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We study the long-time behavior of an advection-diffusion equation with a general
time-varying (including random) shear flow imposing no-flux boundary conditions on
channel walls. We derive the asymptotic approximation of the scalar field at long times
by using the center manifold theory. We carefully compare it with existing time-varying
homogenization theory as well as other existing center manifold based studies and present
conditions on the flows under which our new approximations give a substantial improve-
ment to these existing theories. A recent study [Ding et al., Physica D 432, 133118 (2022)]
has shown that Gaussian random shear flows induce a deterministic effective diffusivity
at long times and explicitly calculated the invariant measure. Here, with our established
asymptotic expansions, we not only concisely demonstrate those prior conclusions for
Gaussian random shear flows but also generalize the conclusions regarding determinism to
a much broader class of random (non-Gaussian) shear flows. Such ergodicity-like results
are important since they assure an experimentalist only need to perform a single realization
of a random flow to observe the ensemble moment predictions at long times. Monte Carlo
simulations are presented illustrating how the highly random behavior converges to the
deterministic limit at long times. Counterintuitively, we present a case demonstrating
that the random flow may not induce larger dispersion than its deterministic counterpart
and in turn present rigorous conditions under which a random renewing flow induces a
stronger effective diffusivity. Last, for white in time flows and renewing flows, we derive
the invariant measure and explore its Peclet number dependencies.

DOI: 10.1103/PhysRevFluids.7.074502

I. INTRODUCTION

How fluid motion transports a diffusing scalar is an extremely important class of problems in
engineering and chemistry. Since G. I. Taylor [1] first introduced the calculation showing that a
steady pressure-driven flow in a pipe leads to a greatly enhanced effective diffusivity, the literature
on this topic has exploded in many directions spanning many disciplines. Shortly following G. I.
Taylor, Aris [2] presented an alternative approach for shear layers yielding a hierarchy for the spatial
moments of the scalar field. More recent moment analysis shows how the boundary geometry of the
pipe can be used to control the distribution of solute which is advected by the pressure-driven flow
[3–5].

Unsteady flows typically generate different properties than their steady counterparts. Practical
examples of unsteady flow include pulsatile blood flows [6] and tidal estuaries [7]. The first inves-
tigation of the Taylor dispersion in time-dependent flow dates back to Aris [8], who presented the
study of a solute advected by pulsating flow in a circular tube. After that, based on the Aris’ moment
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method, a number of studies reported on the enhanced diffusivity induced by the single-frequency
pulsating flow [9–13], the single frequency Couette-Poiseuille [14–17], and the multifrequency flow
[18–20]. Alternative approaches, using center manifold theory [21–24] or homogenization methods
[25–27], not only predict the effective diffusivity but also give the direct expression for the full
concentration field at long times.

In this article, we study three points that have not been addressed well in the literature regarding
shear dispersion in time-varying flows. First, most of those theoretical studies focused on the cross-
sectional-averaged concentration, while fewer studies have explored asymptotic corrections which
capture cross-channel variations. Here, with the center manifold theory, we present a systematic
procedure to construct an approximation to capture the traverse variation of the scalar field. Second,
several interesting articles [21,23,24] implemented center manifold theory for such unsteady prob-
lems employing certain slowly varying assumptions to simplify the calculation. Such assumptions
restrict the applicability of the effective dynamics. Here we relax this assumption by carefully
incorporating the temporal fluctuation of the flows into the analysis. Hence, our results can handle
rapidly fluctuating flows or even random flows. Third, recent results have explicitly calculated
using statistical moment closure the invariant measure for a diffusing passive scalar advected by
a class of random shear flows [28,29] employing no-flux boundary conditions on channel domains.
These results generalize prior turbulent intermittency in free space of Majda [30] and Kraichnan
[31]. Interestingly, we establish here how the center manifold theory can be used to greatly extend
these theories to a much broader class of random shear flows, particularly regarding their temporal
statistics. We show that for this broader class of flows, all effective diffusion coefficients converge
to a deterministic value in the confined domain, in contrast to Majda and others’ free-space analog
[32,33], in which the effective diffusion coefficients are random at all times. Such ergodicity-like
results assure an experimentalist only needs to perform a single realization of the random flow to
observe the field moment predictions at long times.

The paper is organized as follows. In. Sec. II, we formulate the governing equation of the shear
dispersion problem and review the Aris moment method. In Sec. III, we discuss the procedure of
applying center manifold theory to the Taylor dispersion problem with time-varying shear flow. By
utilizing the first-order approximation for the cross-sectional-averaged concentration, we present a
nonnegative asymptotic expansion of the scalar field at long times which captures the transverse
variations. We document situations in which a time-varying cell problem produces a more accurate
approximation than the parametric (adiabatic) approach employed recently [21,23,24]. In Sec. IV,
we demonstrate that a class of flows with finite correlation time will induce a deterministic effective
diffusivity at long times. Moreover, we establish conditions that guarantee that the renewing flow
always yields a larger effective diffusivity than its deterministic counterpart. By utilizing the derived
new effective equation, we compute the explicit formula of invariant measure of the random passive
field.

II. SETUP AND BACKGROUND OF THE PROBLEM

A. Governing equation and nondimensionalization

1. Advection-diffusion equation

We consider the problem in a channel domain (x, y) ∈ R × �, where the x direction is the
longitudinal direction of the channel and � ⊂ Rd stands for the cross section of the channel. Some
practical examples of the boundary geometry includes the parallel-plate channel � = {y|y ∈ [0, L]},
the circular pipe � = {y||y| � L}, the rectangular duct � = {y|y ∈ [0, L] × [0, H]}, and bowed
rectangular channels [34]. As sketched in Fig. 1, the passive scalar is governed by the advection-
diffusion equation with a general time-varying shear flow v(y, t ) and no-flux boundary conditions,

∂t T + v(y, t )∂xT = κ�T, T (x, y, 0) = TI (x, y), ∂nT |R×∂� = 0, (1)
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FIG. 1. A schematic of the setup for the special case of a quadratic shear flow.

where κ is the diffusivity, TI (x, y) is the initial data, n is the outward normal vector of the boundary
R × ∂�, and ∂� is the boundary of �.

2. Nondimensionalization

With the change of variables

Lx′ = x, Ly′ = y,
L2

κ
t ′ = t, Uv′(y′, t ′) = v(y, t ), L�′ = �,

T ′
I (x′, y′)L−d−1

∫
R×�

TI (x, y)dxdy = TI (x, y),

T ′(x′, y′, t ′)L−d−1
∫
R×�

TI (x, y)dxdy = T (x, y, t ),

(2)

after dropping the primes, we obtain the nondimensionalized advection-diffusion equation

∂t T + Pev(y, t )∂xT = �T, T (x, y, 0) = TI (x, y), ∂nT |R×∂� = 0, (3)

where Pe = UL/κ is the Péclet number.

3. Variance and skewness

The homogenization method in Refs. [18,35] suggests that, assuming a scale separation in the
initial data, the solution of Eq. (1) can be approximated by a diffusion equation in the longitudinal
direction with an effective diffusion coefficient. Inspired by that, we are interested in the variance
and skewness of the longitudinal distribution of the scalar field.

The cross-sectional average of the scalar field is defined as T̄ (x, t ) = 1
|�|

∫
�

T (x, y, t )dy, where
|�| is the area of �. In this following context, we use the overline to denote the cross-sectional
average. The nth moment of T̄ is defined by T̄n(t ) = ∫∞

−∞ xnT̄ (x, t )dx. The effective longitudinal
effective diffusivity could be computed through the Aris moments

κeff = lim
t→∞

Var(T̄ )

2t
, (4)

where Var(T̄ ) = T̄2 − T̄ 2
1 is the variance of the cross-sectional average T̄ .

The effective diffusivity characterizes the symmetric property of the longitudinal distribution. We
are also interested in the asymmetry properties of T̄ . Skewness is the lowest-order integral measure
of the asymmetry of a real-valued probability distribution, which is defined as

S(T̄ ) = T̄3 − 3T̄2T̄1 + 2T̄ 3
1(

T̄2 − T̄ 2
1

) 3
2

. (5)
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The information provided by the skewness and how it depends on the tube shape could improve the
design of microfluidic flow injection analysis [5,36] and chromatographic separation [37].

III. CENTER MANIFOLD DESCRIPTION OF THE SHEAR DISPERSION PROBLEM

A. Center manifold and reduction principle

In pioneering work, Mercer and Roberts [23] interpreted the long-time asymptotics of the shear
dispersion problem as the center manifold of a dynamical system, which provides a systematic and
near rigorous approach to derive the approximation. In addition to the shear dispersion problem,
practical applications of the center manifold theory include chromatographic model and reactors
[38], elastic beam deformations [39], and thin fluid flows dynamics [40,41]. To explain the center
manifold method, we consider an autonomous differential system of the form

dx
dt

= Ax + f (x, y),
dy
dt

= By + g(x, y), (6)

where x ∈ Rm, y ∈ Rn. A, B are matrices whose eigenvalues have vanishing and negative real parts,
respectively. We also assume f (x, y), g(x, y) and their first-order partial derivatives are zero at
x = 0, y = 0. These conditions guarantee the existence of a center manifold y = h(x) which has
two important features. First, the stability properties of the dynamical system (6) at the origin are
the same as the following lower-dimensional equation:

dx
dt

= Ax + f (x, h(x)). (7)

Second, in the case of a stable equilibrium (x, y) = (0, 0), each solution of the system (6) which
starts close to the origin exponentially decays to a particular solution on the center manifold [42,43].
With these two features of the center manifold, one can reduce the original m + n-dimensional
system (6) to a m-dimensional system (7) with only the price of exponential corrections.

This classical center manifold theory and reduction principle could be generalized in many direc-
tions. First, the dynamical system (6) could be an infinite-dimensional system where the matrices A,
B become linear operators [44]. Second, similar results hold for a more general dynamical system
dxi
dt = Aixi + f (x1, . . . , xN , t ), 1 � i � N and the restriction of eigenvalues could be weakened

[45,46]. This generalization leads to a so-called two-mode invariant manifold model for the shear
dispersion problem [47–49]. Third, more related to our topic, the system could be nonautonomous,
where the center manifold becomes time dependent y = h(x, t ) [50,51]. Moreover, the nonlinear
term could be discontinuous in t as long as it is strongly measurable with respect to t [51]. A lower
bound of the exponential convergence rate is determined by the linear operators, Ai. For further
details regarding center manifold theory, we refer to Refs. [42,45] and references therein.

Notice that the advection-diffusion equation (3) is linear, while the center manifold theory applies
to a system with nonlinear terms. To apply center manifold theory to the passive scalar problem, we
first take the Fourier transform of Eq. (3) which is defined as f̂ (k) = (2π )−

N
2
∫
RN e−i(x·k) f (x)dx

and obtain

∂T̂

∂t
− ikPev(y, t )T̂ = −k2T̂ + �yT̂ ,

∂T̂

∂n

∣∣∣∣
R×∂�

= 0, T̂ (k, y, 0) = T̂I (k, y). (8)

Second, we conceptually nonlinearize Eq. (8) by treating the wave number as a dependent variable
of the dynamical system. Notice that �y has a null space that consists of all functions which are
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independent of y. To fit the form of Eq. (6), we rewrite Eq. (8) as

∂t

[
k

T̂

]
=
[

0 0
0 �y

][
k

T̂

]
+
[

0

ikPev(y, t )T̂ − k2T̂

]
,

∂t T̂ ′ = �yT̂ ′ + ikPev(y, t )T̂ − k2T̂ ′ − ikPev(y, t )T̂ ,

∂T̂

∂n

∣∣∣∣
R×∂�

= 0, T̂ (k, y, 0) = T̂I (k, y),

(9)

where T ′(x, y, t ) and T (x, t ) are the fluctuation and average of T (x, y, t ) with respect to y. To
weaken the nonlinear coupling, we assume that the initial condition T̂ is supported in a neigh-
borhood of k = 0, which is the slow varying assumption used in homogenization theory. Then
this system satisfies the condition of theorem 2.1 in Ref. [51] which guarantees the existence of

a center manifold T̂ ′ = h(T̂ , k, t ). Additionally, the solution T̂ in the neighborhood of the center

manifold converges to h(T̂ , k, t ) + T̂ exponentially as t → ∞ with the decay rate determined by
the diffusion timescale. For nonnegative and integrable initial conditions, due to the diffusion effect,
T is a decaying scalar field, in which the energy concentrates near the neighborhood of k = 0 at long

times. We can seek the expansion of h(T̂ , k, t ) for small k and T̂ , h = ∑∞
n=1 hn(y, t )knT̂ + O(T̂

2
).

That is equivalent to approximating the scalar field T by the derivatives of its cross-sectional average
T̄ with respect to x. This idea dated back to Gill [52,53] and also has been discussed in Ref. [54].

For simplicity, we rewrite all equations in term of physical variables,

∂t T̄ = ∂2
x T̄ − Pev(y, t )∂xT , ∂t T = �yT + ∂2

x T − Pev(y, t )∂xT . (10)

The expansion becomes

T = T ′ + T̄ = T̄ + h(T̄ ) =
∞∑

n=0

θn(y, t )∂n
x T̄ . (11)

The fluctuation T ′ has a zero mean,
∫
�

T ′dy = 0, which implies θ̄0 = 1 and θ̄n = 0 if n � 1 at long
times. We have ∂

∂n θn|y∈∂� = 0 from the no-flux boundary conditions of T . Substituting expansion
(11) into Eq. (10), we have

∂t T̄ = ∂2
x T̄ − Pev∂xT , (12a)

∞∑
n=0

∂tθn∂
n
x T̄ +

∞∑
n=0

θn∂
n
x ∂t T̄ = �yT + ∂2

x T − Pev∂xT . (12b)

Grouping all terms of the same order, namely ∂n
x T̄ , we find that we have to solve the sequence of

equations

(∂t − �y)θ0 = 0,

(∂t − �y)θ1 = −Peθ0(v − θ0v),

(∂t − �y)θn = −Pevθn−1 + Pe
n−1∑
m=0

θn−m−1vθm,

(13)

where θn = 0 if n < 0. After solving θn successively, we obtain the closed evolution equation of T̄
by substituting T = ∑∞

n=0 θn(y, t )∂n
x T̄ into Eq. (10),

∂t T̄ = ∂2
x T̄ − Pe

∞∑
n=0

vθn∂
n+1
x T . (14)
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Finally, once we solve Eq. (14) for T̄ , we obtain the approximation of the scalar field T via
expansion (11).

B. The first- and second-order effective equation

In this subsection, we will compute Eqs. (13) and (14) for the flow v(y, t ) = ξ (t )u(y). For more
general nonseparable flow v(y, t ), one could reduce it to a separable form by utilizing the Fourier
transform in time. To simplify the calculation, we assume TI (x, y) = δ(x). Otherwise, the general
initial condition only creates extra exponential decaying terms and yields the same asymptotic
expansion at long times.

With the constraints of the average and boundary conditions of θn, we have θ0 = 1. Therefore,
the equation of θ1 becomes

(∂t − �y)θ1 = −Pe(v − v̄), ∂nθ1|∂� = 0. (15)

Since the theory concerns the long-time dynamics of the scalar field and the long-time limit of
θ1 does not depend on the initial condition, in principle, one can solve Eq. (15) with arbitrary
initial condition. To obtain a better approximation at earlier stage, one can choose suitable initial
condition of θn to match both sides of the expansion (11) at t = 0. Then when v(y, t ) = ξ (t )u(y)
and θ1(y, 0) = 0, the solution of Eq. (15) is

θ1(y, t ) = −Pe
∞∑

n=1

φn〈u, φn〉
∫ t

0
eλn (s−t )ξ (s)ds, (16)

where 〈 f , g〉 = 1
|�|

∫
�

f gdy. φn, λn are the eigenfunctions and eigenvalues of the Laplace operator
in the cross section of the channel � with no-flux boundary condition, i.e.,

− �φn = λnφn, ∂nφn|∂� = 0, 〈φn, φn〉 = 1. (17)

When � = {y|y ∈ [0, 1]}, we have φ0 = 1, λ0 = 0 and φn = √
2 cos nπy, λn = n2π2, n � 1.

Substituting T = T̄ + θ1∂xT̄ into the evolution equation of T̄ , we obtain the first-order effective
equation

∂t T̄ + Pev̄∂xT̄ = a2∂
2
x T̄ , a2 = (

1 − Pevθ1
)
. (18)

The classical homogenization approach relies on the Fredholm alternative which involves a space-
time average. As a result, the effective equation is a constant coefficient equation even for the
time-varying flow case [18,25]. Here with the center manifold approach, we obtain the effective
equation (18) with time-dependent coefficients which could approximate the scalar field better in
an earlier stage. Comparing the definition of Aris moments (see Ref. [18]) and variance of the
cross-sectional average, we have

Var(T̄ ) = Var(T̄I ) + 2
∫ t

0
a2(s)ds. (19)

For a periodic time-varying flow [19] and a class of random flows [28,29], we have Var(T̄ ) =
2κefft + O(1), where κeff is the effective diffusivity,

κeff = lim
t→∞

Var(T̄ )

2t
= lim

t→∞
1

t

∫ t

0
a2(s)ds. (20)

In other words, a2 can be approximated by its time average at long times.
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FIG. 2. The relative error of various approximations ‖T − Tapprox‖∞/‖T ‖∞ where T is evaluated numeri-
cally. The red solid curve, blue dashed curve, black dot-dash curve, and purple curve are the relative error of
approximations (22), (23), (24), and (25), respectively.

Based on Eq. (16), the effective diffusivity induced by the flow v(y, t ) = ξ (t )u(y) is

a2 = (
1 − Pevθ1

) = 1 + Pe2
∞∑

n=1

〈u, φn〉2ξ (t )
∫ t

0
eλn(s−t )ξ (s)ds,

κeff = 1 + Pe2 lim
t→∞

1

t

∫ t

0

∞∑
n=1

〈u, φn〉2ξ (s2)
∫ s2

0
eλn(s1−s2 )ξ (s1)ds1ds2.

(21)

With the initial condition T (x, y, 0) = (
√

2πσ )−1 exp(− x2

2σ 2 ), the solution of Eq. (18) gives an
approximation of T̄ as t → ∞,

T̄ (x, t ) = 1√
2πb2

exp

(−x̃2

2b2

)
+ O(t− 3

2 ),

b2(t ) = σ 2 + 2
∫ t

0
a2(s)ds, x̃ = x − Pe

∫ t

0
v̄(s)ds.

(22)

For steady flow, we have b2 = σ 2 + 2κefft . Then Eq. (22) reduces to the classical Gaussian approx-
imation [55]. Since the scalar field will be homogenized across the channel at long times, T̄ itself
could be an approximation of T . In fact, we could obtain a more accurate approximation of T ,

T ≈ T̄ + θ1∂xT̄ =
[

1 − θ1(y, t )x̃

b2

]
1√

2πb2
exp

(−x̃2

2b2

)
+ O(t− 3

2 ). (23)

Since ∂xT̄ is an odd function with respect to x, the error of approximation (23) is still O(t− 3
2 ).

However, Eq. (23) practically performs better than T̄ because it depicts the across channel vari-
ation of the scalar. To demonstrate that, we numerically solved Eq. (3) with Pe = 200, u(y, t ) =
(cos ωt )y(1 − y)/2, and initial condition TI = (

√
2πσ )−1 exp(− x2

2σ 2 ), σ = 1/40 by the method
described in Appendix A 1. Figure 2 presents the relative errors of different approximations,
‖T − Tapprox‖∞/‖T ‖∞. As shown in Fig. 2, the relative error of approximation (22) (red curve) is
around 0.1 at t = 1, while the relative error of approximation (23) (blue curve) is around 10−3. Since
two approximations are of the same asymptotic order at long times, presumably the differences
between the two approximations will reduce as time is further increased.
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In many applications, the scalar field usually stands for the concentration which must be non-
negative for all times. However, this approximation (23) could be negative for some x and t , which
may not be desirable in those applications. References [56,57] proposed the following nonnegative
approximation to study the transverse distribution of concentration distribution for the laminar tube
flow,

T ≈ 1√
2πb2

exp

{−[x̃ − θ1(y, t )]2

2b2

}
. (24)

The approximation (24) converges asymptotically to approximation (23) as θ → 0. However, the
relative difference between them does not vanish as t → ∞. As shown in Fig. 2, there is a visible
difference between the approximation (24) (black curve) and (23) (blue curve).

Here we propose a different nonnegative asymptotic expansion

T ≈
[

1 − θ1(y, t )x̃

2b2

]2 1√
2πb2

exp

(−x̃2

2b2

)
, t → ∞. (25)

Since the difference between Eqs. (23) and (25) is O(t− 5
2 ), the relative difference between them

vanishes as t → ∞. From Fig. 2, we can see that the relative error of approximations (23) and (25) is
almost indistinguishable after t = 0.1. We remark that the approximation (25) may not conserve the
mass of the scalar at the earlier stage of the evolution. However, the size of the nonconserved mass
decays as O(t−2) at long time which is smaller than the error in scalar field in this approximation:
O(t−1). Hence, it is a reasonable approximation at long time.

Next, we study the second-order approximation of the scalar field. We have to solve the equa-
tion for θ2,

(∂t − �y)θ2 = −Pe(vθ1 − θ1v̄ − vθ1),
∂

∂n
θ2

∣∣∣∣
∂�

= 0. (26)

We have the expansion of vθ1 − θ1v̄ − vθ1,

vθ1 − θ1v̄ − vθ1 =
∞∑

n2,n1=1

〈θ1, φn1〉〈φn1 (v − v̄), φn2〉φn2 . (27)

That leads to the solution

θ2 = Pe2
∞∑

n2,n1=1

〈u, φn1〉〈φn1 (u − ū), φn2〉φn2

∫ t

0

[
eλn2 (s2−t )ξ (s2)

∫ s2

0
eλn1 (s1−s2 )ξ (s1)ds1

]
ds2. (28)

Substituting T = T̄ + θ1∂xT̄ + θ2∂
2
x T̄ into the evolution equation of T̄ , the approximated evolution

equation for T̄ becomes a linearized Burgers-Korteweg-de Vries equation

∂t T̄ + v̄∂xT̄ = a2∂
2
x T̄ − a3∂

3
x T̄ , a3 = Pevθ2. (29)

Next we can consider two cases based on a3 = Pevθ2. First, we consider the case a3 = Pevθ2 = 0,
which implies the skewness of T̄ is zero. One such example is the linear shear flow created by
moving one boundary of a parallel-plate channel [18]. In this case, the evolution equation for T̄
reduces to a diffusion equation, where the Gaussian approximation (22) is still valid. Then we
obtain the approximation of the whole scalar field

T = T̄ + θ1∂xT̄ + θ2∂
2
x T̄

=
[

1 − θ1x̃

b2
+ θ2(x̃2 − b2)

b2
2

]
1√

2πb2
exp

(−x̃2

2b2

)
+ O(t−2).

(30)

Since ∂2
x T̄ is an even function with respect to x, the error of approximation (30) is O(t−2) which is

more accurate than the approximation (23).
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(a) (b)

FIG. 3. The relative error of various approximations of numerical solution of Eq. (3) with the flow v(y, t ) =
cos πy, Pe = 1 and initial condition TI = (

√
2πσ )−1 exp(− x2

2σ 2 ), σ = 1/20. The red solid, blue dashed, and
black dot-dash curve represent the relative error of approximations (22), (23), and (30). (a) θ1 and θ2 are
provided in Eq. (31). (b) θ1 and θ2 are provided in Eq. (32).

To demonstrate the validity of the approximation (30), we compare it with the numerical solution
of Eq. (3) with the flow v(y, t ) = cos πy. The steady solution of Eqs. (15) and (26) are

θ1 = −Pe
cos πy

π2
, θ2 = Pe2 cos(2πy)

8π4
, b2 = σ 2 +

(
Pe2

π2
+ 2

)
t . (31)

To fit the initial condition TI and increase the accuracy, we can impose the initial condition θ1(y, 0) =
θ2(y, 0) = 0 and obtain the time-dependent solutions,

θ1 = −Pe
cos πy

π2

(
1 − e−π2t

)
, θ2 = Pe2 cos(2πy)

8π4

(
1 − e−4π2t

)
,

b2 = σ 2 +
[

Pe2

π2

(
1 − e−π2t

) + 2

]
t .

(32)

Figure 3 shows the relative error of different approximations. The numerical solution is obtained
via the method described in detail in Appendix A 1. We have three observations. First, the formulas
(23) and (30) retaining cross-sectional variation provide more accurate approximation than (22).
Second, we can see that the second-order approximation (30) has smaller error than the first-order
approximation (23) at larger time. We expect this difference will be more pronounced at longer
times. Third, if we impose the initial condition on θ1 and θ2, then we obtain a more accurate
approximation at an earlier stage.

Next, we consider the case a3 �= 0. When the initial condition is TI (x, y) = δ(x), the integral
representation of the solution is

T̄ (x, t ) = 1

2π

∫ ∞

−∞
e− 1

2 b2k2−ik3
∫ t

0 a3(s)ds+ixkdk = 1

π

∫ ∞

0
e− 1

2 b2k2
cos

[
−k3

∫ t

0
a3(s)ds + xk

]
dk.

(33)
We are interested in the asymptotic expansion of solution (33) at long times. It is a hard task for a
general time-varying flow. Therefore, we restrict our attention to the case where a2, a3 are constant.
For some time-varying flows, we can approximate a2, a3 with their time average at long times, for
example, periodic time-varying flow. Hence, the asymptotic expansion we derived in the section also
applies to these cases.
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If x  t and t → ∞, then the integrand in Eq. (33) is localized around k = 0. Hence, we have
the approximation

T̄ (x, t ) =
∫ ∞

−∞

[
1 − ia3k3t + (−ia3k3t )2

2

]
exp(−a2k2t + ixk) + O(t−2)

=
[

1 − a3

23a
3
2
2 t

1
2

H3

(
x

2
√

a2t

)
+ a2

3

27a3
2t

H6

(
x

2
√

a2t

)]exp
(−x2

4a2t

)
√

4πa2t
+ O(t−2),

(34)

where Hn is the degree n Hermite polynomial associated with the weight function e−x2
. The

approximation (34) is identical to the Hermite polynomial representation proposed in Eq. (5.7) in
Ref. [58].

Last, we remark that for the initial condition discussed in this section, b2 and
∫ t

0 a3(s)ds are
related to the variance and skewness provided in Eqs. (4) and (5), respectively. For the general
time-varying flows, the eigenfunction series expansions of variance and skewness are valid in
Refs. [18–20]. Additionally, we refer to Table I in Ref. [25], which presents a summary of flows
and the methodologies used in the prior literature.

C. Improvements compared with previous studies

We remark that there are two subtle differences compared with the previous studies [21,23,24].
First, the previous studies made not only the ansatz of the expansion of T but also the expansion of
T̄ . Therefore, the recursive equations involve not only θn but also the coefficients in the expansion
of T̄ . Here we avoid making the expansion ansatz for T̄ by utilizing Eq. (12a), which simplifies the
calculation of θn.

Second, in the previous studies, time is considered as a parameter rather than a dependent variable
of the system. Hence, the equation for the auxiliary function θ1 derived in Refs. [21,23,24] takes the
form

− �yθ1 = −Pe(u − ū), (35)

in which the time derivative term does not appear. One possible justification for this approximation
could be that the flow u(y, t ) varies slowly in time so that the time derivative term is negligible.
However, in situations involving flows admitting rapid temporal evolution, this approximation will
be invalid. Let us consider a simple example, � = [0, 1], Pe = 1, u = −eiωt cos πy. The solution
of Eq. (15) is eiωt cos πy

π2+iω , while the solution of Eq. (35) is eiωt cos πy
π2 . The only difference between

them is the denominator, which yields a O(ω) difference. Hence, for ω  1, the two solutions
are close. However, for any fixed ω, the corresponding approximations of the solute distribution T
diverge at long times, due to the variances having different growth rates. Recall that the variance,
Var(T̄ ) = 2(1 − Pevθ1)t + O(1), grows linearly at long times. The difference between the two
variances arising from the two different cell problems accumulates and becomes an O(1) difference
at the frequency timescale O(ω−1). Since the solute distribution is characterized by the variance,
the O(1) difference between variances implies an O(1) difference in the distributions at that time.
Moreover, this difference in distributions will keep increasing as time increases. Hence, we conclude
that Eq. (35) should only be used with a slow varying flow and before the frequency timescale. In
addition, this can be considered an example of noncommutating limits.

We know the center manifold becomes a good approximation if the exponential correction is
small, i.e., after the diffusion timescale L2/κ , which is independent of the frequency timescale of
the flow. However, the simplification in Eq. (35) makes the approximation unlikely to be valid
after the frequency timescale. Hence, if the frequency timescale is less than the diffusion timescale,
then Eq. (35) is invalid for all time. That certainly limits the application of the result based on
Eq. (35). References [21,22] adopted Eq. (35) to study dispersion induced by pulsating flows. One
of their applications is blood flow. Consider the following practical example. The typical frequency

074502-10



DETERMINISM AND INVARIANT MEASURES FOR …

FIG. 4. The first row shows the numerical solution of Eq. (3) at t = 1 with the shear flow u(y, t ) =
(cos ωt )y(1 − y)/2, Pe = 200 and initial condition TI = (

√
2πσ )−1 exp(− x2

2σ 2 ), σ = 1/40, where ω = π/5 in
left panel and ω = 20π in right column. In the second row, the red curve is the cross-sectional average of the
numerical solution. The blue dash curve is the solution of Eq. (36). The black dot-dash curve is the solution of
Eq. (38). The purple dot curve is the solution of Eq. (39).

timescale in the human blood vessel is 1 s (60 heartbeats per min). The sodium chloride (κ ≈
1.6 × 10−5 cm2/s in water [59]) that diffuses across the blood vessel with diameter 0.2 mm takes
around 25 s. In this case, the result based on (35) is unlikely valid.

To demonstrate the validity of our analysis, we solve Eq. (3) numerically and present the results
in Fig. 4. For the time-varying shear flow u(y) = ξ (t )y(1 − y)/2, [23] derived the effective equation

∂t T̄ + Peξ (t )

12
∂xT̄ =

[
1 + Pe2ξ (t )2

30240

]
∂2

x T̄ . (36)

If ξ (t ) = cos ωt , then the solution of Eq. (15) is

θ = Pe
∞∑

n=1

(−1)n + 1

π2n2
cos nπy

[
ω sin(tω)

π4n4 + ω2
+ π2n2 cos(tω)

π4n4 + ω2
− π2n2Pee−π2n2t

π4n4 + ω2

]
. (37)

Hence the effective Eq. (18) derived by time-dependent center manifold theory is

∂t T̄ + Pe cos ωt

12
∂xT̄ =

[
1 + Pe2

∞∑
n∈even+

2 cos2(tω)

π2n2(π4n4 + ω2)
+ ω sin(2tω)

π4n4(π4n4 + ω2)

]
∂2

x T̄ , (38)

where we neglect the exponential term in the solution of Eq. (15). When t � ω−1, we could
approximate the series in the effective equation by its time average

∂t T̄ + Pe cos ωt

12
∂xT̄ =

⎛
⎝1 + Pe2

⎧⎨
⎩ 1

24ω2
−

sin
(√

ω√
2

) − sinh
(√

ω√
2

)
4
√

2ω5/2
[
cos

(√
ω√
2

) − cosh
(√

ω√
2

)]
⎫⎬
⎭
⎞
⎠∂2

x T̄ . (39)

which is identical to the result of standard homogenization theory [18,25]. Equation (39) is sim-
pler and performs as well as Eq. (38) at sufficiently large timescales. Of course, at intermediate
timesscales or in the case with irregular fluctuating flows, Eq. (38) performs better.

Figure 4 shows the comparison of the numerical solution and different approximations at
diffusion timescale t = 1. The left column shows the result for a small frequency, ω = π/5. The
cross-sectional average of the numerical solution, the solution of effective equations (36) and (38),
is almost indistinguishable. Recall that the standard homogenization result (39) requires t � O( 1

ω
).
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As we expected, the standard homogenization result on this timescale is substantially worse than
both center manifold results. Alternatively, at higher frequency, with ω = 20π , (36) performs visibly
worse than both standard homogenization (39) as well as the time-dependent center manifold results
(38). These observations from the numerical simulation are consistent with our previous theoretical
analysis.

IV. TIME-VARYING RANDOM FLOWS

Most studies of Taylor dispersion focused on periodic time-varying flows, fewer studies have
addressed irregularly fluctuating flows and even random flows. In this section, we will show that
the theory we developed in the previous section can be applied to time-varying random flows.
Moreover, for random flows involving a white-noise process or renewing processes, we show
that the effective diffusivity is deterministic at long times. This is also inspired by our work [29]
which studied the advection-diffusion equation with the shear flow (v(y, ξ (t )), 0) where ξ (t ) is a
stationary Ornstein-Uhlenbeck process in parallel-plate channels enforcing the no-flux boundary
conditions. In that work, we derived the effective equation at long times via analyzing the N-point
correlation function of the random scalar field. The analysis shows an interesting result that,
in this random system, the effective diffusivity is deterministic at long times. We mention an
interesting study regarding the ensemble average for a different system without physical boundary
conditions. In Ref. [60] the authors considered a diffusing passive scalar advected by a nonsheared,
two-dimensional sinusoidal flow with a random phase shift in an unbounded domain using an
operator splitting method (applying the advection operator and diffusion operator successively).
They demonstrated that a single-realization and ensemble-average effective diffusivities are the
same and applied the conclusions to the Fisher-Kolmogorov-Petrovskii-Piskunov model.

We study two cases of flow in this paper. The first case we considered is a Gaussian white-noise
process ξ (t ) which is a zero-mean, Gaussian random process whose correlation function is given
by 〈ξ (t )ξ (s)〉 = δ(t − s). The center manifold approach is valid for a smoothly varying velocity
field. As for the Gaussian white noise which is nondifferentiable, we can consider a sequence of
functions that converges to the white-noise process. The Wong-Zakai theorem states [61–63] that
the convergence of a process to white-noise process yields the convergence of the systems driven
by them. That justifies the application of the center manifold approach in the nondifferentiable case
involving white noise. Additionally, Ref. [64] showed how to apply the stochastic center manifold
theory rigorously to analyze a one dimensional reaction-diffusion equation with white-noise terms.

Since the white-noise process has a zero correlation time, we can approximate the
time-dependent diffusion coefficient a2 with its time average at the diffusion timescale,
namely the effective diffusivity κeff . By utilizing the ergodicity of the white-noise pro-
cess, or equivalently considering the Riemann sum and the law of large number, we have
lim

t→∞
1
t

∫ t
0 ξ (s2)

∫ s2

0 eλn (s1−s2 )ξ (s1)ds1ds2 = 1 for all integer n � 1. Equation (21) reduces to

κeff = 1 + Pe2
∞∑

n=1

〈u, φn〉2 = 1 + Pe2

{
1

|�|
∫

�

u2(y)dy −
[

1

|�|
∫

�

u(y)dy
]2}

. (40)

Equation (40) is identical to Eq. (18) in Ref. [29] which is derived via the rigorous analysis
of N-point correlation function and Hausdorff moment problem. For the system with the random
flows, in general, one has to repeat the experiment with different realizations of the flows to obtain
the properties of the passive scalar via ensemble average. However, the deterministic diffusivity
presented in Eq. (40) implies that one need only observe a single realization of the passive scalar to
access some measurable quantities.

Second, we switch our attention to a class of stochastic flows with a finite correlation time.
Consider a shear flow takes the form (A(t )ξ (t )u(y), 0), where ξ (t ) is periodic function with a base
frequency ω, or equivalently, a period Lt = 2π

ω
. A(t ) is a piecewise-constant zero-mean random
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FIG. 5. A schematic of domain tessellation. �i, i = 1, 2, 3 are defined in Eq. (43). The parameters are
t = 4.5, Lt = 1.

function of time,

A(t ) = An, nLt � t < (n + 1)Lt , n ∈ Z, (41)

where An is an independent and identically distributed random variable with zero mean and finite
variance. This type of flow is in the class of renewing (renovating, innovation) flows, that is, flows
that decorrelate completely in a finite time, taken here to be the period Lt . Therefore, although it is
not a stationary and ergodic process, it is a good approximation to a stationary process with a finite
correlation time. It has wide applications in the study of the dynamo [65,66] as well as in study of the
intermittency of passive-scalar decay [67–69]. For this type of flow, the closed evolution equation for
the statistical moment is unknown. Hence, the Hausdorff moment problem approach proposed in
Ref. [29] for rigorously studying the white-noise flow case does not apply to this case. However, we
could apply the center manifold approach to near rigorously derive the effective equation at long
times.

In this case, the time-averaged diffusion coefficient is

κeff = 1 + lim
t→∞

Pe2

t

∞∑
n=1

〈u, φn〉2
∫ t

0

∫ s

0
e−λn (s−τ )ξ (s)A(s)ξ (τ )A(τ )dτds. (42)

We can further simplify this formula by taking advantage of the periodicity. As presented in Fig. 5,
we tessellate the integral domain by squares and divided the domain into three regions,

�1 =
� t

Lt
�−1⋃

k=0

{(s, τ )|s ∈ [kLt , (k + 1)Lt ], τ ∈ [kLt , s]},

�2 =
� t

Lt
�−1⋃

k=0

{(s, τ )|s ∈ [kLt , (k + 1)Lt ], τ ∈ [0, kLt ]},

�3 =
{

(s, τ )|t ∈ [Lt� t

Lt
�, t], τ ∈ [0, s]

}
.

(43)
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According to this integral domain partition, we divide the double integral in Eq. (42) into three
parts,

∫∫
�1

. . . dτds =
� t

Lt
�−1∑

m1=0

A2
m1

∫ (m1+1)Lt

m1Lt

∫ s

m1Lt

e−λn (s−τ )ξ (s)ξ (τ )dτds,

∫∫
�2

. . . dτds =
� t

Lt
�−1∑

m1=1

m1∑
m2=0

Am1 Am2

∫ (m1+1)Lt

m1Lt

∫ (m2+1)Lt

m2Lt

e−λn (s−τ )ξ (s)ξ (τ )dτds,

∫∫
�3

. . . dτds = A� t
Lt

�

∫ t

Lt � t
Lt

�

∫ s

0
e−λn (s−τ )ξ (s)A(τ )ξ (τ )dτds,

(44)

where we omit the lengthy integrand on the left-hand side of equations. In fact, only the integral
over �1 grows linearly on time and contributes to the effective diffusivity. With rearranging the
order of the double summation, the integral over �2 becomes

� tω
2π

�−1∑
m1=1

m1∑
m2=0

Am1 Am2 e−λn
2π (m1−m2 )

ω

∫ 2π
ω

0

∫ 2π
ω

0
e−λn (s−τ )ξ (s)ξ (τ )dτds

=
� tω

2π
�−1∑

q=1

⎛
⎝e−λn

2πq
ω

� tω
2π

�−1∑
m1=q

Am1 Am1−q

⎞
⎠∫ 2π

ω

0

∫ 2π
ω

0
e−λn (s−τ )ξ (s)ξ (τ )dτds

=
∫ 2π

ω

0

∫ 2π
ω

0
e−λn (s−τ )ξ (s)ξ (τ )dτds

� tω
2π

�−1∑
q=1

e−λn
2πq
ω o

(
� tω

2π
− 1 − q�

)
= o

(
� tω

2π
�
)
,

(45)

where the last line follows the law of large numbers, namely 1
� tω

2π
�−1−q

∑� tω
2π

�−1
m1=q Am1 Am1−q =

E (AqA0) + o(1) almost surely for a fixed q. Then the whole integral vanishes after dividing by t
and taking the long-time limit.

Next, the integral over �3 in Eq. (44) is an integral over a bounded interval s ∈ [Lt� t
Lt

�, t]. It is
enough to show the integrand is a bounded function of s on this interval. We have

∫ s

0
e−λn (s−τ )ξ (s)A(τ )ξ (τ )dτ

= A� tω
2π

�

∫ s

2π
ω

� tω
2π

�
e−λn (s−τ )ξ (s)ξ (τ )dτ +

� tω
2π

�−1∑
m2=0

Am2

∫ 2π (m2+1)
ω

2πm2
ω

e−λn(s−τ )ξ (s)ξ (τ )dτ

= A� tω
2π

�

∫ s

2π
ω

� tω
2π

�
e−λn (s−τ )ξ (s)ξ (τ )dτ +

� tω
2π

�−1∑
m2=0

Am2 e−λn(s− 2πm2
ω )

∫ 2π
ω

0
eλnτ ξ (s)ξ (τ )dτ,

(46)

where both terms in the last step are bounded functions of s.
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Hence, the integral over �2 and �3 in Eq. (44) vanishes after dividing by t and taking the long-
time limit. Now, we have the leading-order approximation of Eq. (42) at long times,

κeff = 1 + lim
t→∞

Pe2

t

∞∑
n=1

〈u, φn〉2
∫ 2π

ω

0

∫ s

0
e−λn (s−τ )ξ (s)ξ (τ )dτds

� tω
2π

�−1∑
m1=0

A2
m1

+ O(t−1)

= 1 + Pe2ω

2π
Var(A0)

∞∑
n=1

〈u, φn〉2
∫ 2π

ω

0

∫ s

0
e−λn (s−τ )ξ (s)ξ (τ )dτds.

(47)

where the second step follows the law of large numbers.
It is natural to compare the renewing flow (A(t )ξ (t )u(y), 0) with its deterministic counterpart

(var(A0)ξ (t )u(y), 0), and ask the question which one induces a larger effective diffusivity. One may
expect the random motion creates a larger dispersion. However, it is not always true. A counter
example is the ξ (t ) = cos t , Pe = 1 and Var(A) = 1, where the effective diffusivity induced by
the renewing flow is κeff,r ≈ 1.3993, while the effective diffusivity induced by its deterministic
counterpart is κeff,d ≈ 1.4124.

Interestingly, if we impose the continuity assumption on the renewing flow, then we have
κeff,r � κeff,d. The continuity of A(t )ξ (t ) implies ξ (0) = ξ (Lt ) = 0. Hence, ξ (t ) admits a sine
expansion ξ (t ) = ∑∞

k=1 ck sin kωt . Recall that, in the calculation of effective diffusivity induced
by the renewing flow, the contribution of the integral over �2 in Eq. (44) vanishes due to the mean
zero property of the random process A(t ). However, when A(t ) is a deterministic function, this term
grows linearly on time and contributes to the effective diffusivity. Therefore, it is enough to establish
that this term is nonpositive. We have∫ (m1+1)Lt

m1Lt

∫ (m2+1)Lt

m2Lt

e−λn(s−τ )ξ (s)ξ (τ )dτds

= e−λnLt (m1−m2 )
∫ 2π

ω

0

∫ 2π
ω

0
e−λn(s−τ )ξ (s)ξ (τ )dτds

= e−λnLt (m1−m2 )
∞∑

k1,k2=1

ck1 ck2Ck1,k2 ,

(48)

where Ck1,k2 = ∫ 2π
ω

0

∫ 2π
ω

0 e−λn(s−τ ) sin(k2ωs) sin(k1ωτ )dτds. It is enough to show the (possibly infi-
nite) matrix C is seminegative definite. In fact, we have

Ck1,k2 = − 4ω2 sinh2

(
π3n2

ω

)
k1

k2
1ω

2 + λ2
n

k2

k2
2ω

2 + λ2
n

. (49)

Hence, for any n, C is a rank one matrix with only one negative eigenvalue, which implies C is
seminegative definite. Now, we finished the proof of κeff,r � κeff,d for the continuous renewing
flow.

To verify our theoretical results regarding the deterministic effective diffusivity, we solve Eq. (3)
with shear flows v(y, t ) = (y − 1/2)A(t ) sin 100πt by using the forward Monte Carlo method
described in Ref. [18]. The computational domain is (x, y) ∈ R × [0, 1]. The time step size is 10−3.
The total number of the random walkers is 2 × 106. We divide a simulation into 400 parallel jobs
on UNC’s Longleaf computing cluster. In Figs. 6(a)–6(e), Pe = 400. In Fig. 6(f), Pe = 1200. In
Fig. 6(a), A(t ) is a white-noise process. In Fig. 6(b), A(t ) = 1. A(t ) is a renewing process with a
coin-toss random variable taking values plus or minus one with equal probability in Fig. 6(c), a
standard Gaussian distributed random variable respectively in Fig. 6(d) and a uniform distributed
random variable on [−√

3,
√

3] in Figs. 6(e) and 6(f). We plot Var(T̄ )
2t as a function of time for five

independent flow realizations and different shear flows in Fig. 6. The curves with the same color are
generated with the same seed from the same random number generator.

074502-15



LINGYUN DING AND RICHARD M. MCLAUGHLIN

FIG. 6. Var(T̄ )
2t as a function of time for five independent flow realizations and different random flows. Note

that Eq. (4) shows this quantity converges to the deterministic effective diffusivity at long times. We compute
κeff using Eq. (40) for panel (a), using Eq. (21) for panel (b), and using Eq. (47) for panels (c), (d), (e), and
(f) and report three significant digits of the effective diffusivity to the right of each row. Pictures in the right
column are simply zoom-in of pictures in the left column at a larger timescale. The black dashed line indicates
the theoretical limit κeff . The dotted lines are 0.95κeff or 1.05κeff .

From Fig. 6, we have five observations. First, in Figs. 6(a), 6(c) 6(d), 6(e), and 6(f), all curves
fluctuate randomly at the earlier stage but converge at later times to a deterministic effective
diffusivity κeff given by Eq. (47). Second, since all distributions in Figs. 6(c), 6(d) and 6(e) have
the same unit variance, all renewing flows induce the same effective diffusivity at long times. Third,
comparing Fig. 6(b) and Figs. 6(c), 6(d) and 6(e), we can see that renewing random flows induce a
larger effective diffusivity than their deterministic counterpart, as just proven above. Fourth, from
the right column of Fig. 6, we can see that if the distribution of A(t ) has a heavier tail, then Var(T̄ )

2t
takes a longer time to converge to the theoretical limit. Fifth, the long-time asymptotic correction
of effective diffusivity is proportional to the square of the Péclet number. Hence, for a larger Péclet
number, it will take a longer time to converge in the sense of the absolute difference. However,
notice that the effective diffusivity is also proportional to the square of the Péclet number. We expect
it will take a similar time to achieve the same relative difference. Figures 6(e) and 6(f) supports this
analysis.

A. Invariant measure

Equation (22) is an approximation of the scalar field at long times, which is a powerful tool
to compute the invariance measure of the random field. Let us consider the flow we discussed in
the previous section. First, when v(y, t ) = ξ (t )u(y) and ξ (t ) is the Gaussian white noise, Eq. (22)
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FIG. 7. The invariant measure fT̃ (z) in Eq. (51) for different parameters β. The red solid curve, blue dashed
curve, and black dot-dash curve stand for the case β = 1/20, 1, 20, respectively. fT̃ (z) changes from negatively
skewed to positively skewed as β increases.

becomes

T̄ (x, t ) = 1√
4πκefft

exp

( −x̃2

4κefft

)
+ O(t− 3

2 ), x̃ = x − PeūB(t ), (50)

where B(t ) is the standard Brownian motion and κeff is provided in (40). Even though the effective
diffusivity is deterministic at long time, generally, the scalar itself may still be random at long time,
and the availability of the invariant measure is useful. To that end, we apply the inverse transform
method (we refer reader to Ref. [70] for details) to obtain the invariant measure of T̄ , i.e., the
probability density function at long times, from the probability density function of B(s). We consider
the rescaling of T , T̃ (x, y, t ) = √

4πκefftT . Without loss of generality, we focus on the scalar at
point x = 0, y = 0, i.e., T̃ (0, 0, t ). Thus, the invariant measure is

fT̃ (z) = z
1
β
−1

√−πβ log(z)
, z ∈ [0, 1], (51)

where β = Pe2 ū2v(t )
2tκeff

= Pe2 ū2

2κeff
+ O(t−1) and v(t ) is the variance of

∫ t
0 ξ (s)ds. fT̃ (z) always has the

logarithmic singularity at z = 1. It is continuous at z = 0 when β � 1, and singular when β > 1
(see Fig. 7). Some physical insight can help interpret this result: Indeed, for a weak input random
signal, the scalar flied is nearly deterministic. Hence, the rescaled T at x = 0 is thus very likely to be
1. As the strength of the random signal increases, white-noise flow makes the blob to be most of the
time away from the initial position and the value of scalar at original point is more likely to be zero.
As a result of that, when the strength of the input random signal exceeds some certain threshold, the
distribution changes from negatively skewed to positively-skewed as β increases.

Second, when the shear flow is the renewing flow v(y, t ) = A(t )ξ (t )u(y), we also have the
Gaussian function approximation (22) with the effective diffusivity provided in Eq. (47) and

x̃ = x − Peū
∫ t

0
A(s)ξ (s)ds = x − Peū

⎡
⎣� t

Lt
�−1∑

n=0

An

∫ Lt

0
ξ (s)ds + A� t

Lt
�

∫ t

Lt � t
Lt

�
ξ (t )

⎤
⎦. (52)

The rescaled scalar T̃ (x, t ) becomes

T̃ (x, t ) =
√

4πκefftT = exp

{
−
[
PeūX

∫ Lt

0 ξ (s)ds
]2

4κeffLt

}
+ O

(
t−1), (53)
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where X = 1√� t
Lt

�
∑� t

Lt
�−1

n=0 An ∼ N (0, Var(A0)) as t → ∞ follows the central limit theorem. With

the same method, we find that the probability density function (PDF) of T̃ takes the same form

provided in Eq. (51) but with a different expression of parameter β = [Peū
∫ Lt

0 ξ (s)ds]2Var(A0 )
2κeffLt

. Hence,
the renewing flows induces a same type of invariant measure as the one induced by the white-noise
process at long times.

When
∫ Lt

0 ξ (s)ds = 0, the PDF of the scalar field collapses to a δ function much quicker than
the white-noise case. We can still calculate the PDF of the scalar field via the PDF of A0, but the
time-independent invariant measure is not available.

V. CONCLUSION AND DISCUSSION

We have studied the long-time behavior of an advection-diffusion equation with a general
time-varying (including random) shear flow imposing no-flux boundary conditions on channel walls
using center manifold theory. Our study extends and improves prior work of Refs. [21,23,24] to
properly incorporate general time variation into the effective theory. Comparisons with full simu-
lations document conditions when this improved approach gives a better approximation and also
illustrates situations in which standard homogenization does not perform well on finite timescales.
Convergence studies illustrate how the accuracy of the different approximations. Armed with this
improved time-varying center manifold theory, we derived new effective equations for random
shear flows involving both white in time statistics, as well as more correlated renewing flows. For
white in time, these predictions agree with our prior work [29], which forecasts a deterministic
effective diffusivity at long times. For the case of renewing flows, less is known, and our current
work also a deterministic effective diffusivity, with new explicit formulas. These theories are
demonstrated to be quantitatively accurate through Monte Carlo simulations. New conditions are
derived which guarantee when the random renewing flow generates a larger effective diffusivity
than its deterministic analog. Last, using the inverse transform method and the effective equations,
we derived the invariant measure and investigate its Péclet number dependence.

The future study includes a number of directions. First, in this study, we only considered constant
diffusivity. Future immediate areas of exploration include the case with spatial variable-dependent
diffusivity or even concentration-dependent diffusivity. A practical example concerns the shear-
enhanced diffusion in colloidal suspensions explored in Ref. [71]. The nonlinearity in those systems
imposes challenges to the traditional method. We expect the center manifold theory could overcome
the difficulties. Further, the center manifold theory will apply nicely to study the mixing ability
of time-varying flow in a nonflat channel to generalize the conclusion in Ref. [72]. Second, the
perturbation method presented in the manuscript only works for a decaying scalar field for which
energy is localized at zero wave numbers at long times. We are interested in generalizing the result
to plane wave initial data. In this case, since the energy is always localized at a wave number isolated
from k = 0 (set by the initial condition). Hence, the expansion around the zero wave numbers would
not be valid. We expect that the asymptotic expansion is available in the large or small Péclet number
limit via the method described in Refs. [32,73]. Additionally, the nondecaying scalar field would
exist in the presence of net flux at the boundary or source inside the domain, which is an interesting
topic for future study.
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TABLE I. Butcher tableau for the Explicit (left) Implicit (right) L-Stable scheme, (α, β, η) could be
(1/2, 1/8, 0), ( 9−√

57
6 , 9−√

57
24 , −6+√

57
12 ), or ( 9+√

57
6 , 9+√

57
24 , −6−√

57
12 ).

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1
2 0 1

4
1
4 0

0 1
6

1
6

2
3

α α 0 0 0
0 −α α 0 0
1 0 1-α α 0
1
2 β η 1

2 − β − η − α α

0 1
6

1
6

2
3

APPENDIX

1. Numerical method

In this section, we document details of the numerical simulations for Eq. (1). The computational
domain is x × y ∈ [−H, H] × [0, L]. When H is large enough, we can assume there is a periodic
boundary condition in the x direction. Since there are nonpenetration conditions in the y direction,
we perform the even extension in the y direction to obtain the periodic condition on the extended
domain. Thus, we can use the standard Fourier spectral method to solve the advection-diffusion
equation with periodic boundary conditions on the rectangular domain [−H, H] × [0, 2L]. In the
dealiasing process at each time step, we apply the all-or-nothing filter with the two-thirds rule to
the spectrum, that is, we set the upper one-third of the resolved spectrum to zero (see chapter 11 of
Ref. [74] for details). The typical parameters are H = 8π , L = 1. The grid resolution is 1024 × 64
before the even extension and 1024 × 128 after the extension.

The diffusion operator is stiff, which requires a very small time step size for the explicit method
to ensure numerical stability. In order to use a larger time step size and improve the efficiency,
we adopt the implicit-explicit third-order Runge-Kutta method presented in Table 6 in Ref. [75].
In our application, we use the explicit Runge-Kutta method to integrate the advection part and
use the implicit diagonal Runge-Kutta method to integrate the diffusion term. When the diffusivity
is a constant, the diffusion operator is a diagonal matrix in the Fourier space. Thus, the implicit
equation can be solved explicitly and efficiently. The implicit-explicit method is as efficient as the
explicit method at each iteration while allowing a much larger time step size.

We also present the Butcher tableau of the explicit-implicit Runge-Kutta method in Table I
here for convenience. Unfortunately, Ref. [75] only reported 13–14 significant digits of parameters
(α, β, η) which are the key parameters defining the algorithm. That may potentially deteriorate
the accuracy of double-precision floating-point based or even higher precision floating-point based
algorithms. Hence, we documented the exact value for those parameters, ( 9−√

57
6 , 9−√

57
24 , −6+√

57
12 ).

We also find another two groups of parameters that achieve the same convergence order and ensure
the L-stable, (1/2, 1/8, 0) and ( 9+√

57
6 , 9+√

57
24 , −6−√

57
12 ).
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