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We conduct a linear analysis of axisymmetric magnetorotational instability (MRI) in
a magnetized cylindrical Taylor-Couette (TC) flow for its standard version (SMRI) with
a purely axial background magnetic field and two additional types—helically modified
SMRI (H-SMRI) and helical MRI (HMRI)—in the presence of combined axial and
azimuthal magnetic fields. This study is intended as preparatory for upcoming new cutting-
edge large-scale liquid sodium MRI experiments planned within the DRESDYN project at
Helmholtz-Zentrum Dresden-Rossendorf, so we explore these instability types for typical
values of the main parameters: the magnetic Reynolds number, the Lundquist number,
and the ratio of the angular velocities of the cylinders, which are attainable in these
experiments. In contrast to previous attempts at detecting MRI in the laboratory, our results
demonstrate that SMRI and its helically modified version can in principle be detected in the
DRESDYN-TC device for the range of the above parameters, including the astrophysically
most important Keplerian rotation, despite the extremely small magnetic Prandtl number
of liquid sodium. Since in the experiments we plan to approach (H-)SMRI from the pre-
viously studied HMRI regime, we characterize the continuous and monotonous transition
between these two regimes. We show that H-SMRI, like HMRI, represents an overstability
(traveling wave) with nonzero frequency linearly increasing with azimuthal field. Because
of its relevance to finite-size flow systems in experiments, we also analyze the absolute
form of H-SMRI and compare its growth rate and onset criterion with the convective one.

DOI: 10.1103/PhysRevFluids.7.064802

I. INTRODUCTION

Magnetorotational instability (MRI) is of key importance for cosmic structure formation. Origi-
nally discovered by Velikhov in 1959 [1], and then “forgotten” for nearly three decades, in 1991 it
was “rediscovered” and successfully applied to the long-standing problem of turbulence and angular
momentum transport in accretion disks around protostars and black holes [2]. While extensively
studied analytically and numerically over the past three decades (see the recent reviews [3,4] and
references therein), the standard form of MRI (SMRI) in a classical setup—rotating cylindrical flow
of a conducting fluid threaded by a purely axial magnetic field—where it was originally discovered
theoretically, has continued to elude any clear experimental confirmation, despite great efforts and
encouraging first results [5–8]. This is mainly due to the fact that for the onset and efficient growth
of SMRI, both magnetic Reynolds (Rm) and Lundquist (Lu) numbers should be high enough O(10),
which makes dedicated liquid metal experiments challenging, because the extremely low magnetic
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FIG. 1. (a) A simplified Taylor-Couette flow setup with an imposed helical magnetic field, (b) a schematic
view of the new DRESDYN-MRI machine.

Prandtl numbers Pm = ν/η = 10−6–10−5 of strongly resistive liquid metals (ν is viscosity and η is
resistivity) in turn requires very high Reynolds numbers Re = Rm/Pm � 106.

It came, therefore, as a big surprise when Hollerbach and Rüdiger found in 2005 [9] that the
addition of an azimuthal magnetic field can drastically reduce the effort for experimental realization
of MRI, at least for rotational profiles slightly steeper than the Keplerian one. This new version of
MRI under the influence of a helical magnetic field, now known as helical MRI (HMRI), was shown
to be a destabilized inertial oscillation [10], governed by the hydrodynamic Reynolds number (Re)
and Hartmann number (Ha), in contrast to SMRI, which is a destabilized magneto-Coriolis wave.
Many features of HMRI have since been revealed, in particular its monotonous transition to SMRI
[9], including, however, a spectral exceptional point [11], its restriction to rather steep profiles in
terms of the lower and upper Liu limits [10,12], the continuous connection of these two limits when
allowing noncurrent free azimuthal magnetic fields [10,13], and the close connection of its growth
rate to the growth factor of the underlying nonmodal instability of the nonmagnetic rotational flow
[14]. Moreover, for purely or dominantly azimuthal magnetic fields, a nonaxisymmetric “sibling”
of HMRI, called azimuthal MRI (AMRI), was discovered [15,16], with otherwise very similar
properties to HMRI.

Meanwhile, both HMRI and AMRI were found and characterized in the liquid-metal experiment
PROMISE at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) [16–18]. Being sufficient to pro-
vide some Re of the order of 103−104 and Ha of the order of 10–102 (rather than significant values
of these numbers required for SMRI), PROMISE is a medium-size Taylor-Couette experiment with
slow rotation rates (below 1 Hz), using the very safe eutectic alloy GaInSn, with the current supply
for some kiloAmps through the central rod being the most expensive part. While the experimental
results on HMRI were in very good agreement with numerical predictions [18], the investigation
of the details of the “butterfly diagram” of AMRI is still ongoing [19]. Though its constructional
restrictions to Re � 104 make PROMISE unsuitable for reaching very high Re ∼ 106 necessary for
SMRI to operate at very low magnetic Prandtl number of liquid metals, the clear identification of
HMRI in these experiments has strongly encouraged us to investigate the monotonous transition to
SMRI in a significantly bigger machine.

Such a new experiment [Fig. 1(b)] is presently under construction in the framework of the
DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at HZDR.
Actually, this machine is not limited to the detection of SMRI only but is also designed to study
various combinations of MRI with the current-driven Tayler instability [20], as well as the recently
discovered “Super-HMRI” in rotating flows with positive shear [21]. Yet, the focus of this paper is
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TABLE I. Physical parameters of the new DRESDYN-MRI experiment with liquid sodium. The material
parameters are for a sodium temperature of T = 130 ◦C.

Physical parameter Values

rin 0.2 m
rout 0.4 m
Lz 2 m
�in � 2π × 20 Hz
�out � 2π × 6 Hz
Axial magnetic field (B0z) � 150 mT
Current through central rod (I) � 50 kA
Conductivity (σ ) 9.5 × 106 S/m
Viscosity (ν ) 6.512 × 10−7 m2/s
Density (ρ ) 920 kg/m3

exclusively on the classical aspects of HMRI and SMRI. As a preparatory step towards large-scale
new cutting-edge MRI experiments within the DRESDYN project, we study these instabilities and
the connection between them specifically for those ranges of the characteristic parameters of the
magnetized Taylor-Couette flow that are achievable in these experiments. We aim, in particular, at
a detailed analysis of the axisymmetric MRI when going from HMRI to SMRI regimes. Our work
relies on, but extends significantly, the previous works on pure SMRI [22,23], on the monotonous
transition between HMRI and SMRI [9] and the connection between HMRI and SMRI [11]. In
the latter work, it was shown using a local WKB analysis that HMRI arises from the exchange of
instabilities of SMRI and inertial waves through the coalescence of these two modes at a spectral
exceptional point as an imposed azimuthal magnetic field increases.

The paper is organized as follows. The basic equations and the formulation of the linear stability
problem are given in Sec. II, the main results on SMRI, helically modified SMRI, and HMRI are
presented in Sec. III for the convective form of these instabilities, and in Sec. IV for the absolute
form. A summary and conclusions are presented in Sec. V.

II. MATHEMATICAL SETTING

The basic equations of the nonideal MHD governing motion of an incompressible conducting
fluid are

∂U
∂t

+ (U · ∇)U = − 1

ρ
∇P + J × B

ρ
+ ν∇2U, (1)

∂B
∂t

= ∇ × (U × B) + η∇2B, (2)

∇ · U = 0, ∇ · B = 0, (3)

where ρ is the constant density, U is the velocity, P is the thermal pressure, B is the magnetic field,
and J = μ−1

0 ∇ × B is the current density, with μ0 being the magnetic permeability of vacuum. The
fluid has constant kinematic viscosity ν and Ohmic resistivity η.

Consider a cylindrical Taylor-Couette (TC) setup—a basis flow for the DRESDYN-MRI ex-
periment, which contains liquid sodium as an incompressible conducting fluid in the cylindrical
coordinate system (r, φ, z) [Fig. 1(a)]. In this TC setup, the inner and outer cylinders with radii rin

and rout rotate, respectively, with angular velocities �in and �out. In the DRESDYN-MRI machine,
the ratio of the inner and outer cylinder radii is fixed to rin/rout = 0.5 and the aspect ratio Lz/rin = 10
is large, where Lz is the length (height) of the cylinders, so we can assume them to be approximately
infinitely long, while the ratio μ = �out/�in can be varied (Table I). A current-carrying solenoid
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surrounding the outer cylinder imposes a constant magnetic field in the axial direction, B0z, while a
central linear current along the cylinder axis creates an azimuthal magnetic field B0φ = βB0z(rin/r),
where β � 0 is a nondimensional parameter measuring the strength of B0φ relative to B0z; at β = 0,
the background field is purely axial, corresponding to the SMRI regime. The resultant helical
magnetic field, B0 = B0φeφ + B0zez, is current-free between the cylinders, J0 = μ−1

0 ∇ × B0 = 0,
and therefore does not exert any Lorentz force on the fluid. So, in the present case of infinite
cylinders, the equilibrium azimuthal flow U0 = (0, r�(r), 0) with the classical hydrodynamical TC
profile of angular velocity

�(r) = C1 + C2

r2
,

where the coefficients C1 and C2 are

C1 = �outr2
out − �inr2

in

r2
out − r2

in

, C2 = (�in − �out)r2
inr2

out

r2
out − r2

in

,

is an exact solution of Eqs. (1)– (3). In real experiments, of course, there is always some deviation
of the equilibrium flow profile from the TC one mainly in the Ekman-Hartmann boundary layers
near endcaps [18,24–26].

We study the linear stability of this base TC flow U0 with the imposed helical magnetic field B0,
against small perturbations, u = U − U0, p = P − P0, b = B − B0. We assume the perturbations
have the modal form ∝ exp(γ t + imφ + ikzz), where γ is the (complex) eigenvalue and m and
kz are, respectively, the azimuthal and axial wave number. A positive real part of γ implies the
presence of instability in the flow. Normalizing time by �−1

in , length by rin, �(r) by �in, B0 by B0z,
b by RmB0z, u by rin�in, and p by ρr2

in�
2
in, and linearizing the main Eqs. (1)– (3), we obtain the

system of nondimensional perturbation equations [3]:

(γ + im�)ur = 2�uφ − d pt

dr
+ Ha2

Re

(
ikz + imβ

r2

)
br

−Ha2

Re

2β

r2
bφ + 1

Re

(
�ur − ur

r2
− 2im

r2
uφ

)
,

(4)

(γ + im�)uφ = −
(

2� + r
d�

dr

)
ur − im

r
pt+

Ha2

Re

(
ikz + imβ

r2

)
bφ + 1

Re

(
�uφ − uφ

r2
+ 2im

r2
ur

)
,

(5)

(γ + im�)uz = −ikz pt + Ha2

Re

(
ikz + imβ

r2

)
bz + 1

Re
�uz, (6)

Rm(γ + im�)br =
(

ikz + imβ

r2

)
ur + �br − br

r2
− 2im

r2
bφ, (7)

Rm(γ + im�)bφ =
(

ikz + imβ

r2

)
uφ + Rm r

d�

dr
br

2β

r2
ur + �bφ − bφ

r2
+ 2im

r2
br, (8)

Rm(γ + im�)bz =
(

ikz + imβ

r2

)
uz + �bz, (9)

dur

dr
+ ur

r
+ im

r
uφ + ikzuz = 0,

dbr

dr
+ br

r
+ im

r
bφ + ikzbz = 0, (10)

where we have introduced the total (thermal+magnetic) pressure perturbation

pt = p + Ha2

Re

(
bz + β

r
bφ

)

064802-4



FROM HELICAL TO STANDARD MAGNETOROTATIONAL …

TABLE II. Nondimensional system parameters of the DRESDYN-MRI experiment with liquid sodium
based on the values in Table I, assuming material parameters of liquid sodium at T = 130 ◦C.

Dimensionless parameter Definition Values

μ �out/�in (0.25 0.35]
β B0φ (rin )/B0z [0, 4]
Normalized height of the TC device Lz/rin 10
Reynolds number (Re) �inr2

in/ν � 7.72 × 106

Hartmann number (Ha) B0zrin/
√

ρμ0νη � 3778
Magnetic Prandtl number (Pm) ν/η 7.77 × 10−6

Magnetic Reynolds number (Rm) RePm � 40
Lundquist number (Lu) Ha

√
Pm � 10

Azimuthal Hartmann number (Haφ) B0φ (rin )rin/
√

ρμ0νη � 1259
Azimuthal Lundquist number (Luφ) Haφ

√
Pm � 3.51

and � is the Laplace operator in cylindrical coordinates

� = 1

r

d

dr

(
r

d

dr

)
− m2

r2
− k2

z .

In these equations, the parameters Ha, Re, and Rm are the Hartmann, Reynolds, and magnetic
Reynolds numbers, respectively, whose definitions are given in Table II. Here the Hartmann number
is defined for the vertical magnetic field B0z, while below we also use the Hartmann number Haφ

in terms of the azimuthal field at the inner cylinder, B0φ (rin), which is also given in Table II. The
magnetic Prandtl number Pm = ν/η = Rm/Re is very small and fixed to the value for liquid sodium
at T = 130 ◦C, Pm = 7.77 × 10−6. It is well known that SMRI is governed primarily by Lundquist
number Lu = Ha Pm1/2 and Rm [3,11,12], which we also choose as the main parameters in our
analysis. To find the optimal regimes for the detection of SMRI in the DRESDYN-MRI experiment,
we adopt the ranges of the key parameters of the flow achievable in this experiment, which are given
in Table I and in nondimensional form in Table II.

In this paper, we consider only axisymmetric perturbations with m = 0 (i.e., ∂/∂φ = 0), which,
as we checked, are the dominant unstable ones for small to moderate values of β � 4 and other
parameter regimes considered here that are pertinent to the experiment, whereas for β � 1, nonax-
isymmetric m = 1 AMRI modes dominate instead [15]. For axisymmetric perturbations and β = 0,
Eqs. (4)–(10) reduce to the main equations of [23] for the analysis of SMRI, while for β �= 0 they
coincide with those used by [9] to study HMRI. We focus on the Rayleigh-stable regime, i.e.,
μ = �out/�in > (rin/rout)2 = 0.25, ensuring that instabilities in the flow are solely of a magnetic
nature, and consider values of μ up to quasi-Keplerian μ = 0.35, which is of immediate interest for
astrophysical disks.

III. RESULTS

Equations (4)–(10) together with appropriate boundary conditions for the velocity and magnetic
field constitute the one-dimensional (1D) (in the radial direction) eigenvalue problem for finding
γ and corresponding eigenfunctions as a function of other parameters. In the resulting eigenvalue
problem, the radial structure is solved by the spectral collocation method using Chebyshev polyno-
mials typically up to N = 30–40 [9,15,21,27]. Due to the large difference (by a factor ∼8) between
the conductivity of liquid sodium and the cylinder walls made of stainless steel, we apply insulating
boundary conditions for the magnetic field [22,23]. For the velocity, standard no-slip boundary
conditions are used. The above equations with these boundary conditions are reduced to a large
(4N × 4N) matrix eigenvalue problem where the growth rate of the instability is determined by the
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FIG. 2. (a)–(e) SMRI growth rate Re(γ ) � 0 in the (Lu, Rm)-plane, maximized over kz � kz,min, for fixed
β = 0, Pm = 7.77 × 10−6, and varying μ. (f) The corresponding marginal stability curves for these values
of μ, which better indicate a shift of the unstable area to higher Lu and Rm, implying a greater stability for
increasing μ.

(positive) real part of γ . We assume that at least one full wavelength of an unstable mode should fit
into the axial extension, Lz, of the device. Thus, in most of the analysis below we set the minimum
wave number for unstable modes to be equal to kz,min = 2π/Lz and maximize their growth rate
over larger wave numbers kz � kz,min, hence excluding modes with larger axial scale, i.e., with
wave numbers smaller than kz,min. The modifications of the resulting marginal stability curves when
including those larger-scale modes are very small, as shown below.

A. SMRI for β = 0

To obtain the regions of SMRI in the parameter space, in Fig. 2 we plot the growth rate, Re(γ ) �
0, of the most unstable axisymmetric mode, maximized over all axial wave numbers kz � kz,min,
in the (Lu, Rm)-plane for varying μ and a purely axial magnetic field with β = 0. As mentioned
above, we focus on the Rayleigh-stable regime, μ > 0.25. It is seen that the instability region in the
(Lu, Rm)-plane decreases and moves towards higher Lu and Rm with increasing μ. Consequently,
the critical Luc and Rmc for the onset of SMRI also increase monotonically with μ, as is evident
in Fig. 2(f), showing the corresponding marginal stability [Re(γ ) = 0] curves in the (Lu, Rm)-
plane. For example, the critical Luc = 1.522 and Rmc = 4.838 for μ = 0.26, while Luc = 5.094
and Rmc = 16.17 for the quasi-Keplerian rotation with μ = 0.35. Since the maximum achievable
Lundquist and magnetic Reynolds numbers in DRESDYN-MRI experiments are, respectively, 10
and 40 (Table I), it follows from these results that SMRI can be, in principle, well detectable in these
experiments for μ in the range (0.25, 0.35], which includes quasi-Keplerian rotation too, in contrast
to previous studies in the smaller PROMISE experiment.
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FIG. 3. (a) Critical Reynolds numbers Rec of the instability, minimized over kz � kz,min, and (b) the
corresponding Hartmann Hac numbers at those Rec, as functions of μ for different β = 0, 2, 4, 8. The black
curve at β = 0 corresponds to SMRI, while the other curves at β = 2, 4, 8 correspond to HMRI at lower μ,
which eventually go smoothly into a plateau with much higher Hac ∼ 103 and Rec ∼ 106, pertaining to the
H-SMRI regime.

B. HMRI and helically modified SMRI for β �= 0

In the DRESDYN-MRI experiments, we plan to approach the SMRI regime from the well-known
HMRI regime by gradually decreasing the azimuthal magnetic field, that is, for a fixed μ we start
with a certain nonzero β and gradually decrease it to 0. To examine the transition from HMRI
to SMRI, in Fig. 3 we plot the critical Rec and Hac as a function of μ at several β = 0, 2, 4, 8.
For SMRI at β = 0, the critical Rec ∼ 106 and Hac ∼ 103 for μ > 0.25 while for β = 2 both of
these numbers fall to much lower values at μ < 0.275, which lie in the well-known HMRI regime
[9]. As μ increases further, Hac and Rec also steeply increase, and at about μ = 0.275 they level
off near Hac ∼ 103 and Re ∼ 106, increasing beyond that only slowly with μ. The latter range
with much higher critical Reynolds and Hartmann (Lundquist) numbers clearly corresponds to the
SMRI, or more precisely the helically modified SMRI (H-SMRI) regime, because of the presence
of the azimuthal field together with the axial one. Thus, we observe a continuous and monotonous
transition from HMRI to H-SMRI as μ increases along the marginal stability curve at a given β = 2,
with the transition point being around μ = 0.275. It is seen in Fig. 3 that the marginal curves for
larger β = 4 and 8 exhibit a similar behavior with respect to μ, except that Rec and Hac fall to even
lower values in the HMRI regime at smaller μ as compared to the β = 2 case, and they level off
at higher μ = 0.32 and 0.33, respectively, in the H-SMRI regime. Thus, there is a gradual decrease
of Rec and Hac for the onset of HMRI with increasing β. By contrast, in the H-SMRI regime at
larger μ, Rec increases, though weakly, while Hac remains nearly the same with increasing β. This
implies that the background azimuthal field acts to enhance HMRI, but to stabilize H-SMRI. Note
that for the quasi-Keplerian value μ = 0.35 there is only the H-SMRI branch (see Sec. III C). The
dramatic reduction in the critical values of the system parameters for the onset of HMRI compared
to the experimentally challenging ones for (H-)SMRI, as first demonstrated in Ref. [9] (see their
Fig. 1, which is similar to our Fig. 3), had enabled successful detection of HMRI in the PROMISE
experiments [17,18]. However, the (H-)SMRI remained elusive in those experiments.

To further explore the transition from HMRI to SMRI, in Fig. 4 we show the growth rate,
Re(γ ) � 0, maximized over axial wave numbers kz � kz,min, in the (Lu, Rm)-plane as β is increased
from 0 to 4 for a fixed μ = 0.27. For β = 0, the imposed magnetic field is purely axial, so only
SMRI takes place with a critical Luc = 2 and Rmc = 6.861 [Fig. 4(a)]. On reaching β = 1, by
applying an azimuthal magnetic field externally, the critical Luc and Rmc decrease slightly and
the instability region starts changing its shape predominantly near these critical values, as seen
in Fig. 4(b), indicating the onset (branching out) of HMRI mode and the modification of SMRI
mode due to helical magnetic field. In the experiments, we have an upper limit on the axial
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FIG. 4. (a)–(e) Growth rate Re(γ ) � 0 in the (Lu,Rm)-plane, maximized over kz � kz,min, for fixed
μ = 0.27, Pm = 7.77 × 10−6, and different β. The vertical red-dashed line in the panels marks the limit
on maximum Lu for each β and fixed maximum azimuthal Luφ that can be attained in the experiment (see
Table II). This line shifts to the left (to smaller Lu) as β increases. In panel (a), for β = 0 only SMRI exists
in the flow. In panels (b)–(e), the more extended instability branch for β �= 0 at lower Lu and Rm represents
HMRI (dark blue), while the instability region at higher Lu and Rm is H-SMRI (blue/yellow/red). (f) The
corresponding marginal stability curves for the same values of β and fixed μ = 0.27 in the (Lu, Rm)-plane. As
β increases, the HMRI stability curve branches off the SMRI curve (red at β = 0) and further extends to lower
and lower Lu and Rm.

current and therefore on the azimuthal magnetic field measured by the azimuthal Lundquist number
Luφ = β Lu � Luφ,max (see Table II for definitions and values), which in turn imposes a stricter
constraint on Lu for each β, that is, Lu < Lumax = Luφ,max/β. To take this into account, we have
added vertical red-dashed lines in Figs. 4(b)–4(e) that mark the corresponding upper limit, Lumax, on
the axial Lundquist number that can be achieved in the experiments for a given β and the maximum
azimuthal Luφ,max = 3.51 (Table II). It is seen in this figure that as β is increased, Lumax decreases
(the red-dashed line shifts left) due to the constraint on the maximum Luφ . As a result, a larger
and larger unstable area of the (Lu, Rm)-plane beyond this threshold, Lu > Lumax, which primarily
belongs to H-SMRI, becomes experimentally inaccessible. For this reason, in the experiments, we
plan to start from a reasonable value of β ∼ 4 and decrease it, thus allowing for the gradual increase
of Lu until reaching the H-SMRI regime.

On reaching β = 2, the unstable region spreads out further down in the (Lu, Rm)-plane
[Fig. 4(c)]. Since the applied azimuthal magnetic field is stronger now, the new extended instability
region (dark blue) at smaller Lu and Rm can be interpreted as a HMRI mode, whereas the instability
region at larger Lu and Rm, which originally (at β = 0) corresponded to SMRI and out of which
HMRI has branched, represents now the H-SMRI branch (light blue/yellow/red). However, it is
worth noting that the continuity of the overall instability region is maintained, in the sense that there
is no sharp boundary separating these two instability types. This classification of the instability
into essential HMRI and H-SMRI in the present global 1D analysis is consistent with a similar
classification made in the local WKB study [11]. As β increases to 3 and 4 in Figs. 4(d) and 4(e),
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7.77 × 10−6, and different β, as shown in Fig. 4(f) but now in the (Luφ, Rm)-plane. The vertical red-dashed
line marks the experimental limit on the maximum Luφ (see Table II).

respectively, the HMRI branch broadens and extends further down in the lower-left segment of the
(Lu,Rm)-plane, leading to significantly reduced critical Luc and Rmc in contrast to H-SMRI, as
we have already observed in Fig. 3. Note also in this figure that in the presence of the azimuthal
magnetic field, i.e., β �= 0, the maximum growth rate of H-SMRI is lower than that of pure SMRI
at β = 0 in the given domain of Lu and Rm, implying that the azimuthal field, while giving rise
to HMRI, also modifies SMRI (referred to as H-SMRI) and reduces its growth rate. In Fig. 4(f),
we plot the corresponding marginal stability [Re(γ ) = 0] curves for μ = 0.27 and different β. It is
seen how the stability curve of HMRI gradually branches off the SMRI curve (red at β = 0) and
extends to the smaller values of Lu and Rm as the applied azimuthal magnetic field (β) increases
with respect to the axial one.

Figure 5 shows the same marginal stability curves for μ = 0.27 and different β as in Fig. 4(f), but
as a function of the azimuthal Lundquist number Luφ and Rm. The vertical red-dashed line indicates
the maximum value, Luφ,max, achievable in the DRESDYN experiments. As seen in Fig. 5, for
β � 1, most of the H-SMRI region is well attainable in the experiment. However, for larger β � 1,
the H-SMRI region appears to be mostly located at Luφ > Luφ,max, or equivalently Lu > Luφ,max/β,
outside the range of experimentally achievable Lundquist numbers, as is also seen in Figs. 4(c)–4(e).

To confirm that the broadening instability regions with increasing β in Fig. 4 indeed correspond
to the essential HMRI, in Fig. 6 we show the growth rate in the (Ha,Re)-plane (a) at small but finite
Pm = 7.77 × 10−6 normally used in this paper and (b) in the inductionless approximation, Pm =
0, with the same μ = 0.27 and β = 4. In the inductionless limit, only essential HMRI survives,
whereas H-SMRI disappears [28], so Fig. 6(b) in fact depicts the most unstable HMRI mode, whose
shape in the (Ha,Re)-plane is almost identical to that of the extended instability branch in Fig. 6(a)
for the smaller Ha and Re in this plane. Note also that the maximum growth rate in the case of finite
Pm, associated with H-SMRI, is larger than that of the inductionless HMRI. To further demonstrate
this similarity, in Fig. 6(c) we show the associated marginal stability curves for the inductionless
HMRI (red line), for the finite Pm case (black-dashed line), and, as a reference, for SMRI (blue-
dashed line). It is evident from this figure that the lower extended part of the stability curve at finite
Pm and smaller Ha and Re identically matches that of the inductionless essential HMRI, hence
scaling with these numbers, and it gradually deviates from the latter with increasing Ha and Re as
HMRI smoothly transitions into H-SMRI and scales instead with Lu and Rm. Although the domains
of SMRI and H-SMRI overlap in this plot, the domain of SMRI does not fully lie within the domain
of H-SMRI as a result of modification by the azimuthal field.

Figure 6(d) shows the distribution of the eigenfrequency in the (Ha,Re)-plane at finite
Pm and β = 4. Two distinct smoothly interconnecting regions—a broad high-frequency region
(yellow/orange/red) and a small low-frequency region (blue) at higher Re—are evident in this plot,
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FIG. 6. (a) Growth rate Re(γ ) � 0 at fixed μ = 0.27, Pm = 7.77 × 10−6, and β = 4 in the (Ha, Re)-
plane. Part (b) shows the same as (a) but in the inductionless limit Pm = 0, which represents the essential
HMRI. (c) The associated marginal stability curves in the (Ha, Re)-plane at Pm = 0, β = 4 for HMRI (red),
at Pm = 7.77 × 10−6, β = 4 (dashed black) comprising HMRI in the lower extended part and H-SMRI in the
upper part and, given for reference, the SMRI curve for Pm = 7.77 × 10−6, β = 0 (blue dashed). Points A, B,
and C are analyzed in more detail in Figs. 7–10 and 13. (d) Eigenfrequency distribution in the (Ha,Re)-plane
corresponding to the growth rate map in (a).

which correspond, respectively, to the unstable regions of low and high growth rate in Fig. 6(a).
In other words, the less unstable HMRI in the lower extended part of the (Ha,Re)-plane has a
noticeably larger frequency than that of the more unstable H-SMRI in the upper part of this plane. It
is known that HMRI represents the instability of inertial waves and hence has the frequency of these
waves [10,12], which is mostly independent of the magnetic field. On the other hand, (H-)SMRI is
the instability of magneto-coriolis waves [6,11], whose frequency is zero for SMRI at β = 0 and
linearly increases with β for H-SMRI (see also Fig. 13 in Sec. IV).

To better understand the transition from HMRI to H-SMRI, in Fig. 7 we show the growth rate,
Re(γ ), and frequency, Im(γ ), as a function of axial wave number kz for fixed μ = 0.27 and varying
β in three characteristic cases denoted by points A, B, and C in Fig. 6(c). These are (i) the HMRI
regime at lower Lu = 0.1287, Rm = 0.1247 (point A); (ii) the transition region at intermediate
Lu = 2.1461, Rm = 6.8610 (point B, chosen such that SMRI would be marginally stable); and
(iii) the H-SMRI region at higher Lu = 5, Rm = 25 (point C).

In the first case, there is only HMRI at β = 3 and 4, whereas the values β = 1 and 2 as well as
SMRI at β = 0 are stable [Fig. 7(a)]. It is seen that with increasing β, the growth rate increases and
the interval of unstable kz broadens. As mentioned above, the HMRI results from the destabilization
of inertial oscillations. This is demonstrated in Fig. 7(d) showing the corresponding frequency of
the HMRI mode, which coincides well with the frequency of purely hydrodynamic inertial waves
(dashed black lines) and hence does not depend much on β, as is typical of HMRI.
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FIG. 7. (a)–(c) Growth rate, Re(γ ), and (d)–(f) frequency, Im(γ ), as a function of kz for μ = 0.27, Pm =
7.77 × 10−6, and different β. The three characteristic cases at Lu = 0.1287, Rm = 0.1247 (a),(d), at the
critical Luc = 2.1461, Rmc = 6.8610 (b),(e), and at Lu = 5, Rm = 25 (c),(f) correspond, respectively, to
points A, B, and C in Fig. 6(c). The black dashed lines in the frequency plots in the bottom row show the
frequency of various, purely hydrodynamical, inertial wave modes.

In the transition case, we see that the growth rate and the instability interval along kz also
increase monotonically with β [Fig. 7(b)], although more weakly than in the first case. This is
natural as the point B in Fig. 6(c) is marginally SMRI-unstable initially at β = 0 while becoming
increasingly more HMRI-unstable as β increases. In this regime, there is some competition between
HMRI and H-SMRI modes. Figure 7(e) shows the behavior of the corresponding frequency with β.
For β = 0, emerging marginally SMRI-unstable slow magneto-coriolis waves are stationary with
zero frequency. With increasing β, the frequency undergoes a “jump,” after which it follows the
characteristics of the HMRI mode (the inertial oscillations shown by black dashed lines) with
nonzero frequency in the unstable region, converging to a certain value as β increases. We return to
this transition process and discuss this in more detail in Sec. III B 3.

In contrast to the behavior in the above two cases depicted in Figs. 7(a) and 7(b), in the third
H-SMRI case shown in Fig. 7(c) the growth rate decreases with increasing β, while the unstable
range along kz does not change with β and remains similar to that of SMRI. Figure 7(f) shows the
behavior of the corresponding frequency, which, starting from zero for the stationary SMRI mode,
increases with β for H-SMRI and deviates from that of inertial waves in contrast to that of HMRI,
which is independent of β.

1. Eigenfunctions

Here we explore the structure of the eigenfunctions for the instability modes. Figure 8 shows
the eigenfunctions for the axial velocity uz and axial magnetic field bz in the (r, z)-plane for fixed
μ = 0.27 at Lu = 0.1287, Rm = 0.1247, kz = 3.05, β = 4 for HMRI (point A), at the same
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FIG. 8. (a)–(c) Axial velocity uz and (d)–(f) magnetic field bz eigenfunctions for fixed μ = 0.27, Pm =
7.77 × 10−6. (a),(d) HMRI eigenfunctions at Lu = 0.1287, Rm = 0.1247, kz = 3.05, and β = 4 [point A in
Fig. 6(c)]. Parts (b),(e) and (c),(f) have Lu = 5, Rm = 25, kz = 2.2 [point C in Fig. 6(c)], showing SMRI and
H-SMRI eigenfunctions for β = 0 and 4, respectively. In (b) and (c), insets zoom into the boundary layers,
which are rather thin because of very high Re = Rm/Pm = 3.22 × 106, and clearly illustrate that uz indeed
vanishes at the cylinder walls in these layers in accordance with no-slip boundary conditions.

Lu = 5, Rm = 25, kz = 2.2 for H-SMRI with β = 4 (point C) and for SMRI with β = 0. The axial
velocity eigenfunction of HMRI mode shows small shearing in the middle of the flow domain and
quite significant shearing along the cylinder walls [Fig. 8(a)] while the eigenfunction for the SMRI
mode does not show such a shearing in the middle of the flow or along the boundary but is more
concentrated towards the inner cylinder wall [Fig. 8(b)]. The axial velocity eigenfunction for the
H-SMRI mode [Fig. 8(c)] is, however, characteristically different from those of HMRI or SMRI in
that it has much stronger axial shear in the middle of the flow than the HMRI mode while having no
shear along the boundary, similar to that of SMRI mode. This indeed shows that the helical magnetic
field modifies SMRI by increasing the axial shearing in the middle of the flow in the resulting
H-SMRI mode. Note also that because of very high Re associated with SMRI and H-SMRI, both
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FIG. 9. (a)–(c) Maxwell and Reynolds stresses for μ = 0.27, Pm = 7.77 × 10−6 in three instability
regimes. Part (a) shows the HMRI regime at Lu = 0.1287, Rm = 0.1247, kz = 3.05, and β = 4 [point A
in Fig. 6(c)]. Parts (b) and (c) plots are done at Lu = 5, Rm = 25, kz = 2.2 (point C) and show, respectively,
SMRI with β = 0 and H-SMRI with β = 4 regimes.

of their velocity eigenfunctions have rather thin boundary layers near the cylinder walls [insets in
Figs. 8(b) and 8(c)], where the velocity perturbations drop steeply to zero at the walls according
to the no-slip boundary conditions. Similarly, the axial magnetic field eigenfunction for the HMRI
mode has a slight shearing in the middle of the flow [Fig. 8(d)], while the eigenfunction of the
SMRI mode does not have such shearing but instead is more concentrated near the inner cylinder
wall [Fig. 8(e)]. However, as is evident from Fig. 8(f), the H-SMRI mode has significantly stronger
axial shearing in the middle of the domain than the HMRI mode.

2. Stresses

Both HMRI and (H-)SMRI are shear-driven instabilities, that is, they gain free energy for
growth from the background differentially rotating TC flow. This energy exchange between unstable
perturbations and the flow is mediated by the radial components of Maxwell, −2 Re(brb∗

φ ), and
Reynolds, 2 Re(uru∗

φ ), stresses. However, either one of these two types of stresses is dominant for
HMRI or (H-)SMRI. The Reynolds stress plays a main role in the energy supply for HMRI, in which
velocity perturbations are much larger than the magnetic field ones, because the latter, due to high
resistivity Rm 
 1 in this regime, are proportional to Rm and are therefore quite small [10,29]. On
the other hand, for SMRI that operates at much higher Rm � 1, magnetic field perturbations are
more important and hence Maxwell stress plays a major role [22]. Using these properties, below we
compute the Reynolds and Maxwell stresses associated with the above eigenfunctions in order to
better classify these two instabilities in the present case.

Figure 9 shows the radial distribution of Maxwell and Reynolds stresses for the eigenfunctions
at fixed μ = 0.27 and Pm = 7.77 × 10−6 in the HMRI and H-SMRI cases. In the essential HMRI
regime, as expected, the Maxwell stress is negligible compared to the Reynolds one [Fig. 9(a)].
By contrast, in the SMRI regime at β = 0, Maxwell stress is much higher than Reynolds stress
[Fig. 9(b)]. We integrate Maxwell and Reynolds stress over the radius to determine the ratio of
net Maxwell to Reynolds stresses. This ratio is very small, equal to 0.000 45, for HMRI and much
larger, 8.5, for SMRI. Moving from pure SMRI to H-SMRI by increasing β, the contribution of
Reynolds stress increases with respect to Maxwell stress, with the above ratio decreasing to 2.3 at
β = 4, but still Maxwell stress dominates [Fig. 9(c)].

3. Transition between HMRI and H-SMRI—A closer look

Once we have analyzed the behavior of Reynolds and Maxwell stresses for HMRI, SMRI, and
H-SMRI, we return to the transition between HMRI and H-SMRI, presented above in Figs. 7(b) and
7(e), and analyze it in more detail, using additionally the ratio of the stresses as one of the indicators
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FIG. 10. (a) Growth rate and (b) eigenfrequency as a function of kz for μ = 0.27, Pm = 7.77 ×
10−6, and β ∈ [0, 1] in the transition regime at Luc = 2.1461, Rmc = 6.8610 [point B in Fig. 6(c)]. Black
dashed lines in (b) show inertial modes. (c) Variation of the ratio of the Maxwell to Reynolds stresses with β.
The green diamond at β = 0.2 indicates the transition point from which the almost linear drop in stress ratio
is observed. The blue dashed line indicates the linear drop in stress ratio with increasing β. The black dashed
line at the unity level marks the equivalence of Maxwell and Reynolds stresses.

of this transition. In Figs. 10(a) and 10(b), we plot the growth rate and frequency, respectively, as a
function of kz in a narrower range of β ∈ [0, 1], where this transition takes place. For small β � 0.2,
the shape of the dependence of the H-SMRI growth rate on kz and therefore the range of unstable
wave numbers are almost identical to that of SMRI at β = 0. In other words, the instability region at
small β is still primarily determined by SMRI. This is evident also in the corresponding frequency
curves [Fig. 10(b)], where the frequency monotonically increases with β in the same interval of
unstable kz whose extent does not change with β. Thus, for small 0 < β � 0.2, H-SMRI mode
with nonzero frequency branches off the marginally unstable SMRI (stationary magneto-coriolis)
branch. From about β = 0.2, when the frequency of H-SMRI approaches the frequency of inertial
waves (violet curve), the instability changes its character—its growth rate and the range of unstable
kz start to increase noticeably with β, while the frequency now well matches different branches of
inertial waves (black dashed curves). These features of the instability at β > 0.2 are similar to that
of essential HMRI, as shown in Figs. 7(a) and 7(d), so at β = 0.2 we observe a continuous transition
from the H-SMRI to HMRI regimes, when the HMRI branch smoothly emanates from the S-HMRI
branch. In the present 1D global analysis, this transition point β = 0.2, where the frequencies and
growth rates of H-SMRI and HMRI become equal, is analogous to the spectral exceptional point
in the local WKB analysis of Kirillov and Stefani [11], where these two branches coalesce and
exchange instabilities.

Figure 10(c) shows the variation of the ratio of the Maxwell and Reynolds stresses, integrated
over radius, as a function of β, starting from SMRI, going to H-SMRI, and finally to HMRI regimes.
It is seen in this figure that this ratio is larger than unity and does not change much with β for its
small values, β � 0.2 in the (H-)SMRI regime, showing the dominance of Maxwell stresses for
these β. After the transition point β = 0.2 (green diamond), it falls almost linearly in the HMRI
regime at β > 0.2, implying the increasing dominance of Reynolds stress over Maxwell stress.

C. Regime of quasi-Keplerian rotation (μ = 0.35)

It is now interesting to consider HMRI and H-SMRI in the presence of a quasi-Keplerian rotation
profile corresponding to μ = 0.35 in our TC flow with rin/rout = 0.5. Many studies have been
conducted to study the effect of helical magnetic field on the stability of Keplerian flows [3].
Soon after the discovery of HMRI [9], it was conjectured that the Keplerian flow profile is stable
against HMRI [10]. However, Hollerbach and Rüdiger [30] suggested that the Keplerian flow profile
can nevertheless be unstable if at least one of the radial boundaries is conducting. Interestingly,
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FIG. 11. (a) Growth rate Re(γ ) � 0 of SMRI in the (Lu,Rm)-plane for quasi-Keplerian rotation μ = 0.35
at Pm = 7.77 × 10−6 and β = 0. (b) Same as (a) but for β = 4. Note the reduced growth rate in the presence of
azimuthal magnetic field. (c) Marginal stability curves for different β and fixed μ = 0.35 in the (Lu,Rm)-plane.
They clearly show better stability of the Keplerian flow with increasing β. (d) Frequency in the (Lu,Rm)-plane
corresponding to the growth rate in (b).

the distinction between the convective and absolute variants of HMRI settled the discrepancy
regarding the stability of Keplerian flow against HMRI. It was shown that the Keplerian flow is only
convectively unstable due to HMRI for at least one conducting boundary, while being absolutely
stable against HMRI [27,31]. It is well known that the absolute instability is more relevant than the
convective one, because the former, having zero group velocity, tends to stay in the flow for a longer
time, while the latter, traveling through the flow, decays at larger times at a given point [19,32,33]
(see also Sec. IV). Hence, it has been well established that the Keplerian flow profile is (absolutely)
HMRI-stable regardless of the strength of the azimuthal magnetic field (β parameter) [31]. For this
reason, here we focus only on H-SMRI, and analyze the effect of the azimuthal magnetic field on it
in relation to DRESDYN experiments.

In Fig. 11, we show the growth rate for the quasi-Keplerian value μ = 0.35 and varying β in the
(Lu, Rm)-plane. In contrast to the cases at smaller μ in Fig. 4, in this case there is a single unstable
region that shrinks upward, mostly towards higher Rm, with increasing β, without developing,
as expected, a broadening HMRI branch at lower Lu and Rm. The largest growth rate and the
broadest unstable region exist for SMRI at β = 0 [Fig. 11(a)], with the critical Luc = 5.094 and
Rmc = 16.1714, which, as mentioned above, fit within the parameter ranges of the DRESDYN-MRI
machine (Table II). This implies that SMRI in the astrophysically most relevant and important
Keplerian regime can be captured in upcoming DRESDYN experiments. The growth rate decreases
about twice and the unstable area becomes smaller for H-SMRI at β = 4 [Fig. 11(b)]. For even
higher β = 6 (not shown here), the instability region eventually disappears in the given (Lu, Rm)-
domain in this figure. Thus, the azimuthal magnetic field has a stabilizing effect on SMRI, which
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FIG. 12. Marginal stability curves Re(γ ) = 0 optimized over all positive wave numbers, kz � 0 (solid) and
kz � kz,min (dashed) for fixed Pm = 7.77 × 10−6, varying β and (a) μ = 0.27, (b) μ = 0.30, (c) μ = 0.35 in the
(Lu,Rm)-plane. Note that the critical Luc and Rmc do not change much whether the optimization wave-number
range is kz � 0 or kz � kz,min.

is primarily driven by bending axial field lines. In Fig. 11(c), we plot the corresponding marginal
stability curves, which show how the shape of the unstable regions and their area change in the
(Lu,Rm)-plane as β is increased. In Fig. 11(d), we plot the frequency distribution corresponding to
the growth rate shown in Fig. 11(b), which exhibits a stronger dependence on Ha and Rm, unlike
the frequency of inertial waves in the case of HMRI [Fig. 6(d)].

D. HMRI and H-SMRI for all wavelengths

From a purely theoretical perspective, it is appealing to allow all wave numbers in our analysis
by relaxing the restriction of the minimum wave number kz,min = 2π/Lz, which has been imposed
due to a finite length of the cylinders. To perform the comparative study, in Fig. 12 we plot the
growth rate maximized over all wave numbers, i.e., kz � 0 (solid) and over kz � kz,min (dashed) for
varying β and μ. As expected, the domain of instability is larger in the first case. In Fig. 12(a),
for fixed μ = 0.27 and β = 0, we observe that the marginal stability curves for both kz � 0 and
kz � kz,min effectively overlap with very little difference at larger Lu. For fixed β = 0, a similar
trend is observed for μ = 0.3 and 0.35, as seen in Figs. 12(b) and 12(c), respectively.

For μ = 0.27 and β = 2, while the growth rate curves overlap notably, the domain of instability
is significantly larger for kz � 0 than for kz � kz,min [Fig. 12(a)]. This indicates that for μ = 0.27,
larger β yields unstable modes for wave numbers much smaller than kz,min at larger Lu. For μ =
0.3 and β = 2, the modification from the SMRI to H-SMRI modes occurs predominantly near the
critical Rm [Fig. 12(b)]. For Keplerian μ = 0.35 and β = 2, there is no difference between the
stability curves for both kz � 0 and kz � kz,min as seen in Fig. 12(c).

Figure 12 shows that for fixed β = 2 the region of instability, or the extended HMRI branch,
becomes smaller with increasing μ while the overlap between the marginal curves at kz � 0 and
kz � kz,min increases with μ irrespective of β. Note that the critical Luc and Rmc lying on these
curves almost coincide. In other words, the choice of the wave-number range, kz � 0 or kz � kz,min,
over which to optimize the growth rate does not alter much the critical Luc and Rmc independent of
μ and β. Hence, the assumption made in this paper to allow at least one full wavelength in the TC
device by setting kz,min = 2π/Lz holds very well with regard to detecting SMRI in the DRESDYN
experiment.

IV. ABSOLUTE AND CONVECTIVE H-SMRI

We have shown that, as distinct from SMRI with zero frequency, H-SMRI comes with nonzero
frequency, Im(γ ), due to the presence of the background azimuthal field together with the axial
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one. This implies that like HMRI, H-SMRI represents an instability in the form of a traveling wave
with a growing amplitude. For such propagating instabilities, one normally distinguishes between
convective and absolute versions. In the convective instability, perturbations appear as traveling
wave packets that tend to decay at any spatial point in the flow at large times while continuing
to grow in the reference frame comoving with the group velocity of those packets. By contrast,
an instability is absolute when perturbations with zero group velocity stay in the flow and grow
without limit at every point [32,33]. Absolute instability is experimentally more important than
the convective instability, because the latter may be rapidly carried out of the flow system that has a
finite size before growing sufficiently strong for detection. On the other hand, the absolute instability
remains within the flow, exhibiting sustained growth that can be detected in experiments.

The characteristically different nature of convective and absolute instabilities and its importance
in laboratory experiments on magnetic dynamo instabilities were studied earlier [34,35]. Applying
these concepts to HMRI, the differences between convective and absolute forms of HMRI in TC
flow [27] and particularly in the context of PROMISE experiments [18] were analyzed, showing
that experimentally the onset criteria and growth properties of HMRI are in better agreement with
the absolute instability results than with convective ones. Recently, Mishra et al. [19] studied
the convective and absolute forms of the azimuthal version of MRI (AMRI) and showed that the
absolute instability is able to explain the characteristics of the flow as seen in the early PROMISE
experiment [16].

Up to now, we have studied SMRI, HMRI, and H-SMRI in the form of convective instability,
assuming the axial wave number kz to be a real number, as commonly done in the literature [3].
In this section, we investigate the absolute form of H-SMRI and compare it with the results of the
convective instability analysis above. Absolute instability is determined by analytically extending
the dispersion relation γ (kz ) from the real kz-axis to the complex kz-plane and finding its saddle
points kz,s [32,33,36], at which the derivative of the complex eigenvalue becomes zero,

∂γ (kz )

∂kz

∣∣∣
kz=kz,s

= 0, kz,s ∈ C. (11)

There exists an absolute instability in the flow if the real part of γ at kz = kz,s is positive,
Reγ (kz,s) > 0, which is then the growth rate of the instability and ω ≡ Im(γ (kz,s)) is the frequency.
The condition (11) means that the real group velocity of the absolute instability is zero at kz,s, i.e.,
∂ω/∂ Re(kz )|kz=kz,s = 0, although it can still have a nonzero phase velocity. Following our previous
work on convective/absolute AMRI [19], here we apply this method to H-SMRI, too. For SMRI, as
we have seen below, the convective and absolute versions are the same, since the eigenmode has a
zero frequency (phase velocity) and therefore does not have the form of a traveling wave. For this
purpose, we did similar calculations of the eigenvalues γ with the above-described code and the
same boundary conditions, except assuming now the axial wave number to be complex.

Figure 13 shows the instability growth areas Re(γ ) > 0 in the complex kz-plane at Lu = 5, Rm =
25 in (a) the SMRI regime and (b),(c) the H-SMRI regime for μ = 0.27, Pm = 7.77 × 10−6 [point
C in Fig. 6(c)], and varying β. In each of these three plots, we clearly see a saddle point (red cross),
where the group velocity of the instability is zero. This saddle point is the absolute instability point.
In these plots, we also mark with black stars those points of the convective instability at the real
Re(kz )-axis where its growth rate is maximal. In Fig. 13(a) we show the instability growth area for
SMRI at β = 0. The saddle point is located at kz,s = (2.21, 0), i.e., it lies on the real Re(kz )-axis,
hence coinciding with convective instability, and has the growth rate Re(γ (kz,s)) = (0.127, 0). On
the other hand, an imposed azimuthal magnetic field (β �= 0) modifies SMRI with zero frequency
to H-SMRI with nonzero frequency. This leads to the saddle point being shifted now in the upper
half [Im(kz ) > 0] of the kz-plane and equal to kz,s = (2.21, 0.33) and (2.25, 0.67), respectively, for
β = 1 and 2 [Figs. 13(b) and 13(c)]. The absolute H-SMRI growth rates given by the value of Re(γ )
at these saddle points, Re(γ (kz,s)) = 0.12 and Re(γ (kz,s)) = 0.1, are lower than the corresponding
maximum growth rates of the convective H-SMRI, Im(γ ) = 0.13 and 0.12 at the same β.
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FIG. 13. (a)–(c) Growth rate Re(γ ) > 0 at Lu = 5 and Rm = 25 for fixed μ = 0.27, Pm = 7.77 × 10−6,
and varied β in the complex kz-plane. The red cross indicates the saddle point marking the absolute instability,
which for SMRI is kz,s = (2.21, 0) and for H-SMRI are kz,s = (2.21, 0.33) at β = 1 and kz,s = (2.25, 0.67)
at β = 2. The growth rates of the absolute H-SMRI given by Re(γ ) at these saddle points are Re(γ (kz,s )) =
0.127 for SMRI, and for H-SMRI Re(γ (kz,s )) = 0.12 and Re(γkz,s) = 0.1, while the black stars mark the most
unstable convective H-SMRI growth rate. Comparison of absolute (red) and convective (dashed black) growth
rates Re(γ ) (d) and corresponding frequencies Im(γ ) (e) as a function of β.

Figures 13(d) and 13(e) show, respectively, the growth rates and frequencies of the absolute
(red) and convective (dashed-black) H-SMRI as a function of β. For the convective instability, the
plotted curves are the growth rate maximized over all kz � kz,min and the frequency corresponding
to this maximum growth rate, while for the absolute instability the growth rates and frequencies are
calculated at the saddle point. Since we are in the H-SMRI regime, the growth rates of both the
absolute and convective instabilities drop with increasing β, with the former decreasing faster than
the latter. Note that the frequencies of the absolute and convective H-SMRI are quite close to each
other, and both increase linearly with β, which appears to be a distinctive feature of H-SMRI that
can be important in experiments to distinguish it from HMRI.

V. SUMMARY AND CONCLUSIONS

In this paper, using 1D linear stability analysis, we studied three basic—standard, helical, and
helically modified–standard—types of axisymmetric MRI (for short, SMRI, HMRI, and H-SMRI)
and the connections between them in a cylindrical Taylor-Couette flow of liquid sodium threaded
by a helical current-free magnetic field. We were motivated by upcoming experimental campaigns
in the frame of the DRESDYN project, aiming at detecting SMRI and its variants in new liquid
sodium large-scale TC experiments. The present study was mainly intended as a first preparatory
step towards carrying out these experiments. The theoretical results obtained here will form the
basis and provide essential guidance for experimentally ascertaining (H-)SMRI for the first time
and interpreting the experimental outcomes. For this reason, we focused our analysis on the ranges
of characteristic parameters of the TC flow that are achievable in the DRESDYN-MRI machine,
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the most important ones for SMRI and H-SMRI being the Lundquist number (Lu � 10, defined
in terms of the axial magnetic field) and the magnetic Reynolds number (Rm � 40). We also
varied the strength of the azimuthal magnetic field relative to the axial one (β) and the ratio of
angular velocities of the outer to inner cylinders (μ) within allowable limits. Our main result was
that SMRI and H-SMRI can in principle be detected in the DRESDYN-MRI experiment for the
considered range of the cylinder rotation ratios μ ∈ [0.26, 0.35], including the astrophysically most
relevant and important Keplerian rotation profile with μ = 0.35. This is in contrast to previous
studies of SMRI in the laboratory context where the instability had still remained elusive in the
experiments usually adopting smaller TC devices. Thus, new DRESDYN experiments offer a
unique possibility to observe and characterize SMRI in the laboratory for the first time. The results
obtained in this paper for the case of infinite cylinders are still preliminary; further detailed linear
and nonlinear studies taking into account the endcaps in a finite length TC device are required
to better understand the specific features of SMRI emerging in the experiment. In this regard, it
should be mentioned that recent nonlinear simulations of SMRI have already been performed in
the context of related Princeton MRI experiments [37,38], but for Reynolds numbers orders of
magnitude lower than those required for the onset of SMRI in real experiments. A follow-up study
of the nonlinear saturation and dynamics of H-SMRI in the TC flow for the same ranges of the
main parameters (μ, β, Lu, Re, Rm) that are relevant to DRESDYN experiments will be presented
elsewhere. Specifically, in the nonlinear regime, we will trace the transition from the saturated
HMRI to H-SMRI and ultimately to SMRI with monotonically decreasing β and increasing Lu
and Rm. In this way, we will examine how this transition occurs in the nonlinear regime compared
to that in the linear one studied here. This will be based on our previous study of the nonlinear
dynamics of pure HMRI [29] using a similar numerical technique.

We analyzed in detail the helically modified SMRI (H-SMRI) resulting from the modification
of SMRI by the azimuthal magnetic field. It was shown that the background azimuthal field has a
stabilizing influence on SMRI and therefore H-SMRI generally has a lower growth rate and occurs
at higher Lundquist, Lu, and magnetic Reynolds, Rm, numbers than SMRI. Specifically, given the
experimental constraints on the rotation rates of the cylinders (measured by μ and Re) and on the
strength of the imposed axial and azimuthal magnetic fields (measured by Lu and β), we clearly
identified the regions of SMRI and H-SMRI in the parameter (Lu,Rm)-plane at different μ and β.
Unlike SMRI, the frequency of H-SMRI is nonzero (overstability), and increases linearly with the
background azimuthal field (β parameter). This is an important property of H-SMRI that can be
utilized for its experimental detection. We also studied HMRI in the context of DRESDYN, which
occurs instead at much lower Lu and Rm, and showed that there is a continuous and monotonous
transition from HMRI to H-SMRI as the parameters change. This transition in the present 1D
stability analysis is consistent with the results of the local WKB analysis of Ref. [11], where the
transition was shown to occur smoothly through the exchange of instabilities between the two modes
through an exceptional point of the spectrum.

We considered quasi-Keplerian rotation in the given Taylor-Couette flow because of its signif-
icance for astrophysical disks. It is well known that essential HMRI does not exist for Keplerian
rotation, so only SMRI and H-SMRI can operate in this regime. We characterized the onset
properties and growth rates of SMRI and H-SMRI in the (Lu,Rm)-plane for different β. We showed
that an azimuthal magnetic field has a stabilizing effect on SMRI, that is, H-SMRI always has a
smaller growth rate and the associated unstable region is located at higher Lu and Rm the larger
the azimuthal field is with respect to the axial one. As a result, a sufficiently strong azimuthal
magnetic field can eventually render Keplerian flow stable against H-SMRI in a given range of Lu
and Rm, while for 0 � β � 4, SMRI and H-SMRI at Keplerian rotation still fall in the range of
these parameters accessible in DRESDYN.

Since H-SMRI is an overstability with nonzero frequency, we studied its absolute and convective
forms. From an experimental viewpoint, the absolute instability is more relevant since it has zero
group velocity and hence stays in the flow, exhibiting a sustained growth, while the convective
instability is eventually carried out of the device. We compared the growth rates and frequencies
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of absolute and convective H-SMRI, and showed that in both cases the growth rates decrease
with β, with the absolute instability decreasing faster than the convective one. The corresponding
frequencies are close to each other and increase linearly with β, which can be a useful diagnostic
for the detection of SMRI in the experiments.

Finally, we would like to briefly discuss the possible nonmodal growth of MRI in the considered
magnetized TC flow configuration, which could be important for interpreting outcomes of the
planned MRI experiments. It is well known from the theory of hydrodynamic shear flows that even
in the spectrally stable case (i.e., in the absence of exponentially growing unstable modes), such
flows can exhibit large nonmodal or transient growth of perturbations as a result of nonorthogonality
of eigenmodes due to flow shear in the classical modal approach [39–43]. This nonmodal growth has
an important consequence—it can trigger a subcritical transition to turbulence in spectrally stable
smooth shear (e.g., plane Couette, pipe Poiseuille, etc.) flows, as is usually observed in numerical
simulations and experiments (see, e.g., Refs. [43–47]).

Nonmodal effects are naturally at work in a differentially rotating TC flow, since it is a special
case of shear flows (see, e.g., Refs. [48,49]), and therefore they inevitably affect MRI that is driven
by the flow shear, despite the fact that it is a modal instability [14,50–56]. Using the local flow
model, it was shown in those papers that over short [of the order of dynamical (shear)] times,
the nonmodal growth of MRI can be larger than its modal exponential growth, with the latter
dominating only at asymptotically large times. Thus, the nonmodal growth of MRI over short
and intermediate timescales can actually be of more relevance for its nonlinear outcome than the
modal growth. In the present case of MRI in the magnetized TC flow, the distinction between
modal and nonmodal dynamics can be especially important near the marginal stability curves in
the (Lu, Rm)-plane [Figs. 2(f) and 4(f)], where the flow may still exhibit a subcritical transition to
a sustained nonlinear MRI state (turbulence) due to the nonmodal amplification of finite amplitude
perturbations regardless of being (marginally) MRI-stable according to the modal approach. To the
best of our knowledge, MRI in this global TC flow has not yet been studied from this nonmodal
viewpoint. This, in its own right, represents a very interesting and important line of research, since
the nonmodal MRI growth can largely define its nonlinear outcome, especially in the marginal
modal stability regime that can be approached experimentally.
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