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Transient dispersion in a channel with crossflow and wall adsorption
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Dispersion of substances with reactive boundaries is relevant to a wide range of
chemical, biological, and geophysical processes. A supplied crossflow, or equivalently
sedimentation of the substance, is also expected to affect the dispersion process. We
consider a setting with two infinite parallel plates, where the diffusive substance is adsorbed
at the lower plate, simultaneously advected longitudinally by a main flow and vertically by
a crossflow. Although the same configuration has been studied previously with the gen-
eralized Taylor dispersion (GTD) theory [M. Shapiro and H. Brenner, AIChE J. 33, 1155
(1987)] and a dual-perturbation method [T. Y. Lin and E. S. G. Shaqfeh, Phys. Rev. Fluids
4, 034501 (2019)], both of them focused on the long-time asymptotic dispersion regime,
exclusive of the important transient dispersion process. As an extension of these works to
the transient dispersion process, we utilize the classical method of moments along with the
eigenfunction expansion to calculate the moments up to fourth order, and thus the effects of
non-Gaussian properties can be reflected. Compared with the result of Brownian dynamics
simulations, the present work is shown sufficient to cover the preasymptotic dispersion
regime out of reach of the GTD and dual-perturbation method. Strong non-Gaussian
properties are found in the preasymptotic regime, as reflected by the nonzero skewness
and kurtosis as well as asymmetric longitudinal concentration distribution. Additionally, it
is found that the duration of the preasymptotic regime is extended in the presence of both
the crossflow and wall adsorption. Considering that most of the substance may have been
adsorbed during the preasymptotic regime, it is necessary to use higher-order dispersion
models such as the one presented herein.

DOI: 10.1103/PhysRevFluids.7.074501

I. INTRODUCTION

Dispersion of a substance refers to the enhanced streamwise spreading due to the combined effect
of molecular/turbulent diffusion and flow shear in the cross section. Specifically, when a substance
diffuses in the transverse direction across streamlines, it samples different longitudinal velocities
and, hence, spreads in the longitudinal direction much more than it would by molecular diffusion
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alone. This phenomenon was first studied by Taylor [1], and is therefore also known as “Taylor
dispersion.” Taylor dispersion plays an important role in many natural processes and industrial
applications such as mixing in natural flows [2–4], chemical engineering [5,6], and biological
transport [7–11].

In Taylor’s seminal works [1,12] regarding dispersion in either laminar or turbulent pipe flows,
the dispersion mechanism originates from the diffusion (molecular or turbulent) and shear in the
confining cross section. Taylor dispersion is subsequently extended to cover diverse applications
and effects, including those with porous media, active particles, and reactive boundaries. A compre-
hensive framework was established by Frankel and Brenner [13], who named their generalization
as “generalized Taylor dispersion” (GTD) theory, as elaborated in a later textbook [14].

While Taylor’s analysis of the dispersion process seems to be largely based on his ingenious
intuition, Aris [15] introduced the method of moments and gave a more analytical derivation of
the asymptotic dispersion coefficients [“asymptotic” implies that the longitudinal distribution of
cross-sectional mean concentration has reached Gaussian, and the dispersion coefficients (drift and
dispersivity) have reached a steady state]. It is noted that the GTD is also based on Aris’ asymptotic
moment analysis, but GTD is able to encompass more complex configurations such as porous
media, nonspherical particles, sedimentation, and bulk/boundary reaction, by identifying the local
space and global space [13]. The method of moments was extended to calculate the preasymptotic
moments by Barton [16], who used the separation of variables and gave general expressions of
the first four moments. There are also other methods of Taylor dispersion analysis, such as Gill’s
generalized model [17–21], homogenization technique [22–24], perturbation expansion [25], and
asymptotic expansion [26].

Wall adsorption, or more generally an interfacial mass-transfer process, widely exists in flows
with porous walls [27,28] and is relevant to many applications, such as separation of substance
by chromatography [18], adsorption of solute in wetland substrate [29], and exchange between
sediment and bedload [30,31]. In some applications, a crossflow can be supplied to enhance the
filtration efficiency [32], or a sedimentation speed should be considered when investigating a heavy
substance such as sediment. Physically and mathematically, both the crossflow and sedimentation
are reflected by adding a vertical drift speed to the substance.

Jayaraj and Subramanian [33] analyzed the dispersion with a vertical drift speed numerically and
compared with second-order Gill’s generalized model (which only gives the asymptotic dispersion
coefficients and resembles Taylor’s classical model), they found the strong asymmetry of the
longitudinal distribution of vertical average concentration at intermediate times (Fig. 3 in their
work), suggesting the need to retain higher-order terms reflecting asymmetry in the dispersion
model. Focusing on the dispersion with a vertical drift speed and wall adsorption, Smith [34] used
a Gaussian approximation for the two-dimensional concentration distribution, i.e., assuming the
longitudinal distribution of concentration at each vertical position is Gaussian but different vertical
positions have different mean and variance. It is expected that the work of Smith [34] can incorporate
non-Gaussian properties of the longitudinal distribution of vertical average concentration to some
extent, although not consistent with the non-Gaussian longitudinal concentration distribution at each
vertical position before the long-time limit.

In this work, we follow the problem setting in Lin and Shaqfeh [35], i.e., a canonical pressure-
driven flow between two parallel plates supplied by a uniform and downwelling crossflow; in the
meantime, the dispersing substance experiences different boundary conditions on the two plates:
there is no reaction at the top boundary, whereas there is a first-order adsorption reaction at the
bottom boundary. Although Lin and Shaqfeh [35] gave an analytical analysis of the dispersion
process, they focused on the long-time asymptotic dispersion regime, which means the longitudinal
concentration distribution has already been Gaussian. In addition, because Lin and Shaqfeh [35]
used a dual-perturbation method, which requires a relatively weak adsorption rate as a small
quantity, their results were not meant to be applicable for a situation with a moderate to high
adsorption rate. It is also noteworthy that Shapiro and Brenner [36] have also considered an almost
equivalent configuration, where the crossflow was replaced by a sedimentation speed of the particles
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FIG. 1. The sketch of the problem setting.

and the longitudinal velocity profile was replaced by a Poiseuille flow. Nevertheless, they employed
the GTD method and was therefore also intended for the long-time asymptotic dispersion regime.

Using the classical method of moments [15] supported by Barton’s technical route (separation of
variables) [16], we analyze the transient dispersion with a crossflow and one-side wall adsorption
by calculating the first five moments, and no limit is posed on the adsorption rate. The verti-
cal concentration distribution, remaining mass, effective velocity, dispersivity, and non-Gaussian
quantities skewness and kurtosis are accurately derived to cover the preasymptotic process. In
addition, the longitudinal distribution of the vertical average concentration and the two-dimensional
concentration field is approximated by Chatwin’s [26] long-time asymptotic expansion (Edgeworth
expansion). The remainder of this paper is organized as follows: The advection-diffusion equa-
tion for the concentration and the successive equations for the concentration moments, along with
the boundary and initial conditions, are illustrated in Sec. II; in Sec. III, the eigenfunction expansion
of moments and the determination of the expansion coefficients are introduced; the results and
discussion are given in Sec. IV; a brief conclusion is given in Sec. V; the details of the solution
to the eigenvalue problem are presented in Appendix A; in Appendix B, a typical case is directly
compared with Brownian dynamics (BD) simulation, showing good agreement; and in Appendix C,
we present a standard homogenization method for the steady-state dispersion problem, which is
almost identical to the GTD method.

II. GOVERNING EQUATIONS

As depicted in Fig. 1, ex and ey denote the unit vectors of longitudinal axis x∗ and vertical axis y∗,
respectively. The velocity field u = u∗(y∗)ex + v∗ey of the canonical pressure-driven flow between
two parallel plates with a uniform and perpendicular crossflow is given by Batchelor [37]:

u∗(y∗) = −d p∗

dx∗
1

ρV ∗

[
−y∗ + H∗ 1 − exp(−V ∗y∗/ν)

1 − exp(−V ∗H∗/ν)

]
, (1)

v∗ = −V ∗, (2)

where u∗(y∗) and v∗ are the longitudinal and vertical velocity, respectively, with V ∗ denoting the
absolute value of v∗; −d p∗/dx∗ is the pressure gradient driving the main flow, ρ and ν are the
density and kinematic viscosity of the fluid, and H∗ is the channel height.

The solute concentration C∗ is governed by the advection-diffusion equation,

∂C∗

∂t∗ + u∗(y∗)
∂C∗

∂x∗ + v∗ ∂C∗

∂y∗ = D∗
(

∂2C∗

∂x∗2 + ∂2C∗

∂y∗2

)
, (3)

where D∗ is the molecular diffusivity.
Following Lin and Shaqfeh [35], the top boundary is set to be nonreactive, i.e., the adsorption rate

is zero, whereas the bottom boundary adsorbs the solute at an adsorption rate k∗, thus the boundary
conditions are

D∗ ∂C∗

∂y∗ + V ∗C∗ = {k∗C∗, 0} at y∗ = {0, H∗}. (4)
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Variables are made dimensionless by

C = C∗

C∗
c

, x = x∗

H∗ , y = y∗

H∗ , t = t∗D∗

H∗2 ,

Peu = U ∗H∗

D∗ , Pev = V ∗H∗

D∗ , Rev = V ∗H∗

ν
, Sh = k∗H∗

D∗ . (5)

Here C∗
c is a characteristic concentration at the initial release to ensure

∫ ∞
−∞

∫ 1
0 C(x, y, 0)dy dx = 1.

For example, if the initial release is a uniform line source at x∗ = 0, i.e., C∗(x∗, y∗, 0) = Q∗δ(x∗),
where Q∗ is the total amount of the solute, then C∗

c is numerically equal to Q∗. Peu and Pev are
the Péclet numbers characterizing the strength of the main longitudinal flow and the crossflow,
respectively. U ∗ = −(d p∗/dx∗)H∗2/(12ρν) is the vertical average velocity without the crossflow
(planar Poiseuille flow). Rev is a Reynolds number controlling the longitudinal velocity profile and
we shall fix Rev = 1 throughout this work. Sh is the Sherwood number quantifying the adsorption
intensity of the bottom boundary.

The dimensionless equation for the solute transport is

∂C

∂t
+ Peuu

∂C

∂x
− Pev

∂C

∂y
= ∂2C

∂x2
+ ∂2C

∂y2
, (6)

where the longitudinal velocity is now given by

u(y) = 12

Rev

[
−y + 1 − exp(−Revy)

1 − exp(−Rev )

]
. (7)

Note that

lim
Rev→0

u(y) = −6(−1 + y)y, (8)

and the mean longitudinal flow velocity is

u = 6[2exp(−Rev ) − Rev coth(Rev/2)]

Rev
2 , (9)

where (·) � ∫ 1
0 (·)dy denotes the vertical averaging operation.

The boundary conditions become

∂C

∂y
+ PevC = {ShC, 0} at y = {0, 1}. (10)

The longitudinal moments of concentration are defined as [15]

Cp �
∫ ∞

−∞
xpC(x, y, t )dx, p = 0, 1, . . . , (11)

where p denotes the order. The vertical average moments Cp, namely, global moments Mp, are
subsequently defined as

Mp � Cp =
∫ 1

0
Cpdy. (12)

The governing equations for the moment are obtained by applying
∫ ∞
−∞(·)dx to Eq. (6),

∂Cp

∂t
= p Peu uCp−1 + p (p − 1)Cp−2 + LCp, (13)
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where

L(·) � Pev

∂ (·)
∂y

+ ∂2(·)
∂y2

, (14)

and we have assumed that the concentration and its longitudinal derivatives decay exponentially as
|x| → ∞ [15],

C(x, y, t ) → 0 as x → ±∞, (15)

∂ pC(x, y, t )

∂xp
→ 0 as x → ±∞, p = 1, 2, 3, . . . (16)

to simplify the moment equations.
The corresponding boundary conditions for Cp are

∂Cp

∂y
+ PevCp = {ShCp, 0} at y = {0, 1}. (17)

We consider a slug released at x = 0, thus the initial condition is formally specified as

C(x, y, 0) = δ(x) fini(y), (18)

C0(y, 0) = fini(y), (19)

Cp = 0, p = 1, 2, . . . . (20)

Throughout this work, we use vertical uniform release as the initial condition, thus fini = 1.

III. SOLUTIONS FOR MOMENTS

A. Eigenfunction expansion of moments

We follow Barton [16] to express the moments by eigenfunction expansion,

Cp(y, t ) =
∞∑

i=0

pni(t )e−λit fi(y), p = 0, 1, . . . , (21)

where {−λi}∞i=0 are the eigenvalues sorted in descending order, and { fi}∞i=0 are the corresponding
orthogonal and normalized eigenfunctions. The details of the eigenvalue problem are given in
Appendix A. {pni}∞i=0 are the expansion coefficients to be determined by the initial condition.

B. Determination of the expansion coefficients

Due to the dependence of higher-order moment on lower-order moments, Eq. (13) is solved
successively. The expansion coefficients {pni}∞i=0 can be subsequently determined by the initial
condition and solutions of lower-order moments (for the zeroth-order moment, only the initial
condition is used), using the orthogonality of the eigenfunctions { fi}∞i=0. The detailed calculation
of the expansion coefficients {pni}∞i=0 can be referred to in Barton [16], or a recent application to the
transient dispersion of active particles [38]. We truncate the expansion (21) to a degree of N = 40
and convergence is attained.
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FIG. 2. Temporal evolution of the normalized vertical concentration distribution. Sh = 0 in all cases. t =
{0.01, 0.1, 1} in (a), (b), and (c), respectively. Vertical concentration distribution at t = 1 is compared with
distribution at t = 10, and they are found to be identical, thus the vertical concentration distribution at t = 1 is
already steady. Dots with the same color as lines denote the corresponding analytical expression (24) derived
by the dual-perturbation method.

IV. RESULTS AND DISCUSSION

A. Zeroth-order moment: Vertical concentration distribution and remaining mass

Assigning p = 0 in Eqs. (13) and (17), we obtain the governing equation for the zeroth-order
moment C0 and the corresponding boundary conditions,

∂C0

∂t
= Pev

∂C0

∂y
+ ∂2C0

∂y2
, (22)

∂C0

∂y
+ PevC0 = {ShC0, 0} at y = {0, 1}. (23)

It is obvious that the solution for C0 is governed by two dimensionless parameters, namely, the
Péclet for the crossflow Pev and the Sherwood number Sh.

In Figs. 2 and 3 we show the temporal evolution of the normalized vertical concentration dis-
tribution C0/M0. The analytical result derived by Lin and Shaqfeh [35] using the dual-perturbation
method is also plotted. Their analytical expression in the current notation is

C0

M0
= P (y) + ShP (y)Q(y), (24)
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FIG. 3. Temporal evolution of the normalized vertical concentration distribution. Pev = 1 in all cases. t =
{0.01, 0.1, 1} in (a), (b), and (c), respectively. Vertical concentration distribution at t = 1 is compared with
distribution at t = 10, and they are found to be identical, thus the vertical concentration distribution at t = 1 is
already steady. Dots with the same color as lines denote the corresponding analytical expression (24) derived
by the dual-perturbation method.
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FIG. 4. Temporal evolution of zeroth-order total moment M0 (remaining mass in the flow domain). Sh = 1
in (a), Pev = 1 in (b).

where

P (y) = Pev

exp(−Pevy)

1 − exp(−Pev )
, (25)

Q(y) = exp(Pev )Pevy − exp(Pevy) + 1

[exp(Pev ) − 1]Pev

+ sinh(Pev ) − Pev

[1 − cosh(Pev )]Pev

. (26)

It should be noted that the original analytical expression derived by Lin and Shaqfeh [35]
[Eq. (18) in their paper] was for the concentration C, instead of the zeroth-order longitudinal
concentration moment C0; however, one can take the zeroth-order longitudinal moment [

∫ ∞
−∞(·)dx]

of their analytical expression with the condition that C decays exponentially as x → ±∞ [15], and
the result is exactly Eq. (24). Built for the asymptotic state, Eq. (24) was also used by Lin and
Shaqfeh [35] as the vertical concentration distribution at the Gaussian center of the solute patch.

In Fig. 2, we see that the concentration at the bottom boundary increases with t and Pev . This
result is due to the crossflow pushing the solute to the bottom boundary. When t = 1, C0/M0

has equilibrated and good agreement is seen between the results obtained with moments and the
analytical expression (24). It is noted that, when both boundaries are nonreactive, i.e., Sh = 0, P (y)
given in Eq. (25) is the vertical concentration distribution. Additionally, if Sh = 0, one can also
drop the time derivative in Eq. (22) and solve the steady vertical concentration distribution with the
corresponding boundary conditions, and the result is consistent with Eq. (25).

The evolution of C0/M0 with Sh �= 0 is plotted in Fig. 3. We see that the concentration near the
top boundary decreases with t , due to the crossflow, whereas the variation of concentration near
the bottom boundary depends on the adsorption rate Sh: with a smaller Sh, for example, Sh = 1, the
concentration near the bottom boundary is the highest and increases with t ; in contrast, with a larger
Sh, for example, Sh = 2, the concentration near the bottom boundary decreases with t due to high
adsorption. For the comparison with analytical expression (24), we see in Fig. 3(c) that Eq. (24) is
inaccurate for a relatively large Sh as a consequence of Sh being an expansion quantity assumed to
be small in the dual-perturbation method.

The evolution of remaining mass M0 in the flow domain is plotted in Fig. 4. As expected, both
a stronger crossflow and a larger adsorption rate can largely enhance the effective adsorption. It is
understood by considering the effective mass-transfer rate

dM0

dt
= ShC0(0, t ). (27)

For the initial and intermediate stages, if Pev is increased, C0(0, t ) increases and finally leads to the
increase of dM0/dt . If Sh is increased, dM0/dt still increases even though C0(0, t ) may decrease.
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FIG. 5. (a) Temporal evolution of effective velocity ueff; (b) steady effective velocity u∞
eff as a function of

the Péclet number for the crossflow Pev; and (c) steady effective velocity u∞
eff as a function of the Sherwood

number Sh; dots denote results of Lin and Shaqfeh [35]. Peu = 100 in all cases.

For the long-time stage, the effective mass-transfer rates of cases with large Pev and Sh approach
zero earlier, due to low C0(0, t ) at this stage.

B. First-order moment: Effective velocity

The effective velocity describes the average longitudinal velocity of the substance in the flow
domain, and is defined as

ueff = 1

Peuu

dμ

dt
, (28)

where

μ = M1

M0
(29)

is mass center of the solute. Care should be taken that ueff does not coincide with the ratio of vertical
average longitudinal velocity of the substance in the flow domain

∫ 1
0 (C0/M0)u dy to the mean flow

Peuu, in contrast to dispersion with conserved total mass (M0 = 1). This difference is because the
substance near the bottom is more likely to be adsorbed and has less contribution to the effective
velocity [see, e.g., Eq. (C20) in Appendix C].

As shown in Fig. 5, if the bottom boundary is adsorbable (Sh > 0) and no crossflow is supplied
(Pev = 0), both ueff and u∞

eff are greater than 1, demonstrating that the solute moves faster on average
than the mean flow. This result is attributed to the diminution of solute concentration at the bottom
where the local flow is slow. In contrast, if a crossflow is supplied (Pev > 0), both ueff and u∞

eff
can be possibly smaller than 1, as a consequence of concentrated solute at the low-speed bottom
region. For example, in Fig. 5(b) we see that u∞

eff < 1 for all cases provided that Pev is sufficiently
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large. In addition, when Sh �= 0, u∞
eff exhibits a complex nonmonotonic variation as a function of

Pev . As shown in Fig. 5(b), for a nonzero Sh, u∞
eff notably first increases and then decreases with

increasing Pev . This result can be understood by considering the following reasoning: when Pev

is relatively small to Sh, the crossflow pushes the substance to the middle-bottom region and the
adsorbable boundary further decreases the concentration at the boundary, therefore the normalized
vertical concentration distribution is peaked at the high-speed central region [see, e.g., Fig. 3(c) with
Sh = 2], and thus u∞

eff is increased; when Pev is relatively large to Sh, the adsorbable boundary is
unable to consume the high concentration at the bottom, and the normalized vertical concentration
distribution is peaked at the low-speed bottom region [see, e.g., Fig. 3(c) with Sh = 1], and thus u∞

eff
is decreased.

In Fig. 5(c), we see that the variation of u∞
eff as a function of Sh is monotonic: by removing

substance at the bottom low-speed region, an increasing Sh enhances u∞
eff, especially in the presence

of a crossflow. This result is directly reflected in the effect of Sh on the normalized vertical
concentration distribution (see, e.g., Fig. 3). The dual-perturbation result of Lin and Shaqfeh [35],
however, underestimates the effect of Sh on u∞

eff when a crossflow is present. Moreover, we see
that the results of the dual-perturbation method deviate from the current as Sh increases due to the
restriction on adsorption rate.

C. Second-order moment: Dispersivity

The dispersivity is defined as

DT = 1

2

dσ 2

dt
, (30)

where

σ 2 = M2

M0
− μ2 (31)

is the variance of the vertical average concentration C. The dispersivity DT characterizes the
longitudinal dispersion process, and its long-time limit D∞

T is the Taylor dispersivity.
The temporal evolution of DT and the variations of D∞

T as functions of Peu, Pev , and Sh are
plotted in Fig. 6. For the temporal evolution, DT is seen to increase with time and reach the steady
state. However, the time when the steady state of DT is reached obviously varies with the following
cases: when (Pev, Sh) = (5, 1), the corresponding time is t ∼ 0.5, whereas the corresponding
times for (Pev, Sh) = (0, 0) and (Pev, Sh) = (5, 0) are t ∼ 0.2 and t ∼ 0.1, respectively. This
result suggests a delayed time to enter the steady dispersion regime for case with a crossflow and
wall adsorption; however, this important pre-asymptotic dispersion regime is seldom discussed in
previous works.

With increasing Peu, D∞
T increases monotonically, and D∞

T ∼ Pe2
u at large Peu, as indicated in

Fig. 6(b) and consistent with previous works. The variation of D∞
T as a function of Pev is rather

complex. While D∞
T exhibiting a monotonic decrease for asymptotically large Pev can be easily

understood by recognizing that a concentration boundary layer is developed at the bottom, the
variation before this limit is difficult to inspect with intuition. A similar complex variation of D∞

T
as a function of Sh is also observed, as shown in Fig. 6(d). Although an increasing Sh leads to a
depleted concentration at the bottom, whether this effect enhances or weakens dispersion depends
on the strength of the crossflow: when Pev is small (e.g., Pev = 0), Sh almost does not influence
dispersion; when Pev is large (e.g., Pev = 10), dispersion increases with Sh due to the destruction
of the concentration boundary layer; when Pev is moderate (e.g., Pev = 5), an increasing Sh first
enhances dispersion by removing the concentration boundary layer and then weakens dispersion
by excessively removing the substance at the high-shear bottom region. We note that due to the
restriction of the dual-perturbation method to a weak adsorption rate, its result cannot reflect the
effect of Sh on D∞

T , as depicted in Fig. 6(d).

074501-9



WANG, JIANG, CHEN, AND TAO

FIG. 6. (a) Temporal evolution of dispersivity DT; (b) steady dispersivity D∞
T as a function of the Péclet

number for the main flow Peu; (c) steady dispersivity D∞
T as a function of the Péclet number for the crossflow

Pev; and (d) steady dispersivity D∞
T as a function of the Sherwood Sh; dots denote the results of Lin and

Shaqfeh [35]. Peu = 100 in (a), (c), and (d).

D. Higher-order moments: Skewness, kurtosis, and concentration

The global skewness γ1 and kurtosis γ2 are defined as

γ1 = κ3

σ 3 , (32)

γ2 = κ4

σ 4 , (33)

where κ3 and κ4 are the third and fourth global cumulants defined as

κ3 = M3

M0
− 3μ σ 2 − μ3, (34)

κ4 = M4

M0
− 4μ

M3

M0
+ 6μ2σ 2 + 3μ3 − 2σ 4. (35)

We use fourth-order Edgeworth expansion of the moments to approximate the longitudinal
distribution of the vertical average concentration and two-dimensional concentration field. The
fourth-order Edgeworth expansion for the two-dimensional concentration field is

C(X, y, t ) ∼ C0
exp(−X 2/2)√

2πσ

{
1 +

[ κ3

3!σ 3
He3(X )

]
+

[
κ4

4!σ 4
He4(X ) + 10κ2

3

6!σ 6
He6(X )

]}
, (36)

where

X = x − μ

σ
(37)
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FIG. 7. Temporal evolution of skewness γ 1 (a) and kurtosis γ 2 (b). Peu = 100 in all cases.

is the rescaled longitudinal coordinate. In addition, μ, σ , κ3, and κ4 are now evaluated with local
moments Cp instead of global moments Mp in Eqs. (29), (31), and (35). To approximate the vertical
average concentration C, one can directly use

C(X, t ) ∼ C0
exp(−X 2/2)√

2πσ

{
1 +

[
κ3

3!σ 3 He3(X )

]
+

[
κ4

4!σ 4 He4(X ) + 10κ3
2

6!σ 6 He6(X )

]}
. (38)

FIG. 8. Temporal evolution of the longitudinal distribution of vertical average concentration C obtained
with Edgeworth expansion. t = {0.1, 0.2, 1} in (a), (b), and (c), respectively. Peu = 100 in all cases.
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FIG. 9. Comparison of longitudinal distribution of vertical average concentration C obtained from Edge-
worth expansion with moments, the homogenization/GTD method, the dual-perturbation method of Lin and
Shaqfeh [35], and BD simulations. t = {0.1, 0.2} in (a) and (b), respectively. Peu = 100, Rev = 1, Pev = 5,
and Sh = 1.

We note that the Edgeworth expansion can be derived from an asymptotic expansion for C as
shown by Chatwin [26]. In addition, from a statistic view, it can be understood as an expansion for
a nearly Gaussian distribution [39], since C at each streamline and its vertical average C gradually
tend to Gaussian [26,40,41].

Skewness γ1 and kurtosis γ2 quantify the asymmetry and deviation from Gaussian distribution,
respectively. As shown in Fig. 7(a), although the skewness γ1 in all cases approach zero asymp-
totically, their evolution can be significantly different. While other cases almost exhibit negative
skewness as they are evolving to the steady dispersion regime, the case with solely a crossflow
(Pev, Sh) = (5, 0) exhibits positive skewness at the moderate time (t ∼ 0.5). Positive skewness is
understood by a downstream tail of the longitudinal concentration distribution, and negative skew-
ness is the opposite. We further plot the longitudinal distribution of vertical average concentration
in Fig. 8 for t = {0.2, 1, 1}, and the downstream tail of the case with (Pev, Sh) = (5, 0) is observed,
whereas other cases have upstream tails. In contrast to skewness, the evolution of kurtosis γ2 of the
four cases are similar. As shown in Fig. 7, γ2 of all cases first decrease and then increase and finally
approach zero, demonstrating that longitudinal Gaussian distribution is attained eventually.

In Fig. 9 we further plot the comparison of longitudinal distribution of vertical average con-
centration C obtained from Edgeworth expansion (38), the dual-perturbation method of Lin and
Shaqfeh [35, Eq. (9)], the GTD method [36,42] [see also Eq. (C27)], and the Brownian dynamics
simulations (see Appendix B). Good agreement is seen between the results of Edgeworth expansion
and BD simulations. Although GTD gives an acceptable downstream concentration distribution,
both GTD and the dual-perturbation method underperform in the upstream region, and predict
inaccurate values and slower advection velocities of the maximum concentration.

The approximate two-dimensional concentration field is plotted in Fig. 10. By comparing differ-
ent cases, we see that while a crossflow pushes the concentration towards the bottom boundary
obviously, the adsorption at the bottom boundary only weakens the concentration slightly. The
crossflow results in a maximum concentration at the bottom. By adsorbing the substance, the
adsorbable bottom boundary weakens the concentration, especially in the presence of a crossflow.

V. CONCLUSIONS

Using the classical method of moments solved by separation of variables, we have presented a
detailed analysis of the dispersion process in a channel flow with a crossflow and with only the bot-
tom boundary being adsorbable. Although this configuration has been investigated previously, the
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FIG. 10. Temporal evolution of the two-dimensional concentration distribution C obtained with Edgeworth
expansion. t = {0.1, 0.2} in (a), (c), (e), (g) and (b), (d), (f), (h), respectively. (a), (b) Pev = 0, Sh = 0; (c),
(d) Pev = 0, Sh = 1; (e), (f) Pev = 5, Sh = 0; and (g), (h) Pev = 5, Sh = 1. and Peu = 100 in all cases.

current work discussed the preasymptotic dispersion regime by calculating the moments up to fourth
order. The dispersion coefficients of Shapiro and Brenner [36] are asymptotically accurate, because
they used the GTD method by keeping the largest negative eigenvalue −λ0 in Eq. (21), which
is dominant at the long-time asymptotic state. Nonetheless, the asymptotic dispersion coefficients
are far from enough to describe the transient dispersion process. We have now shown the strong
non-Gaussian properties in the preasymptotic dispersion regime and how the dispersion coefficients
evolve with time. Aiming also at the asymptotic dispersion regime, another related work by Lin and
Shaqfeh [35] using the dual-perturbation method, is however restricted to a weak adsorption rate.

While both a larger Sh and Pev enhance the effective mass transfer, the vertical concentration
distribution is influenced by the competing strengths of Sh and Pev , which can lead to a maximum
concentration at the bottom or the middle. The variation of vertical concentration distribution further
complicates higher-order dispersion coefficients, as reflected by the nonmonotonic variations of
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the dispersion coefficients as functions of Sh and Pev . For the transient dispersion process, we
have given both the accurate temporal dispersion coefficients and the approximated longitudinal
and two-dimensional concentration distribution using the information contained in higher-order
moments, and good agreement with BD simulations is demonstrated. It is important to note that,
while the works of Shapiro and Brenner [36] and Lin and Shaqfeh [35] aimed at the asymptotic
dispersion regime with a corresponding dimensionless time t ∼ 1, there is a very small amount of
remaining mass in the flow domain at that time. Therefore, although using the asymptotic dispersion
coefficients may perform well in cases with conserved mass, it is insufficient to investigate such a
case with boundary adsorption.

The current work can be easily extended to some relevant applications, such as nonuniform
vertical drift speed and diffusivity [35], as well as dispersion of fine sediment in a turbulent
open-channel flow with the deposition rate at the bottom specified. In addition, with the moments
accurately solved, one can also employ Gill’s generalized dispersion model [17], which was initially
proposed for reactive dispersion problems.
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APPENDIX A: THE EIGENVALUE PROBLEM

The eigenvalue problem associated with the operator L (14) is

L f � ∂2 f

∂y2
+ Pev

∂ f

∂y
= −λ f , (A1)

with the boundary conditions

∂ f

∂y
+ Pev f = {Sh f , 0}, at y = {0, 1}. (A2)

We rewrite the eigenvalue problem in a standard Sturm-Liouville form

Ls f = −λePevy f , (A3)

where the self-adjoint operator Ls is defined as

Ls(·) � d

dy

[
w(y)

d (·)
dy

]
= w(y)L(·), (A4)

where the weighting function is found to be

w(y) = ePevy. (A5)

The roots of the auxiliary equation of Eq. (A1) are

r1 = −Pev

2
+ 1

2

√
Pe2

v − 4λ, r2 = −Pev

2
− 1

2

√
Pe2

v − 4λ. (A6)

The classification of the roots (A6) is discussed as follows.
If r1 = r2, then λ = Pe2

v/4. The only nontrivial possible eigenfunction

f (y) = a1

(
1 − Pev

Pev + 2
y

)
e−(Pev/2)y (A7)
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exists when

Sh = Pe2
v

2Pev + 4
, (A8)

where a1 is a constant for normalization.
If r1 �= r2, and 0 � λ < Pe2

v/4, the eigenfunctions are

f (y) = a2e−(Pev/2)y[(Pev − 2Sh) sinh(αy) − 2α cosh(αy)], (A9)

with the eigenvalues determined by the transcendental equation(
1
4 Pe2

v − 1
2 PevSh − α2

)
tanh α − αSh = 0, (A10)

where α =
√

Pe2
v/4 − λ and a2 is a constant for normalization.

If r1 �= r2, and λ > Pe2
v/4, the eigenfunctions are

f (y) = a3e−(Pev/2)y[2β cos(βy) + (2Sh − Pev ) sin(βy)] (A11)

with the eigenvalues determined by the transcendental equation

Shβ cos β + 1
2 ShPev sin β − 1

4 Pe2
v sin β − β2 sin β = 0, (A12)

where β =
√

λ − Pe2
v/4 and a3 is a constant for normalization.

All eigenvalues are sorted in a descending order {−λi}N
i=0, with the corresponding eigenfunctions

denoted by { fi(y)}N
i=0. Note that the eigenvalue problem was partially solved by Shapiro and

Brenner [36]; however, the GTD method they used only retains the largest negative eigenvalue
−λ0 and the corresponding eigenfunction f0(y), as shown in Appendix C.

APPENDIX B: BROWNIAN DYNAMICS SIMULATION

BD simulations are performed to validate the moments-based results. The stochastic differential
equations of Eq. (6) are

dx = Peuu(y)dt +
√

2dWx, (B1)

dy = −Pevdt +
√

2dWy, (B2)

where dWx and dWy are independent Gaussian random numbers with common mean 0 and variance
dt .

In the simulation, following Lin and Shaqfeh [35], we use the Euler-Maruyama scheme and
a small time step t = 10−5 to accurately capture the adsorbable boundary. A total number of
106 solute particles are simulated. The solute particle is reflected back at the top nonadsorbable
boundary, while it can escape the flow domain with a probability Sh

√
πdt at the bottom adsorbable

boundary or otherwise performs reflection. Readers are referred to Refs. [43,44] for the details of
the equivalence between the treatment at the adsorbable boundary and the continuum boundary
condition when the Euler-Maruyama forward scheme is adopted.

The validation of the method of moments against Brownian dynamics simulation is plotted in
Fig. 11, demonstrating good agreement. The comparison of the two-dimensional concentration
field approximated by Edgeworth expansion and BD simulations is plotted in Fig. 12 and good
performance of Edgeworth expansion is seen.

APPENDIX C: A STANDARD HOMOGENIZATION METHOD (GTD METHOD)

In this Appendix we present a standard homogenization method for the long-time asymptotic
dispersion problem [45–47]. We also note that this homogenization method is essentially identical
to the GTD method [36,42], as pointed out by Rubinstein and Mauri [48].
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FIG. 11. Validation of the method of moments against Brownian dynamics simulation. “M” and “BD”
denote the results of method of moments and Brownian dynamics simulation, respectively. Peu = 100, Pev = 5,
and Sh = 1 in all cases.

The concentration C is decomposed as

C(x, y, t ) = e−λ0tC̃(x, y, t ), (C1)

where −λ0 is the largest negative eigenvalue determined in Appendix A (or can be referred to
as effective reaction rate). Equation (C1) enables C̃ to be a conserved quantity at the long-time
asymptotic state [36,42,45]..

Inserting Eq. (C1) into Eqs. (6) and (10), one obtains

∂C̃

∂t
+ Peuu

∂C̃

∂x
− ∂2C̃

∂x2
= λ0C̃ + LC̃ (C2)
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FIG. 12. Comparison of the two-dimensional concentration field approximated by Edgeworth expansion
and BD simulations. t = {0.1, 0.2} in (a), (c) and (b), (d), respectively. (a), (b) Edgeworth expansion and (c),
(d) BD simulation. Peu = 100, Pev = 5, and Sh = 1 in all cases.

and

∂C̃

∂y
+ PevC̃ = {ShC̃, 0} at y = {0, 1}. (C3)

A reference frame moving with the mass center of the substance patch is used to see the pure
diffusive behavior; the new reference frame is x → x − Peuuu∞

efft , thus Eq. (C2) becomes

∂C̃

∂t
+ ux

∂C̃

∂x
− ∂2C̃

∂x2
= LcC̃, (C4)

where

ux = Peuu − Peuuu∞
eff, (C5)

Lc(·) � L(·) + λ0(·). (C6)

The typical diffusive scaling [45–47]

x = εξ, t = ε−2τ (C7)

is used to rescale the transport equation. Here ε is a small parameter, and can be understood by
H∗/L∗, where L∗ is the characteristic length of the substance spreading. The rescaled transport
equation becomes

ε2 ∂C̃

∂τ
+ εux

∂C̃

∂ξ
− ε2 ∂2C̃

∂ξ 2
= LcC̃. (C8)

C̃ is expanded in a standard perturbation series

C̃ = C̃0 + εC̃1 + ε2C̃2. (C9)

Inserting Eq. (C9) into Eq. (C8), the problems at successive orders O(1), O(ε), and O(ε2) are
posed as

O(1) : LcC̃0 = 0, (C10)
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O(ε) : LcC̃1 = ux
∂C̃0

∂ξ
, (C11)

O(ε2) : LcC̃2 = ∂C̃0

∂τ
+ ux

∂C̃1

∂ξ
− ∂2C̃0

∂ξ 2
. (C12)

The boundary conditions of C̃i (i = 0, 1, 2) are

∂C̃i

∂y
+ PevC̃i = {ShC̃i, 0} at y = {0, 1}. (C13)

The solution to Eq. (C10) is written as

C̃0(ξ, y, τ ) = f0(y)c(ξ, τ ), (C14)

where f0(y) is the eigenfunction in Appendix A associated with λ0 and c(ξ, τ ) is a function
characterizing the longitudinal variation of concentration. One may understand f0(y) as the vertical
concentration distribution (not normalized) and c(ξ, τ ) as the temporal vertical average concentra-
tion at ξ (multiplied by a constant). It is evident that Eq. (C14) satisfies Eq. (C10).

The solution for O(ε) is

C̃1(ξ, y, τ ) = χ (y)
∂c

∂ξ
+ f0(y)g(ξ, τ ), (C15)

where g(ξ, τ ) is an undetermined function but is irrelevant to subsequent analysis; χ (y) is the first-
order corrector; by substituting Eq. (C15) into Eq. (C11) one finds that χ (y) solves the cell problem

Lcχ = ux(y) f0(y), (C16)

and χ = 0 is enforced to get a unique solution.
We denote

〈A, B〉w �
∫ 1

0
ABw(y)dy (C17)

as the inner product with the weighting function w(y) defined in Eq. (A5). The inner product of the
left-hand side of Eq. (C11) and f0 is

〈Lcχ, f0〉w =
∫ 1

0
(Lχ + λ0χ ) f0w dy

=
∫ 1

0
[(Lsχ ) f0 + λ0w f0χ ]dy

=
∫ 1

0
[(Ls f0)χ + λ0w f0χ ]dy

= 0, (C18)

where the self-adjointness of Ls is used to simplify the equation above. Thus the right-hand side of
Eq. (C11) and f0 must also equal zero, which yields the solvability condition,

〈ux f0, f0〉w = 0. (C19)

The steady effective velocity is found to be

u∞
eff = 〈u f0, f0〉w

u
. (C20)
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FIG. 13. Comparison of (a) steady effective velocity u∞
eff and (b) steady dispersivity D∞

T obtained with
homogenization/GTD (dots) and method of moments (lines). Peu = 100 in all cases.

χ (y) is also subject to the boundary conditions (C13), and thus it can be also solved by
eigenfunction expansion

χ (y) =
N∑

i=0

ki fi(y), (C21)

where

ki = b

λi − λ0
〈ux f0, fi〉w, i = 1, 2, . . . , N (C22)

and k0 is determined by the condition χ = 0.
Proceeding with the perturbation problem at O(ε2), the solvability condition requires〈

∂C̃0

∂τ
+ ux

∂C̃1

∂ξ
− ∂2C̃0

∂ξ 2
, f0

〉
w

= 0, (C23)

which simplifies to an effective diffusion equation for c(ξ, τ ),

∂c(ξ, τ )

∂τ
= (1 + De)

∂2c(ξ, τ )

∂ξ 2
, (C24)

equaling to

∂c(x, t )

∂t
= (1 + De)

∂2c(x, t )

∂x2
, (C25)

where De = −〈uxχ, f0〉w is the enhanced diffusivity. Converting back to the original nondimension-
alized coordinates, the above equation becomes

∂C

∂t
+ Peuuueff

∂C

∂x
= D∞

T
∂2C

∂x2
− λ0C, (C26)

where c is replaced by C and 1 + De is replaced by D∞
T . This homogenized advection-diffusion

equation approximately holds for t 
 1. With a source initially located at x = 0, the solution for
the equation above is its Green’s function

C(x, t ) = 1√
4D∞

T t
exp

[
− (x − Peuuuefft )2

4D∞
T t

− λ0t

]
. (C27)

The comparison of u∞
eff and D∞

T obtained with homogenization/GTD and method of moments is
plotted in Fig. 13, showing good agreement.
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