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Input-output analysis of stochastic base flow uncertainty

Dhanushki Hewawaduge and Armin Zare *

Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA

(Received 29 December 2020; accepted 14 June 2022; published 5 July 2022)

We adopt an input-output approach to analyze the effect of persistent white-in-time
structured stochastic base flow perturbations on the mean-square properties of the lin-
earized Navier-Stokes equations. Such base flow variations enter the linearized dynamics
as multiplicative sources of uncertainty that can alter the stability of the linearized dy-
namics and their receptivity to exogenous excitations. Our approach does not rely on
costly stochastic simulations or adjoint-based sensitivity analysis. We provide verifiable
conditions for mean-square stability and study the frequency response of the flow subject
to additive and multiplicative sources of uncertainty using the solution to the generalized
Lyapunov equation. For small-amplitude base flow perturbations, we bypass the need
to solve large generalized Lyapunov equations by adopting a perturbation analysis. We
use our framework to study the destabilizing effects of stochastic base flow variations
in transitional parallel flows, and the reliability of numerically estimated mean velocity
profiles in turbulent channel flows. We uncover the Reynolds number scaling of critically
destabilizing perturbation variances and demonstrate how the wall-normal shape of base
flow modulations can influence the amplification of various length scales. Furthermore, we
explain the robust amplification of streamwise streaks in the presence of streamwise base
flow variations by analyzing the dynamical structure of the governing equations as well as
the Reynolds number dependence of the energy spectrum.

DOI: 10.1103/PhysRevFluids.7.073901

I. INTRODUCTION

The linearized Navier-Stokes (NS) equations have been used to capture the early stages of
transition and identify key mechanisms for subcritical transition in wall-bounded shear flows.
Even in the absence of transition, the nonnormality of the linearized dynamical generator induces
interactions of the exponentially decaying normal modes [1,2], which in turn result in the high
sensitivity of velocity fluctuations to different sources of perturbation. This feature of the linearized
dynamics has played a critical role in explaining the large transient growth of velocity fluctua-
tions [3–7] and the amplification of deterministic and stochastic disturbances in transitional and
turbulent wall-bounded flows [1,8–15]. The success of this approach has also paved the way for
the model-based design of active and passive flow control strategies for suppressing turbulence
or reducing skin-friction drag [16–21]. In these studies, additive stochastic excitation is used to
model the effect of background disturbances and exogenous perturbations, or model the uncertainty
caused by excluding the nonlinear terms in the NS equations. While most studies consider stochastic
excitations to be white-in-time, efforts have also been made to shape the spectra of colored-in-time
stochastic forcing to match the second-order statistics of turbulent flows [22–25], which highlights
the dynamical significance of such additive stochastic excitations in augmenting the linearized
dynamics [22,26,27]. An important, but rather less studied aspect of the linearized NS equations,
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however, arises from the uncertainty surrounding the choice of a base flow state and its implications
for stability analysis, turbulence modeling, and the performance of model-based flow control.

Depending on the flow configuration and its characteristic regime, a base flow profile can either
be obtained as the solution to the NS equations in steady state, or as a long-time averaged mean
of a simulation-based flow field or experimental dataset. Due to insufficient data or imprecise
measurements, it is often the case that the time-averaged mean can only be poorly approximated,
resulting in uncertainties that prevail over the statistical averaging process (small data issues). For
example, experimental constraints may confine reliable measurement collection and subsequent data
acquisition procedures to certain parts of the flow domain, and in numerical simulations, segments
of the computational domain may be poorly resolved. Furthermore, analytical or numerical approx-
imations may have been made outside their range of validity implying a degree of uncertainty in
the expressions for base flow profiles. This calls for the development of techniques that account for
such sources of uncertainty and evaluate the validity and robustness of linearized models around
uncertain base flow profiles.

Previous studies have examined the sensitivity of the eigenvalues of the Orr-Sommerfeld operator
to deterministic variations in the base flow. In Ref. [28], an adjoint-based variational procedure
was used to identify worst-case perturbations with the most destabilizing effect on the eigenspec-
trum. Similar tools were later used in a locally temporal framework for identifying the optimal
modification to the base flow for stabilizing a bluff-body wake [29] and were extended to global
stability analysis [30,31]. While it has been shown that minute perturbations of the dynamic
generator can cause significant displacement of eigenvalues [32–34], it is generally accepted that
the disturbance behavior of the linearized NS equations would be robust. Nevertheless, efforts have
been made in quantifying the flow response to deterministic and stochastic base flow variations. In
Ref. [35], an analytical expression was found for the gradient of singular values of the resolvent
operator with respect to base flow modifications thereby accounting for variations in the nonmodal
behavior of wall-bounded shear flows. Besides adjoint-based methods for analyzing the sensitivity
to deterministic modifications, there has also been efforts in quantifying the effect of random spatial
base flow variations using stochastic spectral projection based on generalized polynomial chaos
theory [36].

Additive sources of uncertainty in the base flow enter the linearized dynamics multiplicatively
and in a structured manner. For deterministic and set-valued uncertainties, the structured singular
value can be used to provide a robust stability theory for the uncertain dynamics [37]. How-
ever, this approach is based on a worst-case analysis and may not provide a realistic model for
experimental/numerical imperfections and measurement noise that are unlikely to bear an optimal
shape. On the other hand, the dynamical equations for the second moments of stochastically
perturbed linear systems can be used to determine the effect of perturbations on optimal finite-time
energy growth [38]. Application of similar analysis techniques to stochastically perturbed Poiseuille
flow uncovers the effect of multiplicative uncertainty on optimal energy growth as well as the robust
amplification of streaks [39]. As highlighted in these studies, persistent multiplicative uncertainty
increases the sensitivity of nonnormal linear dynamical systems by influencing their asymptotic
and transient mean-square response. In contrast to its additive counterpart, however, white-in-time
multiplicative uncertainty can compromise the mean-square stability (MSS) properties of linear
systems. Mean-square stability is a strong form of stability that implies stability of the mean and
convergence of all trajectories of the stochastic dynamical system (in the absence of exogenous
excitation) to zero with probability one [40,41].

In this paper, we revisit the problem of analyzing said internal stochastic uncertainties by
modeling structured perturbations to the base flow as white-in-time stochastic processes. In addition
to persistent stochastic uncertainty in the base, we model the effect of exogenous excitations as
a persistent white-in-time stochastic forcing. The dynamics of velocity fluctuations around the
uncertain base state are governed by a set of stochastic differential equations (SDEs). We provide
an input-output treatment by rewriting the SDEs as a feedback interconnection of the linearized
dynamics and structured stochastic uncertainties. This allows us to separate the nominal (known)
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FIG. 1. Side view of the three-dimensional canonical flows considered in this study along with various
realizations of stochastic base flow perturbations γu(t ) represented by the shaded area surrounding the base
flow profiles. (a) Couette flow; (b) Poiseuille flow; and (c) turbulent channel flow.

dynamics from the sources of uncertainty and facilitates both stability and receptivity analyses of the
fluctuation dynamics in the presence of persistent additive and multiplicative stochastic excitation.
Building on the recent developments of Ref. [42], we provide specialized conditions for the MSS
of the uncertain dynamics. Furthermore, we analyze the energy spectrum of the linearized NS
equations subject to additive and multiplicative sources of excitation. To this end, we compute the
second-order statistics of the velocity field from the solution to generalized Lyapunov equations.
For small-amplitude perturbations of the base state, we adopt a perturbation analysis to compute the
energy spectrum of velocity fluctuations using a computationally efficient method that by-passes
the need to solve the associated generalized Lyapunov equations. We demonstrate the utility of our
approach by studying the stability and receptivity of the three-dimensional channel flow around
canonical Couette and Poiseuille profiles as well as a turbulent mean velocity profile resulting
from direct numerical simulations (DNS) all of which are contaminated with persistent stochastic
perturbations; see Fig. 1 for an illustration. We also uncover the Reynolds number scaling of the
critical variance of stochastic base flow uncertainty that guarantees MSS and identify length scales
that are most influenced by such perturbations.

The rest of our presentation is organized as follows. In Sec. II, we describe our model of
stochastic base flow perturbation, introduce the stochastically forced linearized NS equations around
the uncertain base flow, and demonstrate how base flow perturbations enter the dynamics as
multiplicative sources of uncertainty. In Sec. III, we rewrite the linearized dynamics as a feedback
interconnection between nominal dynamics and sources of stochastic uncertainty. We then use this
input-output representation to provide MSS conditions for our model, characterize its frequency
response, and describe the generalized Lyapunov equation that we use to compute the second-order
statistics and energy spectrum of velocity fluctuations. In Sec. IV, we examine the MSS and energy
amplification of velocity fluctuations around Couette and Poiseuille profiles, and study the influence
of base flow perturbations on flow structures. In Sec. V, we extend this analysis to the linearized
NS equations around the DNS-based mean velocity profiles of turbulent channel flow at various
Reynolds numbers. In Sec. VI, we study the Reynolds number dependence of variance amplification
for streamwise elongated flow structures. We provide concluding remarks in Sec. VII.

II. DYNAMICS OF FLUCTUATIONS AROUND UNCERTAIN BASE FLOW

The dynamics of incompressible Newtonian fluids is governed by the NS equations,

ũt = −(ũ · ∇)ũ − ∇P̃ + 1

R
�ũ,

0 = ∇ · ũ, (1)

where ũ is the velocity vector, P̃ is the pressure, ∇ is the gradient, � = ∇ · ∇ is the Laplacian, and
t is time. Here, the Reynolds number R is defined in terms of appropriate length and velocity scales,
e.g., for a laminar channel flow, R = Ūh/ν, where Ū is the maximum nominal velocity, h is the
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channel half-height, and ν denotes the kinematic viscosity. Linearization of the NS equations around
an arbitrary, parallel base flow u = [U (y) 0 W (y) ]T and pressure P yields the equations that govern
the dynamics of velocity, v, and pressure, p, fluctuations,

vt = −(∇ · u)v − (∇ · v)u − ∇p + 1

R
�v + f,

0 = ∇ · v. (2)

Here, v = [ u v w ]T , with u, v, and w representing the fluctuating components in the streamwise,
x, wall-normal, y, and spanwise, z directions, and f denoting a three-dimensional zero-mean white-
in-time additive stochastic forcing.

We assume the base flow u to be contaminated with an additive source of uncertainty, i.e.,

u(y, t ) = ū(y) + γ (y, t ). (3)

Here, ū(y) = [ Ū (y) 0 W̄ (y) ]T is the nominal base flow in the absence of uncertainty and γ is a
zero-mean white-in-time stochastic process that can enter both streamwise and spanwise compo-
nents of ū, i.e., γ (y, t ) = [ γu(y, t ) 0 γw(y, t ) ]T . The uncertain base flow u enters the linearized
Eqs. (2) as a coefficient that multiplies the vector of velocity fluctuations v. While u includes the
sources of uncertainty γ , it remains constant in x and z. Elimination of pressure and application
of the Fourier transform in the spatially invariant wall-parallel directions brings Eqs. (2) into the
evolution form

ϕt (y, k, t ) = [A(k, t ) ϕ(·, k, t )](y) + [B(k) f (·, k, t )](y),

v(y, k, t ) = [C(k) ϕ(·, k, t )](y), (4)

where the state variable ϕ = [ v η ]T contains the wall-normal velocity v and vorticity η = ∂zu −
∂xw, and k = [ kx kz ]T is the vector of streamwise and spanwise wavenumbers. These SDEs involve
multiplicative sources of stochastic uncertainty γu and γw in addition to the additive source of
stochastic uncertainty f . In Eq. (4), operators A, B, and C are given by

A(k, t ) :=
[

A11 0

A21 A22

]
,

A11(k, t ) := �−1

(
1

R
�2 + ikx{Ū ′′(y) + γ ′′

u (y, t ) − [Ū (y) + γu(y, t )] �}

+ ikz{W̄ ′′(y) + γ ′′
w(y, t ) − [W̄ (y) + γw(y, t )] �}

)
,

A21(k, t ) := −ikz[Ū
′(y) + γ ′

u(y, t )] + ikx[W̄ ′(y) + γ ′
w(y, t )], (5)

A22(k, t ) := 1

R
� − ikx [Ū (y) + γu(y, t )] − ikz[W̄ (y) + γw(y, t )],

B(K) :=
[−ikx�

−1∂y −k2�−1 −ikz�
−1∂y

ikz 0 −ikx

]
,

C(k) :=

⎡
⎢⎣

Cu

Cv

Cw

⎤
⎥⎦ = 1

k2

⎡
⎢⎣

ikx∂y −ikz

k2 0

ikz∂y ikx

⎤
⎥⎦,

where prime denotes differentiation with respect to the wall-normal coordinate, i is the imagi-
nary unit, k2 = k2

x + k2
z , � = ∂2

y − k2 is the Laplacian, �2 = ∂4
y − 2k2∂2

y + k4, and v(±1, k, t ) =
vy(±1, k, t ) = η(±1, k, t ) = 0, which can be derived from the original no-slip and no-penetration
boundary conditions on u, v, and w.
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FIG. 2. (a) A shape function f (y) determined using Eq. (6) with {y1, y2} = {−0.9, 0.9} and a = 200; and
(b) a two-sided shape function f (y) = f1(y) + f2(y) in which f1(y) and f2(y) are determined using Eq. (6) with
{y1, y2} = {−1, −0.95} for f1(y), {y1, y2} = {0.95, 1} for f2(y), and a = 200.

We confine the class of stochastic base flow perturbations to the form γ (y, t ) = α γ̄ (t ) f (y), in
which α > 0 is the constant amplitude, γ̄ (t ) is a zero-mean stochastic parameter of unit amplitude,
and f (y) is a smooth filter function that determines the wall-normal region of influence and is
defined as

f (y) := 1

π
{ arctan [a(y − y1)] − arctan [a(y − y2)] }. (6)

Here, y1 and y2 determine the wall-normal extent of f (y) and a specifies the roll-off rate. In Secs. IV
and V, we study the influence of stochastic base flow perturbations with wall-normal dependence
corresponding to the shape functions shown in Fig. 2, as well as a normalized variant of the
associated nominal base flow profile Ū (y), i.e.,

f (y) = Ū (y)

max (|Ū (y)|) , (7)

where normalization ensures that the multiplicative source of uncertainty amplifies the state only
via its amplitude α and the variance of its stochastic temporal component γ̄ (t ). The variance
of γ̄ (t ) will be typically chosen to represent critically stable conditions beyond which the state
dynamics lose stability. While the shape function in Fig. 2(a) does not restrict the wall-normal extent
of the perturbations (besides a roll-off at the walls in accordance with the boundary conditions),
Fig. 2(b) represents an extreme case corresponding to base flow perturbations that may result from
active/passive boundary actuation (e.g., blowing and suction), surface roughness, or the secondary
effects of perturbation growth in transition mechanisms. Beyond application specificities, these
extreme cases allow us to study the dependence of our results on the wall-normal extent of base
flow perturbations.

Remark 1. In Eq. (3), γ (y, t ) accounts for the effect of temporal sources of uncertainty on
the base flow ū. We note that spatially random effects can also be translated into temporal
uncertainty using the local convection velocity together with a Taylor-like transformation, i.e.,
γ (y, t ) = r(x, y)/uc, where uc is the local convection velocity and r(x, y) is a spatially random
process in x. The specification of uc, i.e., its directivity and magnitude, is problem dependent, but
the result of numerical studies can provide guidelines for its determination; see, e.g., Refs. [43,44]
and Ref. [22, Sec. 5.2].
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Based on the class of stochastic perturbations γ (y, t ) considered in this paper, the operator-valued
matrix A in evolution model (4) can be decomposed into nominal and perturbed components as

A(k, t ) = Ā(k) + α[γ̄u(t ) Au(k) + γ̄w(t ) Aw(k)], (8)

where expressions for Ā, Au, and Aw are given in Appendix A. The nominal base flow profile ū(y),
and shape functions fu(y) and fw(y) enter operators Ā, Au, and Aw as deterministic parameters,
respectively. Note that while we have assumed the streamwise and spanwise components of the
base flow uncertainty γ (y, t ) to be of equal amplitude, all mathematical developments can be easily
extended to scenarios where the streamwise and spanwise components have different amplitudes.

In this study, we use a pseudospectral scheme with N Chebyshev collocation points in the wall-
normal direction [45] to discretize the operators in the linearized equations (4). In addition, we
employ a change of variables to obtain a state-space representation in which the kinetic energy is
determined by the Euclidean norm of the state vector [22, Appendix A]. This yields the state-space
model

ψ̇(k, t ) = A(k, t ) ψ(k, t ) + B(k) f (k, t ),
(9)

v(k, t ) = C(k) ψ(k, t ),

where vectors ψ and v are vectors with complex-valued entries and 2N and 3N components,
respectively, and matrices A, B, and C are discretized versions of the corresponding operators that
incorporate the aforementioned change of coordinates. We next provide an input-output reformu-
lation of SDE (9) to analyze the influence of stochastic sources of uncertainty on the mean-square
asymptotic stability and second-order statistics of velocity fluctuations.

III. MEAN-SQUARE STABILITY AND INPUT-OUTPUT ANALYSIS

The evolution of ψ in SDE (9) is affected by the presence of both stochastic base flow perturba-
tions γ (y, t ) and additive forcing f (t ). While there is no ambiguity in the treatment of additive noise
in continuous-time systems, multiplicative noise is not generally well-defined and its treatment calls
for the adoption of a suitable stochastic calculus (e.g., Itō [46] or Stratonovich [47]). In this section,
we provide an appropriate interpretation for the multiplicative uncertainty, extract these sources
using a linear fractional transformation, and establish an input-output relation between stochastic
sources and the output velocity fluctuations of system (9). Building on this representation, we
examine conditions for MSS and analyze the frequency response of the system in the presence
of multiplicative stochastic uncertainty.

A. Stochastic feedback interconnection

In input-output form, SDE (9) can be rewritten as

[
v

z

]
= M

[
f

r

]
⇔

[
v(k, t )

z(k, t )

]
=

∫ t

0
M(k, t − τ )

[
f (k, τ )

r(k, τ )

]
dτ,

(10)
r(k, t ) = αD[γ̄ (t )] z(k, t ),

which extracts the role of multiplicative uncertainties by rearranging the dynamics as a feedback
connection between the nominal (known) dynamics (captured by the impulse response operator M)
and the structured uncertainty D[γ̄ (t )] := diag{γ̄u(t )I, γ̄w(t )I}. In Eqs. (10), M denotes the finite-
dimensional approximation to the impulse response operator M, v is the output velocity vector
[cf. Eqs. (9)], and z is computed from the state ψ. Moreover, the exogenous stochastic input f , the
uncertain feedback signal r, and the sources of uncertainty γ̄u and γ̄w are white processes that are
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FIG. 3. Linear fractional transformation of an LTI system subject to both additive and multiplicative
stochastic disturbances [Eqs. (12)]. Here, d f̃ , d γ̃u, and d γ̃w represent differentials of Wiener processes that
model additive and multiplicative sources of stochastic uncertainty.

all defined as derivatives of Wiener processes (or Brownian motion) [48], i.e.,

γ̄u(t ) := d γ̃u(t )

dt
; γ̄w(t ) := d γ̃w(t )

dt
; f (k, t ) := d f̃ (k, t )

dt
; r(k, t ) := d r̃(k, t )

dt
.

Here, γ̃u and γ̃w are zero-mean Wiener processes with variance σ 2
u and σ 2

w, respectively, and f̃ is a
zero-mean vector-valued Wiener process with instantaneous covariance

〈f̃ (k, t ) f̃∗(k, t )〉 = �(k) t,

in which �(k) = �∗(k) � 0 is the spatial covariance matrix. We assume that γ̃u, γ̃w, and f̃ are
uncorrelated at all times, adopt the Itō interpretation, and assume that r has temporally independent
increments, i.e., its differentials [dr(k, t1), dr(k, t2)] are independent when t1 �= t2. Given this
mathematical interpretation, the differential form of Eqs. (10) is given by

[
v

z

]
= M

[
d f̃

d r̃

]
⇔

[
v(k, t )

z(k, t )

]
=

∫ t

0
M(k, t − τ )

[
d f̃ (k, τ )

d r̃(k, τ )

]

d r̃(k, t ) = αD[d γ̃ (t )] z(k, t ) (11)

and is described by the block diagram in Fig. 3. A corresponding state-space model is given by

M :

⎧⎪⎨
⎪⎩

dψ(k, t ) = Ā(k) ψ(k, t )dt + B0(k) d r̃(k, t ) + B(k) d f̃ (k, t ),

z(k, t ) = C0(k) ψ(k, t ),

v(k, t ) = C(k) ψ(k, t ),

d r̃(k, t ) = αD[d γ̃ (t )] z(k, t ), (12)

with

B0(k) := [I I], C0(k) :=
[

Au(k)

Aw(k)

]
. (13)

Here, ψ, z, and v are complex-valued vectors of appropriate dimension, B and C are finite-
dimensional approximations of the input and output operators in Eqs. (9), and Ā, Au, and Aw are
finite-dimensional approximations of the nominal dynamics and its perturbations from Eq. (8).
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B. Mean-square stability conditions

For the causal LTI system (12), MSS certifies that for all differential inputs, [ d f̃ d r̃ ]T , with
independent increments and uniformly bounded variances, the output process[

v

z

]
=

[M11 M12

M21 M22

]
︸ ︷︷ ︸

[
d f̃

d r̃

]

M
has a uniformly bounded variance; see, e.g., Ref. [49]. Following Ref. [50, Theorem 3.2], the
necessary and sufficient conditions for MSS can be generalized for the continuous-time scenario,
i.e., the output v in Eqs. (12) has a finite covariance if and only if the feedback subsystem (M22, 
)
is MSS. Based on this, the exact necessary and sufficient conditions for the MSS of Eqs. (12) are:
(i) Ā is Hurwitz; and (ii) the spectral radius of the loop gain operator

L(R) := 
 ◦
[∫ ∞

0
M22(τ ) R M∗

22(τ )dτ

]
(14)

is strictly less than 1/α2, i.e., ρ(L) < 1/α2. Here, ◦ is the Hadamard product, M22 is the impulse
response of the subsystem M22 : d r̃ → z, which is given by

M22(k, t ) = C0(k) e Ā(k,t )t B0(k),

and ∗ denotes complex-conjugate-transpose. The matrix 
 denotes the mutual correlation of
uncertainties γ̃i, i.e., 
 := 〈γ̃i(t ) γ̃ ∗

j (t )〉. For example, for mutually independent multiplicative
uncertainties in the streamwise and spanwise directions that are spatially uncorrelated, 
 =
diag{σ 2

u I, σ 2
w I}, where σ 2

u and σ 2
w are variances of γ̄u and γ̄w, respectively. In this paper, we

consider γ̄u and γ̄w to be mutually independent, but repeated throughout the spatial domain, i.e.,

 = diag{σ 2

u 11T , σ 2
w 11T }, where 1 represents the vector of 2N ones. As explained in Sec. II, the

wall-normal support of multiplicative uncertainties γ̄u and γ̄w will be captured by their associated
shape functions, fu(y) and fw(y), within operators Au and Aw in Eq. (13).

Remark 2. We note that a similar condition for global mean-square asymptotic stability was
established in Ref. [51]. This condition was based on the stability of the differential generalized
Lyapunov equation and amounts to the eigenvalue stability of the mean-square stability matrix,
which takes a similar form as the loop gain operator L(·). The differential generalized Lyapunov
equation governs the evolution of the state covariance matrix X . In Sec. III C, we use the steady-state
solution of this equation to compute the second-order statistics and energy spectrum of velocity
fluctuations in the presence of both additive and multiplicative stochastic excitation.

The loop gain operator propagates the steady-state covariance of d r̃ denoted by R through the
feedback configuration in Fig. 3. Equivalently, we have

L(R) = 
 ◦ (C0 X C∗
0 ),

where X is the solution to the algebraic Lyapunov equation

Ā X + X Ā∗ = −B0 R B∗
0.

In practice, the spectral radius of L can be numerically computed using the power iteration
algorithm; see, e.g., Ref. [50, Sec. VI.A]. Starting from an initial R0 � 0 an estimate for the spectral
radius is updated via a sequence of steps:

Ā Xk+1 + Xk+1 Ā∗ = −B0 Rk B∗
0,

Rk+1 := 1

‖Rk‖F
[
 ◦ (C0 Xk+1 C∗

0 )],

ρk+1 := 〈Rk, Rk+1〉,
until the residual (Rk+1 − ρk+1Rk )/‖Rk+1‖F is smaller than a desirable tolerance.
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C. Frequency response of uncertain dynamics

We build on the input-output representation provided in Sec. III B and characterize the frequency
response of the system subject to both additive and multiplicative sources of uncertainty. We
show that the second-order statistics of the uncertain system and the energy spectrum of velocity
fluctuations can be obtained from the solution of a generalized Lyapunov equation.

The impulse response M in Eqs. (11) corresponding to the state-space representation (12) takes
the form

M(k, t ) :=
[

C(k)

C0(k)

]
e Ā(k,t )t [B(k) B0(k)].

When f , γ̄u, and γ̄w are zero-mean white-in-time processes with covariance matrix �, and variances
σ 2

u and σ 2
w, the steady-state covariance of the state,

X (k) = lim
t→∞

〈ψ(k, t ) ψ∗(k, t )〉, (15)

can be determined as the solution to the generalized Lyapunov equation

Ā X + X Ā∗ + α2 B0[
 ◦ (C0 X C∗
0 )]B∗

0 = −B � B∗, (16)

which is parameterized over wavenumber pairs k. The generalized Lyapunov equation relates
the statistics of white-in-time forcing f and multiplicative sources of excitation γ̄u and γ̄w [with
amplitude α and wall-normal support fu(y) and fw(y)] to the steady-state covariance X via system
matrices Ā and B and perturbation matrices Au and Aw. It can also be used to compute the energy
spectrum of velocity fluctuations v,

E (k) = trace[�(k)] = trace[C(k)X (k)C∗(k)], (17)

where � is the covariance matrix of v. We can then capture the influence of multiplicative
uncertainty on the energy spectrum using the discounted spectrum

Ec(k) = E (k) − E0(k), (18)

where E0 denotes the nominal energy spectrum in the absence of uncertainties γu and γw.
Following Eq. (13) and the assumption of repeated base flow perturbations, which yield


 = diag{σ 2
u 11T , σ 2

w 11T }, Eq. (16) can be expanded to reflect contributions from uncertainties
affecting the streamwise and spanwise components of the base flow as

Ā X + X Ā∗ + α2
(
σ 2

u (Au X A∗
u ) + σ 2

w(Aw X A∗
w )

) = −B � B∗. (19)

A direct approach to solving Eq. (19) as a linear system of equations yields{
I ⊗ Ā + Ā ⊗ I + α2

[
σ 2

u (Au ⊗ Au) + σ 2
w(Aw ⊗ Aw )

]}
vec(X ) = − vec(B � B∗), (20)

where ⊗ is the Kronecker product and vec(·) denotes vectorization. However, in the absence
of sparse matrix structures, solving for X can be challenging even for medium-size problems.
Other existing methods for solving Eq. (19) explore solutions to surrogate equations and utilize
iterative methods to improve computational complexity [52–55]. In what follows, we consider
small-amplitude perturbations (α � 1) and pursue an alternative approach by utilizing a per-
turbation analysis to achieve a computationally efficient way of obtaining the energy spectrum.
As shown in Appendix B, this approach allows us to compute the second-order statistics of
the uncertain model by solving a sequence of standard algebraic Lyapunov equations instead of
the generalized Lyapunov equation (19). In addition to the computational benefit, the choice of
small perturbation amplitude is motivated by the desire to account for uncertainties arising from
measurement imperfections, small-data issues in the statistical averaging process, or the effect
of random active/passive boundary actuation strategies that influence the base flow. Based on
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this, up to a second order in the perturbation amplitude α, the state covariance X in Eq. (15) is
given by

X (k) = X0(k) + α2 X2(k) + O(α4), (21)

where X0 and X2 are obtained from a set of decoupled Lyapunov equations; see Appendix B for
details. Note that X0 represents the steady-state covariance of ψ, i.e., the state of the nominal
dynamics in the absence of base flow perturbations, and X2 represents the second-order correction
induced by the random base flow uncertainty. The energy spectrum of velocity fluctuations v
[Eq. (17)] follows a similar perturbation series as (21)

E (k) = E0(k) + α2E2(k) + O(α4), (22)

where E0(k) = trace[C(k)X0(k)C∗(k)] is the nominal energy spectrum in the absence of base flow
perturbations, and E2(k) = trace[C(k)X2(k)C∗(k)] captures the effect of base flow perturbations
at the level of α2. When α � 1, the correction α2E2(k) provides a good approximation of the
discounted spectrum Ec(k) in Eq. (18), and as α grows, higher-order terms may be needed to better
approximate E (k).

IV. EFFECT OF BASE FLOW VARIATIONS ON TRANSITIONAL FLOWS

In this section, we examine the dynamics of stochastically forced Couette and Poiseuille flows in
the presence of zero-mean white-in-time stochastic base flow uncertainty γ̄u in the streamwise direc-
tion. The nominal dynamics are obtained by linearizing the NS equations around ū = [ Ū (y) 0 0 ]T

with Ū (y) = y for Couette flow [Fig. 1(a)] and Ū (y) = 1 − y2 for Poiseuille flow [Fig. 1(b)].
Throughout this section, we use N = 101 Chebyshev collocation points to discretize the operators
involved in the linearized equations. Grid convergence is ensured by doubling the number of
collocation points. We first examine the MSS of the flow in the presence of streamwise base flow
perturbations. Our analysis identifies critically destabilizing perturbation variances over a range
of Reynolds numbers. Using these critical variance levels, we examine the effect of base flow
perturbations of various amplitude on the energy spectrum and dominant flow structures.

A. Stability analysis

For both Couette and Poiseuille flows, we use the stability condition presented in Sec. III B
to examine the MSS of the horizontal wavenumber pair k = (1, 1), which corresponds to an
oblique flow structure. Both DNS [56] and nonlinear optimal perturbation analysis [57] have
demonstrated the fragility of such flow structures in transition mechanisms, i.e., oblique modes
require less energy to induce transition than streamwise elongated modes. The high sensitivity of
such three-dimensional flow structures to additive streamwise excitations was also demonstrated
using frequency response analysis of the linearized NS equations [11].

Figure 4 shows the minimum destabilizing variance σ 2
u over a range of Reynolds numbers for

k = (1, 1) when the base flow is perturbed at different wall-normal regions. The shaded areas under
the curves denote the Reynolds numbers and perturbation variances for which the flows remain
asymptotically mean-square stable. In both flows, higher variances σ 2

u could be tolerated when
stochastic perturbations were confined to the wall-normal regions close to the walls, i.e., when
f (y) corresponds to the shape function shown in Fig. 2(b). As expected, both flows become less
robust to base flow perturbations as the region of influence grows in the wall-normal dimension.
We also observe that while the stability curves corresponding to the oblique mode in Couette and
Poiseuille flows are similar for near-wall perturbations [Fig. 2(b)], the oblique mode in Poiseuille
flow is, generally, more sensitive to channel-wide base flow perturbations [ f (y) given by Eq. (7) and
Fig. 2(a)].

While it generally becomes easier to destabilize the flow at higher Reynolds numbers, critical
variance levels demonstrate different Reynolds number scaling when base flow perturbations are
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FIG. 4. Stability curves for fluctuation dynamics with k = (1, 1) in (a) Couette flow; and (b) Poiseuille
flow. The curves demonstrate the Reynolds number dependence of the maximum tolerable variance for
stochastic base flow perturbations entering the dynamics through the shape functions f (y) corresponding to
Eq. (7) (+) or Figs. 2(a) (∗) and 2(b) (◦). For a given Reynolds number, the shaded areas under the curves
denote the variances of stochastic base flow uncertainty that do not violate MSS (ρ(L) < 1 with α = 1). The
triangles in the upper right corners demonstrate an R−1 slope.

confined to different wall-normal regions. In both Couette and Poiseuille flows the critical variance
of near-wall base flow perturbations [Fig. 2(b)] are found to scale as R−1. In other words, it is
reasonable to expect larger persistent stochastic perturbations with variances of the same order (R−1)
to induce O(R−1) growth rates that can instigate transition. On the other hand, if perturbations
follow the shape of the corresponding base flows [ f (y) given by Eq. (7)], the critical variance levels
decrease at a slower rate (R−0.5). When the base flow perturbations are allowed to enter through
the entire wall-normal extent of the channel [Fig. 2(a)], the critical variance levels are found to
scale as O(R−1) in Couette flow and at an increasing rate in Poiseuille flow [O(R−0.5) for R < 600
and O(R−1.2) for R > 600]. The elevated sensitivity of higher Reynolds number Poiseuille flow
to base flow perturbations entering the entire wall-normal extent [Fig. 2(a)] may be explained by
an increase in the energy and vertical reach of near-wall motions, which are less affected when
f (y) = Ū (y)/ max(|Ū (y)|). It is noteworthy that the Reynolds number scaling obtained using our
stochastic approach is in agreement with the scaling observed in Ref. [28] for the magnitude of
deterministic (worst-case) base flow perturbations.

We note that besides k = (1, 1), a similar Reynolds number dependence can be observed for
the critical variance of base flow perturbations at other horizontal wavenumber pairs. For Couette
flow at R = 500 and Poiseuille flow at R = 2000 subject to base flow perturbations with f (y) =
Ū (y)/ max(|Ū (y)|), Fig. 5 shows the critical variance levels σ 2

u for flow fluctuations with different
spanwise and streamwise wavenumbers. In both flows, streamwise elongated structures (smaller kx)
are more robust toward streamwise base flow perturbations. On the other hand, the sensitivity to
such perturbations is largely invariant to the width of flow structures and only decreases for longer
flow structures when λz � 1. Based on Fig. 5, streamwise elongated structures (streaks) that are
thin in the spanwise dimension exhibit the least sensitivity to such base flow uncertainty. Finally,
we note that similar trends can be observed in both flows when base flow perturbations are allowed
to enter a larger extent of the wall-normal domain [when f (y) follows Fig. 2(a)].

B. Energy spectrum of velocity fluctuations

We now use the maximum tolerable variance over all horizontal wavenumber pairs to study the
effect of base flow perturbations on the energy spectrum of velocity fluctuations. In both flows,
the most sensitive modes that have been considered in Fig. 5 correspond to k = (100, 0.01). In
Couette flow with R = 500, the critical variance levels σ 2

u for streamwise base flow perturbations
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FIG. 5. Logarithmically scaled critical variance levels for stochastic multiplicative uncertainty γ̄u with
α = 1 and f (y) = Ū (y)/ max(|Ū (y)|) over the horizontal wavenumber spectrum in (a) Couette flow with
R = 500 and (b) Poiseuille flow with R = 2000.

that enter through wall-normal regions corresponding to Eq. (7), Fig. 2(a), and Fig. 2(b) to desta-
bilize this mode are 0.44, 0.09, and 8.3, respectively. These values change to 0.03, 0.008, and
2.09 in Poiseuille flow with R = 2000. In the numerical experiments of this section, we consider
slightly lower variance levels than these critical values to ensure MSS [and thereby the validity
of the covariance computed from the steady-state generalized Lyapunov equation (19)] over all
length-scales. Moreover, we assume the stochastic input f to be white-in-time with trivial covariance
� = I .

In the absence of multiplicative uncertainty (γu = 0), Eq. (16) reduces to a standard algebraic
Lyapunov equation. The nominal energy spectra E0 of plane Couette and Poiseuille flows, which
can be computed from the solution of this Lyapunov equation, are shown in Figs. 6(a) and 6(b),
respectively. In the perturbed case, we use the perturbation analysis presented in Sec. III C to
compute the effect of base flow perturbations on the energy of velocity fluctuations by solving a
sequence of standard algebraic Lyapunov equations [Eqs. (B2)] instead of the generalized Lyapunov
equation (19). Figure 7 validates this approach in predicting the discounted energy spectrum
Ec [Eq. (18)] of plane Couette flow at kx = 1 due to small amplitude base flow perturbations
with f (y) = Ū (y)/ max(|Ū (y)|). This streamwise wavenumber will be shown to contain the most
sensitive region of the spectrum (Fig. 8). It is evident that for small perturbation amplitudes α, even

FIG. 6. Energy spectra of (a) plane Couette flow with R = 500 and (b) plane Poiseuille flow with R = 2000.
Color plots show log10[E0(k)].

073901-12



INPUT-OUTPUT ANALYSIS OF STOCHASTIC BASE …

FIG. 7. The discounted energy spectrum Ec in Couette flow with R = 500 and kx = 1 subject to base flow
perturbations with f (y) = Ū (y)/ max(|Ū (y)|) with σ 2

u = 0.43 and α = 0.01. Direct solution from solving
Eq. (20) (−); and approximate solutions from perturbation analysis: Ec = α2E2(k) (∗) and Ec = α2E2(k) +
α4E4(k) (◦).

the second-order correction (at the level of α2) is in excellent agreement with the direct solution
whose computational cost is significantly higher.

Figure 8 shows the second-order correction to the energy spectrum [E2(k)] of Couette and
Poiseuille flow induced by base flow perturbations of various shape f (y). Clearly, base flow
perturbations have resulted in the amplification of all spatial scales. As shown in Fig. 6, the
amplification of streamwise elongated flow structures (streaks) dominates the energy spectra of
nominal (unperturbed) flows. In contrast, small-amplitude channel-wide base flow perturbations
[when f (y) is given by Eq. (7) or Fig. 2(a)] predominantly influence the oblique modes with kx ≈ 1
and kz ∼ O(1) [marked by (×)], and near-wall perturbations [when f (y) corresponds to Fig. 2(b)]
result in the dominant amplification of Tollmien-Schlichting (TS) waves [marked by (•)]. This is
to be expected as the three-dimensional oblique modes predominantly reside farther away from
the channel walls. We remark that even though the amplification of TS waves is overcome by that
of oblique modes when channel-wide base flow perturbations are applied, their local signature at
kz ≈ 0 prevails in all cases. Figures 8(c) and 8(d) demonstrate that the amplification of streaks is
quite robust to base flow perturbations that are not confined in the wall-normal direction [Fig. 2(a)].
This is because at kx = 0 stochastic base flow perturbations have no way to influence the solution
of Eq. (16) as the main diagonal blocks of Au would be zero and the off-diagonal (coupling) term,
which includes the wall-normal derivative of f (y), is predominantly zero (apart from the immediate
vicinity of the walls); see Appendix A. This is in agreement with the findings of the worst-case
adjoint-based analysis conducted for a zero-pressure-gradient boundary layer in Ref. [35], where
the lack of influence on streamwise streaks is evident from the structure of the analytically derived
gradient of resolvent singular values. It follows from the form of perturbation matrices Au and Aw in
Appendix A that streaks would be susceptible to multiplicative sources of uncertainty that enter the
dynamics through other components of the base state or involve significant wall-normal variations
[cf. Figs. 8(a), 8(b) and 8(e), 8(f)].

Figure 9 shows the correction to the energy spectrum [Ec(k)] of Couette and Poiseuille flows
in the presence of higher-amplitude base flow perturbations. The perturbation amplitude α = 0.5
considered in this figure corresponds to the maximum perturbation amplitude for which the result
of perturbation analysis is in agreement with the direct solution of Eq. (20). In obtaining these plots
the limit of the perturbation series (22) was obtained using two terms (up to fourth order in α)
in the perturbation series, i.e., Ec = α2E2 + α4E4, and verified using the Shanks transformation.
This transformation provides the means to improve the convergence rate of slowly convergent
series and to even achieve convergence when the original series is divergent; see Refs. [58–61]
for additional details. Figure 9 shows that for high amplitude base flow perturbations, apart from a

073901-13



DHANUSHKI HEWAWADUGE AND ARMIN ZARE

FIG. 8. The second-order correction to the energy spectrum E2(k) due to multiplicative uncertainty γ̄u in
Couette flow with R = 500 (left); and Poiseuille flow with R = 2000 (right). Shape functions f (y) correspond
to (a), (b) Eq. (7); (c), (d) Fig. 2(a); (e), (f) Fig. 2(b). Variances σ 2

u : (a) 4.38 × 10−3; (b) 6.25 × 10−4; (c) 0.004;
(d) 6.25 × 10−4; (e) 0.005; (f) 0.001. Color plots show log10[E2(k)]. The symbols (×) and (•) mark the
wavenumber pairs associated with oblique waves and TS waves, respectively.

uniform increase in the energy correction over all scales [by approximately O(3)], the amplification
trends predominantly follow the predictions of Fig. 8 for small perturbations. For both Couette
and Poiseuille flows, Fig. 10 examines the dependence of the normalized correction to the total
kinetic energy on the amplitude of base flow perturbations that enter the dynamics through various
shape functions f (y) and with uncertainty variances σ 2

u that correspond to the maximum tolerable
values identified in Fig. 4. These figures show that the correction to kinetic energy increases as the
wall-normal extent of base flow perturbations becomes larger. We also observe that as the amplitude
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FIG. 9. The correction to the energy spectrum Ec(k) due to multiplicative uncertainty γ̄u with α = 0.5 in
Couette flow with R = 500 (left); and Poiseuille flow with R = 2000 (right). Shape functions f (y) correspond
to (a), (b) Eq. (7); (c), (d) Fig. 2(a); (e), (f) Fig. 2(b). Variances σ 2

u : (a) 4.38 × 10−3; (b) 6.25 × 10−4; (c) 0.004;
(d) 6.25 × 10−4; (e) 0.005; (f) 0.001. Color plots show log10[Ec(k)].

of base flow perturbations increases the exponential growth rate approaches that of higher powers
of α [cf. Eq. (22)], which is to be expected.

C. Maximally affected flow structures

Following the proper orthogonal decomposition of Refs. [62,63], we extract the dominant flow
structures that result from the steady-state stochastic analysis of transitional flow in the presence
of base flow uncertainty. These flow structures can be formed from the energetically dominant
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FIG. 10. The relative correction to the turbulent kinetic energy
∫

k Ec(k) dk/
∫

k E0(k) dk in (a) Couette
flow with R = 500; and (b) Poiseuille flow with R = 2000 subject to base flow variations with amplitude α.
The curves demonstrate the α dependence of the energy correction due to stochastic base flow perturbations
entering the dynamics through f (y) = Ū (y)/ max(|Ū (y)|) (+), Fig. 2(a) (∗), and Fig. 2(b) (◦). (a) Base flow
perturbations are introduced with variances of σ 2

u = 4.38 × 10−3 (+), 0.004 (∗); and 0.005 (◦) into Couette
flow, and (b) σ 2

u = 6.25 × 10−4 (+), 6.25 × 10−4 (∗); and 0.001 (◦) into Poiseuille flow.

eigenvectors of the velocity covariance matrix �(k) = C(k)X (k)C∗(k), where X (k) represents the
solution of the generalized Lyapunov equation (20). Following the eigenvalue decomposition of �,
the symmetries in the wall-parallel directions can be used to construct the velocity components of
flow structures as

u(x, y, z) = 4
∫

kx,kz>0
cos (kzz) Re

[
ũ(y, k )ei(kxx)

]
dk,

v(x, y, z) = 4
∫

kx,kz>0
cos (kzz) Re

[
ṽ(y, k )ei(kxx)] dk,

w(x, y, z) = −4
∫

kx,kz>0
sin (kzz) Im

[
w̃(y, k )ei(kxx)

]
dk. (23)

Here, Re and Im denote real and imaginary parts, and ũ, ṽ, and w̃ correspond to the streamwise,
wall-normal, and spanwise velocity components of an eigenvector of �(k).

As shown in the previous section, while streamwise elongated streaks represent the energetically
dominant flow structures in the nominal flow, oblique modes become increasingly relevant as the
amplitude and variance of base flow perturbations grow. To demonstrate the influence of base
flow perturbations on the energy and spatial extent of dominant flow structures, we will focus
on base flow perturbations with f (y) = Ū (y)/ max(|Ū (y)|) and the maximally affected oblique
modes corresponding to the peaks in Figs. 9. Figure 11 shows the contribution of the first six
eigenvalues of �(k) to the kinetic energy (sum of all eigenvalues) of Couette flow with R = 500
and Poiseuille flow with R = 2000 at the wavenumber pairs that correspond to the maximum
amplification in Figs. 9(a) and 9(b); k = (0.95, 2.29) in Couette flow and k = (0.38, 3.02) in
Poiseuille flow. The base flow perturbations are chosen to be of unit amplitude (α = 1) with
critically stable variance level identified in Sec. IV A. Based on Fig. 11(a), while streamwise base
flow perturbations generally increase the energy of this oblique mode, they also concentrate the
energy on the two most significant modes; the two most energetic modes in the perturbed flow
contain 94% of the total energy which is a significant increase relative to 75% in the nominal flow.
Interestingly, in the presence of base flow perturbations that follow the Couette profile the two most
significant eigenmodes will have the same energetic contributions which is also indicative of flow
symmetries induced by such a multiplicative source of excitation (cf. Fig. 12). This is in contrast
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FIG. 11. Contribution of the first six eigenvalues of the velocity covariance matrix � of channel flow in the
absence (∗) and presence (◦) of base flow perturbations with f (y) = Ū (y)/ max(|Ū (y)|) and amplitude α = 1.
(a) Couette flow with R = 500 at k = (0.95, 2.29); and (b) Poiseuille flow with R = 2000 at k = (0.38, 3.02).
The variance of base flow uncertainties: (a) σ 2

u = 0.50; (b) σ 2
u = 0.21.

to the role of base flow perturbations of Poiseuille flow that work to break structural symmetries
(Fig. 13) by increasing the gap between the energy of the first and second most dominant eigenvalues
[Fig. 11(b)]; the perturbations of the Poiseuille flow profile increase the energetic contribution of
the principal eigenvalue from 48% to 72% and decrease the contribution of the second eigenvalue
from 31% to 16%. Nevertheless, the presence of base flow perturbations increases the energetic
contribution of the first two modes by 9% (from 79% to 88%).

We next visualize the streamwise component of the two most significant modes identified
in Fig. 11 using Eq. (23). Figure 12(a) shows various views of the principal oblique structures
corresponding to k = (0.95, 2.29) in nominal (first row) and perturbed (second row) Couette
flow. While this wavenumber pair corresponds to nominally streamwise elongated mid-channel
structures that are inclined to the walls, in the presence of base flow perturbations, it corresponds
to near-wall streamwise elongated structures that are less inclined to the walls and exhibit an
anti-symmetric arrangement with respect to the channel centerline. Similar to the energetically
dominant streaks that are typically observed in such wall-bounded flows, the resulting oblique
modes of the stochastically perturbed flow contain alternating regions of fast- and slow- moving
fluid that are situated between counter-rotating vortical motion in the cross-stream plane [see third
column of Fig. 12(a)]. Figure 12(b) shows the spatial structure of the streamwise component of
the second largest mode in Couette flow in the absence (first row) and presence (second row) of
stochastic base flow perturbations. While under nominal conditions, the oblique mode corresponds
to two rows of mid-channel streamwise elongated flow structures about the centerline, stochastic
base flow perturbations give rise to near-wall flow structures that are similar to the principal modes
[second row of Fig. 12(a)] but with a predominantly symmetric arrangement due to a phase shift.
As observed from Fig. 11(a), the equivalent energetic contribution of the two most significant
eigenmodes is also reflective of symmetries in the structure of the corresponding flow structures
shown in the second rows of Figs. 12(a) and 12(b). A similar analysis of the flow structures corre-
sponding to the oblique modes [k = (0.38, 3.02)] of Poiseuille flow is presented in Fig 13. Base flow
perturbations cause the centerline conglomeration of the dominant flow structures that are nominally
streamwise elongated and inclined to the wall [Fig. 13(a)]. However, apart from a slight wall-normal
elevation, such perturbations do not influence the physical structure of the second most significant
mode [Fig. 13(b)]. Our observations suggest that the alignment of multiplicative uncertainties with
the respective base flow profiles [ f (y) = Ū (y)/ max(|Ū (y)|)] cause the predominant amplification
of flow structures in regions that are most affected by such perturbations, i.e., in the vicinity of
channel walls in Couette flow and in the middle of the channel in Poiseuille flow. We note that
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FIG. 12. The streamwise component of the dominant flow structures of Couette flow with R = 500 and k =
(0.95, 2.29) in the absence (first rows) and presence (second rows) of stochastic base flow perturbations with
f (y) = Ū (y)/ max(|Ū (y)|), α = 1, and σ 2

u = 0.50; (a) the principal modes; and (b) the second most energetic
modes. The three columns correspond to: (left) the spatial structure of the eigenmodes with red and blue colors
denoting regions of high and low velocity; (middle) the streamwise velocity at z = 0; and (right) the y-z slice
of streamwise velocity (color plots) and vorticity (contour lines) at the streamwise location indicated by the
dashed vertical lines in the middle panel.
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FIG. 13. The streamwise component of the dominant flow structures of Poiseuille flow R = 2000 and k =
(0.38, 3.02) in the absence (first rows) and presence (second rows) of stochastic base flow perturbations with
f (y) = Ū (y)/ max(|Ū (y)|), α = 1, and σ 2

u = 0.21; (a) the principal modes; and (b) the second most energetic
modes. The three columns correspond to: (left) the spatial structure of the eigenmodes with red and blue colors
denoting regions of high and low velocity; (middle) the streamwise velocity at z = 0; and (right) the y-z slice
of streamwise velocity (color plots) and vorticity (contour lines) at the streamwise location indicated by the
dashed vertical lines in the middle panel.
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if f (y) and Ū (y) were not aligned, e.g., f (y) corresponding to Fig. 2(b) in Poiseuille flow, the
dominant flow structures would remain structurally unchanged albeit more energetic. These results
are not reported here for brevity.

V. EFFECT OF BASE FLOW VARIATIONS ON TURBULENT FLOW DYNAMICS

In this section, we examine the dynamics of stochastically forced turbulent channel flow in the
presence of zero-mean white-in-time stochastic base flow perturbations. To this end, we augment
the molecular viscosity in the NS equations (24) with the turbulent viscosity νT of channel flow

ũt = −(ũ · ∇)ũ − ∇P̃ + 1

Rτ

∇ · {(1 + νT )[∇ũ + (∇ũ)T ]},

0 = ∇ · ũ (24)

and linearize around the long-time averaged turbulent mean flow profile u = [U (y) 0 0 ]T provided
by DNS of channel flow [64–67] [Fig. 1(c)] to obtain the linearized NS equations

vt = −(∇ · u)v − (∇ · v)u − ∇p + 1

Rτ

∇ · {(1 + νT )[∇v + (∇v)T ]},
(25)

0 = ∇ · v,

which govern the dynamics of velocity, v, and pressure, p, fluctuations. Here, the Reynolds number
Rτ = uτ h/ν is defined in terms of the channel’s half-height h and the friction velocity uτ = √

τw/ρ,
where τw is the wall-shear stress (averaged over horizontal directions and time), ρ is fluid density,
and ν is kinematic viscosity. For turbulent viscosity, we use the Reynolds and Tiederman [68]
turbulent viscosity profile

νT (y) = 1

2

({
1 +

[
c2

3
Rτ (1 − y2)(1 + 2 y2)

(
1 − e−(1−|y|)Rτ /c1

)]2}1/2

− 1

)
, (26)

where parameters c1 and c2 are selected to minimize the least squares deviation between the steady-
state solution to Eqs. (25) using the averaged wall-shear stress P̃x = −1 and the mean streamwise
velocity obtained in experiments or simulations. Application of this least-squares procedure in
finding the best fit to the mean velocity in turbulent channel flow resulting from DNS [64–67] yields
{c1 = 46.2, c2 = 0.61} at Rτ = 186, {c1 = 29.4, c2 = 0.45} at Rτ = 547, {c1 = 27, c2 = 0.43} at
Rτ = 934, and {c1 = 25.4, c2 = 0.42} at higher Reynolds numbers.

We assume the streamwise component of the base flow u to be contaminated with an additive
source of uncertainty γu(y, t ) = αγ̄ (t ) f (y). As a result, the dynamic operator A in the state-space
representation (4) takes the form

A(k, t ) :=
[

A11 0

A21 A22

]
,

A11(k, t ) := �−1

(
1

Rτ

[
(1 + νT ) �2 + 2 ν ′

T �∂y + ν ′′
T

(
∂2

y + k2
)]

(27)

+ ikx{Ū ′′(y) + γ ′′
u (y, t ) − [Ū (y) + γu(y, t )] �}

)
,

A21(k, t ) := −ikz[Ū
′(y) + γ ′

u(y, t )],

A22(k, t ) := 1

Rτ

[(1 + νT )� + ν ′
T ∂y] − ikx [Ū (y) + γu(y, t )],

where Ū (y) is the streamwise component of the nominal base flow profile ū(y). In a similar
manner as Eq. (8), the operator-valued matrix A can be decomposed into its nominal and perturbed
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FIG. 14. (a) Stability curves for fluctuation dynamics with k = (2.5, 7) in turbulent channel flow subject to
stochastic base flow perturbations following shape functions f (y) corresponding to Eq. (7) (+) and those shown
in Figs. 2(a) (∗) and 2(b) (◦). The shaded areas under the curves denote the variances of stochastic base flow
uncertainty that do not violate MSS [ρ(L) < 1 with α = 1]. The triangle in the upper right corner demonstrates
an R−1

τ slope. (b) Logarithmically scaled critical variance levels of stochastic multiplicative uncertainty γ̄u with
α = 1 and f (y) = Ū (y)/ max(|Ū (y)|) over the horizontal wavenumber spectrum of turbulent channel flow with
Rτ = 186.

components, i.e.,

A(k, t ) = Ā(k) + α γ̄u(t ) Au(k), (28)

where expressions for Ā and Au are given in Appendix C.
We next discretize the differential operators in the linearized equations using N = 151 Cheby-

shev collocation points in the wall-normal direction and study the MSS and frequency response of
the flow fluctuations in the presence of both additive stochastic forcing f and stochastic base flow
perturbations γu. We will assume that perturbations γu enter the dynamics through the same shape
functions considered in the prior section.

A. Stability analysis

For k = (2.5, 7), we analyze the MSS of the linearized NS equations around the DNS-generated
mean velocity profile of turbulent channel flow Ū (y) at Rτ = 186, 547, 934, 2003, and 4179 [64–67].
While we focus on k = (2.5, 7), which is the horizontal wavenumber pair at which the premultiplied
energy spectrum of channel flow at Rτ = 186 peaks, similar stability trends were observed at
other wavenumbers. The stability curves shown in Fig. 14(a) demonstrate the Reynolds number
dependence of the critical variance σ 2

u of stochastic base flow perturbation γu(y, t ). As expected, the
fragility of this mode to base flow perturbations increases as the Reynolds numbers grows apart from
an initial increase observed in the case of full channel perturbations [ f (y) corresponding to Fig. 2(a)]
from Rτ = 186 to 547. The critical variance is found to approximately scale as R−0.2

τ for the two
extreme cases of shape functions in Fig. 2 and to approach Rτ -invariance when perturbations follow
the mean velocity profile [Eq. (7)]. As expected, the linearized dynamics demonstrate a higher
tolerance for stochastic perturbations entering in the near-wall regions, i.e., when f (y) is given by
Fig. 2(b). Similar to the findings of Sec. IV A, the critical variance of turbulent channel flow at any
given Reynolds number Rτ is lowest for length-scales that are short in the streamwise dimension,
but infinitely wide in the spanwise dimension [Fig. 14(b)].

The maximum tolerable variance of stochastic multiplicative uncertainty can provide guidelines
for the number and quality of DNS-generated samples that should be involved in the statistical
averaging process that leads to a stable equilibrium for linearized analysis. We note that for all
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Reynolds numbers studied here, and at all wall-normal locations, the reported variance of the nu-
merically generated turbulent mean velocities is significantly lower than the critical values identified
by our MSS analysis. Nevertheless, one implication of the uncovered Reynolds number dependence
observed in Fig. 14(a) for statistical averaging is that the admissible variance in estimating the
turbulent mean velocity Ū (y) reduces at a much lower rate than R−1

τ . Furthermore, it is evident
from Fig. 14(a) that the dynamics of turbulent fluctuations are generally more robust to base flow
perturbations relative to that of laminar or transitional flow fluctuations.

B. Energy spectrum of velocity fluctuations

We now analyze the effect of base flow perturbations on the energy spectrum of velocity fluctu-
ations. We guarantee MSS by adjusting the variance of base flow perturbations to the maximum
tolerable variance across all wavenumber pairs. For example, when f (y) = Ū (y)/ max(|Ū (y)|),
this critical variance corresponds to the shortest and widest length scales, and is identified as
0.13; see Fig. 14(b). We note that the overall trend observed in Fig. 14(b) along with the critical
variance of the most sensitive mode is invariant to variations in the wall-normal extent of base
flow perturbations dictated by the shape function f (y). The steady-state covariance of velocity
fluctuations in Eqs. (25) can be computed from solving Eq. (16). Following Ref. [19], we select the
covariance of white-in-time forcing to guarantee equivalence between the two-dimensional energy
spectrum of turbulent channel flow and the flow obtained by the linearized NS equations in the
absence of base flow perturbations (γu = 0). This is achieved via the scaling

�(k) = Ē (k)

Ē0(k)
�0(k),

where Ē (k) = ∫ 1
−1 E (y, k) dy is the two-dimensional energy spectrum of a turbulent channel flow

obtained using the DNS-based energy spectrum E (y, k) [64,65], and Ē0(k) is the energy spectrum
resulting from the linearized NS equations in the absence of base flow perturbations and subject to
a white-in-time stochastic forcing f with covariance

�0(k) =
[√

E (y, k) I 0

0
√

E (y, k) I

] [√
E (y, k) I 0

0
√

E (y, k) I

]∗
.

Figure 15(a) shows the premultiplied energy spectrum of turbulent channel flow with Rτ = 186
in the absence of stochastic base flow perturbations [γu(t ) = 0], kxkzE0(k). The changes to the pre-
multiplied energy spectrum kxkzEc(k) due to stochastic multiplicative uncertainties with α = 0.05
entering through various wall-normal regions are shown in Figs. 15(b)–15(d). Since the amplitude
of base flow perturbations is small, the second-order correction to the perturbation series of energy
provides a sufficient approximation of the change to the energy spectrum, i.e., Ec(k) = α2E2.
Figures 15(e)–15(g) consider the case of higher-amplitude base flow perturbations (α = 0.9) on the
premultiplied energy spectrum by kxkzEc(k), where Ec(k) is given in Eq. (18). In computing Ec(k)
for higher amplitude perturbations, the limit was obtained using an 8th-order perturbation series,
i.e., Ec = α2E2 + α4E4 + α6E6 + α8E8, and verified using the Shanks transformation [58,59]. As
evident from the second and third rows of Fig. 15, the influence of base flow perturbations is concen-
trated at an energetically relevant region of the energy spectrum with a maximum at streamwise and
spanwise wavenumbers that are slightly higher than those corresponding to the peak of the nominal
energy spectrum [Fig. 15(a)]. Similar to the results presented in the previous subsection, stochastic
base flow perturbation cannot influence streamwise streaks, which is because of the structure of
Au(k) at kx = 0; see Appendix C. Finally, as shown in Fig. 16, the total effect of stochastic base
flow uncertainty of various amplitude, which can be quantified as

∫
k Ec(k) dk/

∫
k E0(k) dk, follows

a similar trend to what was observed for laminar flows (cf. Fig. 10).
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FIG. 15. (a) Premultiplied energy spectrum of turbulent channel flow with Rτ = 186 in the absence of
stochastic base flow perturbations [E0(k)]. (b)–(g) Corrections to the premultiplied energy spectra Ec(k) of
turbulent channel flow Rτ = 186 due to stochastic multiplicative uncertainty γu with variance σ 2

u = 0.13 and
perturbation amplitudes α = 0.05 (second row) and α = 0.9 (third row) that follow perturbations shapes f (y)
corresponding to Eq. (7) (b), (e), Fig. 2(a) (c), (f), and Fig. 2(b) (d), (g).

C. Maximally affected flow structures

For a turbulent channel flow with Rτ = 186, we follow a similar procedure as Sec. IV C
in analyzing the flow structures that are influenced by base flow perturbations with f (y) =
Ū (y)/ max(|Ū (y)|), α = 1, and the critically stable variance σ 2

u = 0.7. Figure 17 shows the con-
tribution of the first eight eigenvalues of �(k) to the kinetic energy at the wavenumber pair
corresponding to the maximum amplification in Fig. 15(e), i.e., (kx, kz ) = (1.86, 1.94). Base flow
perturbations significantly increase the dominance of the principal eigenvalue (from 22% of the
total energy in the unperturbed state to approximately 36%). Figure 18 depicts the flow structures
corresponding to the streamwise component of the most significant eigenmode in the absence and
presence of streamwise base flow perturbations. It is evident that base flow perturbations shift the
core of these energetic flow structures along with the counter-rotating vortical structures away from
the wall while increasing the inclination of the flow structures to the wall.
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FIG. 16. The total effect of stochastic perturbations of amplitude α on the energy spectrum of turbulent
channel flow with Rτ = 186. The curves demonstrate the α dependence of the energy correction due to base
flow perturbations entering the dynamics through the shape functions f (y) corresponding to Eq. (7) (+), in
addition to those depicted in Figs. 2(a) (∗) and 2(b) (◦).

VI. REYNOLDS NUMBER DEPENDENCE

In this section, we analyze the Reynolds number dependence of the energy spectrum of stream-
wise constant velocity fluctuations (kx = 0) in Poiseuille and Couette flows subject to streamwise
base flow perturbations γu. For any finite R, we assume the dynamics of such fluctuations to be
MSS. Theorem 1 establishes an explicit Reynolds number scaling for the energy spectrum E (kz ) of
streamwise constant fluctuations in channel flow subject to streamwise base flow uncertainty.

Theorem 1. The variance amplification of streamwise constant velocity fluctuations in channel
flow with nominal velocity Ū (y) subject to base flow perturbations is given by

E (kz ) = f (kz ) R + g(kz ) R2 + h(kz ) R3, (29)

where functions f , g, and h are independent of R.

A proof for this theorem is provided in Appendix D where it is shown that functions f , g, and h
represent traces of the solutions to Lyapunov equations which scale as R, R2, and R3, respectively.
The function f does not depend on Ū (y) and is thus the same for both Poiseuille and Couette

FIG. 17. Contribution of the first eight eigenvalues of the velocity covariance matrix � of channel flow in
the absence (∗), and presence (◦) of base flow perturbations with f (y) = Ū (y)/ max(|Ū (y)|) and amplitude
α = 1 in turbulent channel flow with Rτ = 186 at (kx, kz ) = (1.86, 1.94).
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FIG. 18. The streamwise component of the dominant flow structures of turbulent channel flow with Rτ =
186 and (kx, kz ) = (1.86, 1.94) in the absence (a) and presence (b) of stochastic base flow perturbations of
amplitude α = 1, shape f (y) = Ū (y)/ max(|Ū (y)|), and variance σ 2

u = 0.49. The three columns correspond
to: (left) the spatial structure of the eigenmodes with red and blue colors denoting regions of high and low
velocity; (middle) the streamwise velocity at z = 0; and (right) the y-z slice of streamwise velocity (color
plots) and vorticity (contour lines) at the streamwise location indicated by the dashed vertical lines in the
middle panel.

flows. On the other hand, functions g and h depend on the underlying parallel base flow due to their
dependence on the nominal shear Ū ′(y). In nominal conditions, the energy spectrum of streamwise
constant velocity fluctuations of channel flow can be decomposed into two components that scale
with R and R3 [11, Corollary 4]. The effect of base flow uncertainty is exclusively captured by
the function g, which introduces a R2 scaling to the energy spectrum of velocity fluctuations; see
Appendix D for details. In a similar manner, Theorem 2 uses a perturbation analysis to elucidate the
Reynolds number dependence of changes to the energy content of streamwise elongated structures
when the amplitude of base flow perturbations is small.

Theorem 2. The variance amplification of streamwise constant velocity fluctuations in channel
flow with nominal velocity Ū (y) subject to small-amplitude base flow perturbations is given by

E (kz ) = E0(kz ) + α2 E2(kz ) + O(α4),

where

E0(kz ) = f (kz ) R + h(kz ) R3, E2(kz ) = g(kz ) R2.

The term E0 denotes the nominal energy, E2 captures the effect of base flow perturbations at the
level of α2, and functions f , g, and h are independent of R.

A proof for this theorem is provided in Appendix E. Note that for α = 1, the functions f , g
and h are the same in both Theorems. It is also evident that unless the amplitude α of base flow
perturbation is sufficiently large, the energetic contribution of h(z)R3 will dominate the energy of
streamwise constant flow fluctuations especially at high Reynolds numbers.
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FIG. 19. The kz-dependence of functions (a) f , (b) h, and (c) g in Eq. (29) for Couette flow with
R = 500 (—) and Poiseuille flow with R = 2000 (−−) subject to base flow perturbations of shape f (y) =
Ū (y)/ max(|Ū (y)|) of variance σ 2

u = 1.13 × 105 and σ 2
u = 3.22 × 103, respectively. The function f , which is

responsible for the O(R) energy amplification is the same for both Couette and Poiseuille flows.

Figure 19 illustrates the kz dependence of functions f , g, and h for streamwise constant laminar
channel flow subject to both white-in-time exogenous excitation and white-in-time base flow
perturbations with f (y) = Ū (y)/ max(|Ū (y)|). As explained above, and shown in Appendices D and
E, the function f is independent of the choice of base flow, and is thus, identical for both Couette
and Poiseuille flows; see Fig. 19(a). Figure 19(b) shows the dependence of h on the spanwise
wavenumber kz for Couette flow with R = 500 and Poiseuille flow with R = 2000. For both flows,
the function h, which corresponds to the dominant Reynolds number scaling (O(R3)) at high
Reynolds numbers, peaks at around the same spanwise wavenumbers (kz = 1.59 and 2.09 in Couette
and Poiseuille flows, respectively) as their nominal spectral energy peak (cf. Fig. 6). In the presence
of streamwise base flow perturbations γ̄u with α = 1 and variance levels corresponding to the
critical variances obtained from Fig. 5 at kx = 0, the energy of streamwise constant fluctuations is
complemented with the additional term g, which scales as R2. Figure 19(c) shows the kz dependence
of this function for Couette and Poiseuille flows. The spanwise wavenumbers at which the function
g peaks for these two flows (kz = 1.91 and 3.02, in Couette and Poiseuille flows, respectively) is
in agreement with the energy spectra in Figs. 9(a) and 9(b) for kx ≈ 0. To further elucidate the
dependence of g on the variance of streamwise base flow perturbations, we compute this function
for various spanwise wavenumbers kz and a range of variances σ 2

u for which MSS is guaranteed;
see Fig. 20. As shown in Fig. 20, for the range of considered variances, the dependence of g on kz

predominantly follows the trends observed in Fig. 19(c).

Remark 3. We note that the generalization of Theorems 1 and 2 or the development of similar
results for streamwise constant turbulent channel flows is inhibited by the involved Reynolds
number dependence of the nominal mean velocity profile Ū (y), its wall-normal derivative Ū ′(y),
and the turbulent viscosity νT (y) per Eq. (26).

VII. CONCLUDING REMARKS

In the present study, we have developed an input-output framework for studying the influence
of persistent stochastic base flow perturbations on the stability and energy content of velocity
fluctuations in wall-bounded shear flows. We have provided verifiable conditions for the MSS
of the linearized dynamics subject to stochastic base flow variations and have shown that the
second-order statistics of fluctuations around the uncertain base state can be obtained as solutions
to a generalized Lyapunov equation. We have used this framework to perform a thorough study of
the effects of white-in-time structured stochastic base flow variations on transitional and turbulent
channel flows. For transitional flows, the Reynolds number dependence of critical uncertainty
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FIG. 20. Logarithmically scaled terms that are responsible for the O(R2) energy amplification in Eq. (29)
(log10[g(kz, σ

2
u )]) as a function of spanwise wavenumber kz and base flow perturbation variance σ 2

u . Perturba-
tions to the base flow follow f (y) = Ū (y)/ max(|Ū (y)|). (a) Couette flow with R = 500; and (b) Poiseuille
flow with R = 2000.

variances uncovered by our method are in agreement with previously reported scaling laws for the
magnitude of deterministic base flow variations. We have shown that in both laminar and turbulent
flows, shorter (in x) and wider (in z) wavelengths are least susceptible to base flow variations. Our
results provide further evidence for the robustness of turbulent flows relative to their transitional
counterparts. Furthermore, we observe a significantly weaker power-law dependence on the friction
Reynolds number for the critical variance of stochastic perturbations to the DNS-based turbulent
mean velocity relative to the power-law dependence extracted for laminar profiles.

In laminar flow, channel-wide base flow perturbations predominantly affect the oblique modes,
especially those with kx ≈ O(1) and kz ∼ O(1). On the other hand, near-wall perturbations result
in the dominant amplification of TS waves. Our results show that the amplification of streamwise
elongated structures is relatively robust to base flow perturbations, especially if such perturbations
are confined to the near-wall region of the flow. We have shown that the latter is due to the structure
of dynamical perturbations induced by streamwise base flow variations at kx = 0 and that streaks
would also become susceptible to such sources of uncertainty if variations were allowed to enter
other components of the base state. We demonstrate that large-amplitude base flow perturbations
can influence the distribution of energy among various length scales and lead to the dominance
of flow structures that are significantly different from those that dominate the nominal flow.
Notably, perturbations of the Poiseuille flow result in an increase in the energetic dominance of
the principal mode that is excited by persistent stochastic excitations. In turbulent channel flow,
base flow variations influence both oblique and streamwise elongated structures to a greater extent
than two-dimensional TS modes. They also increase the wall-normal separation of dominant flow
structures as well as their inclination to the wall. Regardless of their wall-normal extent, however,
the effect of base flow perturbations on turbulent flows is significantly less than what is observed
for laminar flows.

In addition to studying the dependence of the energy spectrum on spatial frequencies, we uncover
the Reynolds number dependence of the energy of streamwise elongated fluctuations in the presence
of streamwise perturbations of Poiseuille and Couette flow profiles. We show that the contribution of
such perturbations to the amplification of streaks scales as R2, which trails the R3 scaling of energy
amplification under nominal conditions. This scaling trend further explains the robust amplification
of such flow structures, especially at high Reynolds numbers.

The utility of the proposed input-output framework goes beyond the analysis of streamwise base
flow perturbations in laminar and turbulent flows by allowing for structured stochastic uncertainty
to enter other components of the velocity field. Such uncertainty may originate from exogenous
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sources that influence the long-time behavior of the flow, e.g., surface-mounted actuators or
roughness elements. Given the influence of base flow variations on the second-order statistics of
the linearized NS equations, it is also anticipated that the statistics of this source of multiplicative
uncertainty can be shaped to model turbulence. The development of a systematic framework for
modeling turbulent flow statistics via stochastic base flow variations is a topic for future research that
would directly uncover essential dynamical perturbations that account for the absence of nonlinear
interactions in linearized models.

APPENDIX A: OPERATORS Ā, Au, AND Aw IN EQ. (8)

Operators Ā, Au, and Aw in Eq. (8) are given by

Ā(k) =
[

Ā11 0

Ā21 Ā22

]
, Ā11(k) = �−1

[
1

R
�2 + ikx(Ū ′′ − Ū�) + ikz(W̄ ′′ − W̄ �)

]
,

Ā21(k) = −ikz Ū ′ + ikx W̄ ′, Ā22(k) = 1

R
� − ikx Ū − ikz W̄ ,

Au(y, t ) =
[
�−1 ikx( f ′′

u − fu �) 0

−ikz f ′
u −ikx fu

]
,

Aw(y, t ) =
[
�−1 ikz( f ′′

w − fw �) 0

−ikx f ′
w −ikz fw

]
.

APPENDIX B: PERTURBATION ANALYSIS FOR SOLVING
THE GENERALIZED LYAPUNOV EQ. (19)

The solution to Eq. (19) can be efficiently computed using a perturbation analysis in α. Following
the form of the perturbed dynamical matrix A in Eq. (8), for sufficiently small α, the solution X can
be expanded using the perturbation series,

X (k) = X0(k) + α X1(k) + α2 X2(k) + . . . . (B1)

Substituting Eq. (B1) into Eq. (19) and collecting powers of α yields the sequence of standard
algebraic Lyapunov equations,

α0 : Ā X0 + X0 Ā∗ = −B � B∗,
(B2)

αn : Ā Xn + Xn Ā∗ = −[δ(n − 1) − 1]
(
σ 2

u Au Xn−2 A∗
u + σ 2

w Aw Xn−2 A∗
w

)
,

where δ(n) is the discrete delta function. Based on this perturbation expansion, Xn = 0 for odd
values of n. This is because the right-hand-side of the algebraic Lyapunov equation is 0 for odd n.
As a result, the structure identified for the steady-state covariance matrix X follows the perturbation
series given in Eq. (21). For small-size perturbations similar to those considered in Sec. IV, the
limit of the perturbation series (22) can be obtained with one or two perturbation terms to E0. As
mentioned in Sec. IV B, the Shanks transformation can be used to overcome the problem of slow
convergence or even divergence of the sequence when the perturbation amplitude α is large.

APPENDIX C: OPERATORS Ā AND Au IN EQ. (28)

Operators Ā and Au in Eq. (28) are given by

Ā(k, t ) :=
[

Ā11 0

Ā21 Ā22

]
,
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Ā11(k, t ) = �−1

{
1

Rτ

[
(1 + νT ) �2 + 2 ν ′

T �∂y + ν ′′
T

(
∂2

y + k2
)] + ikx(Ū ′′ − Ū �)

}
,

Ā21(k, t ) = −ikz Ū ′, Ā22(k, t ) = 1

Rτ

[(1 + νT ) � + ν ′
T ∂y ] − ikx Ū,

Au(y, t ) =
[
�−1 ikx( f ′′

u − fu �) 0

−ikz f ′
u −ikx fu

]
.

APPENDIX D: PROOF OF THEOREM 1

For streamwise constant channel flow (kx = 0), the dynamic operators Ā and Au in Eq. (19) are
given by

Ā =
[

(1/R)L 0

Cp (1/R)I

]
, Au =

[
0 0

−ikzγ
′
u(y, t ) 0

]
, (D1)

where the operators L , Cp and I are parametrized by the spanwise wavenumber kz and the
Reynolds number R. Moreover, assuming a solenoidal white-in-time exogenous excitation f with
covariance � = I , we will have B�B∗ = I . Let the state covariance X take the form

X =
[

X1 X2

X ∗
2 X3

]
. (D2)

Substituting this matrix together with those in Eq. (D1) into Eq. (19) yields the set of coupled
Sylvester equations:

L X1 + X1 L ∗ = −R I,

L X2 + X2 I ∗ = −R X1 C ∗
p ,

I X3 + X3 I ∗ = −R
(
Cp X2 + X ∗

2 C ∗
p − α2 σ 2 k2

z γ ′
u X1 γ ′

u + I
)
.

From these equations it is evident that X1 and X2 scale as R and R2, respectively, and as a result,
X3 will contain terms that scale with all orders O(R), O(R2), and O(R3). Let X1 = R X̃1 and
X3 = R X̃3,1 + R2X̃3,2 + R3X̃3,3. Thus, the variance amplification E = trace(CXC∗) of streamwise
constant fluctuations can be decomposed as

E = R f + R2 g + R3 h,

where f := trace[C (X̃1 + X̃3,1)C∗], g := trace(C X̃3,2 C∗), and h := trace(C X̃3,3 C∗).

APPENDIX E: PROOF OF THEOREM 2

For streamwise constant channel flow (kx = 0), substituting the dynamic operators Ā and Au from
Eq. (D1) together with the perturbation series (21) for covariance matrix X in its block operator form
[cf. Eq. (D2)] into Eq. (19) yields the set of coupled Sylvester equations:

L X1,0 + X1,0 L ∗ = −R I,

L X2,0 + X2,0 I ∗ = −R X1,0 C ∗
p ,

I X3,0 + X3,0 I ∗ = −R (Cp X2,0 + X ∗
2,0 C ∗

p + I )

at the level of α0, and

I X3,2 + X3,2 I ∗ = σ 2 k2
z R γ ′

u X1,0 γ ′
u
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at the level of α2. Here, we have assumed solenoidal white-in-time exogenous excitation f with
covariance � = I , which yields B�B∗ = I , and Xi, j denote the ith block [cf. (D2)] of the jth
term in the perturbation series (21). The nominal variance amplification can be computed as
E0 = trace(CX0C∗) = R f + R3 h with functions f and h following the forms described in Ap-
pendix D, i.e., f := trace[C (X̃1,0 + X̃3,0,1)C∗] and h := trace(C X̃3,0,3 C∗), where X1,0 = R X̃1,0

and X3,0 = R X̃3,0,1 + R3 X̃3,0,3. On the other hand, since the exogenous forcing does not include
a contribution at the level of α2, X1,2 = X2,2 = 0, X3,2 = R2 X̃3,2, and E2 = trace(C X2 C∗) = R2 g
with g := trace(C X̃3,2 C∗).
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