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This study extends the input-output framework for the receptivity analysis of an incom-
pressible boundary layer introduced by Ran et al. [Phys. Rev. Fluids 4, 093901 (2019)] to
the laminar adiabatic supersonic case. Spatially distributed in the wall-normal direction, a
δ-correlated Gaussian noise is considered as input, both including the velocity and temper-
ature fields. Similarly, components of the resulting velocity and/or temperature fields are
chosen as outputs. To study effects on the boundary layer, the measurements of the output
are restricted within the δ99 boundary layer thickness, implying, however, that effects like
acoustic radiation to the free stream are outside the scope of the present analysis. The main
goal of the study is twofold: first, to demonstrate the potential of the chosen approach by
comparison with familiar results, and second, to extend the current state of knowledge
in the compressible regime in selected points by exploiting the extended capabilities of
the chosen framework. To this end, the importance of the different inputs—especially the
temperature effects—for the amplification of two-dimensional, oblique flow structures and
streaks are discussed. Furthermore, the influence of first and second Mach modes (not
present in the incompressible regime) is identified within the stochastic framework and
results are discussed in light of previous receptivity analyses where the output is restricted
to a single mode. By varying the spatial distribution of the forcing, the dependence of
the receptivity on the wall-normal position, where the forcing is introduced, is illustrated
and discussed. Finally, dominant coherent structures are identified by evaluating the first
singular vector of the correlation matrix (proper orthogonal decomposition (POD) modes).
By analyzing the dependence of both forcing and response POD modes on the choice of
the measured component, further insight is provided about the contribution of temperature
fluctuation to the stochastically maintained variance of the system.

DOI: 10.1103/PhysRevFluids.7.073902

I. INTRODUCTION

The prediction of the laminar-turbulent transition of compressible boundary layers is of great in-
terest for improving the performance of supersonic aircraft. Indeed, the laminar-turbulent transition
of the boundary layer has a strong impact on drag, aerodynamic heating, and mechanical fatigue of
the body. Successful prediction of the transition point, however, requires an accurate understanding
of the complex mechanisms that drive the flow to turbulence, and thus represents a key element in
the design of control strategies to delay transition [1].

In principal, the laminar-turbulent transition path divides into three stages: the receptivity, the
linear growth of instability modes, and secondary mechanisms. The receptivity step consists in
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converting various environmental disturbances into boundary layer instability modes [2]. The linear
growth is amplified either through an exponential mode [3] or due to nonmodal effects [4]. During
the last stage, the growth of perturbations is very fast and the breakdown to turbulence occurs.

Assuming a weak ambient turbulence intensity and/or a controlled transition, the linear growth is
associated with the most unstable wave, whereas the latter can be obtained by solving the eigenvalue
problem derived from the linear stability theory. For the low Mach number case, the unstable
boundary layer eigenmode is the so-called two-dimensional Tollmien-Schlichting (TS) wave; for
supersonic boundary layers, Mack [5] found evidence for the existence of multiple inviscid acoustic
modes when the relative Mach number (i.e., the local Mach number of the base flow in a frame
parallel to the wave vector) is greater than 1. Among them, Mack [5] has shown that the least stable
of these additional modes, also called the second mode, becomes unstable at Mach numbers larger
than 4 for an adiabatic wall and in particular that for two-dimensional disturbances, the second
mode is the most amplified mode for M∞ > 4 and that the most amplified Tollmien-Schlichting
wave (referenced as the first mode) is oblique rather than two-dimensional. Arnal [6] and Özgen
and Kirkali [7] extended Mack’s results to a wide range of Mach numbers and various fluid
properties (such as the reference temperature, for instance). The authors showed that the oblique
wave direction of the most unstable mode is almost unaffected for free-stream Mach number greater
than 4 (typically around 60o). More recently, the effect of wall cooling onto linear stability of a
supersonic boundary layer has been investigated by Bitter and Shepherd [8].

As the external disturbance amplitude increases, the second step of transition is mainly driven
by nonmodal mechanisms. An appropriate superposition of eigenmodes may experience a transient
energy growth due to the nonorthogonality of the eigenvectors. Laminar-turbulent transition in the
boundary layer flows is then dominated by streamwise elongated streaks and the breakdown is
caused by their sinuous and/or varicose secondary instabilities. The physical mechanism behind
the emergence of streaks is the so-called lift-up effect [9]. The growth results from the tilting of
streamwise vorticity onto wall-normal vorticity under the action of the basic shear. This mechanism
occurs in both subsonic and supersonic regimes even if characteristic temporal and spatial scales
depend on the Mach number (see Hanifi et al. [10], Zuccher et al. [11], Tumin and Reshotko [12],
and Tempelmann et al. [13] for theoretical analyses within either a temporal or a spatial framework,
respectively).

As mentioned above, the receptivity analysis aims to assess the effectiveness with which external
sources excite flow structures. In this vein, Hill [14] introduced a linear theoretical framework for
an incompressible boundary layer flow using the solution of the adjoint Orr-Sommerfeld operator,
aiming to indicate the forcing (components and wall-normal positions) which would induce the
largest response of the TS mode. It comes out that the receptivity crucially depends on the non-
normality of the underlying dynamical operator and that several damped modes may contribute to
the asymptotic response of the TS wave.

By using direct numerical simulations (DNS), the receptivity of the adiabatic supersonic bound-
ary layer to various forcing disturbances has been addressed by Malik et al. [15] and Ma and
Zhong [16]. In particular, Ma and Zhong [16] have found that—in addition to the first and second
modes—also a family of stable distinct modes (named modes I, II, and so on by the authors) exists
besides the already known which play a significant role in the excitation of the unstable Mack
modes; these modes do not have any counterpart in the incompressible regime. Following the same
methodology as in the prior investigation of Ma and Zhong [16], Wang and Zhong [17] studied the
receptivity of a flat plate boundary layer at M∞ = 5.92 to periodic two-dimensional wall excitations.
It was shown that instability waves generated by wall-normal blowing and suction at the wall reach
higher amplitudes than those excited by either streamwise velocity or temperature disturbances.
These observations are consistent with the analytical results given by Fedorov and Khokhlov [18].

More recently, Tumin et al. [19] extended the linear incompressible receptivity theory of Hill [14]
to the compressible problem. The receptivity of the first and second modes is then analyzed in detail
either with the help of the linear receptivity model or by exploiting DNS data using a multimode de-
composition technique for a biorthogonal system [20]. A good comparison is observed between the
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theoretical receptivity coefficient distribution and the amplitude filtered output from the DNS com-
putation through a projection onto the different modes. It clearly confirms the necessity of using a
multimode framework to evaluate the receptivity mechanisms of the first and second modes and fur-
ther supports the statement established by Ma and Zhong [16] (see also Fedorov [21] for a review).

Although the aforementioned studies have greatly improved the understanding of compressible
receptivity, two main gaps can be identified. First, some essential questions like the receptivity of
streaks, for instance, have not yet been sufficiently discussed; the emergence of these elongated
structures may compete with the excitation of the first and second modes in certain situations.
Second, all of the studies listed are merely restricted to a forcing that only includes a single
frequency which does not properly reflect broadband external excitation (free-stream turbulence and
surface roughness, for instance). For incompressible flows, it has been shown by, e.g., Farrell and
Ioannou [22] and Bamieh and Dahleh [23] that the level of the variance of the linear response can
be slightly enhanced due to the non-normality of the governing operator for various linearly stable
canonical shear flows. The amplification of stochastic excitation is then a consequence of an optimal
superposition of eigenmodes and has close mathematical connections with non-normal growth [24].
Besides, Hwang and Cossu [25] have shown that the characteristic spanwise scale of streaks is
different whether the harmonic or the white noise forcing is considered for the incompressible
turbulent Couette flow. It indicates that the two approaches are complementary to understanding
which most representative scale may emerge due a stochastic forcing and what is its spectral content.
Solely restricted to the incompressible case, these questions inspired a stochastic receptivity theory
based on an input-output framework by Ran et al. [26], which has been used to study the influence
of the forcing (both wall-normal positions and spatial correlations properties) onto the excitation
of streaks and TS waves. For that purpose, the authors have introduced a receptivity coefficient
as the ratio of the measurement of the variance of the response (i.e., the output) to the variance
associated with the forcing (i.e., the input). Furthermore, the estimation of the power cross-spectral
density tensor using the resolvent operator is explicitly given by the authors, extending the standard
resolvent analysis [27] to stochastically forced flows (see also Morra et al. [28] for further details).

From the studies introduced, it is evident that a lot of work dealing with the receptivity of shear
flows in the context of an input-output strategy has been done so far, but mainly with a strict focus
on incompressible flows. The few recent analyses that deal with compressible flows are concerned
with computing the linear response to harmonic forcing. For instance, Dwidedi et al. [29] quantified
the amplification of streaks due to external harmonic excitation in supersonic laminar boundary
layer and hypersonic compression ramp flows. Using the same framework, Dwidedi et al. [30]
investigated oblique transition in a Mach 5 hypersonic flow over an adiabatic slender double wedge.
For the turbulent regime, Bae et al. [31] and Dawson and McKeon [32] employed a resolvent
analysis to identify the amplification of coherent structures in supersonic turbulent boundary layers
and extend the prior study focusing on linear transient growth carried out by Alizard et al. [33].
Very recently, Madhusudanan and McKeon [34] investigated the stochastic response of the laminar
supersonic boundary layer. They mainly focused on the amplification of streaks for several Mach
numbers and wall temperatures. In particular, they have shown that streaks are not amplified by an
input restricted to either the temperature or density disturbances.

Although the above findings provide a good understanding of the amplification of first and second
modes and streaks in supersonic boundary layers, it should be pointed out that the above-mentioned
models have some limitations. First, in contrast to the incompressible case, the previous receptivity
analyses are mainly restricted to external harmonic excitations. While it provides strong information
about the sensitivity to forcing frequencies, they may not fully capture natural sources of excitation
and thus miss the cumulative effect of the different frequencies onto characteristic spatial scales.
Second, the specific role of the temperature disturbance for the receptivity process of the first and
second modes (active or passive effects) has not yet been fully addressed which is known, however,
to be of great relevance in certain scenarios (see Fedorov and Tumin [35], for instance). Third, the
crucial influence of the wall-normal position where the forcing is imposed on the amplification of
the various flow structures [26] has not been systematically studied for a wide range of streamwise
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and spanwise scales in the compressible case. This specific point is of major interest in laminar-
turbulent transition controlled by localized disturbances. For instance, plasma actuators are widely
used in supersonic boundary layers to prevent flow separation. In that case, the effectiveness of
such actuators could be further improved by optimizing the orientation, wall-normal position and
spanwise distribution of the induced jets within the boundary layer.

Objectives of this study

Motivated by these questions, it is the objective of the present work to revisit the linear receptivity
of supersonic boundary layers with a hope of addressing the inherent limitations mentioned above.
Motivated by the success in incompressible investigations, the ideal tool to achieve this goal appears
to be the stochastic input-output receptivity framework introduced by Ran et al. [26]. On the one
hand, this will allow to both study the effects of the various inputs (including components and/or
spatial localizations) into the excitation of characteristic scales that coincide with streaks and first
and second modes. On the other hand, it allows us to overcome the inherent difficulties associated
with a modal framework as no specific mode is promoted for the output due to the stochastic
approach. Thus, the present framework provides a more general tool to investigate the receptivity
process associated with the amplification of different spatial scales.

The paper is organized as follows. We first introduce the receptivity model in Sec. II. Section III
is devoted to characterizing the evolution of the receptivity coefficient with the Mach number and
various inputs. Results will be examined through the spectral content associated with the measure-
ment. Using response and forcing proper orthogonal decompositions (POD), the dominant flow
structures associated with the different peaks in the receptivity coefficient will then be investigated
to draw a complete picture between inputs and outputs. Finally, the conclusions are summarized in
Sec. IV and prospects are given.

II. INPUT-OUTPUT FRAMEWORK FOR THE RECEPTIVITY ANALYSIS

In this section, the theoretical tool used to investigate the receptivity process associated with
a supersonic boundary layer subjected to an external stochastic forcing is introduced, which thus
extends the input-output framework introduced by Ran et al. [26] to the compressible case. Within
this general framework, the output is characterized using the second-order statistics of the linear
boundary layer response and the base flow is assumed to be wall parallel; see Ran et al. [26] for a
justification and consequences of this choice.

Formulated for a Cartesian coordinate system with (x, y, z) = (x1, x2, x3) the streamwise, wall-
normal, and spanwise directions, respectively, the Navier-Stokes equations for a compressible
perfect gas read

∂ρ

∂t
+ ∂ρu j

∂x j
= 0,

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂σi j

∂x j
,

∂ρCvT

∂t
+ ∂ρCvTuj

∂x j
= − ∂

∂x j
� j + σi j

∂ui

∂x j
− p

∂ui

∂xi
, (1)

where ρ, p, ui, and T are density, pressure, the ith velocity component, and temperature, respec-
tively, and Cv is the specific heat at constant volume. The viscous stress tensor σi j and the heat flux
vector � j components are defined as

σi j = μ(T )

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ(T )δi j

∂uk

∂xk
, �i j = −Cpμ(T )

Pr

∂T

∂x j
,
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where δi j , Pr, Cp, and μ(T ) are Kronecker’s delta, the Prandtl number, the specific heat at constant
pressure, and the molecular viscosity assuming Sutherland’s law. Nondimensionalized by using their
values at the freestream (referenced by the subscript ∞ hereafter), the flow is characterized by the
Mach, Reynolds, and Prandtl numbers:

M∞ = U∞√
γ RT∞

, Re = ρ∞U∞l

μ∞
, Pr = μ∞C p

λ∞
.

Here, R is the specific gas constant, γ is the specific heat ratio, λ is the thermal conductivity, and l is
the length scale of the boundary-layer thickness l = √

μ∞x/(ρ∞U∞) with x being the dimensional
coordinate measured from the leading edge, often used in studies of compressible boundary layer
stability [7,10]. We restrict our analysis to the linearized dynamics around the base flow solution
noted Q = (U, T ) where U represents the mean flow velocity along x and T is the temperature
component of the base flow. Using the boundary layer approximation, the mean pressure is constant
along the wall-normal direction and the mean density is obtained by using the perfect gas law.

A. Evolution model

Within the parallel flow assumption, we apply the Fourier transform in both the stream-
wise and spanwise direction onto the perturbation. We note the state vector φ(y, k, t ) =
[u, v,w, θ,�]T (y, k, t ) where u, v, w are the vectors of the velocity fluctuations, �, θ denote the
pressure and temperature components of the perturbation, and k = (α, β ) is the wave vector with
α and β being the streamwise and spanwise wave numbers, respectively. Using the ideal gas law,
the fluctuation of the density reads ρ ′ = �/T − θ/T 2. Analogous to the incompressible regime
(see Dwivedi et al. [36] for a recent review), an input-output framework is used for modeling the
evolution model. Linearized around the basic state Q in the spectral space, the linear system of (1)
forced by a stochastic excitation noted as d can thus be rewritten as

φt (k, t ) = A(k, Q)φ(k, t ) + Bd(k, t ), q = Cφ. (2)

Here, the operator A describes the linearized equations (see Appendix A) and the operator B
determines how and in which components the stochastic excitation d is introduced to the linearized
system. The measurement of the flow quantities is then extracted with the operator C, generating
the output q.

Hereafter, the subscript u, v, w, θ,� denotes the component of the input or the output vector,
e.g., du is associated with the streamwise velocity component of the forcing.

B. Numerical formulation

To numerically solve the theoretical model introduced in (2), a spectral collocation method is
used for discretization. For simplicity, all of the following considerations are to be interpreted
in the context of the discretized counterpart of system (2). Hence, e.g., φ also denotes the vec-
tor of the expansion coefficients that corresponds to values of φ at the collocation points: φ =
(φ0, . . . ,φi, . . . ,φN ) with N being the number of collocation points and φi = (ui, vi, wi, θi,�i ).
Similarly, the values of the density fluctuation at the collocation points are denoted ρ′

i.
To measure the receptivity to a given stochastic forcing, the variance of the norm of the random

variable φ has to be computed. For a physically meaningful measurement of the norm of φ (i.e., the
total energy for instance), we introduce a discrete inner product 〈·, ·〉W such as

〈f1, f2〉W = f1Wf2
H ,

where f1, f2 are two arbitrary vectors, the superscript H denotes the Hermitian transpose, and the
weight matrix W is positive definite. The corresponding energy norm is noted ‖f1‖W =

√
〈f1, f1〉W .

Following the line of thought of Ran [26] to compute E‖φ‖2
W , where E stands for the expectation

of a random variable, a coordinate transformation is employed to obtain ‖φ‖2
W via the standard
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Euclidean norm (noted hereafter ‖ · ‖). We then introduce ψ = Fφ where F is determined through
the Cholesky decomposition W = FFH , leading to ψψH = ‖φ‖2

W . Similarly, a change of variables
is used for the output such as g = Kq, where the weight matrix for the measured quantity is noted
D = KKH . Hence, expressed as a function of ψ and g in the new coordinate space, system (2) reads

ψt = FAF−1ψ + FBd,

g = KCF−1ψ, (3)

where the energy norm for the output is easily obtained by ggH .
Owing to the fact that variables associated with the input vector d can be different from those of

the state vector φ, we further introduce a coordinate transformation for the forcing:

d = Gd,

where a physically meaningful norm for d is based on the weight matrix Q = GGH . Finally, system
(3) is rewritten as

ψt = Aψ + B d,

g = Cψ,

with A = FAF−1, B = FBG−1, and C = KCF−1. (4)

In its reformulated form, system (4) easily allows us to assume a forcing that is δ correlated
according to the standard Euclidean norm. As a consequence, the same mathematical tools that
have been developed for linear stochastic systems under the assumption of a standard Euclidean
norm can be utilized to solve system (4); these are briefly introduced in the next two subsections.

C. Receptivity coefficient

In the next, we assume that the stochastic forcing d is zero mean and white in time. We also
admit that the forcing is δ correlated in the wall-normal direction with decorrelated components.
Then, noting y and y′ two wall-normal positions, we have

Ed(t, α, β, y′) ⊗ d(t ′, α, β, y) = Iδ(t − t ′), (5)

with δ the Dirac function and I the identity matrix; the specifications of α, β, and y are omitted for
the sake of simplicity. We note X(t ) the covariance matrix of the output:

X(t ) = Eψ(t ) ⊗ ψ(t ′). (6)

The variance of the output ψ at time t is then equal to traceX(t ). When the linearized dynamics
associated with the system (4) is asymptotically stable (i.e., at a streamwise position where Re is
lower than the critical Reynolds number), the infinite horizon state covariance X∞ = limt→∞X(t )
is given by the Lyapunov equation

AX∞ + X∞A
H = −B B

H
. (7)

Note that the use of the infinite horizon state covariance and consequently Eq. (7) limits the
framework as used in this study to the analysis of subcritical flows. The energy spectrum is noted

E (k) = trace(CX∞C
H

).

The receptivity coefficient associated with B and C is then

CR(k) = E (k), (8)

which determines the ratio of the variance of the measured output to the variance of the external
noise.
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D. Power spectral density

To characterize the spectral content of the response, we introduce the power spectral density
R(k, ω). By using Parseval’s theorem, the energy spectrum can be expressed as

E (k) = 1

2π

∫ ∞

−∞
R(k, ω)dω. (9)

Here, R(k, ω) is the so-called resolvent operator defined as

R(k, ω) = trace(R(k, ω)R(k, ω)H ),

or written in terms of the new coordinates:

R(k, ω) = C(Iiω − A)−1B,

with i = √−1.

E. Weight matrices

To allow for a meaningful evaluation of the physical relevance of the disturbance growth
measurement, the associated norm needs to be based on a given energy. For the compressible
framework, we adopt the energy norm suggested by Chu [37] and Hanifi et al. [10] that characterizes
the total energy of the disturbance. The measurement of the total energy for the perturbation is then
given by

E = 1

2

(
1

T
uWuH + 1

T
vWvH + 1

T
wWwH + 1

γ (γ − 1)T2M2∞
θWθH + 1

T2M2∞
ρ′Wρ′H

)
,

(10)
where W denotes the integration weights vector for the Chebyshev collocation points (see Hanifi
et al. [10]). Note that E can be rewritten as

E = φWφH ,

where the weight matrix W is derived from (10). We recall that E can also be expressed using a
coordinate transformation such as E = ψψH . The weight matrices G and D are then built using
submatrices of W depending on the specific choice of the input and output variables.

III. RESULTS

In this section, the input-output framework introduced is utilized to investigate the receptivity of
the self-similar laminar adiabatic supersonic boundary layer. Hereby, the focus is placed on both
the role of the different inputs onto the amplification of various streamwise and spanwise scales as
well as the role of its wall-normal position. All base flows were obtained by solving the self-similar
compressible boundary-layer equations using a fourth-order Runge-Kutta algorithm combined with
a Newton method in order to satisfy the boundary conditions. The base flows are represented on
a Gauss-Lobatto grid and are obtained by interpolation with a cubic spline. The Prandtl number
Pr = 0.72, stagnation temperature T0 = 333K , and specific heat ratio γ = 1.4 are equal for all cases.

With a (pseudo)adiabatic no-slip condition for the fluctuations at the wall (u, v,w, θ = 0)
and vanishing fluctuations at the free-stream boundary (u,w, θ,� = 0), v and � are discretized
using polynomials of degree N − 1 (the same boundary conditions are used in Refs. [11,20];
see Vermeersch [38] for its numerical implementation). The upper boundary conditions are set
to a wall-normal distance of ym = 600, corresponding to between 40 and 120 boundary-layer
thicknesses in the range of Mach numbers considered. The grid stretching is used as a buffer zone, so
the large grid stretching rate was chosen intentionally to avoid unwanted acoustic wave reflections
at artificial boundaries. For the present purposes, our boundary treatment appears to be a robust and
easy-to-use way in comparison to the effective implementation of nonreflective boundary conditions
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ω
i

FIG. 1. M∞ = 4.5 and Re = 180. Spectrum for (α, β ) = (0.047, 0.071); compare the cross in Fig. 2. Slow
and fast acoustic waves positions are depicted by dashed lines.

(see Refs. [39] and [40]). Hereafter, η denotes the vector that contains the Chebyshev collocation
points cos (πN/(N − 1)), where N includes the set of natural numbers (0, 1, 2, ..., N − 1). The
transformation y = e(1 − η)/(h + η) is employed to map the domain [−1, 1] to the physical domain
[0, ym] with e = ybym/(ym − 2yb), h = 1 + 2e/ym and for which yb is the wall-normal location
containing (N − 1)/2 grid points (see Hanifi et al. [10]). For all cases, N is fixed to 401 and yb = 10.
Numerical codes are written in PYTHON3 and algorithms from the Scipy library are used. For the
largest Mach number M∞ = 4.5, the stochastic response has also been computed with N = 601,
yb = 20, and ym = 800 (not shown in this paper for the sake of conciseness) and no significant
difference has been observed.

A. Spectra and neutral curves

To enable an easy-to-follow discussion in the following, we shortly consider the asymptotic
response of a supersonic boundary layer to forcing waves in this subsection first. For this purpose,
two cases at M∞ = 2 and 4.5 are considered, for which the calculated eigenmodes are characterized
by a quite distinct behavior. The M∞ = 2 case is expected to show a subsonic-like behavior, and the
M∞ = 4.5 case is expected to be strongly influenced by, e.g., the onset of the second Mack mode.

Applying a normal mode decomposition to the state vector such as

φ(y, t ) = φ̂(y)exp[i(αx + βz − ωt )],

with ω = ωr + iωi being the complex circular frequency, a typical spectrum for the M∞ = 4.5 case
is shown in Fig. 1 for a near-critical Reynolds number of Re = 180 (i.e., the lowest Reynolds num-
ber at which the unstable mode exists) at the close-critical wave numbers (α, β ) = (0.047, 0.071);
compare to the cross in Fig. 2. The neutral curves (i.e., curves where ωi = 0) for both the M∞ = 2
and 4.5 cases are shown in Fig. 2. In Fig. 1, the spectrum exhibits two distinct modes, the first and
second modes. The first mode is an extension of the incompressible TS wave; the second mode
belongs to a family of trapped acoustic waves for which the boundary layer behaves as an acoustic
waveguide [5,41]. Apart from these modes, two types of branch can be distinguished. The first
category, the so-called continuous spectrum, is due to the free-stream contribution and spans the
imaginary axis where ωr = α (see Schmid and Henningson [24]). The second category is composed
of slow and fast acoustic waves that propagate in the free stream. These waves are delimited by
frequencies ω± = α ± 1

M∞

√
α2 + β2 that are visualized by dashed lines in Fig. 1. The frequency

of the first mode approaches that of a slow acoustic mode as α is decreasing; the frequency of
the second mode approaches that of a fast acoustic mode. The first and second modes are also
referenced as slow and fast modes by Fedorov and Tumin [41]. As shown in Fig. 2(a) for M∞ = 2,
only the first mode is unstable. For β = 0, the critical Reynolds number is close to Rec ≈ 300,
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0.1
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(a) M∞ = 2. First mode.

100 200 300 400 500 600
0

0.1
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β↑

β↓Second mode

First mode

×
FIG. 1

Re

α

(b) M∞ = 4.5. First and second modes.

FIG. 2. Neutral stability curves in the plane (α, Re) for β = 0, 0.02, 0.04, 0.06, and 0.08 (in black, red,
green, blue, and gray, respectively). (a) M∞ = 2 and (b) M∞ = 4.5.

which is nearly equal to the one found in the incompressible flow regime (≈302), although the
most unstable disturbance corresponds to an oblique wave. For the M∞ = 4.5 case depicted in
Fig. 2(b), the critical Reynolds number for the first mode is associated with an oblique wave with
a wave angle ξ = arctan(β/α) ≈ 60o (α ≈ 0.047 and β ≈ 0.071). For the 2D perturbation case,
the unstable region associated with the first mode moves to higher Reynolds numbers (Rec ≈ 570);
besides the emergence of the first mode, the second mode is the most amplified wave. The critical
Reynolds number for the second mode is Rec ≈ 250 and the neutral curves for first and second
modes are well separated for this Mach number. In summary, all results are consistent with Mack’s
conclusions [5] and with results given by Hanifi et al. [10] for the same flow case, confirming
both the numerical and theoretical frameworks chosen. Further validation of the numerical method
is given in Appendix A, including validation of the grid resolution as well as comparison with
literature.

B. Receptivity analysis: Influence of the Mach number

1. Receptivity coefficients

Having recalled the essential aspects of the various individual modes involved in the long-time
dynamics in the previous section, the main goal of this section is to elaborate the influence of
the Mach number on the receptivity coefficient CR(α, β ) in the multimodal framework. Due to
the appearance of additional modes, all inherently included in the chosen modal spectrum, strong
differences in CR should be observed in comparison to the incompressible flow case [26] when
increasing the Mach number up to 4.5. In this respect, new insights into the amplification of specific
characteristic spatial scales are expected.

Both to validate the numerical method and to provide a reliable reference case for further
discussion, the receptivity factor CR is first calculated for the nearly incompressible low Mach
number case at M∞ = 0.3, allowing a comparison with the incompressible results by Ran [26].
To allow for a meaningful comparison, the wall-normal distribution at which the forcing is applied
has been defined accordingly to Ran [26] with a blending vector f defined as

f = 1

π
[arctan(a(y − y1)) − arctan(a(y − y2))]. (11)

Consistently with Ran [26], a = 1, y1 = 0, and y2 = 5 (i.e., y2 ≈ δ99), implying that the forc-
ing is mainly localized within δ99 boundary layer thickness. For comparison purposes with the
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FIG. 3. Plots of log10(CR(α, β )) for (a) M∞ = 0.3, (b) M∞ = 2, (c) M∞ = 3 and (d) M∞ = 4.5. The
Reynolds number is fixed to Re = 180. The peaks are indicated by arrows and a dot.

incompressible case, the input fields d components only include the velocity field

d =

⎡
⎢⎢⎢⎣

du
dv
dw
dθ

d�

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦f .

Similarly, the output q is extracted within the δ99 boundary layer thickness with a top-hat filter
function h according to q = [qu, qv, qw, qθ , q�]T and C = Ih. The reasons of this choice for C are
based on two considerations: First, it allows an objective comparison with results provided by Ran
et al. [26] for the incompressible regime; second, it removes the acoustic signature in the freestream
of the vortical structures and is then suited to understand their amplification within the boundary
layer. The numerical validation of the input-output method for the compressible case is given in
Appendix A, where the same Reynolds number Re = 232 as the one studied by Ran et al. [26] is
investigated for a low Mach number M∞ = 0.3. The Reynolds number is now set to Re = 180 to
always be below the critical Reynolds numbers for both the first and second modes for all cases, in
agreement with Eq. (7).
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FIG. 4. Distribution of CR(0, β ) for the different Mach numbers and Re = 180. Full line: the reference
length l = √

μ∞x/(ρ∞U∞) is used. Dashed lines: data are rescaled with the δ99 boundary layer thickness.

The distribution of the receptivity coefficient for M∞ = 0.3 is shown in Fig. 3(a). As depicted,
the receptivity coefficient CR shows two peaks, the first one associated with the emergence of streaks
located at k = (0, 0.25) and the second one associated with the excitation of the TS waves located
at k = (0.19, 0). These results are in good agreement with those provided by Ran [26] for the
incompressible case. In particular, the contours of log10(CR) are well recovered using the low Mach
number approximation (see also Appendix A).

Having approved the numerical approach chosen for a near incompressible Mach number, the
receptivity coefficient CR is recomputed for M∞ = 2, 3, and 4.5 and depicted in Figs. 3(b)–3(d). For
clear identification, the different peaks appearing in the receptivity plots are referred to as follows:
P2D is associated with the peak for β approaching zero (i.e., for 2D perturbation); PO marks the
wave-number pair for the peak that corresponds to a purely oblique pattern (α �= 0 and β �= 0); and
PS is obtained at α ≈ 0 (i.e., the excitation of streaks). Note that this terminology is employed to
avoid any confusion with a modal approach. Indeed, the nonmodal response corresponding to PO,
for instance, could be attributed to the contribution of several modes.

As depicted in Fig. 3(b), the M∞ = 2 case exhibits a double-peak structure similar to that
observed for the nearly incompressible case at M∞ = 0.3 in Fig. 3(a). However, the maximum of
the receptivity coefficient is higher than its low Mach number counterpart and is obtained for wider
spanwise scales. As the Mach number is increasing, the spanwise wave number corresponding to PS

is decreasing; the same observation was made by Hanifi et al. [10] for the optimal transient energy
growth. In Fig. 4, we plot the distribution of the receptivity coefficient as a function of β for α = 0
for the different Mach numbers. The peak corresponds to PS . We also show CR(α = 0, βδ99). We
may observe an almost universal scaling, independent of the Mach number, when data are rescaled
with the δ99 boundary layer thickness. It seems quite intuitive that the size of streaks is correlated
with the spatial extent of the boundary layer (and thus δ99).

In comparison with the subsonic case, the P2D peak for M∞ = 2 is obtained at a smaller
streamwise wave number [see Figs. 3(a) and 3(b)]. Note that for M∞ = 2 the maximum value
obtained for CR appears at α = 0 (i.e., 2D wave) while the critical Reynolds number is found for
an oblique wave; see Fig. 2. Besides, the receptivity coefficient P2D reaches larger values than those
reported for M∞ = 0.3. A comparison of the nearly two-dimensional disturbances shows a similar
distance between a real frequency forcing (i.e., axis ωi = 0) and the TS mode (or first mode for
the supersonic flow) (not shown here). Hence, the increase of CR in the neighborhood of the first
mode can be attributed to non-normal effects where the forcing frequency is off resonance, but the
system can still exhibit a large response [24]. For the M∞ = 3.0 and M∞ = 4.5 cases in Figs. 3(c)
and 3(d), respectively, the receptivity coefficient exhibits a third peak for oblique flow patterns (PO).
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FIG. 5. M∞ = 2 and Re = 180. Power spectral density plots for (a) oblique pattern (α, β ) =
(0.090, 0.010) and (b) streaks (α, β ) = (0.0001, 0.190). Frequencies of the first mode and second mode are
depicted as green and blue vertical dashed lines, respectively. The frequency corresponding to the continuous
branch is depicted as a red vertical dashed line. The total energy and kinetic energy contributions are shown in
blue and red, respectively; the black colored M∞ = 0.3 case is shown for comparison. The subsonic frequency
range is shaded in gray.

In particular, PO is obtained for the couple (α, β ) = (0.047, 0.071) for M∞ = 4.5 corresponding to
an angle of ξ ≈ 60o. This value is in fair agreement with the value reported in Sec. III A for the
modal analysis. Interestingly, for M∞ = 3, 2D perturbations (i.e., β = 0) exhibit larger values of
CR compared to the lower Mach number flow cases. Considering that the critical Reynolds number
associated with the first mode for perturbations restricted to the (x, y) plane is increased from 300
to 570 when the Mach number varies from 2 to 4.5 (see Fig. 2), the increase in the receptivity
coefficient can mainly be ascribed to non-normal effects (i.e., which are not proportional to the
distance between the mode and real axis ωi = 0). Besides PO, Fig. 3 shows the emergence of a
distinct 2D peak for M∞ = 4.5; the contribution of the second mode onto P2D will be discussed
below. Finally, the magnitude of CR inside the region dominated by streaks contribution is almost
independent of the Mach number.

2. Power spectral densities

In the above discussion, we consider the forcing (input) as a stochastic process. As a conse-
quence, the response (output) is also driven through a stochastic organization. While this framework
more clearly fits with the case of a boundary layer exposed to free-stream turbulence for instance—
in comparison with previous studies limited to a single mode for the output or focusing on response
to harmonic forcing—it does not bring any information onto the spectral content of the response. In
an effort to identify temporal frequencies which emerge from a broadband source of excitation, the
power spectral densities (PSDs) for the different peaks observed in the receptivity coefficient maps
are investigated in the following. To do so, we closely follow the theoretical framework described
in Sec. II C; in particular, we will consider two different operators C. For the first choice, the output
is based on velocities, temperature, and pressure components, whereas the second choice includes
only the velocity fields and the inner product is restricted to the kinetic energy. In this way, a clear
characterization of the contributions of temperature and velocity fields to the response is enabled.

As depicted in Fig. 5, the PSDs are shown for M∞ = 2 and (α, β ) pairs corresponding to PO

and PS; see Fig. 3(b). Frequencies which correspond to the first and second modes in the spectrum
are depicted as green and blue dashed lines, respectively. The position of the continuous branch in
the spectrum where ω/α = 1 is depicted as a red dashed line. The subsonic area extends from ω−
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FIG. 6. M∞ = 4.5 and Re = 180. Power spectral density plots for (a) (α, β ) = (0.047, 0.071) and
(b) (α, β ) = (0.192, 0.010). The vertical lines correspond to ω = 0.047, 0.060, and 0.035 in panel (a) and
ω = 0.174, 0.192 in panel (b). For color legends, see Fig. 5.

and ω+ and is shaded gray. For comparison purposes, also the subsonic M∞ = 0.3 case introduced
above is added in Fig. 5 as a black line. As depicted in Fig. 5(a) for M∞ = 2, the peak in the total
energy is obtained at frequencies that match the first mode and the continuous branch; compare
the green and red dashed vertical lines at ω = 0.056 and 0.090. The peaks in the total energy and
kinetic energy are located at almost identical ω, although the kinetic energy contribution is largely
decreased for the increased Mach number. Besides these modes, the PSD associated with M∞ = 2
exhibits secondary peaks near the supersonic region borders; one of those peaks corresponds to the
frequency of the second mode in the spectrum. At low frequencies, the PSD for M∞ = 2 and P2D

exhibits a moderate contribution. For the subsonic M∞ = 0.3 case, the two peaks associated with
the first mode and the continuous branch are shifted to higher ω values. The contribution of the total
energy at low frequencies is lower compared to the M∞ = 2 case. As depicted in Fig. 5(b), the same
study is repeated for the infinitely elongated structures in the streamwise direction. While the PSDs
for both Mach numbers are almost superimposed when the output is based on the total energy of the
fluctuations, a notable part of the total energy is transferred from the kinetic energy to the internal
energy at M∞ = 2, as also discussed for the streaks in Ref. [34]. In Figs. 5 and 6, one may observe
that the PSDs exhibit several peaks in the supersonic range. This oscillatory part is associated with
pseudo resonances of the acoustic modes in the spectrum. Similar behavior is observed by Dawson
and McKeon [32] for supersonic turbulent boundary layers.

Following the same notation as in Fig. 5, the PSDs for M∞ = 4.5 are shown for (α, β ) =
(0.047, 0.071) and (α, β ) = (0.192, 0.010) in Fig. 6. The pairs of (α, β ) are chosen to match the
PO and P2D peaks in the receptivity coefficients, respectively; compare with Fig. 3(d). The PS peak
associated with streaks will be discussed later on.

We first discuss the PSD associated with PO; see also Fig. 1 for the corresponding spectrum.
For this case, the least damped mode corresponds to the first mode and its PSD almost follows the
same trend as the one observed for the 2D peak at M∞ = 2. For both cases, the dominant peak in
the power spectrum is associated with the first mode. However, for M∞ = 4.5, the second mode is
shifted toward the subsonic zone (see Fig. 1), which implies a near resonance in the PSD as shown
in Fig. 6(a), where a distinct peak is observed near ωr ≈ 0.060 (indicated in blue in the figure).
Hence, it seems to play a role in the stochastic response for the oblique case.

The PSD for the almost two-dimensional peak is depicted in Fig. 6(b). For this flow structure, the
receptivity seems to be a consequence of a near resonance of the second mode with also a significant
contribution of the continuous branch. Besides, the PSD exhibits an additional peak near the fast

073902-13



ALIZARD, GIBIS, SELENT, RIST, AND WENZEL

0.07 0.1 0.13
−0.02

−0.01

0

0.01

First mode
Second mode

ωr

ω
i

(a)

0.15 0.2 0.25 0.3

−0.02

−0.01

0

0.01

Mode I

ωr

ω
i

(b)

0.1 0.15 0.2 0.25 0.3

0.1

0.15

0.2

0.25

α

ω
r

Mode I
First mode
Second mode

(c)

FIG. 7. M∞ = 4.5 and Re = 180. [(a), (b)] spectra for α = 0.10 and α = 0.23, respectively and β = 0.
Panel (c) shows dispersion relations for the first and second modes. The discrete additional mode I [see panel
(b)] is also shown. The slow and fast acoustic waves positions are represented by dashed lines. In panel (c), the
position of the continuous branch is shown by the black line.

acoustic waves (ωr ≈ 0.235). It should be indicated that additional stable Mack modes contribute
into the stochastic response of P2D, which all are inherently included in the present framework due to
its stochastic approach. However, further analyses are needed to make a definite statement on their
effective role. As a consequence, this study shows the interest of combining both the stochastic
framework and the resolvent analysis [29] to emphasize the most relevant spatial scale due to
white noise forcing and its associated spectral content which overcomes the limitations of previous
theoretical receptivity studies (see Fedorov [21]) restricted to a single mode for the output.

To further identify the mechanism behind the observed amplification, the circular frequency ωr

as a function of the streamwise wave number α is depicted in Fig. 7(c) for the first and second
modes; the spectra for α = 0.10 and α = 0.23 are given in Figs. 7(a) and 7(b). In accordance with
Fig. 1, vertical dashed lines indicate the position of slow and fast acoustic waves for both spectra. As
shown in Fig. 7(c), the frequencies and wave numbers of both the first and second modes coalesce
for α ≈ 0.2, implying that modes are synchronized. The corresponding streamwise wave number
appears close to the one associated with the peak P2D (α ≈ 0.19). In the neighborhood of this region,
the coupling leads to a strong amplification of the P2D peak. It supports Fedorov’s results [21] which
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FIG. 8. Re = 180. Power spectral density plots for (a) (α, β ) = (0.0001, 0.152), M∞ = 3 and (b) (α, β ) =
(0.0001, 0.106), M∞ = 4.5. For color legends, see Fig. 5.

established that the receptivity of the 2D mode is due to the synchronization of slow and fast modes
(i.e., first and second modes). Furthermore, we also observe in spectrum 1(b) an additional mode
emerging from the fast acoustic branch of modes. Ma and Zhong [16] have referenced this additional
mode as mode I. For the latter, the variation of ωr with α is shown in Fig. 7(c). For α ≈ 0.2, mode I
becomes synchronized with the fast acoustic wave. It may support the role played by the additional
stable mode I in the amplification of the receptivity coefficient as underlined by Ma and Zhong [16].

Finally, for the sake of completeness, Figs. 5(b) and 8 show the influence of Mach number on the
receptivity of the streaks. The figures show a nearly equal energy distribution in the frequency
domain for all considered Mach numbers, implying that the general behavior of the streaks is
essentially Mach number invariant.

3. Input-output components of the receptivity for M∞ = 4.5

In the previous section, the disturbances introduced into the boundary layer were restricted to the
velocity field, assuming that all velocity components penetrate the boundary layer simultaneously
with the same magnitude. In reality, however, perturbations typically exhibit a preferential direction,
e.g., wall-normal blowing-suction mainly affects the wall-normal velocity component, and in the
compressible regime, also the temperature field serves as a potential input. In this section, the
dependence of the receptivity coefficient CR on the different input-output field components, also
including temperature perturbations, is investigated for the same range of spatial wave numbers for
a supersonic Mach number of M∞ = 4.5, where compressibility effects are substantial. To this end,
we will adopt and extend the input-output technique described by Jovanović and Bamieh [27] for
incompressible channel flows to the compressible boundary layer case. In this way, components
with the most significant influence on the selected streamwise and spanwise scales can be easily
identified. Hereafter, CRi j denotes the receptivity coefficient associated with the input di and output
q j where i j ∈ (u, v, w, θ)2. As in the previous section, perturbations are introduced through the
whole height of the boundary layer; see Sec. III B 1.

Plotted in the same representation as Fig. 3, the dependence of the receptivity coefficient CRiu on
the forcing component di is depicted in Figs. 9(a)–9(c). At first the receptivity of the streaky motion
PS with α ≈ 0 (i.e., mainly governs by qu) is discussed. In accordance with the findings pointed
out by Jovanović and Bamieh [27] for the incompressible channel flow case, the wall-normal and
spanwise forcing in Figs. 9(b) and 9(c) show a much stronger influence than the streamwise velocity
forcing in Fig. 9(a). Additionally, when the input is restricted to dw [Fig. 9(c)], the excitation of
streaks is optimal for a spanwise length which is twice as wide as the one obtained by forcing the
wall-normal velocity [Fig. 9(b)]. Streaks’ footprint can also be observed to a lesser extent for the
outputs qv and qw for inputs dw and dv, respectively [see Figs. 9(f) and 9(h)].
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FIG. 9. Plots of the receptivity coefficients for the velocity components and M∞ = 4.5. The subscripts
indicate the input-output couple that is selected. For instance, the subscript wu indicates that w is the input and
u is the output. White regions are associated with levels below 0.

For PO, the measurements which reach the strongest amplitude are mainly associated with inputs
restricted to either the streamwise or spanwise velocity component. In particular, the stochastic
response for PO peaks with values that are at least of the same order of magnitude than for the
streaks [see Fig. 9(c) for instance]. This implies that the oblique wave transition scenario may come
to dominate over the one involving rolls and streaks. For the excitation of the 2D flow structure, the
streamwise velocity forcing has the most impact onto the variance associated with P2D. However, its
amplification is significantly weaker than that achieved by either the oblique pattern or streamwise
infinitely elongated streaks. Finally, characteristic length scales for both PO and P2D are seen to be
only marginally dependent on the choice for the input and output velocity component.

In Fig. 10, the effect of the temperature field onto CR is illustrated; i.e., Figs. 10(a)–10(c)
give the influence of the various components of the velocity perturbations on the temperature
output, and Figs. 10(d)–10(f) show the influence of the temperature perturbations on the various
velocity components for output. Comparing Figs. 10(b)–10(c) with Fig. 10(d), it is apparent that the
variance of temperature perturbation plays mainly a passive role for the streaks (i.e., the temperature
disturbance acts as a passive scalar). Indeed, forcing θ has no effect on the streamwise velocity in
the range of spanwise and streamwise wave numbers corresponding to the amplification of the
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FIG. 10. Plots of the receptivity coefficients for the velocity and temperature components and M∞ = 4.5.
For details, see caption in Fig. 9.

streaks. This remark is consistent with recent results provided by Madhusudanan and McKeon [34].
On the other hand, forcing streamwise vortices (including both spanwise and wall-normal velocity
components) leads to amplify streaks of temperature; see Figs. 10(b) and 10(c). In particular, the
range of α and β where the temperature component achieves its maximum is similar to those
obtained for the streamwise velocity output as shown in Figs. 9(b) and 9(c). Similar conclusions
can be drawn for the role of the temperature onto the excitation of the 2D peak (P2D). For the latter,
Figs. 10(a) and 10(b) show that the streamwise velocity forcing in Fig. 10(a) is the most efficient
input to amplify its temperature component. At the opposite, an active role of the temperature
fluctuation is found for the excitation of the oblique structure, as the peaks in intensity observed
in Figs. 10(d) and 10(f) for PO indicate. It suggests the effectiveness of a laser perturber used
experimentally for generating a temperature spot with the objective to amplify instability waves
[35].

4. Influence of input wall-normal positions onto receptivity coefficients

In the previous sections, the random number-based input was introduced over the entire height
of the boundary layer, which thus gives a very complete impression of the boundary layer response
associated with a given input. In reality, however, external perturbations, such as wall blowing and
suction, free-stream turbulence, and roughness elements often penetrate the boundary layer only in
either the near-wall region or the outer region, which is known to cause a significantly different
response of the boundary layer. Allowed by the great flexibility of the framework formulation
chosen (see Ran et al. [26] for an incompressible point of view), we will investigate how the forcing
position along the wall-normal direction influences the receptivity mechanisms in the compressible
regime.

For that purpose, a series of computations with a localized forcing f (11) is conducted at
M∞ = 4.5, for which the maximum value along y is progressively increased. Hereafter, y2 − y1 =
2, a = 10 and we note yp = (y2 + y1)/2. The input and output include velocities, pressure, and
temperature components. The measurement is restricted within the boundary layer δ99 thickness, for
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FIG. 11. Plot of the receptivity coefficients in a logarithmic scale as a function of the wall-normal position
associated with the forcing for M∞ = 4.5. The δ99 boundary layer thickness is located at y = 13.6.

this case, the wall-normal position where δ99 = 1 is located at y = 13.6. The receptivity coefficient
as a function of yp is plotted in Fig. 11. It is observed that near wall forcing generates mainly oblique
flow structures; compare Figs. 11(a) and 11(b). When the input is shifted upward, the boundary
layer streaks get strongly amplified. As the forcing region comes closer to the boundary layer edge,
compare Figs. 11(c) and 11(d); also the excitation of 2D patterns is noted. The location at which the
energy peaks is found close to the boundary layer edge for either 2D and oblique flow structures or
streaks. On the other hand, when the forcing shifts in the free stream, the energy amplification
decreases for all flow structures even if its noticeably less pronounced for streaks and oblique
patterns. Note that the characteristic spanwise length associated with streaks changes with yp.

The behaviors observed in Fig. 11 are summarized in Figs. 12 and 13 in an effort to synthetize
the main conclusions. For that, we consider only streamwise and spanwise wave numbers associated
with peaks in total energy (i.e., PO, P2D, and PS). In Fig. 12(a), we show that the spanwise
scale λz associated with streaks exhibits two distinct behaviors. For forcing regions inside the δ99

boundary layer thickness, we observe that streaks become shorter as yp is increasing. For free-stream
excitation, the opposite behavior is found. The upward shift in yp gives rise to amplify wider streaky
patterns with an almost linear dependency between λz and yp. For the free-stream forcing, a similar
trend is reported by Ran et al. [26] for the incompressible flow case. For the 2D flow structure (i.e.,
β = 0), the maximum variance is concentrated in a narrow region along the wall-normal direction
(10 � yp � 15). Outside this area, peaks in total energy are obtained at small values of α. It indicates
that the 2D flow structure is optimally excited in this flow region. For the oblique pattern, we show
that the orientation angle in the (x, z) is almost independent of yp; see Fig. 12(b).

In Fig. 13, the distributions of the receptivity coefficient maxima along with yp are depicted for
the same flow structures. The figure shows that the range of wall-normal positions that produces
the largest variance is 10 � yp � 15 for both oblique and 2D patterns. In particular, the peaks in the
receptivity coefficient for both cases are located close to yp = 12 near the edge of the boundary layer
(yp ≈ 13.6). On the other hand, the maximum variance associated with streaks occurs for yp = 15,
above the boundary layer edge. Especially, for yp larger than 16, the optimally stochastically excited
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FIG. 12. Flow structure characteristics as a function of the wall-normal position of the forcing yp for M∞ =
4.5. (a) Characteristic wavelengths λz = 2π/β, λx = 2π/α for streaks and 2D flow structures (α = 0 and β =
0, respectively). The position of the δ99 boundary layer thickness is shown in vertical dashed lines. (b) Angle
ξ = arctan β/α for the oblique pattern.

flow structure is mainly driven by the streaks. For yp > 16, the level of variance for both streaky and
oblique flow structures decreases almost linearly with yp. It further indicates a strong competition
between the amplification of streaks and oblique flow structures when varying yp which has not been
pronounced that clearly in previous receptivity analysis regarding supersonic boundary layers [1].

Finally, the receptivity of the supersonic boundary layer to stochastic near-wall perturbations is
studied for inputs restricted to either a velocity component or the temperature disturbance. For that,
y1 and y2 are fixed to 0 and 2 in (11) and a is set to 10. In Fig. 14, the correlation maps indicate
that both dv and du can amplify the P2D peak, which is not in complete agreement with DNS results
provided by Wang and Zhong [17]. Nevertheless, the freestream Mach number investigated by Wang
and Zhong is fixed to M∞ = 5.92 and we cannot make definite statements regarding the Mach
number effect. It is interesting to observe that spanwise near wall fluctuations have a prominent

0 5 10 15 20 25 30
2

3

4

5

yp

lo
g 1

0
(C

R
)

PS

P2D

PO

0 0.5 1 1.5 2

2

3

4

5

yp/δ99

FIG. 13. Distribution of the receptivity coefficient in a logarithmic scale for P2D (red), PO (blue), and PS

(black) as a function of the wall-normal position of the input.
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FIG. 14. Distribution of the receptivity coefficients in a logarithmic scale for various forcing components
at yp = 1 and M∞ = 4.5.

effect on the amplification of streaks and oblique patterns. In addition, temperature perturbation
near the wall also amplifies the PO peak.

5. POD response and forcing modes

While the previous sections provide insight into the streamwise and spanwise scales that emerge
under a continuous stochastic excitation, it brings no information about the wall-normal distribution
of the forced flow structures. This section is devoted to connecting the different peaks found in
the receptivity coefficient maps to characteristic eddies and their wall-normal structures. For that,
we investigate modes associated with a proper orthogonal decomposition (POD) of the correlation
matrix hereafter.

For a clear understanding, we recall that the correlation matrix X∞ has a positive definite Her-
mitian form with positive real eigenvalues. In particular, eigenvalues are associated with mutually
orthogonal eigenvectors. Each eigenvector corresponds to a response flow pattern for which its
contribution to the total variance is given by its corresponding eigenvalue. This decomposition is
classically referred to as response (or direct) KL (Karhunen-Loéve) or POD (proper orthogonal
decomposition) modes; hereafter, eigenvalues of X∞ are noted σ j . As a consequence, the variance
of X∞ is given by

∑
j σ j . Then, the ratio ri = σi/

∑
j σ j represents the contribution of the ith POD

mode to the total variance. In the same vein, we consider optimal forcing functions which are excited
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FIG. 15. The distribution of r1 = σ1/
∑

j σ j for response POD (a) and forcing POD (b) modes and M∞ =
4.5. The subscript 1 refers to the largest eigenvalue of the correlation matrix (a) or its dual (b).

with equal probability and independently by a stochastic input. As for the response modes, the
forcing flow structures can be ordered according to their relative contribution to the maintained total
variance by stochastic excitation. These forcing modes constitute also a complete set of orthogonal
functions that can be computed by solving the dual Lyapunov system of (3). They are referenced
as back KL (POD) modes or forcing KL (POD) modes [22,25]. In Fig. 15(a), the distribution of r1

in the (α, β ) plane is displayed in which the response POD mode 1 is associated with the largest
eigenvalue. The figure shows that flow structures associated with streaks, oblique pattern, and the
2D flow structure are mainly driven by the first response POD mode that contributes to almost 90%
of the total variance. A similar observation still holds for the forcing POD modes; see Fig. 15(b).
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FIG. 16. Dominant forcing [(a), (b)] and response [(c), (d)] POD modes for (α, β ) = (0, 0.15), M∞ = 4.5
and the input limited to v. The wall-normal velocity component is shown in panels (a) and (b). The streamwise
velocity and temperature components are shown in panels (c) and (d), respectively. Panels (a) and (c) corre-
spond to the output measurement restricted to u. Panels (b) and (d) correspond to the output measurement
restricted to θ. The position of the boundary layer edge is shown in dashed lines (y ≈ 13.6).
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FIG. 17. Dominant forcing [(a), (b)] and response [(c), (d)] POD modes for (α, β ) = (0.19, 0), M∞ = 4.5,
and the input limited to u. The streamwise velocity component is shown in panels (a) and (b). The streamwise
velocity and temperature components are shown in panels (c) and (d), respectively. Panels (a) and (c) corre-
spond to the output measurement restricted to u. Panels (b) and (d) correspond to the output measurement
restricted to θ.

One may recall that the total variance obtained by considering either the correlation matrix X∞ or
its dual is identical.

To give insight into the velocity-temperature coupling for the different receptivity coefficient
maxima, we further investigate the dependency of the dominant forcing POD mode onto the
measurement of the output variance. At first, we want to investigate the excitation of streaks. As
concluded from Fig. 9, streaky motions are mainly driven by a forcing restricted to either v or w.
For the sake of brevity, we only consider the wall-normal velocity component as an input in the fol-
lowing; however, similar conclusions can be drawn for the next discussion when considering the
spanwise velocity component. Based on previous analyses and assuming an input limited to v, the
streaks are mostly amplified for β ≈ 0.15 and α = 0 for a forcing spatially extended within the δ99

boundary layer thickness; compare Fig. 9(b). To identify the role of the temperature, the output is
either associated with the temperature field or the streamwise velocity components. The dominant

response POD mode is now computed using the operator CX∞C
H

and the dominant forcing POD
mode obtained by solving the dual system of (3).

In Fig. 16, the eigenfunctions associated with the dominant forcing-response POD mode for
α = 0 and β ≈ 0.15 are shown. The figure shows that the forcing POD modes maximizing the
output variance, which is measured either on θ or u, are quite the same. It illustrates the strong
correlation between the temperature and velocity components for the streaks.

In Fig. 17, we show the dominant forcing and response modes for the 2D peak (i.e., P2D) at
(α, β ) = (0.19, 0); compare Fig. 9(b). Two measurements are considered. The first choice is based
on the streamwise velocity component; the second choice includes only the temperature θ . For
both cases, only the streamwise velocity u is forced. The latter component will give rise to the
optimal flow response for P2D; see Figs. 9 and 10. The figure shows that the forcing distribution that
produces the most variance exhibits a pattern inclined against the shear whatever the measurement
considered. It indicates that amplification of P2D which occurs at the synchronization of the first and
second mode is enhanced by the Orr mechanism since we observe the flipping of the structure along
the basic shear for the response mode.
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FIG. 18. Dominant forcing [(a), (b)] and response [(c), (d)] POD modes for (α, β ) = (0.04, 0.07), M∞ =
4.5, and the measurement based on u. The streamwise velocity component is shown in panels (a), (c), and (d).
The temperature component is shown in panel (b). Panels (a) and (c) correspond to the input restricted to u.
Panels (b) and (d) correspond to the input restricted to θ. The position in the wave vector direction is denoted
by s.

In addition, the forcing appears to be almost independent of the output (either u or θ ), indicating
that the temperature fluctuation seems to play only a passive role for the P2D peak. Finally, while
the direct POD mode for the streamwise velocity component is localized within the δ99 boundary
layer thickness, the direct POD mode associated with the temperature peaks near the edge of the
boundary layer.

The same approach is conducted for the oblique pattern that corresponds to PO; results are
reported in Fig. 18. For this case, two inputs are investigated. The first one only includes the
streamwise velocity contribution, the second input is based on the temperature disturbance. The
measurement is restricted to the streamwise velocity component. We plot in Fig. 18 the forcing and
response modes for σ1 in a plane that includes the wave vector. The corresponding coordinates is
noted s in the figure. The figure shows that the temperature can play an active role in triggering the
oblique pattern. In particular, the distribution of the response POD mode appears to be independent
of the input choice. In other words, the forcing restricted to θ leads to the same streamwise velocity
measurement than the input associated with u only. Finally, the dominant forcing POD mode is also
dominated by tilting in the shear direction according to the Orr mechanism. On one hand, the forcing
for both θ and u are mainly localized within the δ99 boundary layer thickness. On the other hand, the
response POD mode is shifted away from the wall and peaks near the edge of the boundary layer.

IV. SUMMARY AND CONCLUSIONS

This paper revisits the linear receptivity of the supersonic adiabatic laminar boundary layer by
using an input-output framework based on the stochastically forced linearized compressible Navier-
Stokes equations. The method thus extends the conceptually equivalent incompressible analysis
of Ran et al. [26] to the compressible regime. To provide additional insights to results provided
within a modal framework, a white-in-time stochastic forcing with an identity spatial covariance
operator is considered as an input, which prevents a specific mode to be promoted for the output.
Furthermore, the stochastic input can be selectively attributed to only one or various combinations of

073902-23



ALIZARD, GIBIS, SELENT, RIST, AND WENZEL

the flow field variables with a user-defined wall-normal distribution. Hence, the framework allows
for a detailed investigation of the amplification of various flow patterns (either oblique or two-
dimensional and streaks) which enables an understanding of the correlation between forcing and
response flow structures.

Following the same approach as in the incompressible analysis, the receptivity coefficients
computed from the input-output framework are analyzed for different Mach numbers (0.3–4.5) and
different perturbation types. When decomposed into streamwise and spanwise wave numbers α and
β, respectively, three Mach-number dependent types of distinct peaks are illustrated corresponding
to the enhancement of streaks (PS), oblique flow structures (PO), and 2D patterns (P2D), which is in
agreement with previous findings for the compressible regime.

As observed in the incompressible limit [27] and recently for compressible flow [34], the
amplification of streaks is only driven by a forcing limited to the wall-normal and spanwise velocity
components. For the amplification of the two-dimensional flow structure (i.e., β = 0), the prominent
role of forcing the streamwise velocity component is illustrated. While the role of the temperature
fluctuation can be seen to be rather passive for both the streaks and 2D patterns for the Mach
number cases considered, the excitation of oblique flow structure is significantly influenced by the
temperature disturbances. This behavior is consistent with the linear receptivity model derived by
Fedorov and Tumin [35], even if the latter is restricted to the excitation of only the first mode. This
deserves particular emphasis inasmuch as the power spectral densities show that the amplification
for all peaks appears to be the result of several frequencies contributions. In particular, the excitation
of the two-dimensional pattern is obtained at streamwise wave numbers, where both the first and
the second modes synchronize, which confirms the theoretical predictions made by Fedorov [21].

Besides, when only the temperature is considered for the measurement, characteristic scales for
P2D, PO, and PS are well recovered. It suggests that probes limited to the temperature component can
be efficient for the velocity fields estimation in the development of control strategies. In addition,
when considering both the total energy and kinetic energy contribution for the PSDs associated with
the different peaks, increasing the Mach number from low subsonic to supersonic Mach numbers is
mainly accompanied with a transfer from kinetic to internal energy with no significant variation of
the total energy. A similar conclusion has been made for streaks by Ref. [34].

A systematic variation of the wall-normal position, where the forcing is placed, substantially
influences the expected response of the boundary layer. While a forcing localized within the δ99

boundary layer thickness favors the onset of oblique flow structures, streaks dominate the long
time behavior of stochastically forced supersonic boundary layers as the input is moved away from
the wall. If the stochastic input is restricted to only the near-wall region, the spanwise forcing has
the biggest impact on the receptivity of both streaks and oblique flow structures for a M∞ = 4.5
case, which is redundant with the behavior in the incompressible limit [27]. For the amplification
of two-dimensional patterns, in contrast, a similar contribution of the wall-normal and streamwise
velocity components is observed. To the best of our knowledge, the competition between these two
different characteristic flow structures has not been elucidated through previous linear receptivity
models devoted to supersonic boundary layers. The effect of near-wall temperature excitation is
only efficient for the onset of the oblique pattern, which helps to understand the effectiveness in
controlling the oblique mode with an actuator based on the temperature.

Finally, to connect the different peaks found in the receptivity coefficient maps to characteristic
eddies and their wall-normal structures, the correlation between the velocity and temperature
components are emphasized by a comparison between the forcing and response POD modes. On
one hand, this study further confirms the efficiency of forcing temperature in triggering the onset of
the oblique pattern. On the other hand, it also indicates the wall-normal distribution of the tem-
perature fields for which the stochastic excitation has the strongest impact onto the emergence of
the oblique flow structure. Here, the temperature component of the dominant forcing POD mode
is mainly concentrated within the δ99 boundary layer thickness with a non-negligible part near the
wall.
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FIG. 19. Neutral stability curves at M∞ = 4.5 and T0 = 333K. (a) Circular frequency, ωr , vs Reynolds
number Re of two-dimensional first and second modes. Black lines show results extracted from Ma and Zhong
[16]. Two grids are considered: mesh 1, N = 201, ym = 100 and mesh 2, N = 401, ym = 600. (b) Spanwise
wave number, β, vs streamwise wave number α of three-dimensional first and second modes at Re = 300.
Black lines show results extracted from Hanifi et al. [10].

The study presented could be extended in several ways. First, the influence of wall heating
on the stochastic receptivity of supersonic boundary layers will provide interesting prospects.
In particular, the role of the temperature perturbation onto the different peaks observed in the
receptivity coefficients could be greatly altered in comparison with the adiabatic case. Second,
the investigation of the receptivity coefficient computed with a colored input (i.e., with specific
space-time correlations aiming to reproduce more realistic external disturbances; see Hœpffner et al.
[42] for details) is highly desirable and the subject of ongoing work. In the same vein, it could be
difficult to separately identify the impact of the character of background disturbances in the free
stream (either vortical or acoustic). We suggest that the present input-output technique could be
extended to overcome this drawback by considering either vorticity components or pressure fields
as inputs. Third, the same type of study can be performed in a global framework where the flow
direction is taken as an eigendirection to study the receptivity of spatially evolving structures (see
Ran et al. [26] for the incompressible flow case). This is not straightforward as it requires the
computation of a very large covariance matrix which is even more difficult in the compressible
regime due to the necessity of using large computational boxes to avoid acoustic reflection [40]. A
promising strategy could be to approximate the covariance matrix into a harmonic forcing-response
mode basis [43]. For that purpose, a numerical method based on automatic differentiation should be
more appropriate to compute then the singular decomposition of the resolvent operator (see Bugeat
et al. [44]).

APPENDIX A: VALIDATION OF THE LINEAR STABILITY SOLVER

For validation purposes, we report in Fig. 19(a) the neutral curves in (ωr, Re) plane for the
two-dimensional first and second modes (i.e., β = 0), M∞ = 4.5 and T0 = 333K . Two grids are
considered. The first corresponds to N = 201, ym = 100 and the second one is associated with N =
401, ym = 600 (i.e., the grid used in the present paper). One may observe that there is no significant
changes between results obtained by using the first and second grids. Figure 19(a) also shows that
results are consistent with computations carried out by Ma and Zhong [16].

Results associated with three-dimensional disturbances are shown in Fig. 19(b) for the finest grid
mesh N = 401, ym = 600 for Re = 300. Neutral curves for the first and second modes are compared
to those extracted from Hanifi et al. [10]. One may also observe a good agreement between our
curves and those published by the previous authors.

To validate the input-output technique employed in the present paper, the incompressible case
investigated by Ran et al. [26] is carried out by using the same input-output method that the
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FIG. 20. The one-dimensional receptivity coefficient for the incompressible boundary layer case with Re =
232. In full black, results extracted from Ran et al. [26] are shown.

one described in the present paper. The incompressible solver is detailed in a previous article
[45], especially the numerical method to deal with the pressure. The one-dimensional receptivity
coefficient computed by integrating CR(α, β ) over streamwise wave numbers is shown in Fig. 20.
The figure shows a good agreement with results given by Ran et al. [26]. Then, we validate the
input-output technique for the compressible case by comparisons between incompressible flow
results and low-Mach number flow regime for the same Reynolds number.

Results are displayed in Fig. 21. The figure shows that receptivity coefficients obtained for the
low-Mach number case and the incompressible flow are almost superimposed.

APPENDIX B: LINEAR STABILITY EQUATIONS

In this Appendix, we detail the dimensionless linear stability equations that are used in the paper.
A continuous formulation is here adopted. The conservation of mass reads

1

T
pt − 1

T 2
θt + 1

T
∇ · u + v

(
1

T

)
y

+ Uiα

(
1

T
� − 1

T 2
θ

)
= 0.

The momentum equation in the x direction reads

1

T
(ut + Uuiα + vUy) = − 1

γ M2∞
iα� + 1

Re

[
μ�u + 1

3
μiα∇ · u + μT Ty(uy + iαv)

+μT (Uyyθ + Uyθy) + μT T TyUyθ

]
.
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FIG. 21. Receptivity coefficient (a) CR(α = 0.0001, β ) and (b) CR(α, β = 0.01) computed for the incom-
pressible case and M∞ = 0.3 for Re = 232.
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The momentum equation in the y direction reads

1

T
(vt + Uviα) = − 1

γ M2∞
�y

+ 1

Re

[
μ�v + 1

3
(∇ · u)y − 2

3
μT Ty∇ · u + 2μT Tyvy + μT Uyiαθ

]
.

The momentum equation in the z direction reads

1

T
(wt + Uwiα) = − 1

γ M2∞
iβ� + 1

Re

[
μ�w + 1

3
iβ∇ · u + μT Ty(wy + iβv)

]
.

The first law of thermodynamics written for the temperature reads

1

T
(θt + Uiαθ + vTy) = −(γ − 1)∇ · u + γ

Pr Re

[
μ�θ + μT Tyyθ + 2μT Tyθy + μT T T 2

y θ
]

+ γ (γ − 1)M2
∞

1

Re

[
2μUy(uy + iαv) + μT θU 2

y

]
.

We note � the Laplacian operator

� = −α2 − β2 + ∂2/∂y2

and the divergence operator is

∇ · u = iαu + vy + iβw.

A first-order approximation for the fluctuation of μ(T ) is used

μ(T + θ ) − μ(T ) = θμT (T ).
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