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Hydrodynamic interactions are key in thrust-generation of hairy flagella
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The important role of unicellular flagellated micro-organisms in aquatic food webs is
mediated by their flagella, which enable them to swim and generate feeding currents. The
flagellum in many predatory flagellates is equipped with hairs (mastigonemes) that reverse
the direction of thrust compared to the thrust due to a smooth flagellum. Conventionally,
the mechanism of such reversal has been attributed to drag-based thrust of individual
hairs, neglecting their hydrodynamic interactions. However, at natural densities of hairs,
hydrodynamic interactions are important. In fact, using fully resolved three-dimensional
computational fluid dynamics, we show here that hydrodynamic interactions are key to
thrust-generation and reversal in hairy flagellates, making their hydrodynamics funda-
mentally different from the slender-body theory governing smooth flagella. We reveal the
significant role of the curvature of the flagellum, and using model analysis we demonstrate
that strongly curved flagellar waveforms are optimal for thrust-generation. Our results form
a basis for understanding the diverse flagellar architectures and feeding modes of predatory
flagellates.

DOI: 10.1103/PhysRevFluids.7.073101

I. INTRODUCTION

Eukaryotic flagella and cilia are ubiquitous in many organisms. They accomplish tasks such
as locomotion in unicellular protists and spermatozoa [1,2], and feeding, pumping, and other
transport functions in unicellular and multicellular organisms [3–9]. While eukaryotic flagella
are fundamentally different from prokaryotic flagella in terms of structure and movement, the
mechanism of thrust-generation by such often smooth (naked) and slender organelles is similar
and well-understood [10–13]. The so-called drag-based thrust mechanism hinges on anisotropy in
the drag coefficients of slender objects at low Reynolds number: the drag in sideways motion is
larger than the drag in lengthwise motion, giving rise to a net force component perpendicular to the
direction of motion when the object moves obliquely [11]. Short segments of a smooth flagellum
behave locally in the same way, producing a net thrust that propels the cell [13]. In many predatory
flagellates, however, the flagellum is equipped with either a vane or thick and rigid tubular hairs,
known as mastigonemes [14,15]. Little is known about the hydrodynamics of such flagella despite
their great significance.

Predatory flagellates are important in aquatic food webs and the marine carbon cycle [3,17–19],
and their survival relies on the feeding flow generated by their hairy flagellum [20,21]. In hairy
flagellates with two-dimensional flagellar wave motion, the tubular hairs are in the beat plane and
perpendicular to the flagellum [22–24] [Fig. 1(a)]. The hairs cause the thrust (force acting on the
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FIG. 1. Appearance and function of flagellar hairs. (a) Transmission electron micrograph of Para-
physomonas sp with tubular hairs (short arrow, red) on the flagellum (long arrow, green). Image courtesy of
Helge A. Thomsen. (b) Light micrograph of a tethered individual of Pteridomonas danica. The hairy flagellum
drives a feeding current (dashed arrows) towards the cell in the opposite direction of the propagating flagellar
wave (blue arrow) [16], and the flow goes past the prey-intercepting tentacles extending from the cell (solid
black arrows). The hairs on the flagellum are too thin to be visible in light microscopy. Image courtesy of Sei
Suzuki-Tellier. Scale bars in (a) and (b): 2 μm.

hairs plus the flagellum from the water averaged over the beat cycle) to reverse compared with the
thrust of a smooth flagellum and to point in the same direction as the propagating wave [Fig. 1(b)].
In a freely swimming cell, the thrust is counterbalanced by the drag force acting on the cell body,
and thus the cell is pulled rather than pushed by the flagellum; in a tethered cell, the flagellum
generates a feeding current towards the cell [16,22,25]. Jahn, Landman, and Fonseca qualitatively
ascribed this thrust reversal to the rowing action of hairs at the crests of the wave, and they proposed
that hairs provide a surface roughness resulting in thrust reversal [22]. Holwill and Sleigh later
implemented the aforementioned proposal and suggested that the presence of hairs on the flagellum
could increase the net parallel drag coefficient of flagellum and hairs considered together and make
it exceed the normal drag coefficient, hence reversing the thrust [26]. To estimate a drag coefficient
for hairy flagellates, Holwill and Sleigh added the coefficients of the flagellum and the individual
hairs [Ref. [22], Eq. (16)], assuming that individual hairs and flagellum are hydrodynamically
independent. Consequently, in such a view, the flagellum itself acts as if it is a naked flagellum, and
thrust reversal relies entirely on the anisotropy in the drag coefficient of the individual hairs, similar
to the analysis by Brennen [27]. However, the distance between neighboring hairs is typically much
smaller than the length of the hairs, and disregarding hydrodynamic interactions appears unjustified
[28]. While numerical simulations have included hydrodynamic interactions [29–31], these analyses
have not elucidated the mechanism of thrust reversal in light of hydrodynamic interactions.

Here, we use three-dimensional computational fluid dynamics (CFD) to fully resolve the complex
flow around hairy flagella, and we demonstrate how the hydrodynamic interactions between hairs
are key in the underlying mechanism of thrust-generation in hairy flagellates. We first simulate the
swimming Pteridomonas danica to compare the CFD predictions of the thrust and the swimming
speed to observations, and to estimate the possible deflection of hairs. Thereafter, we focus on the
mechanism of thrust reversal in a tethered organism, and we study the importance of hydrodynamic

073101-2



HYDRODYNAMIC INTERACTIONS ARE KEY IN …

FIG. 2. Model morphology of Pteridomonas danica and the computational mesh. (a) The model of P.
danica has a spherical cell (blue) of diameter 5.0 μm, a flagellum (green) of length Lf = 12.5 μm and diameter
Df = 0.20 μm, and hairs (red) each of length l = 1.50 μm and diameter Dh = 20 nm [3,27]. (b) A snapshot
of the finite volume polyhedral cells in the beat plane around the base of the flagellum.

interactions between the hairs. We propose and test a mechanism of thrust reversal based on such
interactions, and we derive an analytical model of the thrust. Finally, we discuss the implications of
the mechanism for the hairy flagellar architectures observed in nature.

II. METHODOLOGY

A. Model organism and morphology

The predatory flagellate P. danica [Fig. 1(b)] is a representative model organism [3]. The culture
of P. danica was isolated from coastal waters (Øresund, Denmark) and maintained on a rice grain as
substrate for their bacterial prey. Swimming cells were observed with an Olympus IX71 inverted
microscope equipped with a UPLSAPO60XO/1.35 oil-immersion objective and video-recorded
using a Phantom v210 high-speed digital camera at 1000 frames s−1 at a resolution of 5 pixels
μm−1. The beat pattern was digitized, reconstructed, and modeled following the approach by Geyer
et al. [32]. The flagellum beats with a planar wave [Fig. 2(a)], and we use the waveform model

φ(s, t ) = Aφ (1 − e−s/δ ) sin (2π f t − 2πs/λφ ), (1)

where φ(s, t ) is the angle of the tangent of the flagellum with respect to the flagellar axis, s is
the arc-length from the point of attachment on the spherical cell body, t is time, Aφ = 2π/5 is the
amplitude, λφ = 10 μm is the wavelength, f = 50 Hz is the beat frequency, and δ = 2.0 μm is
the amplitude modulation factor dampening the amplitude where the flagellum is attached to the
cell body. These parameters are extracted from the analysis of the flagellar waveform of P. danica,
the details of which are given in the Supplemental Material (Fig. S1) [33]. All the parameters used
in the following are listed in Table I. The flagellum has approximately 13 hairs μm−1 of length
l = 1.50 μm [3] in two rows along the flagellum (hence 6.5 hairs μm−1 on each side). The hairs
are positioned equidistantly along the flagellum and assumed to be rigid and remain perpendicular
to the flagellum [27], and they are positioned slightly off the beat plane to avoid direct physical
interference during the beat (see the Supplemental Material, Fig. S2). In the sheet model (a sheet
instead of the dense hairs), the kinematics of the sheet follows the kinematics of the flagellum
[Eq. (1)] similar to that of hairs, i.e., material points on the surface of the sheet are treated as if
they were on that of a hair remaining perpendicular to the flagellum during the beat. In the study of
hydrodynamic interactions among hairs, the hairs are positioned in the beat plane, and the length of
the hairs is reduced from the observed length l = 1.50 to 0.90 μm to avoid physical interference.
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TABLE I. Glossary of symbols.

Symbol Description Unit

A amplitude of the displacement μm
Aφ amplitude of the angle rad
α shape factor of the unit
β tangent of angle between hairs and beat plane
γxy angle between hairs and beat plane rad
Cn drag coefficient (sideways)
Ct drag coefficient (lengthwise)
d displacement of the material points on the flagellum μm
Dcell diameter of the cell μm
Dh diameter of hairs μm
Df diameter of the flagellum μm
δ amplitude modulation factor μm
δh,max maximum deflection of hairs μm
EI flexural rigidity pN μm2

f beat frequency s−1

Fh,max maximum force exerted on hairs pN
Fn force (sideways motion) pN
Ft force (lengthwise motion) pN
Fy thrust generated by hairy flagellum pN
F̄y, RFT thrust prediction of resistive force theory pN
F̄y, sheet thrust generation of the sheet model pN
F̄y, unit thrust generation of the basic thrust unit pN
φ angle of the tangent of the flagellum rad
l length of hairs μm
Lf length of the flagellum μm
λ wavelength of the displacement μm
λφ wavelength of the angle μm
μ viscosity Pa s
N density of hairs μm−1

	unit rotation rate of the hairs at the crests rad s−1

rc radius of the curvature of the flagellum μm
ρ density kg m−3

s arc length along the flagellum μm
σ stress tensor Pa
t time s
θ angle between the straight edges of the basic thrust unit rad
u flow velocity μm s−1

U speed of the array of hairs μm s−1

Un induced velocity (sideways motion) μm s−1

Uswim swimming velocity μm s−1

Ut induced velocity (lengthwise motion) μm s−1

Uunit characteristic speed of the unit μm s−1

Such a reduction is expected to underestimate hydrodynamic interactions between hairs since the
long-range flow field produced by individual hairs is related to their length [27].

B. Computational fluid dynamics

We use CFD to numerically solve the flow governing equations around the hairy flagellum and
the cell body in water with a density of ρ = 997 kg m−3 and a viscosity of μ = 0.001 Pa s. We
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benchmark the CFD solution against the analytical solution for a single hair, and we obtain less than
1% deviation in the drag coefficients (see the Supplemental Material, Sec. A). The computational
domain is a sphere of diameter 300 μm surrounding the flagellate. The domain is discretized on a
finite volume mesh and consists of polyhedral cells [Fig. 2(b)], and the discretized Navier-Stokes
equations are solved using the commercial software STAR-CCM+ version 15.06.006. The average
computational cell sizes around the hairs and flagellum are 5 and 50 nm, respectively, and the size
of the cells increases to 1.50 μm in the far-field on the spherical outer boundary of the domain.
This results in typically 3 million computational cells in total. Uniform pressure is applied on the
outer boundary, and a no-slip condition on the hairs, the flagellum, and the cell body. To ensure
that the results are independent of the size of the computational cells, the simulations are conducted
for different computational cell sizes. For cases with 3 million and more computational cells, we
find ∼1% variation in the magnitude of the thrust (see the Supplemental Material, Fig. S3a). The
motion of the flagellum is discretized in 50 time steps during a complete beat cycle when the hairs
are positioned in the beat plane and 100 steps when the hairs are oriented slightly off the beat plane
(see the Supplemental Material, Fig. S3b). Using the morphing technique of the STAR-CCM+
software, the computational cells are redistributed corresponding to the motion of the flagellum
(Movie S1: DynamicMesh.avi in the Supplemental Material). Due to the low Reynolds number flow
regime [11,25], the governing equations are quasisteady, and the time steps are chosen such that
they ensure a smooth redistribution of the computational cells without too much distortion. Still,
because of the extreme deformations of the cells due to the motion of the hairs, the finite volume
mesh in the entire domain is regenerated every second time step.

Simulations are conducted for both swimming and tethered organisms. Due to the linearity of the
governing equations at low Reynolds number, the swimming case is considered as a superposition
of a tethered organism plus a rigid-body motion of the organism [11,34]. Accordingly, the averaged
swimming velocity is computed as the time average of the instantaneous swimming velocity, which
in turn is computed from a force balance between an instantaneous constraining force required to
prevent the microswimmer from moving and the fluid force on the microswimmer in rigid-body
motion. The forces are calculated as

F =
∫∫

S
(σ · n) dS, (2)

where σ is the stress tensor, and n is the unit normal vector on the surface S. We focus on
understanding the mechanism of thrust generation, and we therefore separate between contributions
from drag due to swimming and thrust produced intrinsically by the shape-changing organism [12].
The time-averaged thrust F̄y is defined as the y-component of the force in Eq. (2) produced by the
hairs plus the central flagellum in a tethered organism [Fig. 2(a)].

III. RESULTS AND DISCUSSION

A. Overall hydrodynamics of Pteridomonas danica

The time-averaged velocity field of P. danica shows that the hairy flagellum indeed produces
a reversed flow towards the cell [Fig. 3(a)]. We calculate the time-averaged thrust, F̄y = 6.8 pN,
consistent with estimates based on the observed flow in tethered individuals [21]. Furthermore, the
flow field shows that there is a relatively weak upward flow in the middle of the region swept by the
hairy flagellum, and a stronger downward flow on the sides. This flow structure is consistent with
the experimental observation of the flow field around a morphologically similar hairy flagellate
with planar waveform [22]. Lastly, the flagellum pulls the cell with the average speed 64 μm s−1

[Fig. 3(b)], in agreement with the observation of the freely swimming individual.
Our simulations assume the hairs to be stiff. To test this assumption, we consider the force

perpendicular to the long axis of individual hairs that may deflect them. At any instant in time,
the maximum force is exerted on the hairs at the outer side of the crest of the passing wave, and it
amounts to Fh,max = 0.40 pN. Assuming that this force is applied at the tip of the hairs (an upper
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FIG. 3. Overall hydrodynamics of Pteridomonas danica. (a) CFD results of averaged flow field over the
beat cycle at l = 1.50 μm. (b) Swimming speed at different values of λφ : in the observed range of λφ (dotted
lines), there is a good agreement between CFD prediction and observation of the swimming speed. For the
case with amplitude modulation factor δ = 1.0 μm (�1), the averaged generated thrust by the flagellum F̄y =
6.8 pN, consistent with indirect estimates based on observed flow fields [21], ∼7 pN. �1 = Eq. (1) with
δ = 1.0 μm, and �2 = Eq. (1) with δ = 2.0 μm.

estimate) and that the hairs are clamped to the flagellum, the maximum elastic deflection at the tip
of the hairs is

δh,max = Fh,maxl3

3EI
, (3)

where EI is the flexural rigidity [35]. Due to a lack of data on the flexural rigidity of the tubular
hairs, we use the estimated mean value of microtubules [36,37] (which have a similar diameter
to that of the hairs), EI = 22 pN μm2, resulting in δh,max = 0.02 μm, negligible compared to the
length of the hairs (l = 1.50 μm). Accordingly, Holwill experimentally observed that the region of
maximum fluid velocity is one hair length away from the central flagellum [23], which suggests that
hairs are indeed relatively rigid and remain perpendicular to the flagellum.

B. Hydrodynamic interactions among hairs

To explore the hydrodynamic interactions among hairs, we simulate the flow for different
densities of hairs, N , i.e., the number of hairs per unit length of the flagellum [Figs. 4(a) and
4(b)]. The presence of hairs results in thrust-reversal as compared to the smooth flagellum (N = 0)
when N > 1 μm−1 [Fig. 4(c)]. The magnitude of the thrust increases with the density of hairs, and
it saturates when N > 6 μm−1. This phenomenon indicates the predominance of hydrodynamic
interactions among hairs in our model organism P. danica as well as other hairy flagellates that all
have similar or higher densities [26,27]. At low densities, the flow induced by neighboring hairs
on individual hairs is insignificant [Fig. 4(a)], and the thrust corresponds to the local velocity of
individual hairs and thus increases when adding more hairs as long as they are hydrodynamically
independent of each other. Thus, the mechanism for thrust reversal proposed by Holwill and Sleigh
may apply at low densities where hydrodynamic interactions are negligible [26]. However, at higher
densities [Fig. 4(b)], the induced flow by neighboring hairs dominates over the local velocity of
individual hairs, i.e., hydrodynamic interactions are predominant. Consequently, a further increase
of the density will not generate more thrust, and several hairs, together, effectively function as
a flexible, plane sheet [Fig. 4(c)]. While it is now clear that hydrodynamic interactions affect the
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FIG. 4. Effect of the density of hairs on flow and thrust. The kinematic parameters in Eq. (1) are chosen
based on the beat analysis of Pteridomonas danica, i.e., f = 50 Hz, λφ = 10 μm, Aφ = 2π/5, δ = 2.0 μm,
and Lf = 12.5 μm. The hairs are positioned in the beat plane, and the length of the hairs is reduced from
the observed length l = 1.50 to 0.90 μm to avoid physical interference during the beat. Snapshots of the
velocity field at (a) low density of hairs (N = 1 μm−1), and (b) high (observed) density of hairs (N = 7 μm−1).
(c) Time-averaged thrust as a function of density of hairs (data points), and for a flexible, plane sheet (N = ∞)
with the same thickness as that of the diameter of the hairs, and with the same beat kinematics. At high
densities, as for P. danica, the induced flow by neighboring hairs on an individual hair becomes completely
dominant over the local velocity of hairs, and hydrodynamic interactions dominate.

thrust of individual hairs, the question is whether it can significantly alter the underlying mechanism
of the thrust generation.

C. Hair arrays: Hydrodynamic interactions and drag anisotropy

Here, to explore the connection between hydrodynamic interactions and drag anisotropy of
individual hairs, we consider a simplified and conceptual model of a hair array. The array approx-
imately resembles several hairs along a straight segment of the flagellum neglecting the flagellum
itself. We assume that hairs along the segment have the same lateral motion. We consider parallel
hairs of length l , equidistantly positioned in an array of side length l . The lateral motion of
hairs is decomposed to lengthwise and sideways motions with speed U [Figs. 5(a) and 5(b)]. As
expected, at low densities (N ∼ 1 μm−1), the magnitudes of the normal and the parallel drag on the
array both increase when increasing the density of hairs, but eventually both saturate and become
increasingly similar (N > 6 μm−1) approaching the asymptotic value of an equivalent square sheet.
The saturation results in neutralization of the drag anisotropy of an isolated hair [Fig. 5(c)]. The
simplified model shows how the underlying mechanism for the thrust reversal in hairy flagellates
(N � 6 μm−1) cannot rely on the drag anisotropy of individual hairs.

To shed light on the hydrodynamic interactions and their effect on drag anisotropy, we ana-
lytically explore the interactions between two parallel hairs in lengthwise and sideways motions
with speed U . The low Reynolds number forces on the second hair F (2)

t and F (2)
n in lengthwise

and sideways motions, respectively, are proportional to the velocity of the hair relative to the local
background flow U (2−1)

t and U (2−1)
n induced by the first hair [38,39]. We can therefore write

F (2)
t = Ct μ l

(
U − U (2−1)

t

)
, (4)

F (2)
n = Cn μ l

(
U − U (2−1)

n

)
, (5)

where Ct and Cn are the drag coefficients for a single hair in lengthwise and sideways motion,
respectively (Ref. [40], Eqs. 5-11.52 and 5-11.54). As an approximation of the induced velocity past
the second hair, consider the velocity in the parallel and the normal direction due to a point force
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FIG. 5. Hydrodynamic interactions among parallel hairs in sideways and lengthwise motion. Both the
length of the hairs and the sideways length of the arrays are l = 2.0 μm, and the diameter of the hairs is
20 nm. (a) The induced flow by one hair on the other one, i.e., the hydrodynamic interactions between two
hairs (N = 0.5 μm−1), is stronger when they move sideways than when they move lengthwise. (b) By adding
more hairs and increasing their density, N = 7.5 μm−1, the flows become similar for the two directions of
motion. (c) The drag on the array in sideways, Fn, and lengthwise, Ft , motion approaches the asymptotic value
of an equivalent square sheet (top), and the drag anisotropy of the system vanishes (bottom). The theoretical
prediction for a single hair (red symbols) is Fn/Ft = 1.6, in agreement with the CFD results, and the theoretical
analysis of two hairs in Eq. (8) predicts F (2)

n /F (2)
t = 1.4, in agreement with the CFD simulations for two hairs,

i.e., N = 0.5 μm−1.

positioned at the center of the first hair and with the same magnitude as the drag on an individual
hair [11]:

U (2−1)
t ≈ Ft

8πμl
= Ct U

8π
, (6)

U (2−1)
n ≈ Fn

4πμl
= Cn U

4π
. (7)

Hence, the drag ratio in such a system of two hairs can be approximated:

F (2)
n

F (2)
t

≈ Cn
(
1 − Cn

4π

)
Ct

(
1 − Ct

8π

) <
Cn

Ct
. (8)

The approximation gives F (2)
n /F (2)

t = 1.4 for two hairs with similar dimensions of hairs as in
Fig. 5(a), in good agreement with the CFD simulations [Fig. 5(c)]. The above analysis shows that
the hydrodynamic interactions reduce the strength of the drag anisotropy because U (2−1)

n > U (2−1)
t .
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D. Mechanism of thrust reversal

Here we test and explore the mechanism of thrust generation in hairy flagellates. In the previously
suggested mechanism where hydrodynamic interactions are not predominant [26,27], the hairs give
rise to the thrust reversal when they are along the straight parts of the flagellum during the beat.
To examine the validity of such predictions, we simulate a one-quarter-wavelength-long segment
of a flagellum with dense hairs and one with sparse hairs. While a long flagellum would comprise
several segments, we neglect the long-range hydrodynamic interactions between segments. The
segment can be thought of as the simplest thrust unit of the hairy flagellum, which accounts for the
hydrodynamic interactions between neighboring hairs as well as between the flagellum and hairs.
Here we choose a simple wave model for the flagellar kinematics in order to directly compare our
results with known expressions based on resistive force theory [26,27]:

d (y, t ) = A sin (2π f t − 2πy/λ), (9)

where d is the displacement of the material points on the flagellum in the lateral x-direction, y is
the centerline axis, A is the amplitude, and λ is the wavelength. In the sparse system, the thrust
correlates with the motion of individual hairs, and accordingly, only hairs at the straight part with
a dominant transversal motion generate thrust, whereas the hairs at the crest with a dominant
rotational motion do not contribute [Figs. 6(a) and 6(b)]. Conversely in the dense system, the role
switches and most of the thrust is generated at the crest [Figs. 6(c) and 6(d)]. Thus, hydrodynamic
interactions significantly reduce the strength of the anisotropy in drag of individual hairs when hairs
are closer to each other (similar to the conceptual model of hair arrays, Sec. III C). The resulting
T/4 phase shift (T = 1/ f being the period of the flagellar wave) of the generated thrust due to
the hairs from the sparse to the dense system is a signature that the location of thrust-generation is
shifted from the straight parts to the crests of the passing wave [Fig. 6(e)]. [Note that Eq. (9) does
not automatically preserve the arc-length of the segment, and with preserved arc-length the thrust
at the straight part is further reduced to negative values, while it is augmented at the crests; see the
Supplemental Material, Fig. S4.] It should be noted that in both systems, the force produced by the
(central) flagellum counteracts the force produced by the hairs [Fig. 6(e)].

For a quantitative comparison with resistive force theory (RFT), we consider the time-averaged
drag-based thrust generated by a single hair, which in RFT is [21,26,27]

F̄y, RFT = 2(Cn − Ct )μ l

(
1 − 1√

1 + (2πA/λ)2

)
λ f . (10)

The thrust expression is proportional to the difference between Cn and Ct , emphasizing the signif-
icance of drag anisotropy in drag-based thrust [12]. Resistive force theory overestimates the thrust
slightly in the sparse system but significantly in the dense system, and in both cases it is nearly
insensitive to the wavelength [Fig. 6(f)]. However, according to the CFD predictions, the thrust has
a weak dependence on the wavelength for the sparse system, but in contrast in the dense system, the
thrust increases significantly with decreasing wavelength, indicating the change of the mechanism
and highlighting the potential role of the curvature of the flagellum in thrust-generation.

E. Analytical model of the thrust

The dominance of hydrodynamic interactions in hairy flagellates with dense hairs rules out a
mechanism based on anisotropy in drag of individual hairs at the straight part of the flagellum,
because now several neighboring hairs, together, hydrodynamically function similar to a plane
sheet [Figs. 7(a) and 7(b)]. However, the hydrodynamic interactions facilitate another mechanism
of thrust-generation, thanks to the curvature of the flagellum. The curvature modifies the distance
between the hairs, bringing about a difference in the area occupied by several hairs at either side of
the flagellar crest [Fig. 7(c)]. This difference in the areas moving in the opposite direction due to the
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FIG. 6. Location of thrust-generation on flagella with sparse and dense hairs. We apply the kinematics in
Eq. (9), and in (a)–(e) we use f = 27.5 Hz, λ = 12 μm, A = 2.0 μm, 0 < y < 3 μm, and l = 0.90 μm. The
dashed arrows show the overall motion of the hairs, and the red arrows show the thrust due to the hairs, F̄y,hairs.
(a), (b) In the sparse system with N = 0.8 μm−1, F̄y,hairs is produced at the straight segment of the flagellum.
(c), (d) In contrast, in the dense system with N = 6.8 μm−1, F̄y,hairs is produced at the curved part. (e) The thrust
of the hairs and (central) flagellum in the sparse and the dense system during half of the beat period. Snapshots
in (a), (c) and (b), (d) correspond to t/T = 0.14 and 0.38, respectively. (f) The averaged thrust (over the beat
cycle) due to the hairs as a function of the wavelength and with all other parameters as in (a)–(e). The thrust in
the sparse system depends only weakly on the wavelength and is described well by the resistive force theory
(RFT) model in Eq. (10), whereas the thrust in the dense system decreases strongly with increasing wavelength
(decreasing curvature), and it is significantly overestimated by resistive force theory.

action of the flagellum results in a net thrust. Therefore, the basic thrust unit lies at the curvature of
the flagellum rather than in the straight part.

To explore the dependence of the thrust on the flagellar architecture and waveform, consider the
waveform in Eq. (1). For simplicity, we assume that the amplitude modulation factor, δ, the diameter
of the flagellum, the diameter of the hairs, and the presence of the cell body only affect the thrust
weakly, and therefore the remaining parameters are μ, f , λφ , Aφ , L f , and l . Furthermore, we restrict
attention to flagella with dense hairs (N > 6 μm−1) that effectively function as a sheet [Figs. 7(a)
and 7(b)]. From the parameters μ, f , λφ , Aφ , L f , and l , we have three dimensionless parameters
l/λφ , Aφ , and L f /λφ , and in our minimal model we can express the thrust:

F̄y = μ f λ2
φ �(l/λφ, Aφ, L f /λφ ), (11)
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FIG. 7. Parameter exploration and analytical thrust model. (a) Snapshot of the velocity field for a hairy
flagellum with the kinematics in Eq. (1) and the parameters f = 50 Hz, λφ = 10 μm, Aφ = 2π/5, δ = 2.0 μm,
Lf = 12.5 μm, l = 0.90 μm, and N = 7 μm−1. (b) Snapshot of the velocity field produced by an equivalent
plane sheet. (c) Basic thrust unit assuming that the dense system of hairs functions as a sheet (red) on either
side of the flagellum (green). (d)–(f) Dimensionless thrust as a function of the dimensionless parameters l/λφ ,
Aφ , and Lf /λφ . (d) Parameters: λφ = 10 μm, Aφ = 2π/5, and Lf = 12.5 μm. (e) Parameters: λφ = 9.0 μm,
Lf = 12.5 μm, and l = 1.50 μm. (f) Parameters: λφ = 10 μm, Aφ = 2π/5, and l = 0.90 μm. The diamond
refers to the case with l = 1.50 μm, where hairs are slightly off the beat plane to avoid physical interference
[Fig. 3(a)]. In all CFD simulations, we used f = 50.0 Hz and N = 8 μm−1. CFD results (red points) and
analytical model in Eq. (14) with α = 3.80 (blue curves).

where � is a dimensionless function. From dimensional analysis it is clear that F̄y is proportional to
μ and f , and our CFD simulations in the three-dimensional parameter space spanned by l/λφ , Aφ ,
and L f /λφ suggest that F̄y depends quadratically on l and Aφ and linearly on L f ; cf., Figs. 7(d)–7(f).

To rationalize our findings and develop a mechanistic model, we assume that the basic thurst-
generating unit is a segment of the hairy flagellum spanning one-quarter of the wavelength, similar to
segments in Figs. 6(c) and 6(d). It is assumed that the thrusts are produced once the unit is centered
at the crest [Fig. 7(c)]. This unit consists of two parts on either side of the flagellum where the
hairs come close and fan out, respectively. The part where the hairs come close moves upwards and
creates a negative thrust, whereas the part where the hairs fan out moves downwards and creates
a positive thrust. The net thrust of the basic thrust unit, F̄y, unit, is the difference between the two
contributions, and we make the low Reynolds number estimate:

F̄y, unit ∝ μ[θ (rc + l/2) − θ (rc − l/2)]Uunit = μθ l Uunit, (12)
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where Uunit is the characteristic speed of the two parts, θ (rc − l/2) is the characteristic length of the
part where the hairs come close, and θ (rc + l/2) is the characteristic length of the part where the
hairs fan out [Fig. 7(c)]. (See the Supplemental Material, Fig. S5 for the argument on why force is
proportional to these lengths.) Note that θ = √

2Aφ if the unit spans one-quarter of the wavelength.
To estimate Uunit, we use the magnitude of the rotation rate of the hairs at the crests, 	unit = 2π f Aφ ,
since ∂φ/∂t = 2π f Aφ cos (2π f t − 2πs/λφ ). Therefore, we obtain that Uunit = 	unitl/2 = π f Aφ l .
By combining the expressions, we find the estimate

F̄y, unit = παμ f A2
φ l2. (13)

There are 2L f /λφ thrust-generating units along the full length of the flagellum, and the total thrust
generated by the hairy flagellum becomes

F̄y, sheet = 2L f

λφ

F̄y, unit = 2παμ f l2 L f

λφ

A2
φ, (14)

where α is a shape factor. The model captures the parameter dependencies of F̄y that we find in
our CFD simulations [Figs. 7(d)–7(f)], and it rationalizes how F̄y depends on l , L f /λφ , and Aφ .
The quadratic dependency on l could be expected as the contributions of the hairs on the two sides
of the flagellum cancel to linear order, and the nearly linear dependency on L f /λφ is a sign of
weak hydrodynamic interactions between the segments, as assumed above. Moreover, the quadratic
dependency on Aφ could be expected since a change of the sign of Aφ does not change the magnitude
of the thrust generation.

It is worth highlighting the key role of the flagellar curvature (=2πAφ/λφ at the crest of the
passing wave). The proposed mechanism results in a stronger dependence of the thrust on the
wavelength in a densely haired compared to a naked flagellum, as also observed in Fig. 6(f). A
flagellum with short hairs functions like a slender body with negative drag-based thrust, but as
hairs become longer, the hydrodynamic interaction-based thrust becomes dominant, resulting in
the reversal of the thrust [Fig. 7(d)]. Note that the negative drag-based offset (due to the central
flagellum) is also affected by the dominance of the new mechanism among long hairs, becoming
weaker in the dense system as compared to the sparse system [Fig. 6(e)].

IV. PERSPECTIVE

The optimal design of a flagellum with respect to thrust production is suggested by Eq. (14):
The flagellum should be long, curvy (with short wavelength), and equipped with long hairs. Indeed,
hairy flagella have shorter wavelength than naked flagella [16]. However, for a planar beat, as in our
model organism, hairs longer than the radius of curvature at the crests would physically interfere
with each other. One solution is to orient hairs slightly off the beat plane, but this implies marginally
less thrust than if hairs were in the beat plane (see the Supplemental Material, Fig. S2). This solution
is used by flagellates where hairs are oriented at a small angle relative to the beat plane defined by
the central pair of axonemal microtubules [41,42]. A second solution, as found in many species,
may be bundling of hairs [41] (i.e., three to four hairs protruding from the same attachment point
on the flagellum), where interference is avoided if hairs become aligned rather than intertwined.
Thirdly, the beat of the flagellum itself may not be perfectly planar [41], and many hairy flagellates
in fact have complex three-dimensional beat patterns [3,43], providing room for longer hairs without
interference. Yet another way to increase hydrodynamic interaction based thrust is through terminal
branching of the hairs, as found in many species [41], which may significantly increase the thrust.
This is potentially possible because terminal filaments occupy a larger area at one side of the crests
(of the wave) than the other side, taking further advantage of the mechanism. Finally, the fibrous
hairs between the tubular hairs in some species make the hairs further resemble a sheet and increase
the functional rigidity of the hairs [41]. The diverse flagella designs observed in nature and discussed
above can thus all be understood in the context of the mechanism for thrust production suggested
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here, and they may provide novel ideas for the design of artificial swimmers and flow generation in
microfluidic devices.

The presence of hairs on the flagellum is key to foraging in flagellates. Not only does the reversal
of the flow increase the capture efficiency of prey arriving in the feeding current [21], but the hairs
also increase the thrust generation significantly as compared to a smooth flagellum with the same
beat kinematics or the same power expenditure. For a comparison of the efficiency of the thrust
generation by naked versus hairy flagella, consider the following example: A hairy flagellum with
l = 1.5 μm gives a time-averaged thrust of F̄y,1.5 = 5.1 pN with a time-averaged power expenditure
of P̄1.5 = 24 fW (Sec. III A), and a naked flagellum with the same kinematics gives F̄y,0 = 1.6 pN
and P̄0 = 5.5 fW. Change in the thrust, and hence load on the flagellum, may result in a change in
the frequency of the flagellar beat as observed for flagella beating at an increased viscosity [44].
Adjusting the frequency (multiplying by a factor of 5.1/1.6 = 3.2), such that the naked flagellum
produces the same thrust as the hairy flagellum, results in a modified power of P̄0,m = 54 fW,
approximately 2.2 times higher than that of the hairy flagellum. While the optimum waveform for a
naked flagellum might differ marginally from that of the hairy one, this example shows that, in terms
of the produced thrust, the addition of hairs is significantly more efficient than simply increasing the
frequency in a naked flagellum.

The hydrodynamics of flagella is most often studied in the context of propulsion [7,11,12].
However, for predatory flagellates, the main consumers of bacteria in the ocean, efficient foraging
is likely a much more important component of their fitness than propulsion per se. It should be
noted that the reversal will also impact the predating risk since the stirring generated by the feeding
current exposes the cells to their flow-sensing predators [45,46]. The suggested mechanism for
thrust production and the associated tradeoffs motivate future and more comprehensive studies of
the very diverse flagella designs found among predatory flagellates in nature. At low Reynolds
number, viscosity impedes predator-prey contact, but the hairy flagellum yields the necessary force
(a direct measure of the feeding current) and feeding current structure to secure the success and key
role of flagellates in the microbial food webs.
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