamic Smagorinsky model offers more
accurate predictions of integrated quantities of interest (e.g., lift and drag) and salient flow features
(e.g., separation bubble extents) [13].

Last, most investigations into the construction of subgrid-scale models for large-eddy simulation
have focused on their performance in homogeneous isotropic turbulence and wall-resolved LES
limits. The resolution of viscously scaled eddies near the wall is prohibitively expensive at high
Reynolds numbers and recent advances have shown the relatively successful application of wall
modeled LES approaches to practical engineering flows [14]. In many of these wall modeled LES
calculations, detailed comparisons of different subgrid-scale models have not been available [15].

This investigation proposes a novel, dynamic subgrid-scale model that does not assume align-
ment between the subgrid stresses and resolved strain rates through the introduction of a tensorial
eddy viscosity in contrast to traditional isotropic eddy viscosity closures. It is shown that this
tensorial eddy viscosity better correlates with the local subgrid stress (in a priori tests) and offers
similar accuracy to existing dynamic models in isotropic limits (homogeneous turbulence). Detailed
a posteriori testing of this model is focused on high Reynolds number limits where interactions of
SGS and wall models have to be considered. For this, we discuss the performance of the proposed
model in both canonical (turbulent channel flow) and complex flow exhibiting separation. In these
wall modeled LES calculations, the dynamic tensorial SGS model outperforms existing static and
dynamic coefficient models.

This paper is organized as follows. We revisit the existing SGS formulations in Sec. II, and
then present the proposed modeling approach in Sec. III. The details of the various numerical
solvers used in this work are provided in Sec. IV. A priori results from these models including
the stress tensor and kinetic energy dissipation–based correlations between modeled and exact
stresses for turbulent channel flow are presented in Sec. V. Asymptotic behavior of the proposed
model near a solid wall and in laminar channel flow are discussed in Sec. VI. Detailed a posteriori
analysis of the performance of these models in isotropic turbulence and high Reynolds number
channel flows is presented in Sec. VII. The model is subsequently applied to a flow over a
Guassian bump exhibiting separation and comparisons of the surface pressure and skin friction
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between wall-modeled large-eddy simulation (WMLES) and spanwise-periodic quasi-DNS and
three-dimensional (3D) experiments are presented in Sec. VIII. Remarks about the costs incurred
on using dynamic tensor-coefficient Smagorinsky model (DTCSM) in LES are made in Sec. IX.
Conclusions are offered in Sec. X.

II. LES FORMALISM AND GOVERNING EQUATIONS

In LES, the large-scale quantities are defined by filtering the velocity and pressure fields. If the
grid-filter kernel operator is denoted by G, then a large scale quantity, f is evaluated from the total
field, f as

f (x) =
∫

G(x, x′) f (x′)dx′, (1)

where the integral is extended over the entire computational domain. Further, we assume that the
grid filter is such that it commutes with the differentiation operation. More details on LES formalism
can be found in previous studies [6,8,11].

The governing equations for LES of incompressible turbulent flows (of constant density ρ)
are obtained by applying the aforementioned filter to the Navier-Stokes equations. The resulting
equations are

∂ui

∂xi
= 0 (2)

and

∂ui

∂t
+ ∂u j ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
− ∂τ

sgs
i j

∂x j
, (3)

where τ
sgs
i j = uiu j − u j ui is the subgrid stress which requires modeling closure. The isotropic

component of the SGS stress is often absorbed into pressure, which leads to a pseudopressure
field (p �→ p + ρτ

sgs
kk ). The eddy viscosity-based SGS closure models based on the Boussinesq

hypothesis take the form

τ
sgs
i j − 1

3
τkkδi j = −2νt Si j, where Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (4)

where δi j is the Kronecker delta function. Two of the more commonly used Boussinesq models that
are examined in this work are the Smagorinsky model with its dynamic variant and the Vreman
model, which are described in detail below.

A. Smagorinsky model

The units of eddy viscosity are a velocity times a characteristic length scale. Smagorinsky’s [1]
celebrated eddy viscosity model is based on a length scale proportional to the LES grid scale and a
velocity scale obtained from the product of the grid scale and the magnitude of the strain-rate tensor.
With these assumptions, the eddy viscosity is given as

νt = (Cs�)2|S|, where |S| =
√

2Si jSi j (5)

and � is the grid filter width. Later, Lilly [16] showed that for isotropic turbulence with spatial
resolution that lies in the inertial subrange, Cs ∼ 0.17. Deardorff [17] recommended Cs ∼ 0.1 in
turbulent shear flows. The applicability of this model is limited, especially in the near-wall region
of wall-bounded flows in part because eddy viscosity does not vanish at the wall. Consequently,
previous studies [4] have used wall-damping functions [18] to correct for the behavior of eddy
viscosity in the viscous sublayer.

074602-3



RAHUL AGRAWAL et al.

B. Dynamic Smagorinsky model

Germano et al. [6] introduced the notion of test filtering of the LES governing equations. Through
the use of these ideas, the resolved turbulent stresses [19], Li j = −ûiu j + ûi û j ((̂·) denotes test-filter
operation) can be related to the modeled stresses in the “test window” [20] as

Li j = 2(Cs�)2

(
�̂2

�2
|̂S|Ŝi j − ̂|S|Si j

)
= 2(Cs�)2Mi j, (6)

where �̂ and � denote test-level and grid-level filter widths, respectively. For an incompressible
flow, Eq. (6) is an overdetermined system with five independent equations for one undetermined
coefficient. Lilly [20] proposed a least-squares solution of this system, leading to the expression for
the model coefficient

(Cs�)2 = Li jMi j

2Mi jMi j
. (7)

To avoid numerical instabilities arising from the computation of negative eddy viscosities (Cs < 0),
the numerator and denominator of this equation are averaged in statistically homogeneous directions
(and possibly time for statistically stationary flows) to give its working form

(Cs�)2 = 〈Li jMi j〉
〈2Mi jMi j〉 , (8)

where 〈·〉 is the spatiotemporal averaging operator. It should be noted that Eq. (6) requires an

assumption that Cs can be extracted out of the test filtering operation, or ̂Cs�2|S|Si j = Cs�
2
̂|S|Si j ,

which is strictly true only when a regularization procedure, such as spatial averaging (in homoge-
neous directions) and/or temporal averaging (for statistically stationary flows), is applied [8,21].

C. Vreman model

Vreman [11] proposed a modified subgrid-scale model by including the velocity gradient tensor
and the gradient model expansion of the exact SGS tensor, leading to the model form

νt = 2.5(Cs)2

√
Bβ

αi jαi j
; αi j = ∂ui

∂x j
; βi j = �2αmiαm j, (9)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23. (10)

The nominally accepted value of Cs ≈ 0.17 is used in the present implementation of this model.
Unlike the Smagorinsky model, the Vreman model does not overpredict subgrid dissipation in
transitional flows and also appropriately provides zero subgrid dissipation in laminar flows (in two
velocity component base states).

III. MODELING FRAMEWORK

While the dynamic procedure improves the predictive capability of the constant coefficient
Smagorinsky model, it does not resolve the model form error that is inherent to all Boussinesq SGS
models (i.e., that the SGS stress is not necessarily aligned with the strain-rate tensor). Additionally,
for LES of flows with mean anisotropy, the assumption of a scalar model coefficient, as used
in classical Boussinesq eddy viscosity closures, is potentially overly restrictive. In this work, we
propose a novel dynamic formulation for the tensor-coefficient Smagorinsky model [22]. This model
contains non-Boussinesq terms that do not lead to dissipation but would potentially improve the
local alignment between modeled and exact subgrid stresses. Similarly to the dynamic Smagorinsky
model, the only input parameter in this model is the ratio of test-level to grid-level filter widths,
which is chosen to be two as in previous studies.
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A. Dynamic tensor-coefficient Smagorinsky model

Moin [22] proposed the following tensor-coefficient-based Smagorinsky model which alleviates
the assumption of alignment between filtered resolved stresses and mean strain rates:

τ
sgs
i j − τ

sgs
kk

3
δi j = −(CikSk j + CjkSki )|S|�2. (11)

This model contains nine independent coefficients, thus providing more degrees of freedom in
determining alignment of the stress and strain-rate tensors. However, in its current form, the
tracelessness of the model, which is a requirement imposed by the the fact that only the deviatoric
part of the exact subgrid stress is being modeled, is not guaranteed. To treat this, we put the following
constraints on the coefficients (see Appendix A for details):

C11 = C22 = C33; Ci j = −Cji ( j 	= i). (12)

The realizability constraints reduce the number of independent coefficients from nine to four.
Incorporating this reduction, we invoke the Germano identity to arrive at

Li j = (Cik�
2Mk j + Cjk�

2Mki ). (13)

Note that this equation, similarly to Eq. (6), implies taking the model coefficients outside of the test
filter, and so the aforementioned regularization procedure is also used in the present case. For an
incompressible flow, this system of five independent equations with four coefficients is solved using
the least-squares solution method [20] to obtain the coefficients dynamically. It is noteworthy that
only C11 (and equivalently C22,C33) contributes to the dissipation of energy from the large scales.

The reader is directed to Appendices B and C for more details on the dynamic procedure and a
brief discussion of how the model form can be expressed explicitly in terms of a combination of
strain-rate and rotation-rate tensors.

IV. NUMERICAL SOLVER DETAILS

In this paper, two second-order finite-difference solvers with staggered Cartesian meshes are
used to simulate homogeneous isotropic turbulence and turbulent channel flow, respectively. These
solvers have been validated in previous studies of homogeneous isotropic turbulence [23,24] and
turbulent channel flow [25,26]. Both employ explicit fourth- and third-order Runge-Kutta time
integration schemes, respectively.

Simulations of the Gaussian bump are performed using a low-dissipation, explicit, unstructured,
finite-volume solver for the compressible Navier-Stokes equations (charLES). This code is formally
second-order accurate in space and third-order accurate in time. More details of the solver and
validation cases in subsonic, transonic, and supersonic studies can be found in Refs. [27–30]. Details
of the choice of the computational grid for simulating the Gaussian bump are presented in Sec. VIII.

V. A PRIORI TESTS

In this section, we compare a priori performance of DSM and DTCSM at stress tensor and
dissipation rate levels with respect to filtered-DNS data (a discretely commutative filter with three
vanishing moments [31] is recursively applied to obtain a filter width equal to three times the grid
size) for a turbulent channel flow at both low- and high-friction Reynolds numbers, specifically at
Reτ = 395 [32] and Reτ = 2000 [33]. In the presence of flow anisotropy, an improved SGS model
is expected to produce higher stress tensor correlations and provide more realistic representation of
the small scales. These correlations are defined as

ρ = 1

6

6∑
k=1

cov(τmodel,k, τexact,k )

σ (τmodel,k )σ (τexact,k )
, (14)
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FIG. 1. Stress tensor correlations of DSM and DTCSM with respect to filtered DNS of turbulent channel
flow at (a) Reτ = 395 and (b) Reτ = 2000, respectively. Note that every third value has been marked for the
higher Reynolds number case for visual clarity.

where k = 1, 2, . . . , 6 are the six components of exact (τexact) and modeled (τmodel) SGS stress
tensors. Note that cov(X,Y ) denotes the covariance between quantities X and Y and σ (X ) is the
standard deviation of the distribution of the quantity X . The correlations based on the kinetic energy
dissipation rate are similarly defined by contracting the stress tensor with the large-scale strain-rate
tensor.

Figure 1 shows that DTCSM produces higher correlations than the dynamic Smagorinsky model
at the stress level for both cases. Further, the model performance improves as the Reynolds number
is increased from Reτ = 395 to Reτ = 2000. It is also encouraging that the correlations are most
improved near the wall, which is the region of high anisotropy and, in practical calculations, the
limiting region in terms of resolution requirements. A priori tests, however, are not necessarily
reflective of the model performance in simulations. The model of Bardina et al. [34] showed much
improved tensor-level correlations than even DTCSM; however, it was shown to be significantly un-
derdissipative in simulations and required ad hoc supplementary dissipation from an eddy viscosity
of Smagorinsky form. Although a mixed form of Bardina’s scale-similarity model exists [35], its
application to complex wall-bounded turbulent flows at high Reynolds numbers has been limited.
For these reasons, the current analysis has been restricted to comparisons against eddy-viscosity
type SGS model formulations. Finally, it should be noted that these correlations are not necessarily
a measure of the alignment between modeled and exact subgrid stresses. For more details, the reader
is referred to the previous works [36–38] where the alignment of subgrid stresses and strain rate
tensors are examined through their eigenvalues and eigenvectors.

At the a priori level, DTCSM has exactly the same dissipation rate correlation (see Fig. 2) as
DSM across the entire channel height. This is indeed expected since the only terms in DTCSM
that contribute to dissipation are Smagorinsky-type terms. Although not shown, varying the filter
width from two times the grid size to up to four times the grid size has shown little sensitivity in the
qualitative trends for both stress tensor and dissipation correlations. A verification of the dissipative
aspects of these models in LES is presented next in the a posteriori analysis section.

VI. ASYMPTOTIC BEHAVIOR IN LAMINAR FLOWS AND NEAR SOLID WALLS

In laminar flows with sufficient resolution, the resolved stresses approaches zero and con-
sequently, the computed dynamic coefficients will also vanish [which can be confirmed from
inspection of Eq. (13)].

Near a solid wall, in the viscous sublayer, universal scalings for all three components of velocities
have been well established [39]. Germano et al. [6] reported that the dynamic Smagorinsky model
stresses in the near-wall region followed the same behavior with the distance from the wall. The
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FIG. 2. Dissipation rate correlations of DSM and DTCSM with respect to filtered DNS of turbulent channel
flow at (a) Reτ = 395 and (b) Reτ = 2000, respectively. Note that every third value has been marked for the
higher Reynolds number case for visual clarity.

eddy viscosity at the wall asymptotically reaches zero, and within the viscous sublayer it scales as
νt ∼ y+,3 in this region, leading to the correct order of magnitude estimates for modeled subgrid
stress in comparison to DNS.

Assuming a test-filter kernel that does not operate in the wall-normal direction, and using velocity
scalings from DNS as u+ ∼ y+, v+ ∼ y+,2, and w+ ∼ y+, the scalings for Li j , Mi j can be written
in terms of distance from the wall in inner units. On solving the resulting system of equations in
Appendix B, it can be shown that for DTCSM, C11 ∼ y+,3, C12 ∼ y+,2, C13 ∼ 0, and C23 ∼ y+,2.
With these results, it can be easily inferred that the subgrid shear stress asymptotically reaches zero
at the wall following the expected scaling τ

sgs
12 ∼ y+,3. Thus, the behavior of the proposed model in

near-wall region is in agreement with the expected asymptotic near-wall scalings.

VII. A POSTERIORI ANALYSIS IN CANONICAL FLOWS

Large eddy simulations with DTCSM are performed for decaying and forced homogeneous
isotropic turbulence (HIT), and turbulent channel flow and the results are compared with DNS and
LES with the DSM closure. For these simulations, spatial averaging in homogeneous directions is
performed to regularize the model coefficients for DSM and DTCSM.

A. Decaying homogeneous isotropic turbulence

We perform DNS and LES of decaying HIT [40] at Reλ = urmsλ/ν = 70. The initial turbulent
field follows the spectrum in Passot and Pouquet [41], with urms = 1. For a triply periodic box of
size (2π )3, the DNS is performed on a grid of 1283 resolution while LES is performed using a
coarser grid containing 323 points. For HIT, the turbulent kinetic energy (tke) and dissipation rate
(ε) are defined as

tke = 〈
1
2 uiui

〉
and ε = 〈

2νSi jSi j − τ
sgs
i j Si j

〉
, (15)

where 〈·〉 is the volumetric-averaging operator. Note that tke0 and ε0 are the initial turbulent kinetic
energy and its dissipation rate, respectively. In Figs. 3 and 4, we compare the evolution of kinetic
energy and the dissipation rate in LES to the filtered DNS. Since the calculation without an SGS
model does not dissipate enough kinetic energy, it is apparent that the SGS models are needed to
properly dissipate turbulent kinetic energy. The time evolution of both tke and ε with both LES
models are in excellent agreement with the filtered DNS after the initial transient (of up to one
eddy turnover time, due to a random-phase-based initialization of the velocity field from the chosen
energy spectrum). The exponent of the decay of turbulent kinetic energy, α, when tke ∼ tα , is α ≈
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FIG. 3. Evolution of turbulent kinetic energy for decaying isotropic turbulence.

−1.35, for both DSM and DTCSM, and is in reasonable agreement with that of the filtered DNS,
α ≈ −1.37 (filtered using a box filter of filter width equal to the LES grid size). It is then apparent
that DTCSM dissipates energy as well as DSM without any ad hoc modifications to the dynamic
procedure. It should be noted that some existing constant coefficient non-Boussinesq SGS models
[34,42] underdissipate energy in such calculations and require augmentation from a Smagorsinky-
model-type term.

B. Forced homogeneous isotropic turbulence

We now compare LES of forced HIT at Reλ = 315 with 1283 grid points with the filtered DNS
of Cardesa et al. [43] performed with 10243 grid points. A linear momentum forcing is applied to
maintain constant turbulent kinetic energy in the system [23].

Three-dimensional energy spectra are compared in Fig. 5, where the κ−5/3 scaling is well
recovered by both DSM and DTCSM. The LES energy spectra compare very well with the filtered
DNS (evaluated using a box filter of filter width equal to LES grid size). This agreement suggests
that the proposed model transfers energy from the largest scales to the inertial subrange as expected

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

FIG. 4. Evolution of the turbulent kinetic energy dissipation rate for decaying isotropic turbulence.
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FIG. 5. Comparison of kinetic energy spectra, E (κ ), in forced isotropic turbulence between filtered-DNS
and SGS models. The resolution of the filtered-DNS is at 10243 compared to the LES resolution of 1283.

and hence on average do not show any scale-to-scale spurious energy transfer. Since the flow does
not have large-scale global anisotropy, it is also expected that the performance of DSM would be
similar to that of DTCSM, which is consistent with our results.

C. Homogeneous isotropic turbulence in the limit Reλ → ∞
In the limit of Reλ → ∞, multiple decades of the K41 scaling (i.e., E ∼ κ−5/3) are expected

across the spectrum. From Fig. 6, it is evident that the K41 scaling is well recovered with DTCSM
(as well as DSM), further confirming both their dissipative and interscale energy transfer properties.
The κ2 scaling in the absence of an SGS model is observed, consistent with the principle of
equipartition of energy.

D. Wall-modeled LES of channel flow

In this section, we investigate the performance of DTCSM in a channel flow at Reτ = uτ δ/ν =
4200, where uτ is the friction velocity and δ is channel half-height. Lozano-Durán and Jiménez [33]
performed DNS of this flow with grids as refined as �x+ = 12.8, �y+

min = 0.31, and �z+ = 6.4
in inner units (approximately 10 billion grid points). For practical WMLES calculations, the grid
resolutions are specified in outer units, and grid resolutions of 20–60 points (�y+ ∼ 60–200) across

10 0 10 1
10

10

10 0

2

FIG. 6. Comparison of kinetic energy spectra, E (κ ), between filtered-DNS and SGS models as Reλ → ∞.
The LES resolution considered here is 1283.
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FIG. 7. Schematic of the channel-flow WMLES setup.

the boundary layer have been previously used [26]. In this work, we use 20 points per half-height
of the channel.

Figure 7 shows the schematic of the channel flow and domain sizes in the three directions. Table I
summarizes the simulation parameters used in the DNS reference and the present WMLES. Unlike
the DNS, the grid spacing is uniform and nearly isotropic in all three directions. The channel
is driven at constant mass flow rate to match the mass flow rate from the DNS. The viscously
dominated inner layer is not resolved but rather is represented through a wall model, and its effect
imposed onto the outer LES by a wall shear stress boundary condition. The wall model for the
channel flow simulations is the equilibrium wall model of Cabot and Moin [44], which solves
the steady thin boundary layer equations as a one-dimensional boundary value problem, given a
matching location and wall-parallel velocity from the outer LES solution, in order to predict the
wall shear stress. The matching location is chosen to be the second off-wall grid point (the distance
of the matching location from the wall is henceforth referred to as y = hwm) in order to improve
the accuracy of the wall shear stress prediction in finite-different, Cartesian-staggered meshes [45].
However, as will be noted in Sec. VIII, for unstructured Voronoi-HCP grids, matching at the first
off-wall location was found to be sufficiently accurate.

Kawai and Larsson [46] argued that the energy-containing scales of the near-wall turbulence are,
by definition, underresolved and potentially inaccurate in the first grid point (y+ ∼ 100 in this work)
on a WMLES grid. The observed behavior in this work with the chosen numerical scheme is that
both DSM and DTCSM (which rely on extracting information from the resolved turbulent eddies)
underpredict the subgrid-scale stresses, leading to larger velocity fluctuations which amplify the
resolved Reynolds shear stress and flatten the slope of the mean velocity profile. Lozano-Durán and
Bae [26] have previously shown convergence of the integrated errors on grid-refinement in the mean
velocity profile with respect to DNS for locations above the matching location. Thus, following
Kawai and Larsson [46], Yang et al. [47], only the mean velocity profile predicted by WMLES
for y � hwm is plotted. For y � hwm, the mean profile predicted by the equilibrium wall model is
considered more accurate and hence plotted. From Fig. 8, DTCSM is slightly better than DSM at
predicting the mean streamwise velocity profile throughout the logarithmic region. Specifically, in
the log layer, the error in the prediction of the Kármán constant (κ = 0.38 predicted by DNS) is
slightly lowered from 7% error with DSM to 5% with DTCSM.

The overprediction of the mean streamwise component of intensity in the near-wall region
with respect to unfiltered DNS in LES of channel flows has been a concern; LES is expected to

TABLE I. Simulation parameters for turbulent channel flow at Reτ = 4200

Simulation Nx Ny Nz �x+ �y+
min �y+

center �z+

DNS 3072 1081 3072 12.8 0.31 10.7 6.4
WMLES 128 40 64 200 200 200 200
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FIG. 8. Wall-normal profiles of mean streamwise velocity for DSM and DTCSM in turbulent channel flow
at Reτ = 4200. The mean profile predicted by the equilibrium wall model is plotted for wall normal distances
less than the height of the matching location (y � hwm).

underpredict the intensity in order to be consistent with filtered DNS. In Fig. 9, it is observed that
the streamwise and wall-normal components of turbulent intensities with DTCSM are lower than
those with the DSM near the wall, which is a qualitative indicator that the prediction is improving
when compared to turbulence fluctuations based on unfiltered DNS (explicitly filtered DNS data are
not used here). It must be noted that improvements in the overprediction of streamwise intensities
have also been previously reported using a slip (Robin) boundary condition in a lower Reynolds
number channel flow [48]. For a turbulent channel flow driven at Reτ as low as 395, Morinishi and
Vasilyev [49] observed that DSM requires ad hoc clipping in the near-wall region. A similar trend is
observed at Reτ = 4200 in our simulations using DSM (Fig. 10), where the subgrid stresses in the
second off-wall point are clipped. No such clipping was necessary with the DTCSM for this flow. It
should be noted that at the wall, a Neumann boundary condition is used for the SGS stresses, which
is motivated by the fact that in coarse wall-modeled calculations, the resolved turbulent stresses
are formally nonzero [50]. The Neumann boundary condition was hence used on the subgrid-scale
shear stresses to account for the nonzero turbulent stresses in the equilibrium wall model.

102 103
0

0.5

1

1.5

2

2.5

FIG. 9. Wall-normal profiles of turbulent intensities for DSM and DTCSM in turbulent channel flow, Reτ =
4200. The curves without symbols represent the mean intensities from DNS.
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FIG. 10. Wall-normal profiles of mean SGS shear stress for DSM and DTCSM in WMLES of turbulent
channel flow at Reτ = 4200. Note that a Neumann boundary condition (dτ sgs/dy = 0) is used for the SGS
stresses at the wall.

VIII. WALL-MODELED LES OF FLOW OVER GAUSSIAN BUMP

Next, the subgrid-scale models are deployed in the simulation of flow over a wall-mounted
Gaussian bump (also known as the Boeing speed bump [51]). The geometry of the bump was
proposed by Boeing and Williams et al. [51]. The bump surface is defined by an analytical
expression, h(x, z), written as

h(x, z) = h0

2
e−(x/x0 )2

{
1 + erf

[(
L

2
− 2z0 − |z|

)
/z0

]}
, (16)

where x and z are the streamwise and spanwise coordinates, respectively. The bump width, L, is
used to scale the other dimensions of the bump, as well as define a Reynolds number, ReL. Here
h0 = 0.085L is the maximum height of the bump, and x0 = 0.195L controls the Gaussian decay of
the surface in the streamwise direction. Figures 11 and 12 are schematics of the bump geometry and
computational mesh as a function of streamwise and spanwise coordinates.

In this flow, the turbulent boundary layer is subjected to both favorable and adverse pressure
gradients leading to the formation of a separation bubble. Experimental results [52] have revealed
approximate Reynolds number independence for pressure and skin-friction coefficients. Due to the
presence of side walls and the associated mean three-dimensionality in the flow, and the availability
of experimental data, the Boeing speed bump is a good candidate for assessing the predictive
capability of LES models in a smooth-body separation.

(a)

(b)

FIG. 11. Cross sections of the three-dimensional bump geometry. The geometry has side walls at z/L =
±0.5 and a top wall at y/L = 0.5. Note that the spanwise-periodic bump has the same cross-sectional profile
as the three-dimensional bump; however, the spanwise direction is periodic with z/L spanning from 0 to 0.08,
and the top wall is at y/L = 1.0.
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(a)

(b)

FIG. 12. Cross sections of the coarse mesh for the experimental geometry (a) at the plane z/L = 0, along
the centerline of the bump, and (b) at the plane x/L = 0, along the apex of the bump. The streamwise extent
in (a) is x/L ∈ [−0.5, 0] showing the fore side of the bump, with the aft side being essentially symmetric.
The spanwise extent in (b) is z/L ∈ [−0.5, 0] showing the left half of the domain while the right half is
essentially symmetric. Both cross sections show the lower half of the vertical extent of the domain. The top
half of the domain is meshed uniformly up to the top wall. Three layers of isotropic refinement are visible
adjacent to the bump surface. The isotropic refinement layers continue all the way to the inlet and outlet in
either streamwise direction. Control volumes far from domain boundaries and refinement transitions consist of
tessellated truncated octahedra.

Unlike many widely studied canonical separated flows, such as backward-facing steps or
bumps which have geometrically imposed separation points [53–56], the present geometry fea-
tures a smooth-body separation whose location and extent is significantly more difficult to
predict computationally. In fact, several recent investigations have observed that some existing
wall and subgrid-scale models struggle to correctly predict the occurrence/location of separation
[57,58].

Uzun and Malik [59] performed a quasi-DNS of the spanwise-periodic variant geometry.
For the spanwise-periodic geometry, the height of the bump surface is given by the simplified
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TABLE II. Mesh parameters for the spanwise-periodic bump case at ReL = 2 × 106.

Mesh Ncv max �/L min �/L

Coarse 3 Mil. 0.01 1.3 × 10−3

Medium 12 Mil. 0.01 6.3 × 10−4

Fine 52 Mil. 0.01 3.1 × 10−4

equation h(x) = h0 exp(−x2/x2
0 ). In the separated region, the surface pressure is found to agree

well with the experiment of Williams et al. [51] along the centerline z = 0. Further, the skin
friction measurements at midspan for the three-dimensional configuration are in good agreement
with the spanwise-periodic case [52]. Uzun and Malik [59] refer to their simulation as a quasi-DNS
since it obeys the resolution requirements of DNS in the near-wall region and most of the attached
boundary layer; however, it is more comparable to LES resolution in the outer part of the boundary
layer.

For the spanwise-periodic configuration, the inlet velocity profile, located at x/L = −1.0, is a
mean profile sampled from a RANS computation [59]. The inflow boundary layer is steady before
undergoing a numerical transition to turbulence; thus, there is a development length in the WMLES
simulation over the region −1.0 < x/L < −0.8. Free-stream conditions are set at the top boundary
for this case. On the other hand, the three-dimensional bump configuration has a plug flow inlet
at x/L = −1.0 with the side and top boundary conditions treated as inviscid walls to account for
the wind tunnel walls. The outlet is located at x/L = 2.5 and x/L = 1.5 in the spanwise-periodic
and experimental configurations respectively. A nonreflecting characteristic boundary condition
with constant pressure is applied at the outlet. For these simulations, an algebraic formulation of
the equilibrium wall-stress model, in which the assumed mean velocity profile is C1 continuous
is used. Details of the compressible formulation of the equilibrium wall model can be found in
Ref. [60]. It should be noted that first-point matching has been used in these simulations (in our
previous numerical experiments, no log-layer mismatch was observed with first point matching on
Voronoi-HCP grids for this solver). Finally, temporal averaging is performed to regularize the model
coefficients in DSM and DTCSM for these calculations.

For this flow, the quantities of interest are the skin friction coefficient (Cf ) and pressure coeffi-
cient (Cp) which are defined as

Cf = τw

1/2ρ∞U 2∞
and Cp = p − pref

1/2ρ∞U 2∞
. (17)

where U∞, τw, p, and pref are the inlet free-stream velocity, mean wall-stress, wall pressure, and
reference pressure, respectively. The reference pressure is taken to be the pressure at the wall at
x/L = −0.83 to match the reference pressure used by Williams et al. [51].

Both the spanwise-periodic and three-dimensional bumps have the same background mesh
spacing, �/L = 0.01. The grid is a centroidal Voronoi diagram generated from a hexagonally
close-packed lattice of seed points. While refining the grid, the control volumes (CVs) are refined
homothetically by factors of 2 in layers near the wall boundaries. Each successive mesh has CVs
twice as fine in each direction as those of the previous mesh. This refinement approach injects
a thin layer (10 cells thick) of twice refined cells in all directions into the regions immediately
adjacent to the bump. Lloyd iterations are employed to smooth the mesh at transitions in resolution;
the result is a nearly centroidal mesh. The same refinement strategy for the spanwise-periodic and
three-dimensional configurations facilitates comparison between them. Three computational mesh
resolutions are considered in the present work, details for which are provided in Tables II and III.
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TABLE III. Mesh parameters for the three-dimensional bump case at ReL = 3.41 × 106.

Mesh Ncv max �/L min �/L

Coarse 29 Mil. 0.01 1.3 × 10−3

Medium 117 Mil. 0.01 6.3 × 10−4

Fine 452 Mil. 0.01 3.1 × 10−4

A. Spanwise-periodic bump at ReL = 2 × 106

In this section we compare WMLES results with quasi-DNS data for the spanwise-periodic
geometry at upstream Reynolds number, ReL = ρ∞U∞L/μ∞ = 2 × 106 where μ∞ and ρ∞ are the
free-stream dynamic viscosity and density respectively.

In Fig. 13, skin friction coefficients are compared across the three meshes for DSM, DTCSM and
the Vreman model. The friction coefficient at the inlet is different from that of the quasi-DNS likely
due to the difference in inlet boundary conditions (more details can be found in Whitmore et al.
[58]). Similarly to previous observations [58], the coarse mesh results predict flow separation (albeit
slightly underpredicted) using DSM. On refinement, the separation is diminished and then reappears
on further refinement up to the fine mesh. At the fine mesh resolution, the separation bubble size
is in good agreement with DNS for both DSM and DTCSM. It is noteworthy that DTCSM shows
a monotonic convergence towards the DNS Cf , particularly in the region of separation. This is in
contrast to the results from the DSM and Vreman models, which both predict the separation at
coarse resolution but show the medium resolution results moving away from the DNS solution. The
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FIG. 13. Streamwise distribution of the surface friction coefficient for the spanwise-periodic bump at
ReL = 2 × 106 for (a) DSM, (b) DTCSM, and (c) the Vreman model. The equilibrium wall model is applied
and three mesh resolutions are shown. Finally, panel (d) provides a comparison of the three SGS models for
the fine mesh. The black symbols represent the quasi-DNS of Uzun and Malik [59].
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FIG. 14. Streamwise distribution of the surface pressure coefficient for the spanwise-periodic bump at
ReL = 2 × 106 for (a) DSM, (b) DTCSM and (c) the Vreman model. The equilibrium wall model is applied
and three mesh resolutions are shown. Finally, (d) provides a comparison of the three SGS models for the fine
mesh. The black symbols represent the quasi-DNS of Uzun and Malik [59].

nonmonotonic convergence of WMLES towards DNS/experimental results has also been observed
in the past with DSM and Vreman model in simulations of the high-lift aircraft configuration [13,61]
where both models overpredicted the total lift in the linear region of the lift curve on initial mesh
refinement, and the predictions improved on further refinement.

Since this flow is driven by a favorable pressure gradient in the upstream region of the apex of
the bump, there is a substantial increase in the skin friction. DSM underpredicts the peak of skin
friction in this flow at the fine mesh resolution (when separation is correctly observed). However,
DTCSM recovers the peak of the skin friction accurately while also correctly predicting the extent of
separation. The peak of friction occurs in the region of maximum flow acceleration and anisotropic
shear rates, which apparently DTCSM is better equipped to account for, by incorporating the effect
of anisotropy of large scale structures on the subgrid-scale stresses.

Figure 14 compares the pressure coefficients across the models and mesh sizes. The size of the
separation bubble predicted by the Vreman model is smaller and compares less favorably than both
dynamic models, even for the most refined grid. This is apparent from the very small flattened region
of Cp downstream of the bump apex in Fig. 14 for the Vreman model and also the region of negative
Cf in Fig. 13.

B. Three-dimensional bump at ReL = 3.41 × 106

WMLES results are presented for the full experimental geometry given in Eq. (16) at a higher
Reynolds number of ReL = 3.41 × 106. Williams et al. [51] and Gray et al. [52] have performed
experimental measurements of the surface pressure and skin friction respectively for the three-
dimensional bump. Due to the tapering effect of the bump in the spanwise direction which relieves
the pressure in the span, two counter-rotating vortices are formed in the separation region [51]. Iyer
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FIG. 15. Streamwise distribution of the midspan surface friction coefficient for the three-dimensional bump
at ReL = 3.41 × 106 for (a) DSM, (b) DTCSM and (c) Vreman model. The equilibrium wall model is applied
and three mesh resolutions are shown. Finally, (d) compares the prediction of Cf by the three models on the
fine mesh. The black dots represent the experiments performed by Gray et al. [52].

and Malik [57] observed no separation in their WMLES calculations with the Vreman model with
up to 450 Mil. CVs. Previous RANS efforts [51,57] using the SA-Linear model and the SA-QCR
correction model have also been unsuccessful in capturing the correct extent of the separation bubble
(Iyer et al. [57] observed weak separation using SA-QCR RANS model). The peak in the pressure
in the spanwise direction at the apex of the bump was also absent in these studies.

As is the case with the spanwise-periodic bump, the skin friction coefficient profile suggests that
DSM predicts flow separation (albeit smaller than experiment) on the coarsest grid unlike DTCSM
(see Fig. 15). On refinement, the separation bubble fails to appear for both DSM and DTCSM. After
further refinement, the resolution of the nearest-to-wall cell center in the upstream region of the
bump drops to about y+ ∼ 30. For this fine mesh, the separation bubble reappears for DSM and
appears for the first time for DTCSM. The size of the separation bubble is in agreement with the
measurements of Gray et al. [52].

The proposed tensor-coefficient model retains its monotonic convergence in the 3D configuration
(and higher Reynolds number) unlike DSM. For DTCSM, as the grid is refined, the trough of Cf

moves towards DNS monotonically. The region of maximum flow acceleration (x/L ∼ −0.1) where
the skin friction reaches its peak is also more robust to refinement and more accurate for DTCSM.
Figure 16 compares the pressure coefficient at midspan of the bump, where pressure profile flattens
in the separation region. It becomes evident that the fine grid tensor-coefficient model produces
excellent agreements with the experiments. The monotonicity of DTCSM also holds for the pressure

074602-17



RAHUL AGRAWAL et al.

0 0.5 1

0

0.5

(a)

0 0.5 1

0

0.5

(b)

0 0.5 1

0

0.5

(c)

0 0.5 1

0

0.5

(d)

FIG. 16. Streamwise distribution of the midspan surface pressure coefficient for the three-dimensional
bump at ReL = 3.41 × 106 for (a) DSM, (b) DTCSM, and (c) the Vreman model. Finally, (d) provides a
comparison of the three models for the fine mesh. The black dots represent the experimental measurements of
Williams et al. [51].

unlike DSM in that for DTCSM the flow remains attached at coarse and medium grid levels. The
suction peak is captured well by both DSM and DTCSM since it is primarily due to inviscid effects.
Indeed, the suction peak is accurately predicted in a separate simulation (not shown) with free slip
(inviscid) boundary conditions.

An important feature of this three-dimensional flow, which is not observed in the spanwise-
periodic case is the variation in pressure across the span of the domain. Figure 17 compares the
pressure coefficient variation at the apex of the bump for the fine grid cases. The slight rise in
the pressure at midspan is possibly due to the effect of the counter-rotating vortices that reduce

5.00

FIG. 17. Spanwise distribution of the surface pressure coefficient for the three-dimensional bump at
ReL = 3.41 × 106 for DSM, DTCSM, and Vreman model for the fine mesh case. The black dots represent
the experiments of Williams et al. [51].
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FIG. 18. (a) An oil-flow visualization of the counter-rotating vortices in the region of separation (as
observed experimentally [51]); reprinted with permission of the American Institute of Aeronautics and As-
tronautics, Inc. In (b), (c), and (d) we compare the surface streamlines in the separation region for DSM,
DTCSM, and the Vreman models, respectively. It is also noticeable that for DTCSM, the skin friction at the
apex of the bump is inline with the experimental value (from Fig. 15) and higher than DSM and the Vreman
models.

the local streamwise velocity, which increases the local pressure in the region. Both models predict
the pressure far away from the midspan. Near the center, however, it is evident that both DSM and
DTCSM capture the small and subtle rise in Cp, likely due to the improved effective body shape
from an accurate prediction of the extent of the separation downstream. (Although not shown, our
experiments have suggested that a larger separation bubble leads to a larger effective stream-wise
extent of the bump, which shifts the value of Cp at the suction peak towards zero).

The relative underperformance of the Vreman model was established in the spanwise-periodic
bump. In this three-dimensional flow, however, the differences become even more apparent in that
the Vreman model does not predict separation even with the finest grids (refer to Figs. 15 and
16). The issue with the Vreman model is also visible in the pressure prediction across the span at
the bump apex where the pressure peak at midspan is completely missed by the Vreman model
(Fig. 17).

Previously, comparisons between surface streamlines of skin friction from the LES have been
compared with experimental visualizations to qualitatively study the nature of the flow structures
[15,29,62]. For this flow, Williams et al. [51] performed clay-kerosene mixture-based visualizations
and observed a pair of counter-rotating vortices in the aft section of the bump. In the current
work, we compare the surface skin-friction streamlines with these experimental visualizations.
Our simulations with DSM and DTCSM accurately capture the location and size of the strongly
vortical region as observed in Fig. 18. It is also evident that the Vreman model does not capture this
vortex-pair and thus predicts faster (and hence more attached) flow near the wall. The streamlines
also reveal the characteristics of the mean circulation in the separated region. For DSM and DTCSM,
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TABLE IV. Computational cost summary for the spanwise-periodic Gaussian bump using charLES flow
solver per flow through time.

SGS model Cell Nondimensional No. of GPU GPU node hours
Count(Mil.) time step nodes (6 NVIDIA V100 cards per node) per flow through time

DSM 52 4.74 × 10−5 10 13
DTCSM 52 4.74 × 10−5 10 15

it is clearly observed that the mean spanwise velocity is directed towards the center near the side
walls, and an outward (from center) moving region is present near the midspan. The Vreman model,
on the contrary, does not predict this behavior owing to the absence of the separation bubble. This
observation is consistent with the surface skin-friction streamlines of Iyer and Malik [57] with the
Vreman model. The instantaneous values of the streamwise velocity, projected on the wall from
the nearest-neighboring cell for the fine mesh simulation are presented in Fig. 19. Both DSM
and DTCSM qualitatively behave similarly, in that the flow strongly decelerates (and eventually
separates) on passing through the apex. Since the flow remains attached (in the mean) for the
Vreman model, this deceleration is expected to be much weaker, and is confirmed in our calculations
[Fig. 19(c)]. A vortex-wake extending up to approximately x/L ∼ 0.5 is also observed for DSM and
DTCSM, which is in agreement with the experimental observations. In this view, the recirculation
zone appears to be the strongest for DTCSM, which is in agreement with its higher (and more
accurate) Cp prediction around midspan.

IX. REMARKS ON COMPUTATIONAL COSTS OF PERFORMING LES USING DTCSM

In this work, it has been observed that the computational cost of using DTCSM in LES is slightly
higher than DSM by a factor of up to approximately 1.15, potentially due to the added requirement
of dynamically evaluating multiple model coefficients.

Tables IV and V describe the costs of simulating the Gaussian speed bump using the charLES
flow solver for the finest grids considered in this work (although not shown, the relative cost of
performing simulations on coarser grids scale similarly for the two models). The nondimensional
time step (nondimensionalized by the size of the domain in the streamwise direction, Lx, and the
reference freestream velocity, U∞) is found to be approximately same for the two models. Further,
the cost of advancing the governing equations up to one flow through time (defined as the ratio of
Lx and U∞) is only marginally higher for DTCSM. Hence, it is apparent that the costs incurred on
using DTCSM are not greatly different to using DSM for the same computational grid.

X. CONCLUSIONS

In this work, we have developed and validated a new non-Boussinesq-type dynamic SGS closure
formulation for the tensor-coefficient Smagorinsky model (DTCSM). Similarly to the dynamic

TABLE V. Computational cost summary for the three-dimensional Gaussian bump using charLES flow
solver per flow through time.

SGS model Cell count Nondimensional No. of GPU GPU node hours
(Mil.) time step nodes (6 NVIDIA V100 cards per node) per flow through time

DSM 452 4.21 × 10−5 80 100
DTCSM 452 4.21 × 10−5 80 112
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FIG. 19. Oblique view of the instantaneous streamwise velocity in the first grid cell above the wall,
projected on the bump surface for the fine mesh case. Panels (a), (b), (c) are for DSM, DTCSM, and the
Vreman models, respectively.
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Smagorinsky model, the only input parameter to this model is the ratio of test-level and grid-level
filter widths.

A priori analyses have confirmed improved tensor-level correlations of exact SGS stresses and
DTCSM. Asymptotic behavior of the model in the near-wall region is in line with DNS data without
the need for damping functions. The model also produces vanishing subgrid-scale stresses in laminar
flow. Large-eddy simulations of decaying and forced isotropic turbulence at Reλ = 70, 315 and
Reλ → ∞ have been performed. DTCSM performs well in HIT at all Reynolds numbers considered.
For wall-modeled LES of a turbulent channel flow at Reτ = 4200, improvements in mean-velocity
profile, prediction of the Kármán constant and in mean streamwise, wall-normal intensities near
the wall are observed. Finally, it is demonstrated that DTCSM improves the prediction of the
skin-friction peak for wall-modeled simulations of the flow over both the spanwise-periodic and
three-dimensional Gaussian bump at ReL = 2 × 106 and 3.41 × 106, respectively, and also does not
suffer from nonmonotonic convergence towards quasi-DNS unlike DSM. For the three-dimensional
case, pressure in both the streamwise and spanwise directions are better predicted by DTCSM over
DSM. The formation of the counter rotating vortex pair in the three-dimensional bump is observed
for the two dynamic subgrid-scale models in accordance with the experiment. On the other hand,
calculations with the constant coefficient Vreman model led to incorrect separation behavior. The
computational cost incurred on performing LES with DTCSM is comparable (up to 15% higher) to
the cost of using the dynamic Smagorinsky model.
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APPENDIX A: PROOF OF TRACELESSNESS OF DTCSM

In this Appendix, we show that DTCSM is traceless with the constraints imposed in Eq. (12).
This property is required for consistency as the quantity that is being modeled, the deviatoric part
of the subgrid-scale stress tensor, is trace free by definition. Recall that the model formulation of
DTCSM is

τ
sgs
i j − τ

sgs
kk

3
δi j = −(CikSk j + CjkSki )|S|�2. (A1)

The trace of the right-hand side of Eq. (A1) is

trace[−(CikSki + CikSki )|S|�2] = −2CikSki|S|�2, (A2)

which is further expanded as

−2CikSki|S|�2 = −2|S|�2{C11S11 + C22S22 + C33S33 + S12(C12 + C21)

+ S13(C13 + C31) + S23(C23 + C32)}. (A3)

Assuming that the flow is incompressible (Sii = 0) and that Si j is a general strain-rate tensor, we
impose

C11 = C22 = C33; Ci j = −Cji ( j 	= i), (A4)

which ensures that the subgrid stress predicted by DTCSM is trace free.
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APPENDIX B: SYSTEM OF EQUATIONS FOR DYNAMIC PROCEDURE IN DTCSM

Recall for DTCSM, the Germano identity is written as

Li j = (Cik�
2Mk j + Cjk�

2Mki ). (B1)

Absorbing the factor of �2 into the coefficients Ci j , and including only the free coefficients of Ci j ,
the system can be rewritten as⎛⎜⎜⎜⎜⎜⎝

L11

L22

L33

L12

L13

L23

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
2M11 2M12 2M13 0
2M22 −2M12 0 2M23

2M33 0 −2M13 −2M23

2M12 M22 − M11 M23 M13

2M13 M23 M33 − M11 −M12

2M23 −M13 −M12 M33 − M22

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝C11

C12

C13

C23

⎞⎟⎠, (B2)

which, by defining the 6 × 4 matrix on the right-hand side as Mmat, and [·] as vector, can be written
concisely as

[L] = Mmat[C]. (B3)

Using the least-squares solutions approach, we get

MT
mat[L] = MT

matMmat[C]. (B4)

Finally, Eq. (B4) is solved directly to dynamically evaluate the four model coefficients.

APPENDIX C: ANOTHER REPRESENTATION OF DTCSM

In this Appendix, we re-express the model form of DTCSM in terms of a combination of the
strain-rate and rotation-rate tensor. In general, the stresses from DTCSM are expressed as

τDTCSM
i j = −(CikSk j + CjkSki )|S|�2. (C1)

Using the realizability constraints on DTCSM, and decomposing the model coefficient matrix Ci j

into isotropic and deviatoric parts, Ci j = C11δi j + Cd
i j , we write

τDTCSM
i j = − {(

C11δik + Cd
ik

)
Sk j + (

C11δ jk + Cd
jk

)
Ski

}|S|�2. (C2)

Since the deviatoric part of the coefficient matrix Cd
i j is constrained to be antisymmetric, it therefore

has properties similar to those of the rotation-rate tensor. Setting |S|Cd
i j = −�Ri j , Eq. (C2), the

model can be simplified to the form

τDTCSM
i j = −2C11�

2Si j |S| − ��2(SikRk j − RikSk j ), (C3)

which is the same model form as the two-term expansion of the velocity gradient tensor in the
previous work of Lund and Novikov [63] and a recent study by Agrawal et al. [64]. Hence, under
certain scenarios, DTCSM can be interpreted as a model which explicitly accounts for effect of
large-scale rotation rates unlike DSM.
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