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First coherent structure in elasto-inertial turbulence
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Two-dimensional channel flow simulations of FENE-P (finitely extensible nonlinear
elastic-Peterlin) fluid in the elasto-inertial turbulence (EIT) regime reveal distinct regimes
ranging from chaos to a steady traveling wave which takes the form of an arrowhead
structure. This coherent structure provides insights into the polymer/flow interactions
driving EIT. A set of controlled numerical experiments and the study of transfer between
elastic and turbulent kinetic energies highlight the role of small- and large-scale dynamics
in the self-sustaining cycle of chaos in EIT flows.
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I. INTRODUCTION

Elasto-inertial turbulence (EIT) [1,2] is a chaotic state occurring in weakly inertial to strongly
inertial channel and pipe flows with polymer additives. Given an appropriate initial perturbation,
local fluctuations of velocity gradient stretch polymers, which exert a local stress feedback on the
flow, thereby sustaining a level and an organization of velocity gradient fluctuations. The exact
mechanism of interaction between flow instabilities and polymer instabilities remains poorly under-
stood. EIT belongs to the category “active scalar turbulence” where a molecule (e.g., polymers), an
organism (e.g., bacteria, microswimmers) or a field (e.g., magnetic field) is two-way coupled with
the flow and this coupling has a direct influence on, or may drive, turbulence. The present study is
concerned with a subcategory of active turbulence, that of additive-driven chaos. The dynamics is
a self-sustaining cycle where the chaotic dynamics of the scalar induces flow perturbations that in
turns sustain the scalar’s chaotic dynamics. Such cycles are observed in active turbulence induced
by bacteria or microswimmers [3] or nematic fluids [4], at very low Reynolds number. Also in
inertialess flows, and relevant to the present study, polymer additives create elastic turbulence [5,6]
in flows with curved streamlines.

EIT, elastic turbulence, active nematic turbulence, or active turbulence induced by bacteria
promotes mixing in flows either dominated by diffusion or where Newtonian instabilities cannot
survive in the absence of the active scalar. This chaos has practical applications, such as heat
transfer enhancement [7,8] or promoting emulsification [9] for elastic turbulence. From a theo-
retical perspective, these flows are fundamentally different from classical turbulence, specifically
with respect to energy transfers between large and small scales. In the case of EIT, a numerical
experiment consisting of increasing the molecular diffusivity of the polymer model demonstrated
that the small-scale dynamics of polymers is critical to sustaining chaos [10]. Our ability to harness
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and control the mixing power of such an active scalar ultimately requires the understanding of
how polymer and flow scales interact, and of how the flow transfers energy to the active scalar
and vice versa. These energy transfers, in turbulent systems where they are identified, are directly
linked to coherent structures. For instance, the self-sustaining dynamics of wall-bounded turbulence
relies on quasistreamwise vortices which interact with streaks, elongated regions of high- and
low-momentum fluid, to create vertical energy transfer to and from the very near-wall regions
[11,12].

The notion of coherent structures is ubiquitous in the theory of turbulence, even though its
definition remains empirical. A coherent structure is typically defined as a region of the flow (a)
whose dynamics has a significant energetic impact and (b) whose dynamics remain correlated for
sufficiently large timescales, at least larger that the smallest timescale of turbulence, defined by
Kolmogorov’s theory [13] in classical turbulence. So far, the study of EIT has revealed structures in
the form of thin, elongated sheets where polymers are much more stretched than anywhere else in the
flow [1]. Attached to these sheets are trains of spanwise, cylindrical regions of positive and negative
Q := − 1

2∂ jui∂iu j , the second invariant of the velocity gradient tensor (∂ jui is the j derivative of the
velocity component i) [14,15]. Q is the basis for a common vortex identification method in classical
turbulence [16], as it is the difference between the local norm of the rotation rate and the strain
rate. It is also related to local minima of pressure through the Laplacian of pressure 2Q = ∂i∂i p.
However, in EIT flows, the regions of positive Q, where the local rotation rate is larger than the
local strain rate, are only strong enough to produce oscillations in the local streamlines rather than
vortices [14].

The connection between the trains of positive and negative Q structures and the thin sheets of
highly stretched polymers was discussed [15] on the basis of the elliptic equation for pressure,

∂i∂i p = 2Q + 1 − β

Re
∂i∂ jTi j , (1)

where p is the pressure, and Ti j and (1 − β )/Re are the polymer stress tensor and viscosity
parameters related to the polymer solution, both of which will be defined later. This equation is the
result of applying the divergence operator to the momentum transport equation. Equation (1) is also
believed to be a key equation of elastic turbulence [17] as it connects polymer dynamics, pressure
and the nonlinear inertial effect (Q is the divergence of the advection term in the Navier-Stokes
equation). Note that this last term is small compared to the other terms in the regimes of low
Reynolds number considered for this study, even at Re = O(1000).

Due to the elliptic nature of Eq. (1), it can be anticipated that small-scale perturbations in polymer
stress, amplified by the second spatial derivative, have an instantaneous, local, and global effect
on the pressure. Local variations of pressure would in turn translate into velocity perturbations
and creation of local strain, which drives polymer stretching. Recently, it has also been argued
that structures connected to Newtonian Tollmien-Schlicting instability waves may play a role in
EIT [18]. There is numerical evidence that weakly chaotic states, which arise in a sequence of
bifurcations from the Newtonian traveling waves, can be continued into regions of the parameter
space where EIT has also been observed. However, this work has been restricted to very dilute
solutions with weak polymer activity, and it is currently unclear whether the polymer sheets are the
cause or the effect of the relevant instabilities in EIT.

The present study reports the discovery of a first coherent structure in EIT which can dominate the
dynamics of the flow. Under certain conditions, the flow becomes steady and symmetrical about the
midplane of the channel with the coherent structure being the only, but significant, departure from
a laminar flow. Based on the structure of the associated polymer stress, this structure looks like an
arrowhead which points in the direction of the flow and propagates at a constant speed downstream.
Under certain conditions, the “arrowhead” may become a robust attractor with complete elimination
of chaos. At the macroscopic level, the presence of the resulting traveling wave shows in a steady
drag increase.
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The very existence of the structure is particularly exciting for a turbulence that does not follow
the classical properties of Newtonian turbulence. Power spectra show steeper decay of energy [2]
than the −5/3 decay of the classical cascade of energy [13]. The numerical experiments of Sid
et al. [10] showed that EIT can be sustained only if the small-scale dynamics of polymer stress
is accurately captured in simulation, strongly suggesting an inverse energy cascade from polymer
to flow perturbations. Due to its chaotic nature, analyses of EIT have been necessarily statistical
in the absence of any simpler manifestation of the phenomenon. In statistics, it is often difficult
to conclusively isolate the fine details of complex dynamics. The arrowhead—the first coherent
structure to be isolated from EIT—provides a far simpler investigative framework thanks to its
steadiness in an appropriately traveling frame. The goals of the present study are to introduce
the existence of the arrowhead structure and to identify and compare the energy transfer between
polymers and flow for it and for the otherwise chaotic structures of EIT.

II. METHODS

The simulations discussed here solve the FENE-P (finitely extensible nonlinear elastic-Peterlin)
viscoelastic model in two dimensions using the algorithm [19] used to discover EIT [1,2,14,15,20].
The computational domain is a channel with periodic boundary conditions over a length of 2πnxh
(nx = 1 for most simulations discussed here) in the streamwise direction x = x1 and walls at
z = x2 = ±h = ±1. Note that graphs of wall-normal profiles of statistical quantities are shown as
function of the distance from the wall,

ξ = h − z . (2)

The flow is divergence free, ∂iui = 0, where ui is the velocity vector. The momentum transport
equation is

Dt ui = −∂i p + β

Re
∂ j∂ jui + 1 − β

Re
∂ jTi j + f (t )δ1i , (3)

nondimensionalized by the bulk velocity Ub, the half-height of the channel h and the zero-shear
rate viscosity of the polymer solution ν0, so the Reynolds number is defined as Re := Ubh/ν0. The
material derivative is defined as Dt := ∂t + uk∂k . The parameter β is the ratio of solvent viscosity νs

to ν0. The force term f (t ) drives the flow by enforcing constant mass flow, which is applied in the
x direction as indicated by the Kronecker tensor δi j . The polymer stress tensor Ti j is obtained from
the conformation tensor Ci j = 〈qiq j〉, which represents the local phase average of the product of the
end-to-end vector qi of each polymer molecule. Its transport equation is

DtCi j = Cik ∂ku j + ∂kui Ck j − Ti j + 1

ReSc
∂k∂kCi j (4)

with

Ti j = 1

Wi

(
Ci j

1 − Ckk/L2
− δi j

)
. (5)

The first two terms on the r.h.s. of Eq. (4) represent the stretching caused by the flow and the
third term [Eq. (5)] is the entropic term or spring term that tends to bring stretched polymers back
to their least energetic configuration of being coiled. Three parameters define the FENE-P model:
L the maximum extensibility of polymers, Wi the ratio of polymers’ relaxation timescale λp to the
flow timescale λ f , and β the ratio of the solvent viscosity to the zero shear rate viscosity of the
solution. Throughout this article, the flow timescales used to normalize the relaxation timescale
is the integral timescale of the flow h/Ub. Global artificial diffusion is employed to regularize the
hyperbolic Eq. (4) [21] with a high Schmidt number Sc of 1000 for all productions runs, consistent
with our earlier paper [22].

Production runs use 512nx × 513 grids, and grid convergence is verified on 1024nx × 1025 for
at least one simulation for each regime identified here. Similarly, one simulation per regime is
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carried out with lower Schmidt numbers to confirm that the regime is not an artifact of energy
buildup at small scales. The grid is stretched in the wall-normal direction, and the height of the
first cell is critical to resolution of wall polymer stress in chaotic regimes. For the Reynolds number
considered, the appropriate wall resolution is found to be 	zmin/h = 10−4, which is about two
orders of magnitude smaller than Kolmogorov scale. The time step is 10−3h/Ub for most simulations
and as low as 10−4h/Ub for simulations with large L and Wi for numerical stability reasons.

Last, the impact of the Schmidt number is assessed for at least one simulation per regime of EIT.
As the Schmidt number increases, the number of points where Ci j loses its positiveness increases.
Careful investigation of the number of nodes, and their location, where det(Ci j ) < 0 reveals that
they are in regions of low-polymer extensibility, attached to regions of high extensibility. Using a
simulation of the coherent structure of interest obtained with (L = 100, Wi = 100, β = 0.9) as an
example, the number of points where det(Ci j ) < 0 is 1% for 5122, Sc = 1000 and drops to less
than 0.1% for 5122, Sc = 50. The loss of positiveness results in small negative values of one of the
diagonal components, of the order of or smaller than 10−2. Increasing the resolution and decreasing
the time step resolves the loss of positiveness but at great computational costs. Grid convergence
and spectral analyses, however, show that the loss of positiveness, even for 1% of the nodes, does
not affect the dynamics. More information on the effects of the Schmidt number and supporting
materials for the grid convergence study can be found in the Appendix.

III. VISUAL IDENTIFICATION OF THE DIFFERENT STRUCTURES

The identification of the different regimes begins in a domain of fixed length, Lx = 2π (the
influence of the domain’s length will be discussed later). At Re = 1000, the investigation of flows
with L = 50, 100, 200, 500, 0 � Wi � 250, and β = 0.9, as well as β = 0.97 and 0.5 (neither
shown here) reveals four distinct regimes based on the spatial and temporal structure of polymer
stress and pressure. The polymer stress is represented by the first normal stress difference defined
as

N1 := T̃1 − T̃2 , (6)

where T̃i are the eigenvalues of Ti j . The choice of N1 is motivated by its role in extensional viscosity
νE ∝ N1/ε̇, where ε̇ is the elongational rate [23]. Note that the structures captured by contours of
N1 are similar to structures of the elastic energy

ep := −1

2

1 − β

ReWi
L2 ln(1 − Ckk/L2) . (7)

Figure 1 shows snapshots of contours of N1 and p that are representative of the different regimes
observed in the (nx = 1) domain across our parameter space.

The first regime, labeled the chaotic regime (CR), is the original state in which EIT was
discovered [1,2,14,20] and observed in subsequent studies [10,18]. The CR consists of thin sheets
of large polymer stress emanating from the near-wall region and stretching toward the centerline at
a shallow angle [Fig. 1(a)]. The pressure signature [Fig. 1(b)] is reminiscent of that corresponding
to Tollmien-Schlichting (TS) waves, a series of alternating low- and high-pressure regions, whose
vertical extent does not exceed the channel half-height. This comparison is in agreement with the
instability discussed by Shekar et al. [18].

In Figs. 1(a) and 1(b), regions of low and high pressure in the lower half of the channel are
identified by green dots to search for a correlation between the dynamics of p and N1. When the
undulations of a sheet of large N1 are locally convex (concave) with respect to their distance from
the wall, the local pressure is high (low). The same observation can be made for the top half of the
channel. Undulations of high N1 or polymer stress sheets are a signature of chaos in EIT.

Figures 1(c) and 1(d) reveal the emergence of a peculiar structure: the arrowhead structure. In
this second regime, labeled the chaotic arrowhead regime (CAR), two sheets of large N1, one from
the upper half, the other from the lower half, join at the centerline. The near-wall structure of sheets
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FIG. 1. Characteristic snapshots of the four distinct regimes: CR, chaotic regime (a, b), CAR chaotic
arrowhead regime (c, d), IAR, intermittent arrowhead regime (e, f), and SAR, steady arrowhead regime (g,
h), identified in the Lx = 2π -computational domain. The left column shows contours of first normal stress
difference on a log-scale color map, the right column provides the corresponding pressure contours on a linear
scale. In panels (a) and (b), the green dots identify the location of low- and high-pressure regions in the lower
half of the channel.

is similar to that of the CR. The pressure field [Fig. 1(d)] appears to be dominated by the arrowhead
with a low-pressure region ahead of the junction and a high-pressure region in the wake of the
junction. This regime remains very chaotic, however the arrowhead remains a robust structure,
observable throughout the whole duration of the simulation 4000h/Ub.

The third regime, labeled the intermittent arrowhead regime (IAR), undergoes extended periods
of quasisteadiness and short periods of chaos. Figures 1(e) and 1(f) depict an instant of intense chaos,
whereas periods of quasisteadiness are similar to the fourth regime discussed below [Figs. 1(g) and
1(h)]. The striking difference between the CAR and IAR is the higher definition of the arrowhead
structure and the presence of a bullet-shaped high-pressure region, in the wake of the junction. High-
and low-pressure regions near the wall follow the same correlation with the local undulations of N1

sheets as observed in the CR.
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FIG. 2. Temporal signals of drag increase DI for examples of the four regimes highlighted in Fig. 1. Colors
correspond to simulations introduced in Fig. 1.

The fourth regime, labeled the steady arrowhead regime (SAR), is the the main discovery of this
article. The structure, shaped like an arrowhead, exhibits perfect symmetry across the centerline
as depicted in Figs. 1(g) and 1(h). The pressure distribution [Fig. 1(b)] shows a bullet-shaped
high-pressure region located in the inside of the arrowhead, and shocklike feature perpendicular
with the flow located at short distance downstream of the nose. Away from the shock, both upstream
and in the wake of the arrowhead’s junction, isobars are perpendicular with the flow, as one would
expect for a laminar flow. The convection speed was measured with two approaches. The first
is traditional space-time correlations. The second uses an optimization method (standard steepest
gradient) to minimize the cost function minUC ‖N1(x, y, n	Ts) − N1(x + Uc	Ts, y, (n + 1)	Ts)‖∞
where 	Ts = 1h/Ub is the sampling frequency of full flow and polymer fields and Uc is the solution
of the optimization process, the convection speed.

The Supplemental Material [24] shows four sample movies of the four cases displayed in Fig. 1.
The movie corresponding to the SAR shows the same flow twice. The upper image is N1(x, y, t ) and
the lower is N1(x + Uc(t − t0), y, t ), where t0 is the time of the first frame. The authors recognize that
the transitions between regimes merit careful attention as their study is likely to hold critical clues
to mechanisms creating chaos in EIT flows. Such a study however deserves its own publication.

IV. REGIMES AND DRAG INCREASE

From Fig. 1, the distinction between the CAR and IAR is not obvious. These regimes find their
names in the temporal signal of drag increase (DI), defined as the percentage increase relative to
the laminar drag for the same viscoelastic conditions. In a constant mass flow simulation, the drag
is proportional to the pressure gradient necessary to impose the prescribed mass flow. As depicted
in Fig. 2, the temporal evolution of the CR of Figs. 1(a) and 1(b) is highly disordered or chaotic.
The simulation corresponding to the CAR is also chaotic. The IAR is quasiperiodic, with large
fluctuations of DI. The large peaks of DI correspond to the type of chaotic state displayed in
Fig. 1(e), the valleys to a quasisteady arrowhead structure. Finally the signal for the SAR is flat
as it should be for a traveling wave.

The average of the temporal signal of DI is performed on several thousands of characteristic
timescale h/Ub ranging from 4000 for the CR to 10 000 for one of our SAR simulations (6000
for the others). Technically, the long integration time is not necessary for statistical convergence,
but it confirms the steadiness of the solution. The more chaotic the regime is, the faster statistical
convergence is achieved. Figure 3(a) maps the drag increase as a function of the Weissenberg
number Wi and the polymer maximum extensibility L for the Lx = 2π domain. Experiments in
channel flows [25] report a nonmonotonic behavior of DI as a function of the (nondimensional)
relaxation time Wi, where DI increases from Wi = 0 to a maximum followed by a gradual return
to zero (laminar flow) at high Wi. Laminarization was also observed in pipe flows [26]. Figure 3(a)
suggests a similar behavior for L = 100 and 200. Yet we cannot conclusively establish that the
dynamics of our simulations leading to the DI evolution is the same as experiments. As it will
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FIG. 3. (a) Drag increase for different L and Wi, β = 0.9, Re = 1000 and a domain length of Lx = 2π . •,
L = 50; �, L = 100; �, L = 200; �, L = 500. Symbols are color coded by states as defined in Fig. 1, and gray
defines the laminar regime. (b) Flow regimes in the Wi-L phase space. Reb = 1000 and β = 0.9.

be shown below, the length of the domain plays a significant role in the type of regime that may
exist at a given combination (Wi, L). For L = 50, the existence of a maximum of DI could not be
established because low-L and high-Wi flows require much lower time steps for stability reasons.
Attempts to simulate L = 50, β = 0.9, and Wi > 200 proved to be too computationally expensive
and too unstable for the present algorithm. This has shown to be reliable and robust for large L, Wi,
and β; however, the present study explores flows where Cii intermittently reaches values very close
to L2, which can produce numerical instabilities. An algorithm is in development to address this
issue.

Figure 3(b) provides a rough outline of the different regimes in the Wi-L phase space for Re =
1000, β = 0.9 and a domain length of Lx = 2π . The CR is confined to L = 50 with the exception
of L = 100, Wi = 20. For L = 100, increasing Wi yields an evolution from the CR to CAR to SAR
to laminar, whereas L = 200 undergoes an evolution from laminar to IAR to SAR to laminar. For
L = 500, simulations at Wi = 30, 100 reached the SAR.

Figure 3(b) suggests that the SAR can be reached by increasing L at constant Wi or increasing
Wi at constant L. The mechanisms behind this observation remain unclear and beyond the scope of
the present article. Nonetheless, speculation, or guidance for future research, may be found in the
physics that each parameter governs. In the FENE-P model, L controls the maximum elongational
viscosity ratio [27],

lim
ε̇→∞

νE

3ν0
= L2(1 − β ), (8)

where ε̇ is the extensional rate. As will be discussed in Sec. VI, increasing β, i.e., reducing (1 − β ),
requires augmenting L2 to reach the SAR. This supports the speculation that elongational viscosity
plays a key role in the emergence of the SAR. The Weissenberg number controls timescales of the
polymer dynamics. From Fig. 3(b) it seems that small Wi numbers promote chaos, whereas large
Wi numbers helps with steadiness. Ultimately, the roles of L, Wi, and β in the emergence of chaos
and its destruction remain an open question, because the mechanism of chaos is poorly understood
at the time of publication of this article.

Mean velocity profiles [Fig. 4(a)] evolve from a nearly parabolic velocity profiles at the CR and
CAR to more of a plug flowlike profile at the IAR and SAR, with a velocity plateau extending over
ξ � 0.5 These profiles correspond to the flows depicted in Fig. 1. Figure 4(b) is a measure of the
mean polymer extension throughout the channel. In the CR flow, the polymer extension is large,
above 50% of L2 over 75% of the channel half-height. A common characteristic of the CR and
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FIG. 4. (a) Profiles of mean streamwise velocity as a function of the distance from the wall ξ = h − z.
(b) Profiles of mean trace of the configuration tensor normalized by the polymer maximum extensibility as a
function of ξ . Colors correspond to simulations introduced in Fig. 1.

CAR is the inflexion point around ξ ≈ 0.2. For the IAR and SAR, the polymer extension decreases
linearly up to ξ ≈ 0.4, where it experiences a local maximum before decreasing rapidly to very
small values in the core.

V. ENERGY TRANSFERS

The transport equations of the kinetic energy (KE) eu := 1
2 uiui and elastic energy (EE) ep [defined

in Eq. (7)] read

∂t eu + uk∂keu = −∂iui p + β

Re
∂k∂keu − β

Re
(∂kui )(∂kui ) + 1 − β

Re
∂k (ukTik ) − �e (9)

and

∂t ep + uk∂kep = −1

2

1 − β

ReWi
f Tii + �e , (10)

where

�e := 1 − β

Re
Ti jSi j (11)

is the energy transfer between KE and EE. Similar transport equations can be derived for the
turbulent kinetic energy (TKE, e′

u := 1
2 u′

iu
′
i) and turbulent elastic energy (TEE, e′

p), yielding

�′
e := 1 − β

Re
T ′

i jS
′
i j . (12)

Also of interest to our study, the dissipation rate of TKE,

ε := β

Re∂ ju
′
i∂ ju

′
i , (13)

defines the Kolmogorov length scale, here written with our adopted normalization,

ηK :=
[

(β/Re)3

ε̄

] 1
4

, (14)
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FIG. 5. Profiles of the mean Kolmogorov scale [Eq. (14)] as a function of the distance from the wall ξ =
h − z. Colors correspond to simulations introduced in Fig. 1.

which is the smallest scale, or dissipation scale, in classical turbulence. The length scales in EIT are
yet to be defined, since they most likely depend upon flow and polymer parameters at a minimum.
For now, the minimum mean Kolmogorov length scale over the height of the channel is adopted
as a reference length scale for the flow. The distribution of the Kolmogorov length scale for the
four different regimes and simulations of Fig. 1 are shown in Fig. 5. The smallest length scale is at
a distance from the wall ξ ranging from 0.3 for the chaotic regimes to 0.6 for the SAR. The CR,
CAR, and SAR show a local maximum in the range 0.05 � ξ � 0.2 and another at the centerline.
The latter maximum is not surprising since all regimes experience little to no polymer stress with
the exception of the junction of the arrowhead.

Figure 6 shows the profiles of the mean and fluctuating energy transfer terms throughout the half-
height of the channel. From Eqs. (9) and (10), positive �e or �′

e indicates an energy transfer from
the mean kinetic energy of the flow to the mean elastic energy or from TKE to TEE, respectively.
The mean energy transfer is positive throughout the channel [Fig. 6(a)], with a maximum at the CR
and CAR around ξ ≈ 0.2, where profiles of Cii/L2 [Fig. 4(b)] show an inflection point. For the IAR
and SAR, the local maximum corresponds to the steep decrease in Cii/L2.

The fluctuating energy transfer is negative for the CR, CAR, and IAR, showing that energy is
flowing from TEE to TKE on average [Fig. 6(b)]. For the SAR the energy transfer �′

e switches
sign close to the centerline. The very near wall region is void of fluctuating energy transfer up to
ξ ≈ 0.1. This region extends further for the SAR, to ξ ≈ 0.3. Naturally for the SAR, fluctuations

0.000
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Π
e

(a)(a)(a)(a)

10−2 10−1 100

ξ

−0.0005

0.0000

0.0005

Π
′ e

,ε

(b)(b)(b)(b)

FIG. 6. Profiles of the mean energy transfer term �e (a) and (b) the mean fluctuating energy transfer term
�′

e (solid lines) and dissipation rate of TKE ε̄ (dashed lines) as a function of the distance from the wall
ξ = h − z. Colors correspond to simulations introduced in Fig. 1.
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FIG. 7. Streamwise cospectra of the fluctuations of the energy transfer term defined in Eq. (15) as a function
of the distance from the wall ξ . The streamwise wave number is normalized by the minimum mean Kolmogorov
length scale from Fig. 3. (a) CR, (b) CAR, (c) IAR, (d) SAR. Each graph corresponds to simulations introduced
in Fig. 1.

are in fact spatial, since the flow is invariant by translation, which explains why the dissipation rate
of TKE is null in the very near-wall region, whereas ε̄ for other regimes is finite.

Figure 7 investigates the spectral representation �̂′
e of the energy transfer

�̂′
e := 1 − β

Re
T̂i j Ŝi j , (15)

which is proportional to the cospectra of T ′
i jS

′
i j . In Eq. (15) the â symbol defines the Fourier

transform of variable a. This analysis allows for the investigation of the scales and distances from
the wall at which polymers gain energy from the flow and vice versa. The streamwise wave number
is normalized by the minimum of the Kolmogorov length scale.

For the CR [Fig. 7(a)}, the energy transfer from TEE to TKE, i.e., �̂e, is mostly from 10ηK,min

down to ∼5ηK,min at a distance from the wall 0.2 � ξ � 0.75. The energy transfer from TKE to
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FIG. 8. Snapshots of N1 fields in a domain twice the length of the domain used in simulations used for
Fig. 1. For all simulations, the Reynolds number is 1000.

TEE occurs at larger scales �10ηK,min but closer to the wall, ξ ∼ 0.1–0.2. EIT in its chaotic regime
is therefore sustained by an upscale energy transfer from polymers to flow and a downscale energy
transfer from flow to polymers. The physical location of the latter corresponds to the location of
the inflection point of Cii/L2 [Fig. 4(b)] and the maximum mean transfer of energy from KE to EE
[Fig. 6(a)]. The upscale energy transfer dominates the fluctuating energy transfer (�′

e) as shown
in Fig. 6(b). The flow dynamics of the CR EIT stretches polymers to large mean extension levels.
Stretched polymers are organized in thin sheets, which in turn feed TKE via a mechanism yet to be
identified, but occurring at smaller scales than the mechanism of polymer stretching.

Whereas the picture of energy transfer at the CAR [Fig. 7(b)] is similar to the CR, the IAR and
SAR show a much different pattern [Figs. 7 c) and 7(d)]. The energy transfer from TKE to TEE shifts
upward and is still large scale for the IAR but becomes small scale for the SAR, albeit of weaker
intensity than for all other regimes. The region of energy transfer from TEE to TKE is truncated
above ξ ≈ 0.5 for the IAR and again shifted upward and narrower for the SAR. A major distinction
between chaotic and steady or quasisteady regimes may be in the location of the energy transfer
from TKE to TEE (�̂′

e > 0). One could speculate that the origin of chaos is not only in the spectral
locality of the energy transfers but also spatial locality. Injection of TKE into TEE in the region
where polymers are the most stretched (near-wall region) could conceivably excite instabilities in
the sheets of high polymer stress resulting into the undulations observed in Fig. 1(a) correlated to
regions of high- and low-pressure Fig. 1(b).

VI. INFLUENCE OF DOMAIN LENGTH, REYNOLDS NUMBER, AND β

For the chaotic regime, we verified that statistics are not affected by doubling the length of the
domain (not shown). SAR flows with L = 100 and 200 prove to be highly sensitive to the domain
length. Doubling the domain size with L = 100, Wi = 100, β = 0.9 causes the flow to shift from
the SAR to CAR as shown in Fig. 8(a). The SAR for L = 200 depicted in Fig. 1(g) becomes the
IAR in the larger domain [Fig. 8(b)]. The SAR is recovered for L = 500 for Lx = 4π [Fig. 8(a)] and
8π (not shown).

The mechanism driving chaos appears to be a function of both L and Lx. In other words, the
undulation of sheets of large N1 or polymer stress may be created by a large scale instability that
is damped when the domain is too short. In spite of the large number of simulations performed for
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FIG. 9. Snapshots of N1 fields of steady arrowhead regime at two different Reynolds numbers.

this article, this could not be ascertain. Identifying the exact wavelength of this possible instability
as a function of L requires further simulations to probe the range Lx ∈ [2π, 4π ]. The extensibility
parameter L drives the length scale of the sheets of large polymer stress, as well as the intensity of
the first normal stress difference, which both increases with L for a given Wi.

The arrowhead structure, in its steady form, is found to exist at least between Re = 100 and 3000
[Figs. 9(a) and 9(b), respectively]. At Re = 100, a depression in the first normal stress difference is
observed in the near-wall region at the front of the arrowhead’s junction, similar to the one observed
in Fig. 1(g) at Re = 1000, but extending almost to the wall and with a smaller gradient with the
surrounding stress. Note that at Re = 3000 reaching the SAR requires longer maximum extensibility
parameter L than for lower Re for the same Wi and β parameters. There was no attempt to reduce
the length of the computational domain to investigate whether the IAR and CAR could become
stable for lower L at this Reynolds number.

Last, Fig. 10 illustrates the effect of the ratio β first on two different simulations at Re = 1000
with L = 100 and Wi = 100 in a Lx = 2π domain [Figs 10(a) and 10(b)]. At β = 0.9, the flow
achieves the SAR [see Fig. 3(b)]. The lower β = 0.5 simulation shows the same regime, confirmed
over 4000 h/Ub. There are some visible differences in the shape and width of the arrowhead but the
main features of the arrowhead structure remain clearly identifiable. Increasing β to 0.97 triggers
the CR, as shown in Fig. 10(b). Keeping Wi = 100 and β = 0.97, the SAR can be recovered at
L = 500 as shown by Fig. 10(c). We have not sought to define precisely the critical L at which
the flow is stabilized, nor the critical β ∈ [0.9, 0.97] at which the flow transitions from the SAR
to intermittence or chaos. A future investigation of the influence of β is however necessary and
will be conducted in the near future. The data shown here suggest two possible coexisting polymer
effects. Shear thinning, driven by low β may help stabilize the very near region where the stretch
is the highest. At the other end of the spectrum, when (1 − β ) approaches zero, the recovery of
the SAR might be indicative of the role of extensional viscosity in the structure of the arrowhead.
Tamano et al. [27] showed some similarity in the drag-reducing properties of flows with comparable
(1 − β )L2 [see Eq. (8)]. Noticeably the most significant drag reduction obtained by Tamano et al.
was for (1 − β )L2 = 103, the highest value achieved in their simulations. In the limited data for the
present study, the SAR is also observed for solution with (1 − β )L2 � 103, the simulation of the
SAR shown in Figs 10(a) and 10(c) have (1 − β )L2 = 5 × 103 and 7.5 × 103, respectively, whereas
the CR regime shown in Fig. 10(b) is at (1 − β )L2 = 3 × 102.
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FIG. 10. Snapshots of N1 fields illustrating the effect of the parameter β. Panels (a) and (b) share the same
L = 100 and Wi = 100 as SAR simulations identified for β = 0.9 [see Fig. 3(b)]. β = 0.5 sustains the SAR
(a), whereas β = 0.97 destabilizes the flow to the CR. (c) The SAR for β = 0.97 at L = 500 and Wi = 100.

VII. STEADY ARROWHEAD REGIME

The steady arrowhead regime proves to be a robust feature of EIT. It appears to be triggered by
the ratio of polymer extensibility to domain streamwise length Lx for polymer extensibility larger
than a threshold. This threshold LSAR is in the range LSAR ∈]50, 100] for β = 0.9 and Re = 1000
according to our data. Further numerical experiments are needed to understand the relationship
between L and Lx and its influence on chaos. Regarding the latter point, one may speculate that the
intense high-pressure region in the wake of the arrowhead’s junction stabilizes the flow. When Lx is
increased, chaos may arise in regions that are far enough away from the junction, possibly through
a linear instability [28,29]. Under this scenario, the intensity of the pressure gradient between the
front and back of the junction may be the determinant factor.

Figure 11 illustrates the complexity of the SAR, through streamlines of the fluctuating velocity
field superimposed on contours of N1 [Fig. 11(a)] and superimposed on contours of the transfer of
energy fluctuations �′

e. Streamlines show the existence of two large-scale structures in the near-
wall regions whose interface is located in a region where energy is transferred from TKE to TEE
(�′

e > 0). Unsurprisingly, the snapshot of �′
e in physical space resembles the energy transfer in the

spectral distance from the wall space [Fig. 7(d)]. Figure 11 also establishes the correlation between
the depletion of polymer stress in the upper and lower front of the junction and the interface between
energy transfers from TKE to TEE and from TEE to TKE (�′

e < 0). The SAR’s energy transfers
are localized and appear to drive the dramatic perturbations of velocity fluctuations.

The arrowhead structure most likely owes its symmetry to the presence of walls. A similar
structure was observed in a Kolmogorov flow [30,31] at Re � 1, a regime considered to be the
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FIG. 11. (a) Superimposition of streamlines computed from the fluctuating velocity field and contours of
N1 for Re = 1000, L = 200, Wi = 100, and β = 0.9 [Fig. 1(g)]. (b) Superimposition of the same streamlines
and contours of the transfer of energy fluctuations �′

e.

upper bound of elastic turbulence. Figures 7(b) and 8(a) of Berti and Boffetta [31] clearly show
thin sheets of large T11 joining in a pattern similar to the arrowhead. The similarity between elastic
turbulence and EIT suggests that the same fundamental mechanisms of polymer/flow interactions
may be at play.

The robustness of the arrowhead at low Reynolds number was demonstrated in Page et al. [22],
for L = 500, down to Re = 60 and for relatively small Wi = O(10).

VIII. REGIME IDENTIFICATION

The discovery process detailed so far informs the derivation of a possible identification criterion
for the four regimes, CR, CAR, IAR, and SAR, specific to 2D simulations of periodic channel
flows in a relatively short domain. Although the extension of such criterion to longer domains in
2D and 3D periodic or spatially developing flows is not straightforward, the aim is to use primary
flow variables, velocity and pressure, that are accessible experimentally. The first component of the
criterion is based on wall-pressure fluctuations which have been used to characterize ET [32] and
EIT [1,33]. The correlation of two wall-pressure signals collected at the same streamwise location
but on opposite walls,

ρp = p′
(x,z=+h,t ) p′

(x,z=−h,t )√
p′2

(z=+h) p′2
(z=−h)

, (16)

is a measure of the symmetry of the flow about the centerline. For Reynolds number Reb = 1000,
the values of this correlation are reported in Table I and can be categorized as low (ρp ∼ 0.2, CR),
moderate (ρp ∼ 0.5, CAR), high (ρp ∼ 0.9, IAR), and perfect (ρp = 1, SAR). The exact bounds
delimiting two adjacent regimes require further investigation of the parameter space (Re, Wi, L, β )
and will be the focus of future research. The wall-pressure correlation criterion can objectively
identify the perfect or near-perfect symmetry imposed by the arrowhead structure in the IAR and
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TABLE I. Summary of correlation of pressure between the lower and upper walls (Eq. 16) used as a
measure of symmetry of the flow for the regimes defined in Fig. 1 at Re=1000.

Regime L Wi β ρp

CR 50 50 0.9 0.23
CAR 100 50 0.9 0.48
IAR 200 50 0.9 0.9
SAR 200 100 0.9 1.0

SAR, but remains a necessary condition not a sufficient condition to establish the existence of an
arrowhead.

Plots of power spectral density (PSD) of the wall-pressure signal [Fig. 12(a)] show a distinct peak
for the IAR and SAR at the frequency corresponding to the flow-through time of the arrowhead
based on the mean centerline velocity U c and the length of the domain Lx. The signature of
the arrowhead in the CAR is however too small and too close to the energetic contributions of
surrounding frequencies in the range 0.5 U c/Lx to 1.5 U c/Lx to be used as an identification
criterion. PSD of the streamwise velocity component at the centerline, a quantity that can be measure
experimentally, provides an objective identification of the presence of an arrowhead for the CAR,
with an energy at U c/Lx comparable to that of the IAR.

Table II summarizes the identification method of the four different regimes, for a periodic channel
flow of length 2π , by a combination of correlation and power spectral density analyses of pressure
and velocity, two quantities that experiments can measure. The correlation of two wall pressure
signals collected at the same streamwise location and on opposite walls measures the symmetry of
the flow. Power spectral densities of streamwise centerline velocity fluctuations identify the presence
of arrowhead as a peak in energy contribution at a frequency corresponding to the centerline mean
velocity and the length of the domain. Another interesting observation is the patch of energetic
contribution for the streamwise centerline velocity fluctuations around f Lx/Uc ∼ 0.8, which is only
visible for the CR and CAR. Whether this patch is a signature of chaos remains an open question
that will be addressed in future research.
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FIG. 12. Power spectral density plots of times series sampled at a fixed location: (a) wall pressure,
(b) centerline streamwise velocity. Colors correspond to simulations introduced in Fig. 1.
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TABLE II. Characteristics of the different regimes based on the correlation of wall pressure fluctuations
at z = ±h, and the presence or absence of a distinct energetic contribution in the PSD of the wall pressure
fluctuations and the centerline velocity fluctuations.

Regime Correlation PSD peak at f = Uc/Lx

ρp pw uc

CR Low (∼0.2) No No
CAR Moderate (∼0.5) No Yes
IAR High (∼0.9) Yes Yes
SAR Perfect (=1) Yes Yes

The proposed criterion works for a periodic channel of dimensions comparable to the streamwise
scale of the arrowhead. Under this condition, the stability of the IAR and SAR arrowhead produces
a dominant frequency. Simulations in longer computational domains presented here suggest that
arrowhead structures might be come intermittent, or pufflike. For future experimental or computa-
tional studies in large domains, the frequency criterion might be advantageously replaced by POD
or DMD.

IX. CONCLUSION

This paper describes the discovery of the first coherent structure found in elasto-inertial turbu-
lence. This takes the particularly simple form of a traveling wave in which polymer stress sheets
which originate near the walls bend to meet at the channel center to form a symmetric arrowhead
structure. Alongside a regime where this arrowhead is an attractor (SAR), our simulations have also
established the existence of several other regimes in EIT: chaotic (CR), chaotic arrowhead (CAR),
and intermittent arrowhead (IAR). These regimes are identified by the structure of the polymer
stress field, the fluctuations of the drag increase in time and the energy transfer between polymers
and flow. The latter clearly demonstrates that the transfer of energy from fluctuations of elastic
energy to fluctuations of turbulent kinetic energy is an upscale mechanism occurring predominantly
at small scales away from the walls. Reverse energy transfer occurs at large scales and is a downscale
mechanism with the exception of the SAR. For the steady arrowhead state, the reverse energy flow
is also at small scales but further away from the walls.

The arrowhead coherent structure is a robust state of the flow, which exists over a large range
of Reynolds numbers, polymer extensibility, Weissenberg numbers, and parameter β. This structure
should help uncover the fundamental dynamics underpinning EIT and reveal the mechanism of
energy transfer between flow and polymers. We hope to report on further progress in this direction
soon.

ACKNOWLEDGMENTS

The authors thank the referees for their constructive comments, which helped improve this
manuscript. This research is supported by the National Science Foundation (NSF-CBET-1805636)
and the U.S.-Israel Binational Science Foundation (Award No. 2016145). The opinions, findings,
and conclusions or recommendations expressed are those of the authors and do not necessarily
reflect the views of the National Science Foundation or of the United States - Israel Binational
Science Foundation.

073301-16



FIRST COHERENT STRUCTURE IN ELASTO-INERTIAL …

TABLE III. Example of numerical resolution study for the regime CAR defined in Fig. 1. All simulations
in this case were performed at Reb = 1000 in a domain Lx × Lz = 2πh × 2h. The monitoring metrics are the
mean pressure gradient f and its rms. The resolution used for production is framed by two horizontal lines.

Nx Nz 	z,min/h f (t ) rms( f ) Regime

128 129 10−4 7.1 × 10−3 9.4 × 10−4 IAR
256 257 10−4 6.8 × 10−3 9.3 × 10−4 IAR
512 513 10−3 8.2 × 10−3 4.1 × 10−3 CAR
512 513 5 × 10−4 7.6 × 10−3 3.1 × 10−3 CAR

512 513 10−4 7.6 × 10−3 3.16 × 10−3 CAR

512 513 5 × 10−5 7.6 × 10−3 3.15 × 10−3 CAR
1024 1025 10−4 7.6 × 10−3 3.15 × 10−3 CAR

APPENDIX

1. Grid resolution study

Appropriate grid resolution is critical to the simulation of the different states of EIT. In the course
of the present and previous studies, we identified three parameters of crucial importance: Overall
resolution Nx × Nz, size of the cell at the wall 	zmin and Schmidt number. In this section, the study
of these parameters is illustrated by a fully chaotic flow (CR) obtained with Reb = 1000, L = 50,
Wi = 50, and β = 0.9. The characteristics of the simulations used in this grid convergence studies
are compiled in Table III, which also reports the mean and rms of the pressure gradient f (t ) driving
the constant mass flow [see Eq. (3)] and the flow regime.

2. Effects of grid resolution and Schmidt number of small scales

As discussed in Dubief et al. [19], there is no dissipative mechanism in the exact FENE-P
equation. The high-order compact scheme used for the advection terms introduces numerical
dissipation at high wave numbers [19] necessary to avoid a buildup of energy at small scales due
to the hyperbolic nature of FENE-P. Consequently gradients of Ci j and Ti j are expected to become
sharper with higher resolutions. Through Eq. (1), larger gradients impact the pressure distribution
throughout the domain. Figure 13(a) shows the power spectral densities in the streamwise direction
of wall pressure fluctuations for increasing resolution with fixed 	zmin/h = 10−4 and Sc = 1000.
The two lowest resolutions, 1282 and 2562 underestimate the spectral content of pressure fluctua-
tions across scales, and as reported in Table III, they yield a flow regime different than the regime
simulated for the two highest resolutions.

Another critical parameter is the smallest grid size 	z,min at the wall. A parametric study
established that 	z,min = 10−4 is necessary to capture the intense gradient of polymer stress at the
wall in chaotic regimes. Figure 13(b) highlights the spurious increase of energy in the PSD of wall
pressure fluctuations across all scales caused by too coarse of a resolution (	z,min = 10−3), and the
convergence of the spectra for (	z,min = 5 × 10−4, 10−4, 5 × 10−5).

The Schmidt number study [Fig. 13(c)] shows an expected reduction of the energy content at
small scale with decreasing Schmidt number. Note that decreasing the Schmidt number is not found
to change the flow regime unless Sc � 5, in which case the flow becomes laminar.

The simulation of EIT is therefore a necessary compromise between aiming for the highest
resolution for accuracy at the maximum number of wave numbers and the ability to run long
simulations to capture low-frequency behavior in statistics (like the IAR). It is also important to
note that the stiffness of the FENE-P equations requires numerical artifacts, such as global artificial
diffusion (GAD, used in Eq. 4), local artificial diffusion (LAD, used in [19]), upwind schemes. The
numerical methods bring certain levels of numerical dispersion and dissipation into the solution.
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FIG. 13. Samples of the spectral analysis used in the resolution study for Reb = 1000, L = 50, Wi =
100, β = 0.9. (a) Effect of grid resolution on the power density spectrum of pressure fluctuations at the wall.
(b) Effect of the mesh size at the wall on the power density spectrum of pressure fluctuations at the wall. (c)
Influence of the Schmidt number on the power density spectrum of turbulent kinetic energy at the centerline.

The following section demonstrates that the SAR is not influenced by numerical dispersion and
dissipation. The effects of numerical dissipation on EIT is addressed in the previous and current
sections in terms of the resolution study. The higher the resolution, the lower the contribution of
numerical dissipation is. The influence of dispersion is also small as shown by the resolution study.
Nonetheless any research focused on finding the exact bounds of the CR, CAR, and IAR regimes
should consider quantifying the uncertainty from numerical dispersion. This is beyond the scope of
this paper.

3. Effects of numerical dissipation and dispersion on the SAR

Last, the power spectra of N1 are shown in Fig. 14(a) for two SAR regimes. Their distribution
as a function of the wave number is compared to the numerical dissipation and dispersion of the
upwind compact scheme used for the advection term [19] in the FENE-P equation [Eq. (4)]. In the
Fourier space, the exact first derivative of a function f defined on k ∈ [1, N] computational nodes is

∂̂x f
∣∣
k = ı̂wk f̂k ,

where wk = 2πk/N is the wave number vector, ı̂2 = −1 and f̂k is the Fourier coefficient vector of
f . Any finite difference or finite volume scheme for first derivative can be recast in the Fourier space
as

∂̂x f
∣∣
k = ı̂w′

k f̂k ,

where w′
k is the modified wave number of the numerical scheme, here the upwind compact scheme

defined in [19]. The real component Re(w′
k ) of the modified wave number represents the numerical

dissipation at wave number wk of the scheme. The motivation for an upwind compact scheme is to
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FIG. 14. (a) Imaginary (negative curves) and real (positive curve) components of the modified wave
numbers for the upwind compact scheme [19] (solid lines) and the staggered second-order scheme (dashed)
for the spatial first derivative used for the advection term in the transport equations for the conformation tensor
and the momentum, respectively. The imaginary and real components quantify the numerical dispersion and
dissipation, respectively, of each scheme as a function of the wave number. (b) Power spectra of first normal
stress difference at the wall of two SAR simulations (L = 100, 200, Wi = 100, β = 0.9). (c) Power spectra of
turbulent kinetic energy for the same simulations.

confine numerical dissipation in the high wave numbers in order to damp Gibbs oscillations near
the grid cutoff. Gibbs oscillations are caused by the presence of large gradients of Ci j resulting from
the stiffness of the FENE-P model.

Unlike spectral methods, any finite difference (FD) scheme for derivative introduces a certain
level of numerical dispersion. The numerical dispersion as a function of the wave number is defined
as the Re(w′

k ). Central FD schemes are nondissipative, however the upwind compact scheme is,
by design. The numerical dissipation is the real part of the modified wave number, Im(w′

k − wk ).
Figure 14(a) shows the dispersion of staggered second-order FD scheme used for the advection
of momentum and velocity divergence, and the upwind compact scheme used for the advection of
Ci j , as well as the numerical dissipation of the upwind compact scheme. The departure from zero
for the numerical dispersion and dissipation of each scheme is compared to the spectra of the first
normal stress difference (N1) and spectra of turbulent kinetic energy for two simulations of the
SAR. The relevant dynamic scales for N1 are confined to wave numbers smaller than the range of
wave numbers experiencing numerical dissipation (wk � 1.5) and much smaller that the range of
wave numbers experiencing dispersion (wk � 2.5) for the compact upwind scheme. The numerical
dispersion of the staggered central FD scheme affects a range of scales whose energy is 10 decades
or more smaller than the large-scale energy of turbulent kinetic energy. Note that the dispersion of
the central compact scheme used in the momentum transport equation [Eq. (3)] is not shown in the
graph but comparable to that of the upwind compact scheme.
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It should be noted that SAR simulations were successfully run with Sc = 50, which is not
surprising considering the absence of small scales shown in Figs. 14(b) and 14(c).
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