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We investigate by direct numerical simulation (DNS) the dynamics of a liquid metal in
a cylindrical cell under the conjugate effects of a temperature gradient and an ac magnetic
field. These numerical simulations are performed for a range of Hartmann and shielding
parameters, 30 � Ha � 301 and 1 � Sω � 68, which correspond to intermediate regimes
between low and high frequency of the applied magnetic field. The scales of the physical
parameters are discussed in order to analyze the DNS results. In our simulations, the
Lorentz force overbalances the buoyancy force and is responsible for the flow patterns
made of two tori. Each torus is characterized by a different average temperature which
leads to different temperature gradients at the bottom and the top walls, and consequently
different heat transfer to the outside. Thermal plumes advected between the two tori
appear intermittently. The Lorentz force enhances the thermal exchanges even at a low
Ha. We establish that a single master curve represents the evolution of the heat transfer
characteristic of the different cases by plotting the Nu/Pe vs QJ/Qc, where Nu and Pe are
the Nusselt and Péclet numbers, and QJ and Qc are the total power deposited by the Joule
effect and the total power transferred without motion, respectively.

DOI: 10.1103/PhysRevFluids.7.073701

I. INTRODUCTION

The dynamics of conducting liquids under an electromagnetic field and a temperature gradient
combines the effects of Rayleigh-Bénard convection (RBC), Joule heating, and Lorentz force. Such
a situation is encountered in metallurgy [1,2] and liquid metal batteries [3], but also in the nuclear
industry to simulate experimentally severe accidents [4]. The question of how the liquid dynamics
govern the heat transfer is central in an academic context, but also to design technological systems.

For a given geometry characterized by the aspect ratio, the standard RBC is controlled by two
dimensionless numbers, the Rayleigh number, Ra = gβ�T0L3

αν
, and the Prandtl number, Pr = ν

α
,

where L and �T0 are the characteristic length and the temperature difference; ν, α, and β are
the liquid viscous and thermal diffusion coefficients and the liquid thermal expansion coefficient,
respectively; and g is the gravitational acceleration. Grossmann and Lohse [5] have established the
existence of four turbulent flow regimes characterized by scaling laws of the Reynolds number Re
and the Nusselt number Nu, as functions of Ra and Pr, based on the kinetic and thermal dissipation
rates in the bulk and in the boundary layer. Here Re and Nu are defined as Re = UL

ν
and Nu = hL

κ
,

where U is the referenced velocity, h is the heat transfer coefficient, and κ is the thermal conduc-
tivity of the fluid. Typically, for metal liquids with Pr ∼ 10−2 and Ra ∼ 106, Re ∼ Ra1/2Pr−3/4

and Nu ∼ Ra1/4Pr1/8. However, the regimes are sensitive to the difference between the relative
orientation of the temperature gradient and gravity acceleration [6,7].
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A uniform heat generation in a fluid with no applied temperature difference between the top and
the bottom of the cell induces fluid convection responsible for the temperature profile in the fluid.
Under these conditions, the heat transfer is directly given by the maximum temperature difference
and obeys to the same scaling law as in standard RBC (Nu ∼ Ra1/4) [8,9]. These results are in
agreement with the qualitative observations of Tritton and Zarraga [10]. For an infinite horizontal
liquid layer, Xiang and Zikanov have shown that the condition for the onset of motion is significantly
modified with respect to standard RBC, as three-dimensional (3D) convection cells are present at
subcritical Rayleigh numbers [11]. To our knowledge, there are few studies on the fluid dynamics
when a temperature gradient is superimposed to an internal heating. The linear stability analysis
points out that the critical Rayleigh number decreases with the magnitude of the internal heating
[12] and shows new destabilization hydrodynamics patterns resulting from the coupling between
RBC and internal heating dynamics.

The stirring effects of an isothermal liquid metal by an alternating magnetic field depend on
three dimensionless numbers, the magnetic Reynolds number, Rem = UL

η
; the shielding parameter,

Sω = 2 L2

δ2 ; and the Hartmann number, Ha = B0L
√

σ
ρν

, where B0 is the magnitude of the magnetic
field, σ and ρ are the electrical conductivity and mass density of the fluid, η is the magnetic diffusion
coefficient, and δ is the skin depth. It has been shown that for Rem � 1, the kinetic energy of the
fluid presents a maximum value for Sω ≈ 20 and decreases for higher Sω [13,14]. The Lorentz force,
responsible for the flow, is distributed in the skin depth, which is a function of the ac pulsation ω:
δ =

√
2η

ω
. Experiments show that the turbulent fluctuations are uniformly distributed in the bulk

at low frequency. In contrast, they are mainly concentrated in the skin depth with a decrease of
the integral scale at high frequency [14]. For Rem � 20 and a uniform external magnetic field, a
quasilinear approximation of the magnetic diffusion equation can be used [15]. By accounting for
the Hartmann layer thickness, the scaling relation of Grossmann and Lohse [5] for standard RBC has
been extended to the magnetoconvection subject to a steady vertical magnetic field [16]. Recently,
Akhmedagaev et al. [17] have simulated the fluid dynamics when the Lorentz force is coupled with
RBC at a constant and uniform external magnetic field. They have found that for a high Hartmann
number Ha, the flow pattern becomes quasi-two-dimensional with a structure reminiscent of vortex
sheets. These structures are not observed at small Ha, Ha � 50, and close to the marginal stability
limit, for which three-dimensional patterns are persistent [18]. Under these conditions, the Lorentz
force stabilizes the flow, and the turbulent fluctuations are damped.

Renaudière de Vaux et al. [19] have studied by direct numerical simulation (DNS) the desta-
bilization of a liquid metal layer under the RBC conditions where an ac magnetic field produces
heating by Joule effects (in this configuration, the Lorentz force has no effect). The DNS points out
that the average kinetic energy of the fluid is independent of Sω and is a linear function of Ra based
on a temperature scale defined by the Joule power heating. At low values of Ra � 105, the average
temperature of the liquid varies as Ra−1/5. A very recent numerical study in an axisymmetrical
geometry investigates convection of metal heated by Joule effects in the presence of both Lorentz
and buoyancy forces [20]. The authors found that the kinetic energy scales as Ha2

Prm
, where Prm = ν

η

is the magnetic Prandtl number. According to the dimensionless number definitions used by the
authors, and considering the simulations are close to the marginal stability limit, we find again that
the kinetic energy varies as Ra.

The literature analysis presented above is nonexhaustive, but clearly shows the difficulties in
building a general understanding of the dynamics of liquid metal submitted to an ac magnetic field
under RBC conditions. Indeed, the number of physical parameters, such as the geometry and the
topology of the different fields (magnetic field, temperature gradient, acceleration of gravity, ...),
is seldom the same from one study to another. Furthermore, this analysis reveals the importance
of defining appropriately the relevant scales of the physical system. This point is critical for the
definition of the temperature scale because it fixes Ra and the scaling laws between Re and Nu with
this number.
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FIG. 1. Geometry of the Rayleigh-Bénard cell. Top and bottom wall temperatures are T2 and T1, respec-
tively, and the vertical wall is thermally insulated. The cell is filled with a liquid metal. The ratio of the gap
between the coil and the liquid metal and the height is e/H = 0.15. The walls and the external medium are
electrically nonconducting. The magnetic field is generated by an external electrical coil. As an example,
magnetic field lines have been drawn at Sω = 15.

The general results can be summarized as follows.
(i) In the RBC literature, Ra is simply calculated by the applied temperature difference. The

dynamics are characterized by rolls at moderate Ra, and the average kinetic energy scales in Ra.
(ii) When the fluid is heated internally by a uniform source, the flow patterns are similar to those

of RBC for Ra defined by the maximum average temperature difference in the liquid.
(iii) An external dc magnetic field has the main effect of mitigating the turbulent fluctuations,

and it changes the flow pattern into quasi-two-dimensional structures at high Ha.
(iv) With an ac external magnetic field, the kinetic energy of the fluid reaches a maximum value

when Sω is increased with a stirring effect inside the bath.
(v) When the effect of the Lorentz force is negligible and the temperature scale is defined by

internal heat generation by the Joule effect, the average kinetic energy scales again as Ra.
(vi) Finally, there are very few studies on the heat transfer when RBC, Joule heating, and Lorentz

force control the flow dynamics.
This paper aims to study the magnetoconvection of a liquid metal in a vertical cylinder. In this

paper, we study by numerical simulations the dynamics of the liquid metal when an ac magnetic
field and a temperature difference are applied to the cylinder. In such a situation, the velocity and
temperature fields result from the coupling, on the one hand, of the Lorentz and the buoyancy
forces and, on the other hand, of the Joule effect and the temperature gradient. The simulations
are realized under the interesting conditions where the Lorentz force is dominating while the Joule
effect and the temperature gradient both contribute weakly to the global dynamics and heat transfer.
With these conditions, we find that the heat transfer is at first order controlled by forced convection
with intermittent perturbations due to buoyancy. The paper is organized as follows. In Sec. II, the
system is described and the equations for the flow and the heat transfer are presented. An important
discussion on the scales of the system is also given in this section. The numerical simulations are
introduced in Sec. III, and the results are discussed in Sec. IV.

II. PHYSICS OF THE STUDIED SYSTEM

We consider a vertical cylinder of aspect ratio H/D = 1, where H and D are its height and
diameter (see Fig. 1), filled with a liquid metal (Pr = 2.98×10−2, Prm = 1.35×10−6). The top and
the bottom walls are supposed to remain at constant temperatures, respectively, T2 and T1. The
temperature difference �T0 = T1 − T2 is fixed in this study and the Rayleigh number based on this
scale is Ra = 3.86×106, larger than the critical value characteristic of RBC (Rac = 2261.86 [21]).
The vertical wall is assumed to be a perfect electrical and thermal insulator, and the no-slip condition
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TABLE I. Values of the parameters B0, Sω, Ha, Re, Rem, and Ra of the DNS for three different values of I0

and six frequencies f .

I0 (A) 10 50 100

f (Hz) 15 150 300 500 750 1000 15 150 300 500 750 1000 15 150 300 500 750 1000

B0×103 (T) 7.16 35.81 71.63

Sω 1 10 15 20 34 68 1 10 15 20 34 68 1 10 15 20 34 68

Ha 30 151 301

Re×10−3 5.02 6.07 5.41 6.05 5.64 5.41 7.18 33.10 29.65 29.74 28.80 27.69 15.6 78.02 70.71 69.32 66.59 66.90

Rem×102 0.67 0.82 0.73 0.82 0.76 0.73 0.97 4.46 4.00 4.00 3.88 3.73 2.11 10.52 9.53 9.34 8.98 9.02

Ra×10−6 3.86

at all boundaries is imposed for the fluid velocity u. An axisymmetric ac magnetic field, B(r, t ), is
generated by an electrical current, I0, through a coil positioned around the cylinder. The two control
parameters are Sω and Ha and vary in the ranges 1 � Sω � 68 and 30 � Ha � 301 (Table I). We
have also considered the reference case B = 0 (Ha = 0) corresponding to standard RBC.

The magnetic induction in a liquid metal results from the time variation of B(r, t ) and the velocity
of the liquid. The magnetic field in the liquid can be expressed as the sum of the magnetic field in
the absence of motion, B0(r, t ), and the perturbation due to the velocity field, b(r, t ). The induction
equation for b(r, t ) is then

∂t b = η∇2b + ∇ × (u × b) + ∇ × (u × B0). (1)

The ratio of the magnitude of the first and second terms on the right-hand side of this equation is
the magnetic Reynolds number, Rem. The nonlinear term of Eq. (1) is, therefore, negligible when
Rem � 1.

At small frequency, i.e., Sω ∼ 1, and Rem � 1, Eq. (1) yields the quasistatic diffusion equation,
which implies b0

B0
∼ O(Rem), where b0 is the scale of the perturbation field. This result has been

confirmed in Ref. [15] for a dc magnetic field up to Rem = 1. At high frequency, i.e., Sω ∼ 100, the
quasistatic assumption is not valid, and the natural length scale is δ, the penetration depth of B0(r, t ).
Under this condition, the three linear terms in Eq. (1) are of the same order of magnitude, and
b0
B0

∼ O( Rem√
Sω

). Moreover, the perturbation terms in the Lorentz force can be neglected if Rem � 1

and
√

2Sω

Rem
� 1 (see the Appendix). In this case, it is not necessary to solve b(r, t ). These conditions

on Rem and Sω are verified in all our DNSs (Table I). We have assumed that the magnetic field in
the liquid metal is then given by the static case, B(r, t ) = B0(r, t ), and the Lorentz force is FL =
1
μ0

(B0 · ∇B0 − ∇ B2
0

2 ). Assuming the liquid metal is incompressible, the second term contributes
only to the hydrostatic pressure.

The magnetic and electrical fields, B0 and E0, applied to the liquid metal are the solution of the
following set of equations:

∇ · B0 = 0, (2a)

∂t B0 = −∇ × E0, (2b)

∇ × B0 = μ0[J0 + Je(t )], (2c)

J0 = σE0, (2d)

where J0 and Je(t ) are the current density vectors in the liquid metal and in the coil, respectively.
Solving for B0, the Lorentz force can be computed for different values of I0 and Sω. As an example,
the left part of Fig. 2 presents the spatial distribution of the norm of the first term of FL for Sω = 10
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FIG. 2. Distribution of | 1
μ0

B0 · ∇B0| responsible for the fluid motion (left part of the cell cross section) and
qJ (right part) for I0 = 1 A and Sω = 15.

and I0 = 1 A. This figure shows that the force is localized at the two corners, top and bottom, of

the cylinder. The right part of Fig. 2 presents the power density qJ = J2
0

σ
= η

μ0
(∇ × B0)2 due to the

Joule effect at Sω = 10, which is localized in the skin depth close to the vertical wall. The details of
the computation of the field B0, used to compute both the Lorentz force and the Joule heating, are
given in the next section.

The total power deposited by the Joule effect in the liquid metal, QJ = ∫
qJ dV , normalized by

the heat transferred by pure conduction, Qc = k�T0
πD2

4H , is plotted as a function of Sω [Fig. 3(a)].
This curve shows that there are two asymptotic behaviors: the power scales as S2

ω for Sω < 1 and√
Sω for Sω > 100. In parallel, the spatially averaged amplitude of the Lorentz force, normalized by

the buoyancy force, FB = ρgβ�T0
π
4 D2H , scales as Sω, for Sω < 1, and is constant for Sω > 100.

We find that these scaling relations are the same as in the case of an infinite cylinder. In this work,
all the simulations are realized in the intermediate region, i.e., 1 < Sω < 100.

(a) (b)

FIG. 3. (a) Joule heating total power QJ in the liquid metal volume normalized by Qc versus the shielding
parameter Sω. (b) Volume-average Lorentz force normalized by FB versus the shielding parameter Sω. Each
curve is computed at I0 = 1 A; the power laws in Sω are mentioned on each curve. The colored domain indicates
the range of variation of Sω for the DNS.
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The motion of the liquid metal is governed by the Oberbeck-Boussinesq equations, including the
additional Lorentz force and Joule heating:

∂u
∂t

+ u∇u = − 1

ρ
∇P + ν�u + βT g + 1

ρμ0
B0 · ∇B0, (3a)

∂T

∂t
+ u · ∇T = α�T + J2

0

ρcpσ
, (3b)

∇ · u = 0. (3c)

In the momentum equation (3a), P is the total pressure including the magnetic pressure. In addition,
the two forces responsible for the flow are the buoyancy force and the Lorentz force. T is the
temperature relative to the top temperature T2, and cp is the specific heat of the liquid metal. For
the heat equation (3b), the two source terms are �T0 imposed at the boundaries and the Joule
heating in the volume. We recall that the boundary conditions are a no-slip condition on the walls
for the velocity, Dirichlet conditions on top and bottom walls for the temperature with the difference
amplitude �T0, and an adiabatic condition on the vertical wall.

To obtain dimensionless equations, it is necessary to define the characteristic scales of the
simulated system. We can define two velocity scales from the buoyancy force and the Lorentz
force, UB = √

gβ�T H and UL = B0/
√

μ0ρ, respectively. UL is also known as the Alfvén velocity.
The temperature scale �T is either �T0 or �TL, the characteristic temperature difference due to the
Joule effect obtained by an energy balance:

�TL = 〈qJ〉
ρcp

H

U
, (4)

where 〈qJ〉 is the volume average of the power density amplitude, and U is the reference velocity
UB or UL. Depending on the choice of U , two definitions of �TL follow with different scalings at
high and low frequencies:

(i) for U = UB: �TL ∼ S2
ωHa2 at Sω < 1, and �TL ∼ SωHa2 at Sω > 1;

(ii) for U = UL: �TL ∼ S2
ωHa at Sω < 1, and �TL ∼ SωHa at Sω > 1.

Four regimes appear when UL/UB is plotted versus �TL/�T0:
(i) �TL < �T0 and UL < UB: dynamics is piloted by the buoyancy force giving a RBC flow

pattern;
(ii) �TL > �T0 and UL < UB: dynamics is controlled by the buoyancy force and the volume

heating by the Joule effect;
(iii) �TL < �T0 and UL > UB: the Lorentz force governs the dynamics, but the heat transfer is

due to the imposed temperature difference �T0;
(iv) �TL > �T0 and UL > UB: the Lorentz force and the heating by the Joule effect dominate.
Figure 4 shows that our numerical simulations are realized in a regime where the Lorentz force

is prominent and the heat transfer is controlled by the wall temperature difference �T0. Hence, the
interest of these simulations is to study the dynamics of the liquid metal under forced convection by
the Lorentz force, perturbed by the Joule heating and the buoyancy force.

Based on the previous scales (H for length, �T0 for temperature, UL for velocity, H/UL for time,
ρU 2

L /2 for pressure, B0 = μ0nI0/H for magnetic field, where n is the number of turns of the coil,
σωHB0 and σωδB0 at low and large frequencies, respectively, for the electrical current density),
one can write the dimensionless physical equations of our problem:

∂u
∂t

+ u∇u = −∇P +
√

Prm

Ha
�u + RaPrm

PrHa2 T · ez + Sk
ωB0 · ∇B0, (5a)

∂T

∂t
+ u∇T =

√
Prm

HaPr
�T + S2k

ω Ha
√

Prm�J2
0, (5b)

∇ · u = 0. (5c)
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FIG. 4. Map of the regimes of the magnetoconvection in the Rayleigh-Bénard cell. Symbols correspond to
DNS: I0 = 10 A (•), 50 A (×), and 100 A (+).

In these equations, the buoyancy force per unit volume varies as RaPrm

Ha2Pr
. One notes that the mag-

nitude of the Joule heating source term is �Ha
√

PrmSω and FL ∼ √
Sω for Sω > 10 (k = 1/2),

and �Ha
√

PrmS2
ω and FL ∼ Sω for Sω < 10 (k = 1), where � = η2

cp�T0H2 . For all the numerical

simulations, � is fixed and equal to 1.4×10−3.

III. NUMERICAL SIMULATIONS

For the simulations, we consider a cylinder filled with a liquid metal (Galinstan) and submitted to
a temperature difference of 10 K (top and the bottom temperatures are 293 and 303 K, respectively).
The magnetic field within the cell is computed with COMSOL for the different values of current
intensity and frequency listed in Table I. The Maxwell equations (2) have been solved in 2D
axisymmetric geometry for H = D = 0.1 m and a coil of rectangular section 5×5 mm2 having
19 turns and 3 layers. The gap between the coil and the liquid metal is 15 mm. The results for a
structured grid Nr×Nz = 512×1024 have been compared and validated with MAXWELL ANSYS.

The liquid metal has the following properties: ρ = 6300 kg m−3, σ = 3.46×106 S m,
ν = 3.10×10−7 m2 s−1, β = 1.27×10−4 K−1, α = 1.08×10−5 m2 s−1, and cp = 370 J kg−1 K−1.
Values of Sω and Ha are summarized in Table I. As an illustration, the magnetic field lines are
displayed in Fig. 1 for Sω = 15. Equations (5) are solved with the finite volume code JADIM. This
code uses a third-order Runge-Kutta scheme for temporal integration. The spatial derivatives are
calculated with second-order accuracy. Incompressibility is achieved through a projection method.
The viscous terms are calculated using a semi-implicit Crank-Nicolson scheme. The description
of the numerical methods used in the computations can be found in Ref. [22]. The 3D mesh in
cylindrical coordinates is chosen in order to respect the DNS criteria of Grötzbach [23]. The grid is
composed of Nr×Nθ×Nz = 128×256×256 points. The magnetic field computed with COMSOL with
a resolution much finer than the DNS grid, is sampled at the vertices of the DNS grid. The COMSOL

simulations provide the magnitude and phase of the magnetic field inside the liquid. Consequently,
the magnetic field can be computed at each instant in the DNS simulations. Using Amperes’ law to
calculate the eddy current density, the Joule heating and the Lorentz force are directly calculated in
JADIM. More details of the calculation process are presented in Ref. [24]. For comparison purpose,
we have performed a RBC DNS with different Ra between 3.86×105 and 3.86×106. The results
are in good agreement with the scaling law predicted by Grossman and Lohse [5]. Additionally,
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(b) I0 = 10, Sω = 1 (c) I0 = 10, Sω = 34 (d) I0 = 10, Sω = 68

(e) I0 = 50, Sω = 1 (f) I0 = 50, Sω = 34 (g) I0 = 50, Sω = 68

(h) I0 = 100, Sω = 1 (i) I0 = 100, Sω = 34 (j) I0 = 100, Sω = 68

FIG. 5. Instantaneous snapshots in a vertical cross section of the temperature and of the flow streamlines
computed by DNS. Panel (a) represents the RBC reference case. Panels (b)–(d) correspond to I0 = 10 A
and Sω = 1, 34, and 68; panels (e)–(g) correspond to I0 = 50 A and Sω = 1, 34, and 68; and panels (h)–(j)
correspond to I0 = 100 A and Sω = 1, 34, and 68.

we have solved the heat equation with a solid conductor submitted to Joule heating in the same
geometry for all the conditions of frequency and current intensity, in order to compare our DNS
to this reference case. All the results presented below correspond to statistically stationary regimes
and the velocity and temperature data are averaged in time. As specified below, when appropriate,
we also sometimes consider spatial averaging.

IV. RESULTS AND DISCUSSION

Figure 5 displays the instantaneous streamlines and temperature snapshots of the RBC reference
case (Ha = 0) and for three current intensities and three frequencies (see Table I). The snapshot
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(a) (b)

FIG. 6. RBC reference case. (a) Time average of the vertical velocity u/UB in a cross section plotted with
the velocity streamlines. (b) Distribution of the vertical velocity in the midplane.

of RBC, observed in Fig. 5(a) shows that the temperature distribution, in the boundary layer, is
correlated with the velocity streamlines, with hot and cold regions tending to move upwards and
downward, respectively. In the bulk of the flow, we observe that the temperature is quite uniform.
Compared to RBC, the Lorentz force strongly modifies the patterns. Indeed, the unique convection
cell in RBC is changed to two toroidal cells in forced convection at 50 and 100 A. The patterns
at 10 A exhibit an intermediate regime when the Lorentz force balances the buoyancy force.
The variation of the temperature field shows clearly a transition in the convective heat transfer
process when the current intensity is applied. It is seen that the temperature distribution also follows
the velocity streamlines, confirming the overall importance of advection phenomena in this flow.
Moreover, the two tori appear to be at different temperatures, high temperature for the lower torus
and low temperature for the upper one. In the presence of the magnetic field, the temperature
distribution tends to be axisymmetric, whereas this symmetry is broken in RBC.

Concerning the RBC reference case, the average velocity fields show the well-known large-scale
circulation (Fig. 6). In this case, the characteristic velocity is given by the buoyancy and the imposed
temperature difference �T0. The flow pattern is then a unique convection cell where the liquid goes
up on one side of the cell and goes down on the other side. Consequently, the axial symmetry is
broken as mentioned above. For a very large timescale, the convection cell turns around the cylinder
axis with the dynamics characterized by a precession period much larger than the advection time H2

νRe
[25]. Note that we also compute the Rayleigh and Nusselt numbers and find a very good agreement
with the literature [26].

When imposing an alternating magnetic field, the average flow patterns are drastically modified.
They present two toroidal cells, for all current intensities and frequencies considered in this study.
Figure 7 presents the average vertical velocity for Ha = 301 and Sω = 34 in horizontal and vertical
planes of the cell. These patterns are characterized by two rectangular tori positioned one over the
other with an opposite azimuthal vorticity. The revolution axis of the two tori coincides with the
axis of the cell cylinder [Fig. 7(a)]. For z < H/2 the liquid metal goes upward close to the wall and
goes downward in the bulk. Conversely, for z > H/2 the liquid turns in the opposite direction and
goes down along the wall and upward in the center of the cell. Hence, the maximum mean azimuthal
vorticity is localized at r ≈ 0.75R. Figure 7(b) displays the vertical velocity profile averaged in time
and in azimuth angle for various r in the function of the vertical position. The S curve presents two
extrema at the center of the tori at z ≈ 0.25H and z ≈ 0.75H . In the midplane of the cell (z = 0.5),
the vertical mean velocity is almost zero for all r. Figures 7(c) and 7(d) compare the vertical average
velocity distributions at z = 0.25 and z = 0.75. These two figures show that the distribution of the
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(a) (b)

(c) (d)

FIG. 7. Distribution of the average vertical velocity at I0 = 100 A and Sω = 34 computed by DNS.
(a) Torus streamlines in vertical cross section of the time and azimuth averaged velocity. (b) Vertical profiles
for various radial positions. (c) and (d) Distribution of the vertical velocity at z = 0.25 and z = 0.75.

vertical velocity is approximately axisymmetric. Moreover, the vertical velocity is antisymmetric,
with respect to the midplane, as also observed in Fig. 7(b).

This double-torus flow structure is still observed for all the lower values of the current intensity
[24]. The DNS show smooth transition between the RBC patterns and the toroidal pattern when
I0 increases. At 10 A, the flow is characterized by a mixture between free convection and forced
convection. The torus appears and disappears alternatively. At 50 and 100 A, the toroidal patterns
are well established with the same trend of stabilization with frequency. This typical evolution of
the flow patterns can be observed in Fig. 5. Hence, the RBC pattern is still reminiscent at low
current intensity and frequency. The structure of this convection cell disappears when the frequency
increases. Consequently, in our simulations, the Lorentz force is responsible for the two-tori flow
pattern. The videos presented in Ref. [24] show clearly these main features.

Figure 8 presents the root-mean-square (rms) velocity computed over the whole volume as a
function of Sω for the three Ha values. These curves show that the maximum fluctuation intensity is
reached at Sω ≈ 10 in agreement with Ref. [13]. For Sω > 10, the rms velocity decreases slightly,
which can be related to a constant Lorentz force [Fig. 3(b)]. The rms is then on the order of UL/10.
In Table I, we present as well the values of the Reynolds number based on this rms velocity, which
show similar trends.
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FIG. 8. Root mean square of the time-averaged vertical velocity
√

〈u2〉/UL vs Sω. Symbols: I0 = 10 A (•),
50 A (×), and 100 A (+). The lines give the tendency.

As the mean vertical velocity is zero in the midplane, the mass transfer and the heat transfer
between both tori, and thus between the two horizontal walls, are controlled by fluctuations of
the velocity field. In this region, the flow presents on average the structure of a plane jet pointed
radially inward, subject to the mean vertical temperature gradient. In the snapshots of Fig. 5, we
observe thermal plumes going up [Figs. 5(e), 5(f), and 5(i)] or down [Fig. 5(h)] originated from the
midplane close to the walls. The videos of simulations show clearly the dynamics of these plumes,
which appear intermittently without breaking the torus configuration [24]. The signature of the
thermal plumes is visible in the map of the vertical velocity variance shown in Fig. 9 for Ha = 150
and Sω = 10. This figure points out that the velocity fluctuations are maximum in the midplane and
close to the wall, where the Joule heating is the largest. In this region, the characteristic value of
the rms is of the order of UL/10 as already reported for the global characteristic velocity. We men-
tioned that the normalized variance map remains similar whatever the Ha value, at high frequency
(Sω � 10) [24].

FIG. 9. Dimensionless standard deviation of the vertical velocity in a vertical cross section for I0 = 50 A
and Sω = 10, obtained from time and azimuthal averaging.
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(a) (b) (c)

FIG. 10. Horizontal average of the dimensionless liquid temperature for different values of Sω at I0 =10 A
(a), 50 A(b), and 100 A (c). The black curves display the temperature profile of the RBC reference case.

Qualitatively, we observe in Fig. 5 that the average torus temperature increases with Sω. This
temperature rise is due to the increase of the Joule heating with Sω as well as to the limiting efficiency
of the thermal plume mixing. From the DNS, we plot the horizontal average temperature of the
liquid metal as a function of the vertical coordinate (Fig. 10). For RBC, the average temperature
profile is antisymmetric with respect to the middle point (point reflection) and presents a sigmoid
shape, with a temperature plateau equal to T1+T2

2 [8]. For I0 = 10 A and Sω = 1, the temperature
profile is close to that of RBC. When the frequency increases, the tori appear and two temperature
plateaus are visible. At I0 = 10 A, the vertical temperature gradients at the top and bottom walls
remains similar to RBC, indicating that the Joule effect is weak as it does not impact significantly
the average heat flux on the walls. On the other hand, at I0 � 50 A, the temperature profiles separate
from each other when the frequency varies. The differences between the curves increase with the
electrical current intensity. Finally, compared to RBC, the vertical temperature gradients at the two
horizontal walls are larger and grow with I0 and Sω. We note also that the temperature of the lower
torus is systematically greater than the bottom one due to the Joule effect. Both an increase of
Ha and Sω induce an increase of the tori average temperatures above the mean temperature T1+T2

2
characteristic of RBC. All the results can be understood on the basis of dimensionless equations (5).
Indeed, it is possible to evaluate the order of magnitude of the buoyancy, the Lorentz forces, and
the Joule heating for the various DNSs. At I0 = 10 A and Sω = 1, FL ∼ 1 while FB ∼ 0.25. On
the other hand, the Joule effect is negligible. The temperature profile is similar to RBC but the
convection cell is broken by the Lorentz force even if the tori are not well established. At the other
extremity, for I0 = 100 A and Sω = 68, FL ∼ 8 while FB ∼ 2.5×10−3. Under this condition, the
Joule effect is 2.5×10−2 and is lower than the convection term of order 0.1. Hence, the Joule effect
becomes significant on the temperature profiles.

The average heat flux at the bottom and top walls of the cell are calculated from the DNS. Based
on the standard definition, Nu is equal to the ratio of this flux to the flux in the absence of fluid
motion and Joule heating, Qc. From Eq. (5), the difference between the bottom and top Nusselt
numbers is given by

Nu+ − Nu− ∼ S2k
ω Ha

√
Prm�. (6)

Because our DNSs are performed in the transition regime between low and high frequencies where
k changes from 1 to 1/2, it is relevant to plot the heat flux as a function of the ratio QJ/Qc

[see Fig. 3(a)]. In Fig. 11(a), Nu normalized by NuB, defined as the Nusselt number for RBC,
is plotted as a function of QJ/Qc. This plot shows that the heat flux increases significantly when
the Lorentz force is applied. This remarkable result can be clearly observed for the DNS at
I0 = 10 A and Sω = 1 for which Nu is increased by a factor of ≈1.5. As long as the Joule effect
can be neglected (QJ/Qc < 1), Nu+ ≈ Nu−. When the Joule heating becomes significant, at high
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(a) (b)

FIG. 11. Numerical results of heat flux at the top plate (blue marker) and at the bottom plate (red marker)
for all values of I0 (• = 10 A, × = 50 A, and + = 100 A) and Sω (points go from left to right when Sω

increases). The heat flux is normalized in panel (a) by the heat flux without magnetic field (RBC) and in panel
(b) by the volume average convective heat flux.

frequency and current intensity, the difference between the heat flux at the bottom and the top is
directly given by Eq. (6).

It is possible to obtain master curves for Nu+ and Nu− by normalizing with the Péclet number,
Pe = UH/κ , defined as the ratio of the convection and conduction fluxes [Fig. 11(b)]. These
master curves are valid across the entire range of QJ/Qc. Here, the characteristic velocity U is
the root-mean-square velocity of Fig. 8, which depends on frequency. Consequently, U ∼ UL at
high frequency and U must be weighted by the frequency dependence of FL at low Sω, U ∼ ULSω.
In the intermediate-frequency regime, U (Sω ) follows FL(Sω ) for a unit current intensity.

For QJ/Qc < 10−2, corresponding to I0 = 10 A and Sω = 1, the Lorentz force is weak and
the dynamics is intermediate between RBC and Lorentz force convection. For the other cases, we
observe the same power law for Nu+ and Nu− when 10−2 � QJ/Qc � 1 with an exponent of p ≈
−1/5. When the Joule effect is significant (QJ/Qc > 1), the Nu+ and Nu− curves separate according
to the energy balance equation (6). In the power-law regime, considering that Pe ∼ HaSα

ω and
QJ ∼ Sβ

ωHa (α = 1 and β = 2 at low frequency, and α = 0 and β = 0.5 at high frequency), we
find that Nu ∼ Ha0.8S0.6

ω and Nu ∼ Ha0.8S−0.1
ω , at low and high frequency. These relations show

that Nu grows slowly when Sω increases at low frequency and is approximately independent of
frequency when Sω > 10. On the other hand, Nu increases with Ha, and therefore with B0, which
increases the convection effect and the torus velocity. It is important to consider that the two scaling
laws are correct in the validity range of the relationship Nu/Pe ∼ (QJ/Qc)−1/5. Finally, we observe
in Fig. 11(b) that this analysis is consistent for all the DNS results.

V. CONCLUSION

We have performed DNS for a liquid metal submitted to an ac magnetic field and a temperature
gradient in a cylindrical cell. We have studied the dynamics of the liquid metal for 30 � Ha � 301
and 1 � Sω � 68. The local Lorentz force and the Joule heating scale in Sk

ω and S2k
ω , respectively,

where k = 1 at low frequency and k = 1/2 at high frequency. The interest of this study is that the
DNSs are realized in the intermediate regimes between low and high frequency and for different
Ha, a situation that is encountered in various applications.

Under our DNS conditions, the appropriate scale of temperature is the temperature difference
�T0 and the velocity scale is given by the Alfvén velocity UL. Hence, the DNSs are realized under
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conditions where the Lorentz force dominates the buoyancy force and the Joule heating has a lower
impact on fluid flow.

We observed from the temperature and flow patterns issued from the simulations that the Lorentz
force, even at low magnitude, changes drastically the RBC structure of the flow and imposes
a two-tori pattern. We established that the fluid velocity increases with Ha and with Sω at low
frequency and decreases slowly for Sω > 10 until it reaches a constant limit. Compared to RBC,
the temperature is significantly altered by the tori: each torus is characterized by a different average
temperature, which leads to different temperature gradients at the bottom and the top walls and,
consequently, to different heat transfer to the outside. The simulations show clearly that the average
temperature increases with the Joule heating.

This study points out that FL enhances the heat transfer even at a low Ha number. All the data
merge in a master curve when Nu/Pe is plotted vs QJ/Qc which exhibits a power-law regime
for intermediate values of QJ/Qc, Nu/Pe ∼ (QJ/Qc)p with p ≈ −1/5. We have established the
scaling law between Nu, Ha, and Sω at low- and high-frequency regimes and in the case where
the Joule effect is moderate. Under these conditions, the Nusselt number follows the scaling law:
Nu ∼ Ha0.8S0.6

ω and Nu ∼ Ha0.8S−0.1
ω , respectively.

These DNSs in this range of physical parameters applied in industrial applications show the
importance of the Lorentz force on the dynamics and on the heat transfer even under conditions
where the temperature gradients are large. In addition, it is possible to counterbalance the buoyancy
force by the Lorentz force produced by a moderate ac magnetic field.
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APPENDIX: EFFECT OF THE MAGNETIC FIELD PERTURBATION

We consider a liquid metal moving in an ac magnetic field. The time and spatial distribution of
the magnetic field B(r, t ) is given by the induction equation:

∂B
∂t

= ∇ × (u × B) + 1

η
�B, (A1)

where u is the liquid velocity and η is the magnetic diffusion. The magnetic field can be decomposed
in two terms:

B = B0 + b, (A2)

where B0(r, t ) is the magnetic field when the fluid is at rest, and b(r, t ) is the magnetic field
perturbation due to the induction by the motion of the liquid.

In consequence, the resulting eddy currents J(r, t ) in the liquid can be decomposed in two terms:

J = J0 + j, (A3)

where

J0 = σE0 and j = σ (e + u × B0 + u × b). (A4)

Here E0 is the electrical field related to B0 by the Maxwell-Faraday equation, e is the electric field
perturbation, and σ is the electrical conductivity of the liquid.

The Lorentz force FL can be decomposed in four terms:

FL = J0 × B0 + j × B0 + j × b + J0 × b. (A5)
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The Reynolds magnetic number Rem is defined as the ratio of the magnetic convection and the
diffusion effects in Eq. (A1). Assuming that Rem � 1, b ≈ RemB0, J0 × B0 � J0 × b and j ×
B0 � j × b. Under these conditions, the intensity of the Lorentz force can be approximated by

FL ≈ σE0B0 + σ (e + uB0)B0. (A6)

At high frequency, according to the Maxwell-Faraday equation, E0 ∼ ωδB0 and e ∼ ωδb, where
δ = √

2η/ω is the skin depth of the magnetic field. Note that E0 � e. In consequence, the Lorentz
force becomes

FL ≈ σωδB2
0 + σuB2

0. (A7)

The ratio of the two terms on the right-hand side of Eq. (A7) is
√

2Sω

Rem
, where Sω = 2L2/δ2 is the

shielding parameter (L is the characteristic length of the liquid flow).
In conclusion, when Rem � 1 and

√
2Sω

Rem
� 1, the perturbation of the magnetic field can be

neglected and the Lorentz force can be approximated by σωδB2
0.
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