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In this paper, we present the influence of irregular random waves on the von Kármán
street in the wake of an elastically mounted cylinder. The flow is perpendicular to the long
axis of the cylinder which is constrained to oscillate transversally. In our experiments, the
generated waves are derived from Pierson-Moskowitz and Joint North Sea Wave Project
(γ = 3 or 7) spectra. It was found that the increase of the nonlinearity of the generated
waves is accompanied by a decrease of the shedding frequency to half of the pic frequency
of the generated waves. Furthermore, the Hilbert transformation was performed to calculate
the continuous phases of irregular waves θη and that of the Kármán vortex street θVx .
The temporal evolution of the phase combination θ = 2θVx − θη has been investigated as
well. It was found that the time evolution of θ has a steplike shape, i.e., when θ = 0, this
corresponds to a synchronizationlike effect. This approach enables the temporal variability
of the synchronization to be quantified in the presence of random irregular waves.

DOI: 10.1103/PhysRevFluids.7.064801

I. INTRODUCTION

Cylindrical structures involved in offshore systems for energy production are submitted to
various solicitations. Among them, the effects of waves and current dominate and may lead to
fatigue and structural failures. The process of waves propagating over the cylinder pile has attracted
great interest because these structures have been widely used as foundations of marine constructions.

Over the past years, authors of several experimental [1,2] and numerical [3–5] studies have
investigated the impact of regular and irregular nonbreaking and breaking waves propagating in
deep, intermediate, and shallow water locations on cylinders placed in a mean flow. Although great
efforts have been made to numerically [6] and experimentally [7–9] investigate the flow around
cylindrical structures, earlier research on the topic mainly focused on the run-up around cylinders
and induced wave forces in the presence of regular waves [9,10], irregular waves [11], solitary waves
[12,13], and group focused waves [10]. However, a few studies do focus on the von Kármán vortex
street appearing behind the cylinder pile in the presence of random irregular waves propagating on
the background of a steady current.

The impact of external forces may lead to a significant modification of the characteristics of
the von Kármán vortex street appearing behind the cylinder [14]. Authors of experimental [14–18]
and numerical [19] studies have found that it is possible to observe a regularization of the von
Kármán street, and the frequency lock-in of vortex shedding fsh occurs when the cylinder oscillates
harmonically or the flow rate changes harmonically in time [15,20,21]. It was found that external
forces can mainly give rise to two different regimes of vortex shedding in the von Kármán street.
The subharmonic frequency lock-in occurs when the shedding frequency fsh is half the frequency
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FIG. 1. Experimental setup.

of external oscillations fw, i.e., 2 fsh = fw, and the harmonic frequency lock-in occurs when the
shedding frequency coincides with the frequency of the wave fsh = fw [17,18].

A link between the flow field and regular waves in the opposite direction was established
experimentally by Gunnoo et al. [17]. They demonstrated that, with the increase of the amplitude
(a > 0.06 cm), the spectral peak in the spectrum of velocity fluctuation appears at fsh = fw/2,
corresponding to the subharmonic frequency lock-in phenomenon. In addition, they established
regime maps where it is possible to distinguish four regions with different dynamics. Abroug et al.
[18] investigated the hydrodynamic behavior around a circular cylinder in the presence of group
focused waves using the wavelet tool. They found that the dominant frequency components lie in
the range 0.45 fw < fsh < 0.55 fw in the presence of the subharmonic synchronization regime.

Much less attention has been paid to irregular waves with spectrum type variation in the study of
subharmonic frequency lock-in phenomenon. The spatial structure of irregular wave fields depends
on the spectrum type, the nonlinearity, and the water depth. It should be noted that the field arising
from irregular waves propagating in the vicinity of a vertical cylinder is more complex than that of
those arising from harmonic regular waves. Therefore, the influence of a realistic sea state on the
characteristics of the wake should be studied extensively.

This paper is an experimental investigation of the effect of random signals on regimes in non-
linear systems with irregular waves. As such, it significantly extends the findings of Refs. [17,18].
Careful experiments at a fine resolution in terms of the independent parameters allow subharmonic
regimes, due to irregular waves, to be clearly characterized. This paper is structured as follows. In
Sec. II, the experimental setup and the tested irregular waves are introduced. Subharmonic frequency
lock-in due to irregular surface waves is presented in Sec. III. Section IV presents results of the phase
synchronization between the vortex shedding and irregular waves. Lastly, conclusions of this paper
and perspectives are given in Sec. V.

II. EXPERIMENTAL SETUP AND IRREGULAR WAVE PARAMETERS

The experiments were conducted in the two-dimensional (2D) wave and current flume of Mor-
phodynamique Continentale et Côtière (M2C) Laboratory at Caen University, France. The flume
has an Edinburgh Designs LTD piston-type wavemaker at one end and a foam absorber beach
at the other end. The last 2 m part of the flume was used as an effective wave absorber. Two
special honeycombs are installed below the slope of the absorber beach to decrease disturbances
created by the pump and reduce wave reflection. Surface waves were generated at x = 0, which
was defined as the mean wavemaker position (see Fig. 1). The rigid cylinder model, which is
made of Plexiglas with diameter D = 0.04 m and wet-length L = 0.248 m under the water level,
is placed perpendicularly to the flow direction at x = 7 m from the wavemaker. The cylinder is
mounted under an individual elastic base free to oscillate transversely to the flow direction and
firmly fixed on the channel structure, whereas the lower part is 2 mm away from the flume bottom.
The detailed experimental setup is shown in Fig. 1.
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A wave gauge with a sampling rate of 100 Hz, located at x = 2 m from the wavemaker, was used
as a reference for the input signal. Surface waves propagate on the background of steady current
U = 0.16 m/s and the corresponding Reynolds number is Re = UD/ν = 6400 (where ν represents
the kinematic viscosity of water). The velocity behind the oscillating cylinder was measured using
acoustic Doppler velocimetry (ADV). The ADV was placed at a distance D from the streamlined
cylinder downflow and measures the three velocity components Vx, Vy, and Vz. The sampling rate
for the ADV is 200 Hz in this paper. It is important to mention that all generated waves break after
the structure, i.e., at x > 10 m, which means that the breaking effect is not considered in this paper.

The experiments presented in this paper were made in the same wave flume and under the same
flow conditions as those in Ref. [17]. Additionally, before starting the manipulation of irregular
waves, we investigated harmonic waves with frequencies fw � [1.2; 1.9 Hz] and amplitude a �
[1.2; 1.9 Hz]. We achieved the same diagram as fig. 3(a) in Ref. [17].

The range of frequencies that comprise generated random waves is 0.4–2 Hz; thus, intermediate
water depth conditions are maintained as predicted by linear theory. In fact, the dimensionless water
depth is represented by kwh0 ∈ [0.9; 2.04] > 0.5, which is considered to align with intermediate
water conditions (kw represents the wave number related to the wave peak frequency fw, and h0 =
0.25 m is the constant water depth). The wave number kw is calculated using the linear dispersion
relation ω2 = gkwtanh(kwh0), where g is the acceleration of gravity, and ω = 2π fw denotes the
wave pulsation. Unidirectional irregular random waves based on the Joint North Sea Wave Project
(JONSWAP) [Eq. (1)] [22] and Pierson-Moskowitz [Eq. (2)] [23] spectra were generated:

EPierson−Moskowitz( f ) = α
g2

(2π )4 f −5 exp

[
−1, 25

(
f

fw

)−4]
, (1)

EJONSWAP( f ) = α
g2

(2π )4 f −5 exp

[
−1, 25

(
f

fw

)−4]
γ δ, (2)

where α = 0.0081 corresponds to the Phillips constant, g is the gravity acceleration, and σ repre-
sents the spectral asymmetric parameter with respect to the spectral peak. The equation describing
the JONSWAP spectrum is obtained by multiplying the Pierson-Moskowitz spectrum by the peak
enhancement factor:

γ δ, where δ = exp

⎡
⎣−( f

fw
− 1

)2

2σ 2

⎤
⎦, (3)

σ =
{

0.07 for f � fw

0.09 for f � fw
,

where γ is the ratio of the maximum spectral energy to the maximum of the corresponding Pierson-
Moskowitz spectrum, and σ defines the left- and right-sided widths of the spectrum. Three different
peak-enhancement factors were investigated during the experiments, i.e., γ = 1, 3.3, and 7. The
lower value γ = 1 corresponds to the standard Pierson-Moskowitz formulation, and γ = 7 provides
a narrower spectrum.

The relevant parameters in addition to the relative water depth kwh0 are the nonlinearity kwHs

and the Ursell number Ur = Hsλ
2
w/h3

0 (Hs represents the average height of the highest 1
3 of all

waves). During the experimental campaign, 120 cases were tested, which were chosen based on
the spectrum type and the nonlinearity kwHs. It is necessary to wait at least 5 min between two
experiments to obtain a near quiescent state, which is confirmed by visual inspection before each
test. The wave characteristics of the experimental data used in this paper are listed in Tables I–III.

Fast Fourier transform (FFT) analyses are performed on free surface elevations η and transversal
velocities Vx to calculate the wave energy and velocity spectra [S( f )]. The sampling time is truncated
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TABLE I. Summary of the primary Pierson-Moskowitz wave parameters. fw: peak wave frequency; kw:
wave number; Hs: significant wave height; Ur : Ursell number.

fw (Hz) kwh0 kwHs Ur

Case 1 0.9 0.003 0.15
Case 2 0.9 0.007 0.38
Case 3 0.9 0.011 0.57
Case 4 0.9 0.014 0.74
Case 5 0.8 0.9 0.017 0.90
Case 6 0.9 0.020 1.10
Case 7 0.9 0.021 1.11
Case 8 0.9 0.026 1.42
Case 9 0.9 0.029 1.58
Case 10 0.9 0.032 1.74
Case 11 1.2 0.002 0.04
Case 12 1.2 0.005 0.11
Case 13 1.2 0.008 0.18
Case 14 1.2 0.010 0.23
Case 15 1 1.2 0.014 0.31
Case 16 1.2 0.015 0.34
Case 17 1.2 0.019 0.44
Case 18 1.2 0.021 0.47
Case 19 1.2 0.024 0.54
Case 20 1.2 0.026 0.60
Case 21 1.58 0.002 0.02
Case 22 1.58 0.003 0.03
Case 23 1.58 0.004 0.04
Case 24 1.58 0.007 0.07
Case 25 1.2 1.58 0.008 0.08
Case 26 1.58 0.011 0.11
Case 27 1.58 0.012 0.12
Case 28 1.58 0.017 0.17
Case 29 1.58 0.018 0.18
Case 30 1.58 0.019 0.19
Case 31 2.04 0.001 0.01
Case 32 2.04 0.002 0.01
Case 33 2.04 0.001 0.01
Case 34 2.04 0.003 0.02
Case 35 1.4 2.04 0.006 0.03
Case 36 2.04 0.008 0.04
Case 37 2.04 0.009 0.04
Case 38 2.04 0.008 0.04
Case 39 2.04 0.010 0.05
Case 40 2.04 0.013 0.06

to �T1 = 60 s, corresponding to 6000 points for wave gauge measurements and to �T2 = 187.5 s,
corresponding to 37 500 points for ADV measurements:

S( f ) = 2 |F (t )|2, (4)

F (t ) =
∫ �T1

0
η(t )e−2π iωt dt, (5)

F (t ) =
∫ �T2

0
Vx(t )e−2π iωt dt . (6)
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TABLE II. Summary of the primary JONSWAP (γ = 3.3) wave parameters. fw: peak wave frequency; kw:
wave number; Hs: significant height; Ur : Ursell number.

fw (Hz) kwh0 kwHs Ur

Case 41 0.9 0.005 0.25
Case 42 0.9 0.010 0.52
Case 43 0.9 0.014 0.74
Case 44 0.9 0.016 0.84
Case 45 0.8 0.9 0.022 1.17
Case 46 0.9 0.026 1.40
Case 47 0.9 0.028 1.53
Case 48 0.9 0.033 1.79
Case 49 0.9 0.036 1.92
Case 50 0.9 0.040 2.15
Case 51 1.2 0.003 0.08
Case 52 1.2 0.006 0.13
Case 53 1.2 0.008 0.19
Case 54 1.2 0.011 0.24
Case 55 1 1.2 0.015 0.33
Case 56 1.2 0.017 0.39
Case 57 1.2 0.021 0.48
Case 58 1.2 0.024 0.54
Case 59 1.2 0.026 0.60
Case 60 1.2 0.030 0.67
Case 61 1.58 0.001 0.01
Case 62 1.58 0.004 0.04
Case 63 1.58 0.005 0.05
Case 64 1.58 0.008 0.08
Case 65 1.2 1.58 0.011 0.12
Case 66 1.58 0.013 0.13
Case 67 1.58 0.016 0.16
Case 68 1.58 0.019 0.19
Case 69 1.58 0.023 0.23
Case 70 1.58 0.026 0.26
Case 71 2.04 0.001 0.01
Case 72 2.04 0.003 0.02
Case 73 2.04 0.004 0.02
Case 74 2.04 0.006 0.03
Case 75 1.4 2.04 0.008 0.04
Case 76 2.04 0.008 0.04
Case 77 2.04 0.010 0.05
Case 78 2.04 0.011 0.05
Case 79 2.04 0.014 0.06
Case 80 2.04 0.015 0.07

All energy forms are normalized by the maximum of the wave and velocity spectra between
the cutoff frequencies [0, 2, 3 fw] Hz. The spectrum energy outside this interval is very small,
i.e., < 2%, and can be neglected. Figure 2 shows an example of a time series and the corre-
sponding spectrum of three different irregular waves with approximately the same nonlinearity
kwHs ∼ 0.03 and derived from Pierson-Moskowitz (Case 10), JONSWAP (γ = 3.3) (Case 48), and
JONSWAP (γ = 7) (Case 86). As expected, the energy distribution varies from one spectrum to
another.
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TABLE III. Summary of the primary JONSWAP (γ = 7) wave parameters. fw: peak wave frequency; kw:
wave number; Hs: significant height; Ur : Ursell number.

fw (Hz) kwh0 kwHs Ur

Case 81 0.9 0.006 0.31
Case 82 0.9 0.011 0.61
Case 83 0.9 0.017 0.90
Case 84 0.9 0.021 1.12
Case 85 0.8 0.9 0.026 1.43
Case 86 0.9 0.030 1.65
Case 87 0.9 0.035 1.93
Case 88 0.9 0.041 2.22
Case 89 0.9 0.047 2.53
Case 90 0.9 0.051 2.76
Case 91 1.2 0.003 0.08
Case 92 1.2 0.010 0.17
Case 93 1.2 0.011 0.24
Case 94 1.2 0.015 0.35
Case 95 1 1.2 0.018 0.42
Case 96 1.2 0.022 0.50
Case 97 1.2 0.026 0.59
Case 98 1.2 0.029 0.66
Case 99 1.2 0.032 0.73
Case 100 1.2 0.036 0.81
Case 101 1.58 0.002 0.02
Case 102 1.58 0.006 0.06
Case 103 1.58 0.009 0.09
Case 104 1.58 0.014 0.14
Case 105 1.2 1.58 0.017 0.17
Case 106 1.58 0.023 0.24
Case 107 1.58 0.028 0.28
Case 108 1.58 0.029 0.30
Case 109 1.58 0.032 0.32
Case 110 1.58 0.037 0.37
Case 111 2.04 0.003 0.01
Case 112 2.04 0.003 0.01
Case 113 2.04 0.004 0.02
Case 114 2.04 0.008 0.04
Case 115 1.4 2.04 0.010 0.05
Case 116 2.04 0.012 0.05
Case 117 2.04 0.013 0.06
Case 118 2.04 0.016 0.08
Case 119 2.04 0.019 0.10
Case 120 2.04 0.022 0.10

III. SUBHARMONIC FREQUENCY LOCK-IN

To estimate the presence of subharmonic synchronization, the shedding frequency fsh is found
using the FFT of the transverse velocity component Vx. Figures 3–5 show spectrograms of the
shedding frequency evolution relative to the nonlinearity kwHs. It is important to mention that the
fluctuation spectra are calculated using the averaging procedure. In other words, the time series of
�T2 = 187.5 s was recorded and divided into five pieces of 60 s of length (12 000 points) with 50%
overlap (6000 points), averaging over 5 FFT amplitude spectra. Without this averaging procedure,
the spectra would be very irregular and difficult to analyze properly.
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FIG. 2. Three sets of time series and their corresponding spectrum of three irregular waves with approxi-
mately the same nonlinearity kwHs. Frequency spectra are normalized by the maximum of the wave spectrum.

FIG. 3. Spectrograms of Pierson-Moskowitz irregular waves showing the evolution of frequency shedding
with relative to wave nonlinearity kwHs: (a) kwh0 = 0.8 Hz, (b) kwh0 = 1 Hz, (c) kwh0 = 1.2 Hz, and (d) kwh0 =
2.04 Hz. The color bar represents the dimensionless frequency spectrum.
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FIG. 4. Spectrograms of JONSWAP (γ = 3.3) irregular waves showing the evolution of frequency shed-
ding with relative to wave nonlinearity kwHs: (a) kwh0 = 0.8 Hz, (b) kwh0 = 1 Hz, (c) kwh0 = 1.2 Hz, and
(d) kwh0 = 2.04 Hz. The color bar represents the dimensionless frequency spectrum.

The first finding from the 12 plotted spectrograms is that important changes occur in the spectrum
of Vx by increasing the nonlinearity kwHs. When the nonlinearity increases, two effects can be
distinguished: (1) the shading frequency fsh shifts to lower frequencies; and (2) the amplitude of
the velocity fluctuations increases, the spectrum becomes narrower, and the energy becomes mainly
concentrated near fsh = fw/2.

The first effect is in accordance with Gunnoo et al. [17], who made the same conclusions in the
case of regular waves. The second effect can be related to the regularization of the von Kármán
street under the action of the nonharmonic signal. This result appears to confirm conclusions
found in Refs. [24–27]. For example, Neiman et al. [24] demonstrated that noisy systems can be
synchronized by a stochastic driving signal. Under the action of a nonregular signal, nontrivial
effects like subharmonic stochastic resonance can appear. Neiman et al. [24] added that resonance
may appear under certain intensities of external noise.

Moreover, Figs. 3–5 show that the spectrum type has no influence on the evolution of the
fsh − kwHs relation. In fact, by switching the spectrum type (i.e., spectral width), the fsh − kwHs

relation evolves similarly. Lastly, the water depth kwh0 has a strong influence on the evolution
of the fsh − kwHs relation. In fact, by increasing the water depth, the spectrum energy of Vx is
mainly concentrated near fsh = fw/2, even in the case of low nonlinearities, and this is true for all
wave spectra. Consequently, it can be concluded that the water depth plays an important role in
the regularization of the von Kármán street and the appearance of subharmonic frequency lock-in
phenomena. For shallow water locations, the subharmonic resonance appears in the case of high
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FIG. 5. Spectrograms of JONSWAP (γ = 7) irregular waves showing the evolution of frequency shedding
with relative to wave nonlinearity kwHs: (a) kwh0 = 0.8 Hz, (b) kwh0 = 1 Hz, (c) kwh0 = 1.2 Hz, and (d) kwh0 =
2.04 Hz. The color bar represents the dimensionless frequency spectrum.

nonlinearities, whereas for deep water locations, the frequency lock-in phenomenon can appear
even for low nonlinearities.

Figure 6 summarizes the evolution of the fsh − kwHs relation. The red background color cor-
responds to the decreasing trend of the shedding frequency, whereas the green background color
corresponds to the relatively stable behavior of the shedding frequency at 1

2 fw. It is found that, at
low nonlinearities, the ratio fsh/ fw is ∼0.8 in the case of waves with fw = 0.8 Hz (i.e., kwh0 = 0.9),
and by increasing wave nonlinearities kwHs, we approach a subharmonic synchronization regime.

IV. SUBHARMONIC PHASE LOCK-IN

The oscillation phase in the wake behind the cylinder is investigated as well to further analyze the
subharmonic lock-in phenomenon in the case of irregular random waves. With this aim in view, the
instantaneous phase θ of the system should be introduced [26–29]. Gabor [28] has introduced the
definition of θ based on the concept of the analytical signal. In this frame of mind, the free surface
elevation η and the velocity Vx can be written, respectively, as aVx (t ) and bη(t ) using the analytical
representation:

Vx(t ) = Re
{
aVx (t)exp

(
iθVx

)}
,

∣∣aVx

∣∣ =
√

V 2
x + V̂ 2

x , θVx = arctan
V̂x

Vx
, (7)

η(t ) = Re{bη(t )exp(iθη )}, |bη| =
√

η2 + η̂2, θη = arctan
η̂

η
. (8)
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FIG. 6. The evolution of the normalized shedding frequency.

Here, V̂x and η̂ are the Hilbert transform of the velocity Vx and the free surface elevation η, and

V̂x(t ) = 1

π
PV

∫ +∞

−∞

Vx(τ )

t − τ
dτ, (9)

η̂(t ) = 1

π
PV

∫ +∞

−∞

η(τ )

t − τ
dτ. (10)

Here, PV is taken in the sense of a Cauchy principal value [26]. It is important to mention that
the application of the Hilbert transform is especially useful when the signals contain a periodic or
quasiperiodic signal. Considering the nonstationary behavior of the generated waves, a relatively
narrow bandpass FFT filter was applied to the averaged frequency spectrum of the ADV signal
and to the frequency spectrum of the free surface elevation signal to reduce noise and remove
components with normalized spectral density <0.2. From this procedure resulted an oscillatory
signal that can be used for the phase extraction by using the Hilbert transformation. Figure 7 shows
the result of applying a bandpass FFT filter on two free surface elevation signals.

Using the ADV phase θVx and the free surface elevation phase θη, we introduce the phase
difference θ which is expressed as follows:

θ = 2θVx − θη. (11)
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FIG. 7. Comparison between raw signals with signals used for the Hilbert transform after applying a
bandpass fast Fourier transform (FFT) filter.

FIG. 8. The temporal evolution of the instantaneous phase difference for Pierson-Moskowitz random waves.
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FIG. 9. The temporal evolution of the instantaneous phase difference for JONSWAP (γ = 3.3) random
waves.

If the phase difference θ is constant (i.e., dθ/dt ∼ 0), subharmonic synchronization between the
irregular wave and the shedding frequency occurs. Full subharmonic synchronization over the entire
sampling time can be observed in a system where sinusoidal waves are generated.

Examples of time series of the phase difference θ are shown in Figs. 8–10 for different depths
and for different types of spectra. Empty ellipses are added to indicate the presence of synchronous
epochs. The first main characteristic is a growing rate of the phase difference θ which monotonically
increases with time. During the course of the observation time, the phase is locked for some values
of t/T0. There are patterns of nearly constant θ referring to the phase-locked regimes interrupted
by phase rises, indicating a partially synchronized system. In other words, the dθ/dt ∼ 0 slope
corresponds to a synchronizationlike effect interspersed with fast changes in the phase temporal
evolution. Although there are relatively short locking segments, the phase difference displays
random walklike behavior without a preferred slope.

The second main characteristic is the strong dependence of the subharmonic synchronization
on the magnitude of the external forcing kwHs and the water depths kwh0. If the nonlinearity is
relatively low, the phase evolution is close to a linear one, i.e., the phase grows almost uniformly (see
Figs. 8–10, kwh0 = 0.9, kwHs < 0.011). With increasing wave steepness, the evolution of the phase
difference looks like intermittency of relatively large epochs of practically constant phase. In deep
water conditions, the length of these plateaus becomes longer, and the duration of the phase-locked
segments almost covers the entire sampling time (see Figs. 8–10, kwh0 = 2.04 and kwHs > 0.01).
These conclusions confirm the results found in Sec. III.
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FIG. 10. The temporal evolution of the instantaneous phase difference for JONSWAP (γ = 7) random
waves.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we report laboratory investigations on the subharmonic frequency lock-in phe-
nomenon caused by irregular random waves in the wake behind a cylinder. The experiments were
carried out using a vertical cylinder with a diameter D = 0.04 m and irregular waves derived from
Pierson-Moskowitz and JONSWAP (γ = 3 or 7) spectra. The water depth was selected to have
irregular waves propagating in intermediate water conditions. We used a combination of velocity
and free surface elevation phase to find out the synchronization phenomenon in the presence of
random waves propagating on the background of a steady current.

It was found that the increase of nonlinearity kwHs was accompanied by a narrowing of the
velocity spectrum and a decreasing of the shedding frequency fsh. This result is in accordance with
conclusions made in Ref. [17], where they only studied regular waves.

To further investigate the oscillatory behavior in the wake, the temporal evolution of the phase
difference θ = 2θVx − θη has been investigated. Technically, a narrow bandpass filtering was needed
to extract the velocity θVx and free surface elevation phases θη. Subharmonic synchronization can
be defined as the locking between the instantaneous phase of the velocity 2θVx and the phase of
the external wave force θη. It was found that θ approaches zero in the case of high nonlinearities,
which corresponds to a synchronizationlike effect. The time evolution of θ has a steplike shape with
intervals where the slope of θ = 0, and this corresponds to the effect of synchronization interspersed
with rapid changes. Consequently, the system is partially synchronized.

Moreover, it was found that the subharmonic lock-in is more noticeable in deep water locations.
For shallow water conditions, i.e., kwh0 � 0.9, the subharmonic synchronization could just occur in
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the case of high nonlinearities kwHs > 0.025. It is important to underline that switching the spectrum
type (spectrum width) has no noticeable impact on the subharmonic synchronization phenomenon.
In similar contexts, Abroug et al. [18] have used the spectral wavelet analysis to investigate the
phase synchronization in the presence of group focused waves. It was found that the wave peak
frequency does not synchronize in shallow water conditions, i.e., kwh0 < 2.04. Additionally, they
demonstrated that the complex Morlet power spectrum was found to highlight distinctive signatures
with changing spectrum width.

The findings of this paper improve our understanding of the oscillatory behavior around cylindri-
cal structure when faced with a steady current and random irregular waves of different nonlinearities
and different spectra. It will be interesting to test the combination phase technique to determine if
the lock-in occurs in the presence of random irregular waves in field measurements. This detailed
examination is useful for practical applications such as assisting engineers in monitoring the impacts
on offshore structures and may provide a complementary approach to existing experimental studies.
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