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This study investigates the acoustic streaming phenomena in a standing surface acoustic
wave driven microfluidic channel filled with second-order fluids. We have developed a
multiple-timescale-based theoretical model where a perturbation technique was adopted to
separate the fast and slow timescales associated with the oscillatory flow field (i.e., acoustic
field) and the mean flow field (acoustic streaming), respectively. The governing equations
have been expressed in nondimensional form to effectively show the dependence of the
acoustic streaming fields on Reynolds number (Re), Deborah number (De), and the ratio
of material constants related to normal stress coefficients (b). Contrary to our intuition, we
observed that with increasing Deborah number (which is a measure of the extra stress
present in the second-order fluids), acoustic streaming first increases and thereafter, a
further increase in Deborah number leads to a gradual suppression of streaming. Our study
also reveals that the acoustic field and the acoustic radiation force show negligible depen-
dence on the fluid rheology. For the following ranges, 0.08 � Re � 0.32, 0 � De � 1, and
0 � b � 100, the maximum variation of the acoustic streaming is observed to be ∼161.3%,
whereas the variation in the acoustic field stays within just 0.15%. This significant finding
can help design efficient acoustofluidic systems that can manipulate acoustic streaming
without affecting the acoustic radiation forces, as strong acoustic streaming can impair the
acoustofluidic devices.
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I. INTRODUCTION

The use of ultrasound in fluids has garnered significant attention over the past few decades
due to its various applications in biomedical and nanotechnology-based fields. The interaction of
acoustic wave and fluid causes a fast oscillatory fluid motion (called acoustic field) and in addition
to that, a steady flow (called acoustic streaming) is slowly evolved over time. The discovery of
this acoustic streaming traces back to the early 19th century when Ørsted (1809) and Savart (1827)
observed different granular motions of fine and coarse powders over a vibrating Chladni plate. Later,
Faraday [1], in his Chladni plates experiments, demonstrated acoustic streaming caused by air. The
preliminary understanding of acoustic streaming was extended further when Dvorák (1876) noticed
acoustic streaming in a Kundt tube actuated via a standing sound wave. Following these works,
several theoretical and experimental studies were performed to broaden the understanding and the
applicability of the acoustic streaming phenomena. The steady flow adjacent to any oscillating
solid boundary is termed Schlichting streaming [2], and above that, a counter-rotating flow (called
Rayleigh streaming [3]) is generated. Other than the viscous boundary layer, acoustic streaming
can also be developed in the fluid bulk and it is known as Eckart streaming [4]. It is already
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established that in Rayleigh streaming, there is an effective slip velocity observed at the interface of
the boundary layer and the fluid bulk. Nyborg [5] was the first to provide an analytical expression
for the slip velocity near an arbitrary smooth surface, which was later modified by Lee and Wang
[6]. Researchers [7,8] have also provided analytical solutions for the acoustic streaming for simple
geometries such as flow-through channels and flow-past cylinders. In his publication in 1978,
Lighthill [9] pointed out that the Reynolds stress divergence, which results from the attenuation of
acoustic energy flux, indeed acts as a driving force for acoustic streaming. Acoustic streaming can
be used for microscale mixing [10–15], enhancement of heat transfer [16–18], and electrodeposition
[19], etc. It is notable here that pressure acoustic theory is a widely used theory for acoustofluidics,
although, it neglects the viscous boundary layer. Recently, Bach and Bruus [20] modified that and
provided a pressure acoustic theory for curved elastic cavities where the viscous boundary layer was
considered explicitly.

The particles or cells suspended in the fluid experience a mean force, called acoustic radiation
force, due to the reflection of the sound wave from the particle surface. This acoustic radiation force
[21,22] is utilized as a noninvasive tool to manipulate [23–26], remove [15,27–29], trap [30–34],
lyse [35,36], concentrate, or sort [27,37–41] cells and particles [42,43]. It is established that this
acoustic radiation force is proportional to the square of the particle size [44–46], and there exists
a critical size above which the particle motion is dominated by the acoustic radiation force. Below
that particle size, streaming drag force dominates over acoustic radiation force, and the motion of
the particle is maneuvered by only the viscous drag. Nam et al. [47] successfully demonstrated
that platelets can be separated from whole blood by utilizing the acoustic radiation force generated
via a standing surface acoustic wave (SAW)-driven microfluidic system. Separation of circulating
tumor cells (CTCs) from clinical samples was also possible by using a tilted angle SAW [40] or
a vertical acoustic resonator [48]. Baasch et al. [49] demonstrated that for heavy particles, the
acoustic radiation force can be significantly influenced by the acoustic microstreaming. Bjerknes
force is also proven to be an effective means to manipulate the autonomous motions of micromotors
[26,34,50,51]. Based on the broad applicability of acoustic streaming and acoustic radiation force
in biomedical and small-scale activities, there is a need for controlling the streaming or the acoustic
radiation forces. For instance, Hoyos and Castro [52] experimentally showed that acoustic streaming
can be suppressed by using a pulsed actuation. However, the mechanism for the suppression is not
yet understood [53]. This is often required since a strong acoustic radiation force causes significantly
higher acoustic streaming which can impair the acoustic devices. Recently, Bach and Bruus [54]
proposed shape-optimized channels for acoustic streaming suppression while the acoustic radiation
forces remain unaltered.

Even though a large amount of literature is available on acoustic streaming, most studies are
limited to Newtonian fluids. However, it is observed from a few studies that non-Newtonian
fluid rheology can significantly affect acoustic streaming. Frater [55] analyzed acoustic streaming
of an electroviscous fluid near a cylindrical particle and showed how elasticity modulates the
streaming fields. Powell [56] studied the propagation of a finite amplitude planar acoustic wave in
a viscoelastic fluid and reported a streaming reversal in the extreme viscoelastic regime. Doinikov
et al. developed an analytical model to study the acoustic streaming [57] and the acoustic radiation
force [58] of a solid particle in Oldroyd-B fluids. Das et al. [59] presented an analytic model to
characterize the inner streaming in second-order fluids near a boundary. Their work showed the
influence of extra stress and fluid compressibility on inner streaming.

In this contribution, we studied numerically the acoustic streaming and the acoustophoretic
motion of particles for a bottom-actuated microchannel filled with second-order fluids. Perturbation
technique was applied to the governing Navier-Stokes equation to separate the inherent fast and
slow timescales, and the resulting net flow fields were expressed in time-averaged form to obtain the
acoustic streaming. We demonstrate that acoustic streaming can be suppressed by altering the fluid
rheology. It is observed that the extra stress present in the second-order fluids has a negligible impact
in modulating the acoustic pressure; however, it can reduce the acoustic streaming drastically.
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FIG. 1. (a) Schematic illustration of the physical problem depicting the standing surface acoustic wave
driven microfluidic channel filled with second-order fluid. The microchannel is made of polydimethylsiloxane
(PDMS) and is placed on lithium niobate substrate. IDTs are etched on the lithium niobate substrate, and the
excitations of the IDTs generates surface acoustic waves. (b) Schematic of the corresponding computation
domain consisting of the fluid only, with appropriate coordinate system.

II. MATHEMATICAL FORMULATION

A. Governing equations and boundary conditions

We consider a PDMS (polydimethylsiloxane) microchannel of width W ′ and height H ′, placed
on a lithium niobate piezoelectric substrate as shown in Fig. 1. The PDMS microchannel contains
a compressible second-order fluid having static density ρ0 and dynamic viscosity η. Under the
influence of acoustic excitation, the fluid density changes and can be denoted as ρ ′. The sonic speed
in the fluid is denoted as c0. The governing equations for the fluid flow are given by

∂ρ ′

∂t ′ + ∇′ · (ρ ′v′) = 0, (1a)

ρ ′
[
∂v′

∂t ′ + (v′ · ∇′)v′
]

= −∇′ p′ + ∇′ · τ ′. (1b)

In the above, p′, v′ = u′ex′ + v′ey′ , are the pressure and velocity of the fluid, respectively. ex′

and ex′ are the unit vectors along x′ and y′, respectively; t ′ is the time. The shear stress is given by
τ ′ = 2ηA′ + α1[ ∂A′

∂t ′ + (v′ · ∇′)A′ + A′ · (∇′v′) + (∇′v′)T · A′] + α2A′2, where α1, α2 are material
constants related to normal stress coefficients and A′ is the rate of strain tensor in the fluid given
by A′ = (1/2)(∇′v′ + ∇′v′T ). For acoustic oscillations with small amplitude, a linear constitutive
relationship correlating density, ρ ′ with pressure, p′ can be assumed, and it is expressed as [60–62]
p′ = ρ ′c2

0. The fluid inside the PDMS microchannel is actuated via a standing surface acoustic wave
(SSAW) generated via ac excitations of the interdigital transducers on lithium niobate piezoelectric
substrate, and the x′ and y′ components of the SSAW displacement field are given by [61,62]

d ′
x′ = ξu′

0(e−c′
d (W ′/2−x′ )eik′

x (x′−W ′/2) + e−c′
d (x′+W ′/2)e−ik′

x (x′−W ′/2))eiωt ′
, (2a)

d ′
y′ = u′

0(e−c′
d (W ′/2−x′ )ei{k′

x (x′−W ′/2)+π /2} + e−c′
d (x′+W ′/2)e−i{k′

x (x′−W ′/2)+π /2})eiωt ′
, (2b)

where ω and kx′ are the angular frequency and the wave vector of the SSAW. u′
0 is the SAW

displacement amplitude along the y′ direction, and ξ is the ratio of the displacement amplitudes
in x′ and y′ directions. The attenuation coefficient of the SAW is given by c′

d = ρ0c0/ρLN cLNλ,
where ρLN and cLN are the density and the speed of SAW in lithium niobate along the x′ direction,
respectively; λ is the wavelength of the SSAW on the piezoelectric surface. For the side and top
walls, the PDMS allows us to use the acoustic impedance boundary condition prescribed by

p′ = Z ′
wn · v′. (3)

In the above, Z ′
w is the acoustic impedance of the PDMS wall and is given by Z ′

w = ρwcw, where
cw and ρw are sonic speed and density of PDMS, respectively.
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B. Nondimensionalization of the governing equations and the boundary conditions

The governing equations and the associated boundary conditions are rendered dimensionless
using the following dimensionless variables: x = x′

k−1 , y = y′
k−1 , ρ = ρ ′

ρ0
, v = v′

c0
, p = p′

ρ0c2
0
, and

t = t ′
ω−1 , where k is the acoustic wave vector inside the fluid and is given by k = ω/c0. The

nondimensionalized governing equations are therefore written as

∂ρ

∂t
+ ∇ · (ρv) = 0, (4a)

ρ

[
∂v
∂t

+ (v · ∇ )v
]

= −∇p + ε

Re
∇ · τ, (4b)

where Re = ρ0k−1(u′
0ω)

η
is the Reynolds number, and the acoustic Mach number of the system is given

by ε = u′
0/k−1. Please note here that the Reynolds number has been defined by considering the

reference velocity as u′
0ω, which is nothing but the velocity amplitude of the SSAW. Dimensionless

shear stress, τ, is expressed in terms of Deborah number De as

τ =
(

2 ∂u
∂x

∂u
∂y + ∂v

∂x
∂u
∂y + ∂v

∂x 2 ∂v
∂y

)
+ De

(
sxx sxy

syx syy

)
, (5)

where De = α1c0
ηk−1 , and v = uex + vey. The first term on the right-hand side denotes Newtonian

stress, whereas the second term indicates the extra stress present in the second-order fluid, and
its different components are given by

sxx = ∂2u

∂t∂x
+ u

∂2u

∂x2
+ v

∂2u

∂x∂y
+ (2 + b)

(
∂u

∂x

)2

+
(

1 + b

4

)(
∂v

∂x

)2

+
(

1 + b

2

)
∂u

∂y

∂v

∂x
+ b

4

(
∂u

∂y

)2

;

sxy = syx = 1

2

(
∂2u

∂t∂y
+ ∂2v

∂t∂x
+ u

∂2u

∂x∂y
+ u

∂2v

∂x2
+ v

∂2u

∂y2
+ v

∂2v

∂x∂y

)
+

(
3 + b

2

)
∂u

∂x

∂u

∂y

+
(

3 + b

2

)
∂v

∂x

∂v

∂y
+

(
1 + b

2

)
∂u

∂x

∂v

∂x
+

(
1 + b

2

)
∂v

∂y

∂u

∂y
;

syy = ∂2v

∂t∂y
+ u

∂2v

∂x∂y
+ v

∂2v

∂y2
+ b

4

(
∂v

∂x

)2

+
(

1 + b

4

)(
∂u

∂y

)2

+
(

1 + b

2

)
∂u

∂y

∂v

∂x
+ (2 + b)

(
∂v

∂y

)2

. (6)

The nondimensionalized boundary conditions are prescribed here. At the fluid bottom, the
displacement boundary conditions are

dx = ξε(e−cd (W /2−x)eikx (x−W /2) + e−cd (x+W /2)e−ikx (x−W /2) )eit , (7a)

dy = ε(e−cd (W /2−x)ei{kx (x−W /2)+π /2} + e−cd (x+W /2)e−i{kx (x−W /2)+π /2})eit . (7b)

Here dx = d ′
x′/k−1, dy = d ′

y′/k−1, cd = c′
d k−1, W = W ′/k−1, and kx = kx′k−1. At the side and top

walls,

p = Zwn · v, (8)

where the nondimensionalized acoustic impedance of the PDMS is expressed as Zw = Z ′
w

ρ0c0
.
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C. Separation of timescales

The present theoretical study faces significant challenges due to the inherent multiple timescales
involved in the problem. The fast-oscillating SSAW generates a fast-oscillating flow field (i.e.,
associated with fast timescale), and the nonlinearity in the flow dynamics adds a slowly moving
fluid motion (i.e., associated with slow timescale). To tackle the issue, we employed a perturbation
method to separate the fluid response corresponding to (i) a hydrostatic part which defines the
unperturbed flow field before acoustic excitation, (ii) an oscillatory flow component (called as
acoustic fields) within a fast timescale, and (iii) an additional component namely mean flow field
in the slow timescale. As with most of the SAW-device-based acoustofluidic applications, operating
SAW frequency is ∼1–100 MHz and displacement amplitude u′

0 is ∼1–10 Å, for which acoustic
Mach number ε � 1, and we can expand the flow and pressure variables asymptotically:

ρ = 1 + ερ1 + ε2ρ2 + O(ε3), (9a)

p = p0 + εp1 + ε2 p2 + O(ε3), (9b)

v = v0 + εv1 + ε2v2 + O(ε3). (9c)

It is important to note here that we defined Reynolds number in such a way that it contains SAW
displacement, which is of O(ε) and hence, Re = O(ε). We define Res = Re/ε, which is of O(1). In
the present study the fast and slow timescale components are denoted as g̃1 = εg1 and ḡ = ε2 g2,
where g represents ρ, p, and v.

D. Modeling of fluid hydrostatics

Substituting Eq. (9) into Eq. (4), we obtain the set of equations of O(ε0), describing the fluid
hydrostatics prior to the acoustic excitations, which are expressed as

∂ρ0

∂t
= 0, (10a)

∇p0 = 0. (10b)

We assume that the fluid is at rest before applying the acoustic excitations, i.e., v0 = 0. The
solutions of the hydrostatic equations are trivial and indicate a uniform pressure and density
distribution throughout the fluid.

E. Modeling of acoustic components

Equations of O(ε1) govern the acoustic fields which harmonically oscillate with the angular
frequency ω, and they are given by

∂ρ̃1

∂t
+ ∇ · ṽ1 = 0, (11a)

∂ ṽ1

∂t
= −∇ p̃1 + 1

Res
∇ · τ̃1, (11b)

where

τ̃1 =
(

2 ∂ ũ1
∂x

∂ ũ1
∂y + ∂ ṽ1

∂x
∂ ũ1
∂y + ∂ ṽ1

∂x 2 ∂ ṽ1
∂y

)
+ De

(
∂2 ũ1
∂t∂x

1
2

(
∂2 ũ1
∂t∂y + ∂2 ṽ1

∂t∂x

)
1
2

(
∂2 ũ1
∂t∂y + ∂2 ṽ1

∂t∂x

)
∂2 ṽ1
∂t∂y

)
.

The associated boundary conditions are as follows:
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At the bottom

ũ1 = ∂dx

∂t
, (12a)

ṽ1 = ∂dy

∂t
. (12b)

At side and top walls

p̃1 = Zwn · ṽ1. (13)

We can further simplify Eqs. (11)–(13) as the acoustic components harmonically oscillate with
the same frequency as that of the actuation SAW and therefore all acoustic fields can be expressed
in the form g̃1(x, y, t ) = �

g1(x, y)eit . Utilizing these, Eq. (11) becomes

iρ̃1 + ∂ ũ1

∂x
+ ∂ ṽ1

∂y
= 0, (14a)

iũ1 = −∂ p̃1

∂x
+ 1 + i De

2

Res

(
2
∂2ũ1

∂x2
+ ∂2ũ1

∂y2
+ ∂2ṽ1

∂x∂y

)
, (14b)

iṽ1 = −∂ p̃1

∂y
+ 1 + i De

2

Res

(
∂2ũ1

∂x∂y
+ ∂2ṽ1

∂x2
+ 2

∂2ṽ1

∂y2

)
, (14c)

and the boundary conditions at the bottom are

ũ1 = idx, (15a)

ṽ1 = idy. (15b)

The impedance boundary at the side and top walls can further be simplified [60,62,63] and
expressed as

n · ∇ p̃1 = − i p̃1

Zw

. (16)

F. Modeling of mean flow fields

The mean flow field is governed by the second-order equations [i.e., O(ε2)], which are given by

∂ρ̄2

∂t
+ ∇ · v̄2 + ∇ · (ρ̃1ṽ1) = 0, (17a)

∂ v̄2

∂t
+ ρ̃1

∂ ṽ1

∂t
+ (ṽ1 · ∇ )ṽ1 = −∇ p̄2 + 1

Res
∇ · τ̄2. (17b)

In the above,

τ̄2 =
(

2 ∂ ū2
∂x

∂ ū2
∂y + ∂ v̄2

∂x
∂ ū2
∂y + ∂ v̄2

∂x 2 ∂ v̄2
∂y

)
+ De

(
s̄xx2 s̄xy2

s̄yx2 s̄yy2

)
,

where

s̄xx2 = ∂2ū2

∂t∂x
+ ũ1

∂2ũ1

∂x2
+ ṽ1

∂2ũ1

∂x∂y
+ (2 + b)

(
∂ ũ1

∂x

)2

+
(

1 + b

4

)(
∂ ṽ1

∂x

)2

+
(

1 + b

2

)
∂ ũ1

∂y

∂ ṽ1

∂x
+ b

4

(
∂ ũ1

∂y

)2

;
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s̄xy2 = s̄yx2 = 1

2

(
∂2ū2

∂t∂y
+ ∂2v̄2

∂t∂x
+ ũ1

∂2ũ1

∂x∂y
+ ũ1

∂2ṽ1

∂x2
+ ṽ1

∂2ũ1

∂y2
+ ṽ1

∂2ṽ1

∂x∂y

)

+
(

3 + b

2

)
∂ ũ1

∂x

∂ ũ1

∂y
+

(
3 + b

2

)
∂ ṽ1

∂x

∂ ṽ1

∂y
+

(
1 + b

2

)
∂ ũ1

∂x

∂ ṽ1

∂x
+

(
1 + b

2

)
∂ ṽ1

∂y

∂ ũ1

∂y
;

s̄yy2 = ∂2v̄2

∂t∂y
+ ũ1

∂2ṽ1

∂x∂y
+ ṽ1

∂2ṽ1

∂y2
+ b

4

(
∂ ṽ1

∂x

)2

+
(

1 + b

4

)(
∂ ũ1

∂y

)2

+
(

1 + b

2

)
∂ ũ1

∂y

∂ ṽ1

∂x
+ (2 + b)

(
∂ ṽ1

∂y

)2

.

Note here that τ̄2 can be expressed as a summation of Newtonian stress,

τ̄2n =
(

2 ∂ ū2
∂x

∂ ū2
∂y + ∂ v̄2

∂x
∂ ū2
∂y + ∂ v̄2

∂x 2 ∂ v̄2
∂y

)
,

and extra stress τ̄2e = De(s̄xx2 s̄xy2
s̄yx2 s̄yy2

). To obtain the equations governing the acoustic streaming, we
need to express Eq. (17) in the time-averaged form where time averaging of any flow or pressure
variable, ḡ(x, y, t ), has been performed over oscillation time period  = 2π as

〈ḡ(x, y, t )〉 = 1

2π

∫ t+2π

t
ḡ(x, y, t1)dt1, (18)

where 〈·〉 denotes time-averaged component. Time averaging of the product of two acoustic field
components g̃1(x, y, t ) and f̃1(x, y, t ) can be expressed as

〈g̃1(x, y, t ) f̃1(x, y, t )〉 = 1
2�[g̃∗

1(x, y, 0) f̃1(x, y, 0)], (19)

were �[·] denotes the real component of an expression, and g̃∗
1(.) indicates the complex conjugate

of g̃1(.). With this time averaging, Eq. (17) can be expressed at steady state as

∇ · 〈v̄2〉 + ∇ · 〈ρ̃1ṽ1〉 = 0, (20a)

∇ ·
(

1

Res
〈τ̄2〉 − 〈ṽ1ṽ1〉 − 〈 p̄2〉I

)
= 0. (20b)

The associated boundary conditions are described below. At the bottom, the conservation of mass
flux provides us the required boundary condition, whereas for the sides and top walls, zero velocity
is prescribed:

At bottom : 〈v̄2〉 = −〈ρ̃1ṽ1〉, (21a)

At sides and top : 〈v̄2〉 = 0. (21b)

III. RESULTS AND DISCUSSION

A. Choices of parameters

The governing equations (14) and (20), along with the boundary conditions prescribed by
Eqs. (15), (16), and (21), are solved for 0.08 � Re � 0.32. This range of Re is chosen since
the density ρ0 for second-order fluid is ∼1000 kg m–3, sonic speed c0 is ∼1000 m/s, viscosity
η is ∼10−4 − 10−3 Pa s. SAW displacement amplitude u′

0 ∼ 0.1−1 Å, and the operating SAW
frequency is ∼1–100 MHz. Along with that Reynolds number range, Deborah number is taken as
0 � De � 1, b is taken within 0 � b � 100, and the acoustic impedance of the wall material and the
attenuation coefficient of the SAW are taken as Zw = 0.743 and cd = 4.741 × 10−3, respectively. ξ ,
ε, and kx are taken as 0.86, 1 × 10−5, and 0.374 74, respectively. With these parameters, we studied
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the influence of Re, De, and b on the acoustic fields and the acoustic streaming. The acoustophoretic
particle motions are also predicted by accounting for the drag forces and the acoustic radiation forces
acting on the particles.

B. Mesh convergence analysis

Before presenting the results, a mesh convergence analysis has been performed to confirm
the fact that the spatial resolution considered for the numerical study is adequate to capture the
underlying physics. As evident from previous related studies [53,60,64], we need a very fine mesh
near the boundary. The thickness of the boundary layer can be estimated in dimensional form as
δ′ = √

2η/ρ0ω, and in dimensionless form, it is given by δ = δ′/k−1. We have defined region of
thickness 10δ near each boundary and prescribed very fine mesh within that (see Figs. S1(a) and
S1(b) in the Supplemental Material [65]). The rest of the computational domain has a relatively
large mesh size (called bulk mesh size), dbulk. We have taken dbulk = 10δ and progressively refined
the boundary mesh size, db. We define a relative convergence function C(g) for solution g relative
to its reference solution gref following similar previous studies [60,64]:

C(g) =
√∫

(g − gref )2dxdy∫
(gref )2dxdy

. (22)

Here gref is obtained for db = 0.2δ, and we have plotted the mesh convergence study results
in Fig. S1(c) (see Supplemental Material [65]) for various δ/db ranging from 1 to 4.4. Based on
our study we found δ/db = 3 is suitable for all convergence function to be bellow 10−2, and we
have chosen this value for all the simulations presented in the work. Please note that any further
refinement in the bulk mesh size (i.e., dbulk) does not affect the simulation results. With these
simulation settings we first validated our model with the existing literature (see Fig. S2 in the
Supplemental Material [65]), and after successful validation we present the acoustic fields, acoustic
streaming, and the acoustophoretic particle motions in the following sections.

C. Acoustic fields

Figure 2 shows the acoustic pressure and velocity fields in a microchannel of width W = 2π/kx

and height H = π/2kx excited by a standing SAW at t = 2πn, where n is an integer. The acoustic
pressure

�

p1, varies between 2.17 × 10−5 (red) and −2.17 × 10−5 (blue), whereas acoustic velocity
magnitude |�

v1| varies within zero (blue) and 1.76 × 10−5 (red). It is evident from Eq. (14) that the
acoustic field does not depend on the material constant ratio, b. In addition to that, Re and De have a
negligible impact on the acoustic pressure and velocity profiles. For instance, the maximum acoustic
pressure

�

p1 max = 2.1687 × 10−5 at Re = 0.08 and De = 0, whereas at Re = 0.32 and De = 1,
�

p1 max = 2.1720 × 10−5, indicating less than 0.15% variation over a wide range of Reynolds number
(0.08 � Re � 0.32) and Deborah number 0 � De � 1. This is a remarkable result, and it implies
that the acoustic fields hardly depend on the fluid inertia or the viscous effects. It is clear that
the acoustic pressure and velocity are oscillating with time (see Supporting Material video [65]),
and the maximum acoustic pressure p̃1 max is observed to be 2.30 × 10−5, whereas the maximum
acoustic velocity magnitude (|v1|max) is estimated to be 2.20 × 10−5, which is much higher than
the maximum acoustic velocity associated with the SSAW, i.e., ε = 1 × 10−5. This ensures that
there are reflections of the acoustic waves on the microchannel walls which are attributed to the
impedance mismatch between the wall material (Zw = 0.743) and fluid (dimensionless impedance
of the fluid is 1).

D. Acoustic streaming

Figure 3(a) shows the acoustic streaming velocity field |〈v̄2〉| inside the microchannel of
width W = 2π/kx and height H = π/2kx. We observe four streaming vortices similar to that for
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FIG. 2. (a) Color plot of acoustic pressure
�

p1 and (b) velocity magnitude |�v1| at t = 2πn for a mi-
crochannel of width W = 2π/kx and height H = π/2kx excited by a standing SAW specified by Eq. (7).
The plot represents pressure and velocity magnitude for 0.08 � Re � 0.32 and 0 � De � 1. These values
show negligible variation (<0.15%) over these ranges. The acoustic impedance of the microchannel wall
material, the attenuation coefficient of the SAW, and the acoustic Mach number are taken as Zw = 0.743,
cd = 4.741 × 10−3, and ε = 1 × 10−5, respectively. The SAW amplitude ratio (ξ ) and SAW wave vector (kx)
are taken as 0.86 and 0.374 74, respectively.

Newtonian fluids (i.e., De = 0). A large acoustic streaming velocity magnitude is observed near the
bottom boundary, and there exists a sharp velocity gradient adjacent to it. Figure 3(b) illustrates
this sharp velocity gradient and the variation of |〈v̄2〉| along the channel height at x = ± 1

8 H
and x = ± 3

8 H . The maximum acoustic streaming velocity, |〈v̄2〉|max, is located near the bottom
boundary at x = ± 1

8 H , whereas at x = ± 3
8 H the acoustic streaming is slightly suppressed due to the

interaction with adjacent sidewalls. We notice that the color plot of the acoustic streaming velocity
distribution remains the same for all Reynolds numbers and Deborah numbers except the maximum
acoustic streaming velocity magnitude |〈v̄2〉|max varies.

Figure 4 illustrates the variation of |〈v̄2〉|max as a function of De for b = 0, 50, and 100 at
Re = 0.08, 0.16, 0.24, and 0.32. It can be concluded that with increasing Reynolds number, the
acoustic streaming velocity is enhanced. This is attributed to the fact that with increasing Reynolds
number, either the inertial force increases or the viscous force decreases, leading to an overall
increase in the driving force for acoustic streaming. However, we found that the acoustic streaming
velocity is first enhanced with an increase in Deborah number, and thereafter, a further increase
in Deborah number causes suppression of the acoustic streaming. This is counterintuitive and
requires further explanation. We dig into the characterizations of the driving forces and how they
are influenced by the extra stress components associated with the second-order fluids. It is observed
that even though the variation of acoustic fields over Deborah number is extremely small, the
dependence of the time-averaged momentum-flux-density tensor, i.e., 〈ṽ1ṽ1〉 on Deborah number
cannot be neglected. Importantly, with increasing Deborah number, the time-averaged momentum-
flux-density tensor increases, which helps in enhancing the acoustic streaming, whereas the extra
stress components suppress the acoustic streaming. Due to this complex interplay, there exists a
cutoff Deborah number (Decutoff ) below which larger acoustic streaming as compared to that of a
Newtonian fluid is encountered. In Fig. 4, the acoustic streaming enhanced zone has been shown in
cyan color, and for Re = 0.08 and b = 0, the cutoff value is Decutoff = 0.44, and above that Deborah
number, the acoustic streaming is suppressed more and more with increasing Deborah number [see
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FIG. 3. (a) Acoustic streaming velocity field (color plot) and associated vector plot (black arrows) for the
standing SAW driven microchannel of width W = 2π/kx and height H = π/2kx filled with second-order fluid
where |〈v̄2〉|max denotes the maximum acoustic streaming velocity magnitude. The plots show generic acoustic
streaming velocity field for 0.08 � Re � 0.32, 0 � De � 1, and 0 � b � 1. The acoustic impedance of the
microchannel wall material, the attenuation coefficient of the SAW, and the acoustic Mach number are taken as
Zw = 0.743, cd = 4.741 × 10−3, and ε = 1 × 10−5, respectively. The SAW amplitude ratio (ξ ) and SAW wave
vector (kx) are taken as 0.86 and 0.374 74, respectively. (b) Variation of rescaled acoustic streaming velocity
magnitude, i.e., |〈v̄2〉|/|〈v̄2〉|max, along y at x = ± 3

8 H (blue) and x = ± 1
8 H (red).

Fig. 4(a)]. An increase in the material constant ratio, b, effectively implicates an increase in the
viscous force, which causes further suppression of the acoustic streaming, leading to a lower Decutoff

value. For instance, at Re = 0.08 and b = 50, the acoustic streaming enhanced zone is restricted to
0 < De < 0.16, whereas for Re = 0.08, b = 100, there is no enhancement of the acoustic streaming
at all. This is a very important result that provides us with the flexibility to control and manipulate
acoustic streaming by regulating the fluid rheology without affecting the acoustic fields. Our present
study also reveals that a stronger acoustic streaming is manifested at higher Reynolds number, which
ensures a wider range of Deborah number for acoustic streaming enhancement for higher b values
(b = 50, and/or 100) with exceptions at low values of b, where slightly lower Decutoff is observed.

E. Acoustophoretic motion of the microparticles

One of the primary uses of acoustofluidic devices is the manipulation of micron-size cells or
particles, as these objects experience acoustic radiation force due to the scattering of the acoustic
waves onto them. This acoustophoretic motion of the particles can be predicted for a steady
acoustic streaming field, and in this section, we consider spherical particles of radius a′, density
ρ ′

p, and compressibility κ ′
p suspended in the second-order fluids. We made these dimensionless as

a = a′/k−1, ρp = ρ ′
p/ρ0, and κp = κ ′

p/κ0, where κ0 is the compressibility of the fluid. The particle
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FIG. 4. Dependence of |〈v̄2〉|max on De for b = 0 (blue), 50 (red), and 100 (black) at (a) Re = 0.08,
(b) Re = 0.16, (c) Re = 0.24, and (d) Re = 0.32 for standing SAW driven microchannel of width W = 2π/kx

and height H = π/2kx filled with second-order fluid. The acoustic impedance of the microchannel wall
material, the attenuation coefficient of the SAW, and the acoustic Mach number are taken as Zw = 0.743,
cd = 4.741 × 10−3, and ε = 1 × 10−5, respectively. The SAW amplitude ratio (ξ ) and SAW wave vector (kx)
are taken as 0.86 and 0.37474, respectively. The cyan region indicates the enhanced acoustic streaming zone.

suspension is diluted enough so that the interparticle interactions can be neglected. For small particle
size, i.e., (a � 2π ), the acoustic radiation force acting on the particle can therefore be described in
dimensionless form as [21]

Frad = −∇U where U = 2πa3
(

1
3 〈p̃1 p̃1〉 f0 − 1

2 〈|ṽ1|2〉 f1
)
, (23)

where monopole and dipole scattering coefficients are given by f0 = 1 − κp and f1 = 2(ρp−1)
2ρp+1 ,

respectively. The drag force acting on the particle is estimated via Stokes formula Fdrag =
6πaε

Re (〈v̄2〉 − v̄p), and the motion of the microparticles can be predicted via Newton’s second law:
4
3πa3

pρp
d v̄p

dt = Frad + Fdrag. At steady state, the particle velocity field is obtained as v̄p,s = 〈v̄2〉 +
Re

6πaε
Frad, which indicates that the acoustophoretic particle velocity is increased by the acoustic

radiation force.
Figures 5 and 6 show the acoustophoretic particle trajectories at Re = 0.08 for particles of

various sizes over the Deborah number and b ranging from 0 to 1 and 0 to 100, respectively. For
a = 0.05, the particles closely follow the acoustic streaming velocity vector (Fig. 5), whereas for
a = 0.5 the particle trajectory shows resemblance to the acoustic radiation force vectors [Fig. 6(a)].
This indicates that for small particles (i.e., a = 0.05), the acoustic radiation force is very little and
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FIG. 5. (a) Initial positions of the particles and (b)–(e) their trajectories in a standing SAW driven mi-
crochannel of width W = 2π/kx and height H = π/2kx filled with second-order fluid. Trajectories are shown
for particle size a = 0.05 at (b) De = 0, b = 0; (c) De = 0.25, b = 0; (d) De = 1.0, b = 0; and (e) De = 1.0,
b = 100. The trajectories are shown for particle density ρp = 1.05 and particle compressibility κp = 0.56 at
Re = 0.08. The color associated with the particle trajectories indicates the particle velocities as shown in the
color bar, where red and blue show maximum (v̄p,max) and zero particle velocities, respectively.

the particle motion is governed by the viscous drag of the fluid [Figs. 5(b)–5(e)]. With the initial
particle configuration shown in Fig. 5(a), the maximum particle velocity for a = 0.05 at De = 0
and b = 0 [see Fig. 5(b)] is observed as v̄p,max = 6.11 × 10−9, which is slightly higher than the
corresponding maximum acoustic streaming velocity |〈v̄2〉|max = 6.06 × 10−9. For De = 0.25, the
acoustic streaming velocity |〈v̄2〉|max increases to 6.11 × 10−9 and the maximum estimated particle
velocity is 6.15 × 10−9 [Fig. 5(c)]. As De and b increase further, the particle motion slows down
due to suppression of the acoustic streaming [Fig. 5(d)]. With increasing particle size, the acoustic
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FIG. 6. (a) Vector plot of acoustic radiation force. (b)–(e) Particle trajectories in a standing SAW driven
microchannel of width W = 2π/kx and height H = π/2kx filled with second-order fluid with initial particle
configuration as shown in Fig. 5(a). Trajectories are shown for (b) a = 0.1, De = 0, b = 0; (c) a = 0.1, De =
1.0, b = 0; (d) a = 0.5, De = 0, b = 0; and (e) a = 0.5, De = 1.0, b = 0. The trajectories are shown for
particle density ρp = 1.05 and particle compressibility κp = 0.56 at Re = 0.08. The color bar is associated
with the particle trajectories (b)–(e), and the color indicates the particle velocities where red and blue show
maximum (v̄p,max) and zero particle velocities, respectively.

radiation force increases faster than the viscous drag, and for large particle size (i.e., a = 0.5), the
particle trajectory is maneuvered by the acoustic radiation force [Figs. 6(c)–6(d)]. At intermediate
particle size such as a = 0.1, both acoustic radiation force and the viscous force are prominent, and
the particle trajectory follows a path governed by the superposition of both these forces [Figs. 6(a)
and 6(b)]. Interestingly, the particle trajectories are not much influenced by the variation of Re, De,
and b values (see Figs. S3 and S4 in the Supplemental Material [65] for microparticle trajectories at
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Re = 0.20 and 0.32), which confirms that the variation of second-order fluid properties can suppress
or enhance the acoustic streaming without altering the acoustic radiation force significantly.

IV. CONCLUSION

In this article we have presented a multiple-timescales-based model and carried out a numer-
ical study to characterize the acoustic streaming in a bottom-actuated microchannel filled with
second-order fluids. The governing Navier-Stokes equations are expressed in dimensionless form,
and the perturbation technique is used to separate the slow and fast timescales associated with
the acoustofluidic system. The acoustic fields and the acoustic streaming velocities are estimated
for a wide range of Reynolds number Re and Deborah number De, and the material constant
ratio b. With increasing Re, the increasing inertia or decreasing viscous effect essentially increase
acoustic streaming. Our study reveals that for relatively low De, the second-order fluid rheology can
enhance the acoustic streaming values, and beyond a cutoff value (Decutoff ), increasing De gradually
suppresses the acoustic streaming due to the extra stresses present in the fluids. This cutoff value
strongly depends on Re and b. The microparticle trajectories are influenced by the particle size,
and based on the size, either drag force or acoustic radiation force or both control the paths of the
particle motion. However, they are negligibly influenced by Re, De, and b. This study is extremely
important in the context of acoustofluidic particle sorting and manipulation, as it provides us the
flexibility to enhance or suppress acoustic streaming by altering fluid rheology without significantly
affecting the acoustic radiation forces.
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