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Tapered foils favor traveling-wave kinematics to enhance
the performance of flapping propulsion
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We report results from an experimental investigation on the fluid-structure interactions
of flapping foils with tapered thickness profiles actuated in a quiescent viscous fluid. We
seek to assess the propulsive performance of two sets of flapping foils; one with a fixed
average bending stiffness, the other one with a fixed mass ratio. We find that foils that
are stiffer towards the root than at their tip produce higher values of thrust and efficiency
simultaneously, over a wide range of driving frequencies. Our kinematic analysis reveals
that more tapered foils naturally develop a traveling-wave-dominated motion. We perform
particle image velocimetry to relate the dynamics and kinematics of the flapping foils
to the dynamics of the surrounding fluid. For more tapered foils, we observe a stronger
vorticity production and a wake pattern with enhanced downstream speed of the fluid. Our
paper provides experimental evidence that tapered stiffness distributions robustly enhances
propulsive performance.
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I. INTRODUCTION

Flying insects and many aquatic animals rely on flapping appendages for locomotion [1-3]. Mo-
tivated by flexibility, a common feature to both fish fins [4] and insect wings [5], theoretical [6—10],
computational [11-14], and experimental studies [8—10,15-18] have focused on the dynamics of
flexible platelike structures heaving or pitching passively in a fluid. The ability to deform in response
to fluid loading tends to increase the performance compared to equivalent rigid systems both in terms
of thrust production and efficiency. It has been proposed that the resonant behavior arising due to
the coupled fluid-structure interaction (FSI) is at the origin of this enhancement [19,20].

The majority of past studies have focused on propulsors with a uniform bending stiffness. How-
ever, the mechanical properties of wings [21] and fins [22] often change along their span or chord.
Despite the relevance to the original biological systems, this more general case of a spatially varying
(heterogeneous) bending stiffness has only recently started to attract attention. Computational and
experimental results suggest that structures with a stiffer leading edge are more efficient than
those with an equivalent uniform stiffness [23-27]. A contrasting claim that propulsors with their
flexibility concentrated at the root perform better has also been reported [28,29]. In both cases, it
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FIG. 1. (a) Photograph and (b) schematic of a flexible tapered flapping foil, heaving with amplitude A,
along the y axis. (c) Schematic of the flapping foil and reaction forces F, and F;, measured at the clamp.
(d) Center-line deformation for a flat specimen (o« = 0) (d1) and a highly tapered one (o = 0.90) (d2), actuated
at three times their respective resonant frequency, f = 3 fy. (e) Period-averaged velocity field of the surrounding
fluid measured with particle image velocimetry (PIV). The bending profiles measurements and the PIV were
performed separately (flapping foil « = 0.90 at f = 2fj).

seems that distributing the stiffness is an asset in flapping propulsion, yet the physical mechanisms at
the core of this enhancement remain unclear. A recent computational study performed a systematic
parametric investigation of a two-dimensional (2D) inviscid system and emphasized the importance
of fixing the mean stiffness when studying heterogeneous bending stiffnesses [30]. This feature
has been rarely considered previously. To gain physical insight into the mechanisms at the core of
the propulsion improvements observed in tapered flexible systems, there is a need for controlled
experiments and high-precision data sets that independently target the effects of the overall stiffness
and its distribution.

Here, we investigate the kinematics and dynamics of tapered elastomeric flapping propulsors,
hereon referred to as flapping foils, subjected to a heaving motion in a quiescent viscous fluid
[Fig. 1(a)]. Our fabrication procedure allows for the manufacturing of flapping foils with precise
control over their geometric and physical properties. For example, we can fix the average bending
stiffness whereas exploring different tapering ratios. A harmonic heaving motion is imposed at the
root of the flapping foil [Fig. 1(b)], and we quantify the resulting reaction forces and deformation
profiles [Fig. 1(c)]. Our goal is to evaluate the effect of thickness tapering on the hydrodynamic
performance of the foils. First, we will quantify the thrust coefficient and efficiency, finding that both
quantities increase significantly for foils that are stiffer at the root. Then, we analyze the deformation
profiles [Fig. 1(d)] to connect this higher efficiency to traveling-wave kinematics. Finally, we will
turn our attention to the fluid [Fig. 1(e)] and perform particle image velocimetry (PIV) to relate the
performance enhancement to the structure of the generated wake flow. We find that better performing
flapping foils are associated with a stronger vorticity and a downstream-favored orientation of the
produced flow.
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II. EXPERIMENTS
A. Description of the flapping-foil samples

In Fig. 1, we present photographs and schematics of our experimental flapping foils. The
geometry of the foils was inspired by the computational work of Yeh et al. [26]. The length,
L = 95.0 and width, b = 37.5 mm are fixed for all specimens, setting the aspect ratio L/b = 2.5.
The thickness h(s) decreases linearly along the arc-length s € [0, L] with the values of &, > h, at
the root and the tip, respectively. The tapering ratio is defined as @ = 1 — hy /h;.

We introduce two sets of six flapping foils, which we refer to as: (i) iso-(B) and (ii) iso-M:

(i) The iso-(B) foils are characterized by a fixed value of mean bending stiffness (B) :=
( fOL Bds)/L. The tapering ratio « is systematically varied with six pairs of k;, h, € [0.6, 6.2] mm.
The values of the tapering ratio lie in the range from o = 0 (a flat sample) to o« = 0.90 (a highly
tapered one). For a linear thickness profile h(s) = k(1 — as/L), the mean bending stiffness is
(B) = Bi[1 — (& — 40> + 6a)/4], where B is the bending stiffness at the root. The mass ratio
M = (psh)/(p¢L) as defined in Ref. [30] of this set varies in the range of 0.041 < M < 0.053.

(i) The iso-M foils have a fixed value of the mass ratio M = (psh)/(psL) = 0.052 £+ 0.001,
where ps and pr are the densities of the structure (foil) and the surrounding fluid, respec-
tively. The average bending stiffness of this set of iso-M foils varies in the range (B) €
[0.21, 0.34]x 1073 N m?. (The details on the measurements of (B) are provided below.)

For both sets, a fix value of (B), (respectively, M) is chosen, as well as the set of values for «. The
thicknesses /; and &, are computed to meet both requirements. The rationale for introducing these
two distinct sets of foils (iso-(B) and iso-M) lies in the fact that it is not possible to simultaneously
fix both M and (B) whereas keeping the same geometry and using a homogeneous material. On the
one hand, inspired by Ref. [30], we want to investigate samples with a fixed mean bending stiffness
(B). On the other hand, a varying mass ratio, M, indicates a change in the balance of hydrodynamic
and elastic forces at play. Indeed, M can be used as a distinguishing feature between insect wings
and fish fins. Fish fins are naturally buoyant and have a density ratio of p¢/ps ~ 1. Insect wings
are made of organic materials that are much denser than air and have a density ratio of pf/ps < 1.
Hence, M tends to be substantially higher for fliers than for swimmers and can affect the overall
behavior of the system significantly [19]. For both sets, the mass ratio M is relatively low and falls
within the regime relevant for fish.

B. Fabrication of the samples

Our flapping foils are fabricated by pouring an elastomeric solution [vinyl polysiloxane, (VPS),
Elite Double 32, Zhermack] into a mold assembly of laser-cut acrylic pieces. Figure 2(a) presents
a photograph and a schematic of the molds, containing a central triangular spacer that is cut
to the desired linear thickness profile. After curing of the VPS polymer, the flapping foils are
preconditioned by immersing them in silicone oil (Bluesil 47 V 10, Silitech AG, density p; = 950
kg/m?, dynamic viscosity u = 0.0105 Pas, at 23°C); the same fluid used for the subsequent
experiments.

The silicone bath causes the foils to undergo isotropic volumetric swelling [31]V = A3 Viary (Vary
is the initial volume) with a linear swelling coefficient A = 1.25, determined by measuring the
increased length and width of a reference foil after they reach a steady value [32]. The thickness
profile h(s) of the foils is measured using digital image analysis both before and after swelling.

C. Bending stiffness of the samples

To characterize the bending stiffness of the foils, we perform a cantilever test by clamping each
oil-swollen sample at its root and loading it under gravity. The deformed profiles are extracted
through image processing and fitted through a boundary value problem solver to an Euler’s
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FIG. 2. Fabrication, experimental setup, and force measurements. (al) and (a2) Photograph and schematic
of the mold used to fabricate the flapping foils. (b) Experimental apparatus. (c) Time series of propulsive force
F, (top) and the driving force F, (bottom) as raw (dots) and low-passed (line) signals for « = 0.54, f = 1.

elastica [33], including the tapered thickness,
1
(1 — a5)’0” —3a(l — a5)’0’ + E[%(1 -5 —(1— s)] cos 0 =0, (1)

where 5 = s/L € [0, 1] is the nondimensional arc length along the foil, (-)" denotes differentiation
with respect to 5, and 6(5) is the local angle of the tangent to the undeformed centerline. The
dimensionless parameter 8 = B;/(p,gbh;L*) represents the balance between the elastic and the
gravitational forces, where g is the gravitational acceleration, p; = 1062 kg/m? is the density of the
swollen VPS, and B is the bending stiffness at the root of the flapping foil.

The cantilever test yields a direct measure of B; after which we determine a mean stiffness
(B) = (0.19 0.02)x 1073 N m? for all six flapping foils of the iso-(B) set and (B) € [0.21, 0.34] x
1073 N'm? for the iso-M set.

D. Experimental apparatus

A photograph of the experimental apparatus is shown in Fig. 2(b). The fluid tank
(50x30x30 cm?) is filled with the silicone oil to a height of 18 cm. The tapered flapping foil is
mounted to the driving mechanism by a three-dimensional-printed clamp (Clear Resin, Formlabs)
at the center of the tank. The shape of the internal slit of the clamp is customized depending
on the geometry of the tapered foil to ensure a snug fit, whereas the external shape is the same
for all clamps [see Fig. 1(a)]. The clamp is connected through a vertical carbon-fiber rod to the
driving mechanism. This mechanism comprises a slider-crank system connected to a stepper motor
through an air bearing, producing a linear harmonic (heaving) motion A(t) = Ao cos(2x ft) at the
clamp, where ¢+ and f denote time and frequency, respectively, with an amplitude Ay =~ 0.09L
(similar to Ref. [26] with Ag = 0.1L). A six-axis force/torque sensor (Mini40 SI-20-1, ATT Industrial
Automation) connects the driving mechanism to the carbon rod holding the flapping foil, enabling
measurements of the reaction forces at the clamp. The nominal resolution of the force sensor, as
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stated by the manufacturer, is 5 mN but with appropriate averaging and filtering we can reach
1-mN resolution. In Fig. 2(c), we present representative examples of the time series of the measured
reaction forces F; and F;,. We note a slight asymmetry in the F; signal, which can be due to slight
imperfections of the setup or variations in the clamping procedure. To reduce the influence of the
asymmetry of individual time series on the time-averaged quantities, we re-installed the foils each
time before repeating experiments for a given parameter configuration. Simultaneously, a scientific
camera (Flea3, Flir Systems) placed above the tank captures the deformation profiles of the flapping
foils. The motor, the force sensor, and the camera, are all synchronized and computer controlled.

E. Dynamical properties of the flapping foils

Above, we characterized the geometry (from image processing) and bending stiffness (from
cantilever tests) of the flapping foils. Now, with the full apparatus, we turn to the dynamical
properties. We start by measuring the first resonant frequency fy of the flexural motion of each
foil in the fluid. After abruptly stopping the oscillatory driving motion of the foil, the time series
of the tip deflection is recorded, and f; is determined from the dominant peak in the fast Fourier
transform of the decaying signal. The measured resonant frequencies of the six foils from the flat
sample to the most tapered one are in the range 0.74 < fy [Hz] < 1.01. The frequency ratio between
the driving frequency f and the measured resonance frequency will be denoted by f = f/fo.

III. PERFORMANCE OF THE FLAPPING FOILS: POWER, THRUST, AND EFFICIENCY

We start our experimental investigation by evaluating the hydrodynamic performance of the
flapping foils by simultaneously recording time series of the reaction forces at the clamp, F; and
F, [representative example given in Fig. 2(c)], and the full deformation profiles. The frequency
ratio is systematically varied in the range 0.3 < f < 3.8 in steps of 0.1 with refinement around
the resonance frequency. The data are recorded over ten cycles 7 = 1/f. The frequency sweep is
repeated five times to quantify experimental uncertainties and reproducibility, each time re-installing
the foil in the tank. In the absence of background flow, we define the Reynolds number based on the
characteristic flapping frequency f [13] as Re = p; (27 )AL/, which was varied in the range of
90 < Re < 2000.

To compare the propulsive characteristics of the different flapping foils, we will now define the
thrust, Cy and power Cp coefficients by nondimensionalizing the produced thrust and input power.
A measure for efficiency will follow naturally. We choose to follow the definitions proposed in
Ref. [34], up to a multiplicative constant,

T P
Cr=v——""—"—, Cp=7——""—, 2
30tbL(27 fAg)? 3pebL(27 fAp)?
where 7 = F, is the average thrust and P = —v,F, is the average power input with v, being the

lateral velocity of the root. Overlined quantities denote period averages over ten cycles. The maxi-
mum tip deflection a and the root displacement amplitude Ay are extracted from image processing
of the movies acquired simultaneously during the experiments. For each frequency sweep with
a flapping foil (obtaining Py), we perform an additional sweep with the clamp alone (obtaining
Plamp) to then compute P = Pyoy — Pejamp, assuming that the clamp and the flapping foil can be
treated independently. Finally, the efficiency, which we define as the ratio between thrust and input
power, can be readily quantified as ¢ = Cr /Chp.

In Fig. 3(a), we plot Cr for our six iso-(B) flapping foils as a function of £, finding that the
produced thrust increases with tapering ratio «. Each curve for different values of o exhibit a peak
in the neighborhood of the resonant frequency f = 1. This peak is especially prominent for the
lower values of «. Past resonance, the thrust produced by the flat sample drops significantly but it
remains at a relatively high value for the more tapered samples. The power coefficient [Fig. 3(b)]
also reaches a resonant peak but at lower frequencies (f = 0.7). Near resonance, samples with the
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FIG. 3. Performance of the (a)—(c) iso-(B), and (d) iso-M foils as a function of the driving frequency.
(a) Thrust coefficient C; and (b) power coefficient Cp versus the driving frequency ratio £. (c) and (d) Efficiency
¢ as a function of f for the (c) iso-(B) and (d) iso-M foils. The error bars in (a)—(c) correspond to the standard
deviation of five runs. No error bars are included in (d) since only one run was performed for this set.

lowest values of « require the largest input power. Past resonance (f > 1.3), this trend is reversed.
In Fig. 3(c), we plot the dependence of the efficiency ¢ on f for the iso-(B) foils. Similar to the
Cr( £) curves, the more tapered samples are more efficient across the full range of f, especially for
f > 1.3. For example, at f = 2.5, the most tapered foil (¢ = 0.90) produces over 30 times more
thrust and is 17 times more efficient than the flat one (o = 0). Nearly identical behavior for £(f)
is found for the iso-M foils as shown in Fig. 3(d). In the Supplemental Material [35], we present
an alternative choice for the definition of the performance coefficients yet, yielding very similar
qualitative results, which conveys that our findings are robust to the exact choices of Cr and Cp.
Also, additional measurements were performed for a representative iso-(B) sample close to a side
wall of the tank and close to the bottom of the tank to estimate possible wall effects. In either cases,
we did not observe any significant difference in the output performance.

The similarity between the results for the iso-(B) and iso-M foils indicates that & dominates
their performance. The enhancement of efficiency in tapered fins was already highlighted in prior
simulations [26], a finding that is corroborated by our experiments. Still, there are some quantitative
differences between our results and this previous computational study. For the more tapered fins, Yeh
et al. [26] observed lower values of Cr near resonance, compared to their flat specimen. Also, their
simulations were performed at M = 0.4 and considered profiles with both linear thickness and linear
stiffness at Re = 250. By contrast, our experimental system has an order of magnitude lower value
of M, Re was not fixed, and the stiffness profile of our foils is cubic on s [given their linear thickness
profile, i(s) ~ s]. As such, it is not possible to establish a direct quantitative comparison between
our experimental results and the simulations in Ref. [26], even if the overall qualitative findings
are similar. Here, we recall that our experimental setup operates in a quiescent fluid, a special
case of flapping propulsion (swimming, in other words). Our main motivation for selecting these
conditions was to study the fluid-structure interaction in a simplified environment. For example,
this choice avoids the influence of damping by the free stream flow and hinders the formation
of and interaction with a leading-edge vortex. In the study mentioned above, Yeh et al. [26]
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FIG. 4. Kinematics of the flapping foils. (a) Normalized tip deflection & and (b) phase @ of the tip relative
to the root as functions of the frequency ratio f. (c) Snapshots of a deformed profile of the flapping foil
with o = 0.54 at f = 2. (c1) Measured center line and (c2) reconstruction from the first mode of complex
orthogonal decomposition (COD) with its (c3) traveling and (c4) standing-wave components. (d) Traveling
index Z as a function of the frequency ratio f.
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investigated both the fixed configuration (where the propulsor is constrained not to move as in our
paper) and the free-swimming case (where the foil reaches a steady-state velocity). Whereas they
observed similar results for both cases, we cannot ascertain, based on experimental evidence, the
applicability of our findings for situations where a non-negligible background flow arises. Studying
this alternative configuration would have required different and significantly more challenging
experimental considerations, which go beyond the scope of the present paper. We hope that future
investigations will continue addressing these questions in the presence of a background flow.

Another numerical study [30] considered foils with distributed stiffness in a 2D inviscid fluid,
finding that concentrating the stiffness towards the root maximizes thrust production if no resonance
can be triggered. This paper also speculates that, in the presence of drag, efficiency-maximizing
distributions will tend to be thrust-maximizing ones, which is confirmed by our observations. Even
though these inviscid results are not directly applicable to our system, the highlighted importance
on the separate roles of the mean stiffness, and its distribution underlies our choice to fix (B) to
perform a fair comparison across various foils with different stiffness distributions. To the best of
our knowledge, our paper is the first experimental work in which independent control of (B) (or M)
was achieved to accurately characterize the performance of flapping foils.

IV. KINEMATICS OF THE FLAPPING FOILS

We proceed to analyze the kinematics of the flapping foils with the goal of gaining further
insight into the mechanism underlying the improvement of thrust and efficiency with tapering. The
centerlines of the deformed foils during flapping were presented in Fig. 1(c) from which we can
quantify the kinematics of the tip.

In Fig. 4(a), we plot the normalized maximum tip deflection @ = a/A, of the iso-(B) flapping
foils as a function of f. For all tapering ratios («), the deflection reaches a maximum at f ~ 0.9
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(slightly below resonance) with lower tip deflections for the more tapered samples. This trend is
reversed for f > 1.55 with higher & for foils with higher values of «. By contrast, in Fig. 3(a), we
saw that thrust increases monotonically with «. Even though higher tip deflections have previously
been associated with higher thrust production [13,36], this is not compatible with our results. The
phase lag @ between the tip of a flapping foil and the root has also been claimed as a proxy for
efficient flapping propulsion [15]. This statement is also not compatible with our results, at least,
in the explored range of parameters as indicated by the results plotted in Fig. 4(b) that reveal an
identical behavior for all samples. Overall, our experimental results indicate that neither the motion
of the tip nor its phase with respect to the driving motion can alone be related to the increase in
thrust with tapering.

Both the tip deflection and the phase are pointwise quantities that do not capture the global
undulatory motion. Next, we assess whether our flapping foils exhibit traveling-wave kinematics,
which is known to be highly efficient in flapping locomotion [37,38]. To do so, we perform a
complex orthogonal decomposition (COD) [39] on the recorded deformation profiles. The COD
is a generalization of proper orthogonal decomposition (POD) [40] and is especially suited to the
analysis of wave kinematics [41]. The POD method gives the decomposition of a quantity [i.e.,
the deformed centerline, Y (x, ¢) in our case] as a sum of orthogonal spatial modes u; with their
respective temporal coefficients b;; Y (x, 1) ~ Z b;(t)u;j(x). Both u; and b; are complex numbers
when extracted with the COD, given that the 1nput for the algorithm is YCOD =Y + iH( ), the real
part is the original data, and the imaginary part is its Hilbert transform. In our system, the first
mode (j = 1) captures the main features of the deformation. By way of example, in Fig. 4(cl),
we present representative snapshots of the deformation of the centerline (@ = 0.54 at f = 2),
and in Fig. 4(c2), the equivalent reconstructed profiles obtained from Re{b u;} (the real part of
biuy). We find excellent agreement between the recorded centerline deformation [Fig. 4(c1)] and its
one-mode-reconstruction [Fig. 4(c2)].

The COD method also enables the decomposition of the deformation profiles into a traveling
wave component [Fig. 4(c3)] and a standing wave component [Fig. 4(c4)]. To distinguish between
standing-wave-dominated and traveling-wave-dominated kinematics in a complex mode u;, one can
use a traveling index [39] Z, defined as the inverse of the condition number of [Ref{u;}, Im{u;}];i.e.,
the matrix whose two columns are the real and imaginary part of the mode u;. A pure traveling-wave
regime yields Z = 1 (since Re{u;} and Im{u;} are orthogonal and of the same magnitude), whereas
7 = 0 for a a standing-wave-like regime (i.e., a mode with its two components parallel or of differing
magnitudes).

In Fig. 4(d), we plot the traveling index Z of the first mode of COD for each iso-(B) foil as a
function of f for different tapering ratios. Over the entire frequency range, samples with higher
values of o (more tapered) yield increasing values of Z. This traveling index orders the curves for
different values of « in the same way observed for both the thrust and the efficiency curves (Fig. 3).
Consequently, we find that 7 holds a stronger connection to the propulsive performance discussed
above than the tip deflection. The relationship between the dynamic performance and the kinematics
is further discussed in the Supplemental Material [35] where we present Cp(Z) and ¢(Z) curves for
different values of «. Increasing the tapering of a foil promotes the occurrence of a traveling wave
during flapping, an effect that we speculate is at the core of the observed increase in efficiency.

V. FLOW FIELD GENERATED BY THE FLAPPING FOILS

Thus far, we have focused on the elastodynamics of flapping foils without studying the fluid
explicitly. Next, we investigate the flow field in the neighborhood of the foil’s tip with an emphasis
on quantifying how the tapering of the foils affects the topology and strength of the vortices shed in
their wake.

We used PIV to measure the flow field using 56-um polyamid seeding particles (Vestosint 2157,
Evonik). The PIV imaging system was composed of a light-emitting diode pulsing system (LPS3,
ILA_5150 GmbH) to generate a light sheet at midwidth of the foils, parallel to the fluid surface,
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FIG. 5. PIV results and derived vorticity and circulation measures. (a) Snapshots of the nondimensional
vorticity &, phase averaged over one stroke («¢ = 0.54, f = 1.55). The boundary S used to compute the
circulation T" is shown as a dashed line. (b) Mean circulation I" versus f. The error bars correspond to a
threshold value +20% above /below &, = 10, demonstrating that the observed trends are weakly dependent on
this choice. (c) Mean velocity flow at F =3 for (cl) the flat flapping foil (¢ = 0) and (c2) the most tapered
one (@ = 0.90) [see Fig. 1(d) for the corresponding kinematics]. The scale of the arrows size is different in the
two plots, whereas their actual magnitude | (i, ¥)| is encoded in the adjacent color map.

and a complementary metal-oxide semiconductor camera (2048x2048 px, UI-3370SE-M-GL,
IDS Imaging Development Systems GmbH) connected to a timing unit (Synchronizer, ILA_5150
GmbH). The camera’s field of view was zoomed in to the tip of the flapping foil and its near
wake. The velocity and vorticity fields were obtained using the software PIVVIEW (v3.9, PIVTEC
GmbH). The experimental images were processed using a multigrid algorithm with a resulting
interrogation window size of 48x48 px and a 66% overlap, leading to a resolution of 0.92 mm
(=~0.01L) for the spacing between the velocity vectors. We focused on a representative selection
of the iso-(B) flapping foils (¢ = 0, 0.33, 0.54, and 0.90) at four values of the frequency ratio
f=1,1.55, 2, and 3.

In Fig. 5(a), we show a representative snapshot of the nondimensionalized vorticity (@ = w/f)
during the stroke of a flapping foil with moderate tapering (o = 0.54). We see a positive vortex
(red regions) generated at the tip, as well as the previous negative vortex (blue regions) dissipating
downstream (corresponding video available in the Supplemental Material [35]); a wake structure
known as reverse von Kdrman street that is characteristic of fish swimming [42,43]. This pattern of
vortices, generated at the tip and shed on each stroke, was common for all the foils and frequencies
that we explored.

The relative strength of the generated vortices depended on both « and f. To quantify these vari-
ations, we computed the circulation I' = |, ¢ wdS§ of the main coherent concentrations of vorticity.
Here, S is the boundary of the integration surface set by a threshold value &; = 10, chosen to isolate
the created vortex and its connected shear layer [see dashed curve in Fig. 5(a)]. For both negative
and positive vorticities, we compute the period average of the circulation I't = fs( +30) wdS. As

a measure for the overall vortex strength, we take the respective mean circulations |F+| and
IT | and scale them as I' = ([T | + |T |)/(2faL), where fa corresponds to the characteristic
maximum tip velocity. In Fig. 5(b), we plot I' versus £, finding that the more tapered foils
generate stronger vortices. Consistently, we find that the circulation increases with «. This finding is
particularly interesting for the case with £ = 1.55 since all flapping foils have the same tip deflection
[see Fig. 4(a)].

Finally, we focus on the structure of the wake. In Fig. 5(c), we present two period-averaged
velocity fields, (it, ) = (u/fa, v/fa) at f =3 for the extreme cases of the flat (@ = 0) and the
most tapered (o = 0.90) foils. The flat specimen emanates an almost radial flow from its tip. The
fluid that is not directed downstream does not contribute to the propulsive force, thereby leading to a
loss in thrust. By contrast, the most tapered foil expels the surrounding fluid mostly downstream. For
intermediate values of «, the mean wake features two symmetric jets angled downstream, similar
to passive pitching panels [44]. These results indicate that the mean wake patterns that we have
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observed are directly related to the kinematics discussed above with traveling-wave kinematics
enhancing the downstream fluid flow and enhancing thrust.

VI. DISCUSSION AND CONCLUSION

The present experimental paper demonstrates that concentrating the stiffness towards the root of
flapping propulsors significantly enhances both thrust production and efficiency over a wide range
of driving frequencies, at least, in the range of parameters that we considered.

Many biological systems, such as fish deform actively to produce efficient undulatory motions;
distributing the stiffness has a similar outcome in our tapered flapping foils, which are purely
passive. In the absence of distributed actuation, tuning the stiffness profile serves as a means to
enhance the traveling-wave kinematics, thereby impacting the resulting wake and the characteristics
of propulsion.

This mechanism appears to be robust as evidenced by the similar behavior observed for the
iso-(B) and iso-M sets of foils. We hope that our thorough experimental analysis will instigate
future theoretical and computational work toward further formalizing the underlying mechanism
relating tapering, thrust, and efficiency of flapping foils. Ultimately, such developments could serve
as a rational ground for the design optimization of efficient flapping propulsion systems and small
underwater vehicles.
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