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Near-wall lubricating layer in drag-reduced flows of rigid polymers
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The current theories on the mechanism for polymer drag reduction (DR) are gener-
ally applicable for long-chain flexible polymers that form viscoelastic solutions. Rigid
polymer solutions that generate DR seemingly lack prevalent viscoelastic characteristics.
They do however demonstrate higher viscosities and a noticeable shear-thinning trend,
approximated by generalized Newtonian models. The following experimental investigation
scrutinizes the flow statistics of an aqueous xanthan gum solution in a turbulent channel
flow, with friction Reynolds numbers Reτ between 170 and 700. The amount of DR varies
insignificantly between 27% and 33%. The velocity field is measured using planar particle
image velocimetry and the steady shear rheology is measured using a torsional rheometer.
The results are used to characterize the flow statistics of the polymer drag-reduced flows
at different Reτ and with negligible changes in DR, a parametric study only previously
considered by numerical simulations. Changes to the mean velocity and Reynolds stress
profiles with increasing Reτ are similar to the modifications observed in Newtonian turbu-
lence. Specifically, the inner-normalized mean velocity profiles overlap for different Reτ

and the Reynolds stresses monotonically grow in magnitude with increasing Reτ . Profiles
of mean viscosity with respect to the wall-normal position demonstrate a thin layer that
consists of a low-viscosity fluid in the immediate vicinity of the wall. Fluid outside this
thin layer has a significantly higher viscosity. We surmise that the demarcation in the
mean shear viscosity between the inner lubricating layer and the outer layer cultivates
fluid slippage in the buffer layer and an upward shift in the logarithmic layer, a hypothesis
akin to DR using wall lubrication and superhydrophobic surfaces.

DOI: 10.1103/PhysRevFluids.7.064605

I. INTRODUCTION

Adding small quantities of high-molecular-weight polymers to a turbulent wall flow can produce
a large reduction in skin friction relative to the solvent alone. This phenomenon was first discovered
by Toms [1] and has since been actively studied. The most readily used drag-reducing polymers are
long-chain flexible molecules that form viscoelastic non-Newtonian solutions. When these flexible
polymer solutions are subjected to large amounts of shear (for example, through a pump, fitting, or a
restriction) the solution undergoes mechanical degradation and becomes less effective at mitigating
drag [2]. Therefore, flexible polymers are often used as a method for cost saving or performance
enhancement in once-through fluid transport systems such as crude oil pipelines, fire suppression,
or municipal sewage [3–5]. Mechanical degradation can be reduced by utilizing a polymer with a
rigid molecular structure; however, this may require higher additive concentrations and a sacrifice
in the amount of drag reduction (DR) [6]. While flexible polymers may coil and stretch within
the turbulent flow, rigid polymers are believed to remain elongated at all times, regardless of the
imposing flow field [7]. Rigid drag-reducing polymers are often naturally occurring polysaccharides
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that come in many different variants [6–10]. While DR using flexible polymers has been readily
studied, investigations of rigid polymer DR are much less abundant. Existing comparisons seem to
imply that flexible and rigid polymers mitigate drag in entirely unique manners [11–13]. However,
additional investigations are needed to support such a conclusion. The following overview details
the previous theoretical and experimental findings pertinent to polymer DR using flexible and rigid
molecules.

Two existing theories attempt to elucidate how polymers interact with turbulence and reduce
drag. In Lumley’s viscous theory of DR, polymers are believed to damp turbulent structures due
to an enhanced extensional viscosity in regions of the flow that experience significant elongational
deformation rates [14]. The cogency of Lumley’s viscous theory is conditional on polymer solutions
having a large Trouton ratio Tr = μext/μ > 3 and Weissenberg number Wi = λext/τ f > 1

2 . Here
μext is the extensional viscosity, μ is the shear viscosity, λext is the extensional relaxation time,
and τ f is a representative timescale of the turbulent flow. The elastic theory, proposed by de
Gennes [15], suggested that a large μext is not critical for DR. Instead DR occurs when the elastic
stresses of the polymers become comparable to the Reynolds stresses of the flow. Regardless of
the validity of one theory over the other, both rely on the polymer solution having some amount
of viscoelasticity. This is despite the insinuation that the name of Lumley’s viscous theory may
prescribe, a caveat that has been alluded to by other authors as well [16,17]. Indeed, the results of
pipe and channel flow experiments using flexible polymers have demonstrated a positive correlation
between the amount of DR and the Wi of the flow [18]. Also, investigations using direct numerical
simulation (DNS) with viscoelastic constitutive equations, such as the molecular finitely extensible
nonlinear elastic dumbbell model with a Peterlin approximation (FENE-P) and the continuum-based
Oldroyd-B model, have demonstrated good agreement in trends of skin friction, mean velocity,
and Reynolds stresses, when compared with experimental results using flexible polymers [19–21].
All analytical, experimental, and numerical evidence leads us to believe that viscoelasticity is a
necessity for polymer DR. However, rheological measurements of dilute rigid polymer solutions
exhibit little extensional and elastic characteristics, despite being able to produce DR similar to
flexible polymer solutions [6,13,22]. Comparisons of each solution’s rheology can directly quantify
the unique material characteristics of the two solutions.

Numerous experimental investigations have measured the shear and extensional rheology of
flexible and rigid polymer solutions [13,18,23]. Mohammadtabar et al. [23] directly compared μext

of solutions of different drag-reducing flexible and rigid polymer species using a capillary breakup
extensional rheometer (CABER). Their results reflected that drag-reducing flexible polymer solu-
tions, with concentrations as low as 20 ppm, can exhibit Tr as large as 100 [23]. The implication is
that flexible polymer solutions are viscoelastic (Tr > 3) and effective at resisting elongational strain
rates [24]. For the rigid polymer solutions, Mohammadtabar et al. [23] found that the extensional
properties of the solution were immeasurable using the CABER apparatus, an observation not
uncommon among experimentalists [8,13,22,23]. Attempts at measuring μext for rigid polymer
solutions using a CABER often fail, potentially due to low μext and Tr [13,22,23]. However, the
lack of extensional resistance in dilute rigid polymer solutions appears to be replaced by a higher
shear viscosity and a more pronounced shear-thinning quality when contrasted with solutions of
flexible polymers that produce similar quantities of DR [13,22,23]. Shear viscosity measurements
of rigid polymer solutions are well approximated by shear-thinning generalized Newtonian (GN)
models such as the Carreau-Yasuda or Cross models [24–26]. Based on existing measurements,
a well-defined shear-thinning trend is the only obvious rheological trait for low-concentration
solutions of drag-reducing rigid polymers [13,23]. The rheological measurements of flexible and
rigid polymer solutions suggest that the two additives have different mechanisms for promoting
DR.

Further evidence for a unique DR mechanism among flexible and rigid polymers is demonstrated
by differences in some of their flow statistics. The most apparent distinction is their unique trajec-
tories for attaining the maximum drag-reduction (MDR) asymptote in the skin-friction coefficient
Cf with increasing polymer concentration or Reynolds number Re. Virk and Wagger [11] defined
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flexible additives as type A drag reducers and rigid additives as being type B, based on their
different trends in Cf versus Re. Despite their unique trends in Cf , flexible and rigid polymers share
similarities in their mean velocity profiles. Escudier et al. [22] and Mohammadtabar et al. [12]
demonstrated that mean velocity profiles of drag-reduced channel flows using rigid polymers were
consistent with the elastic sublayer model, derived using mostly flexible polymers by Virk [27]. On
the other hand, some authors have suggested that the two solutions modify the Reynolds stresses
differently. In a recent review publication, Xi [17] stated that rigid polymers and flexible polymers
produce different changes to the streamwise Reynolds stress profile during the transition from low
drag reduction (LDR) to high drag reduction (HDR). Xi [17] made this observation based on the
measurements by Escudier et al. [22] and Mohammadtabar et al. [12]. However, Xi [17] also noted
that a good portion of the modifications to the Reynolds stresses could be attributed to differences
in Re, something demonstrated explicitly by Thais et al. [28] using DNS and FENE-P, but seldom
explored experimentally. Warwaruk and Ghaemi [13] compared the Reynolds stresses of flexible and
rigid polymers for flows at HDR and MDR. They observed inconsistencies in the Reynolds stresses
for drag-reduced flows of similar DR and concluded that the differences are primarily attributed to
discrepancies in Re. Generally, it is not sufficiently well understood how the first- and second-order
flow statistics of rigid polymer flows depend on Re and DR [16,22]. Few if any investigations have
explicitly measured changes in the mean velocity profile and Reynolds stresses of drag-reducing
rigid polymer solutions with varying Re that are independent of variations in DR.

Although the two most cited theories for polymer DR rely on viscoelasticity being a constituent
property of the polymer solution, there is one phenomenological model that simulates polymer
DR using a viscous approximation. L’vov et al. [29], De Angelis et al. [30], and Procaccia et al.
[31] demonstrated that polymer DR can be approximated by a simulation of the Navier-Stokes
equations using an effective viscosity that is a function of the wall-normal distance from the wall,
i.e., y. Their effective viscosity profile was a piecewise function, where in the linear viscous sublayer
the effective viscosity was constant, but in the buffer and logarithmic layers the effective viscosity
grew linearly with increasing y. L’vov et al. [29] and De Angelis et al. [30] derived and simulated
the model based on simplifications done to the viscoelastic FENE-P constitutive equations, a model
noted as being representative of flexible polymers. Procaccia et al. [31] expressed that such an
effective viscosity model could also be viable for modeling the drag-reduced flow of rigid polymer
solutions as well. Instead of using FENE-P, Procaccia et al. [31] derived the effective viscosity
model for rigid polymers based on a constitutive equation derived by Doi and Edwards [32] for
dilute solutions of rodlike molecules. However, given the innate shear-thinning quality of rigid
polymer solutions coupled with the mean wall-normal velocity gradient in a turbulent wall flow,
an effective viscosity that increases with respect to the wall-normal distance is inherent in the
turbulent wall flow of rigid polymer solutions. Indeed, DNS using GN shear-thinning constitutive
equations demonstrates a spatially varying mean viscosity profile, where the viscosity is relatively
constant near the solid boundary, but increases logarithmically in the buffer and logarithmic layers
along y [33–36]. Although the wall-normal trend in the mean viscosity for GN fluids is different than
the linear effective viscosity profile used by De Angelis et al. [30], it is clear that wall-normal vari-
ations in the viscosity may play an important role in DR. Therefore, an experimental investigation
that evaluates the wall-normal viscosity profile of a rigid polymer solution is warranted.

The present investigation has two central objectives. The first is to provide high-fidelity turbu-
lence statistics of a drag-reduced channel flow of rigid polymers with varying Re. Few experiments
of rigid polymers have explored the effect of Re on flow statistics. The existing measurements of
rigid polymers in a turbulent channel flow have low spatial resolutions [22] or appear to be in an
arguably transitional flow regime due to small Re [12]. To alleviate this gap in the research, an
experimental investigation is performed for a 170 ppm xanthan gum (XG) solution in a turbulent
channel flow with a friction Reynolds number Reτ between 170 and 700. The resulting levels
of DR are between 27% and 33%, demonstrating little dependence on Re. Planar particle image
velocimetry (PIV) measurements are used to measure the instantaneous velocity of the drag-reduced
flows. Shear rheology is characterized using a double gap and a parallel plate geometry to capture
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FIG. 1. Isometric cross section of the glass test section.

the viscosity of the XG solution over a large range of shear rates. The second objective of our paper
is to elucidate a mechanism for rigid polymer DR from the perspective of lubricated flows. We
observe a thin layer of low-viscosity fluid near the wall for the rigid polymer solution at all flow
conditions, which is proposed to be essential for DR using rigid polymers.

II. EXPERIMENTAL METHODOLOGY

A. Flow facility

Experiments were performed in a recirculating flow facility with a channel section dedicated for
flow measurements. A portion of the loop had a rectangular cross section of height H of 15 mm and
width W of 120 mm, as shown in Fig. 1. Walls of the channel were cast acrylic, with the exception
of one segment, the test section, where the walls were glass. Flow measurements using PIV were
performed in the glass test section, which was situated approximately 107H downstream of the
inlet to the channel portion. In total, the channel portion of the loop was 168H in length. Gradual
transition fittings were used to connect the channel section to the remainder of the loop, which
was a 2-in. nominal pipe. Additional details pertaining to the flow facility can be found in Ref. [13].
Figure 1 displays the Cartesian coordinate system with reference to the cross section of the glass test
section. The standard right-hand orthonormal basis was used, with positions along the streamwise,
wall-normal, and spanwise directions denoted by x, y, and z, respectively. The coordinate system
was placed at the midspan of the lower channel wall within the laser sheet.

A centrifugal pump (LCC-M 50-230, GIW Industries Inc.) and a variable frequency drive (VFD)
were used to propel the fluid within the loop. A shell and tube heat exchanger and a thermocouple
were used to maintain a constant fluid temperature of 25 ◦C ± 0.3 ◦C. A Coriolis flow meter (Micro
Motion F-series, Emerson Process Management) with an accuracy of ±0.2% was used to measure
the mass flow rate ṁ of the moving fluid. To maintain a constant ṁ, a proportional-integral-derivative
controller, developed using LabView software (LabView 2015, National Instruments), was used to
manipulate the frequency of the VFD and the rotational speed of the pump. The linear streamwise
gradient in static pressure �P/�x was measured using a differential pressure transducer (DP15,
Validyne) equipped with a 1-psi diaphragm. Pressure ports were separated by �x = 109H . The
upstream port was situated 34H from the inlet of the channel.

Measurements were conducted for seven different conditions of bulk velocity Ub = ṁ/ρHW ,
all of which are shown in Table I for water. Here ρ is the fluid density. In the case of water, the
Reynolds number Re = ρUbH/μw was between 9100 and 37 000. The symbol μw represents the
dynamic viscosity of the fluid corresponding to the shear rate at the wall. While this is a variable for
the polymer solutions, for a Newtonian fluid such as water, the dynamic viscosity is consistently
0.89 mPa s at 25 ◦C [37,38]. Therefore, the Re of the polymer solutions are calculated later in
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TABLE I. Flow properties for channel flow of water.

Ub (m s−1) Re �P (Pa) τw (Pa) uτ (mm s−1) λ (μm) Reτ

0.542 9100 231 1.061 32.6 27.4 270
0.819 13800 477 2.188 46.8 19.1 390
1.094 18400 795 3.648 60.5 14.8 510
1.371 23000 1179 5.407 73.6 12.1 620
1.647 27700 1627 7.465 86.5 10.3 730
1.924 32300 2139 9.814 99.2 9.0 830
2.197 37000 2711 12.437 111.7 8.0 940

Sec. II D, when the wall shear rates and steady shear viscosity are obtained. The wall shear stress τw

was established using measurements of the streamwise pressure gradient, i.e., τw = h�P/�x, where
h = H/2 is the half-channel height. The friction velocity uτ = (τw/ρ)1/2, wall units λ = μw/uτ ρ,
and friction Reynolds number Reτ = ρuτ h/μw were then subsequently determined, the results for
which are listed in Table I for the flow of water.

B. Rigid polymer solution

The rigid polymer species considered in this investigation was the polysaccharide XG from
Sigma Aldrich (CAS No. 1138-66-2). Solid XG, in powder form, was weighed using a digital scale
(AB104-S, Mettler Toledo) with a 0.1 mg resolution. The powder was then gradually added to 15 l
of tap water and agitated using a stand mixer (Model 1750, Arrow Engineering Mixing Products).
The concentrated 15 l master solution was then left to rest overnight for approximately 12 h. The
following day, the master solution was added to 100 l of moving tap water within the flow loop.
This diluted the master solution to the desired concentration of 170 ppm. A 170 ppm solution of
XG produced a solution of good transparency for PIV measurements. To ensure the solution was
homogeneous, the pump was operated at 1400 rpm (Ub = 4.380 m s−1) for 1 h. Near the end of the
1 h duration, �P was marginally growing at a rate of approximately 10 Pa min−1, about a 0.1%
increase in �P every minute. This was considered sufficiently steady state. After the 1 h time mark,
the pump speed was reduced to 800 rpm, corresponding to Ub = 2.197 m s−1, for the first PIV
measurement at the highest Re. The pump speed was then reduced in increments such that PIV
measurements for each flow condition listed in Table II were taken. At all of the measured flow
rates listed in Table II, no variation in �P was observed during the PIV acquisition time. Therefore,
any mechanical degradation or polymer deagglomeration was likely negligible after the 1-h mixing
phase. Finally, fluid samples were collected for shear viscosity measurements using an access port
along the flow loop.

TABLE II. Flow properties for channel flow of 170 ppm XG solution.

Ub (m s−1) Re D (%) μw (mPa s) uτ (mm s−1) λ (μm) Reτ

0.542 6200 27 1.285 29.2 44.1 170
0.819 10500 30 1.152 40.6 28.5 260
1.094 14800 31 1.087 51.4 21.2 350
1.371 19300 32 1.047 61.8 17.0 440
1.647 23800 33 1.021 72.1 14.2 530
1.924 28300 33 1.002 82.2 12.2 610
2.197 32800 33 0.988 92.3 10.7 700
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FIG. 2. (a) Steady shear viscosity measurements of 170 ppm XG solution and water. (b) Skin-friction
coefficient as a function of Reynolds number for water and the 170 ppm XG solution.

C. Steady shear viscosity

Shear viscosity μ versus shear rate γ̇ was measured for water and the 170 ppm XG solution
using a torsional rheometer (HR-2, TA Instruments). Two geometries were used, a double-gap (DG)
concentric cylinder for low to moderate γ̇ and a parallel plate (PP) geometry for moderate to high γ̇ .
The double-gap concentric cylinder consisted of four radii: an inner cup radius (15.1 mm), an inside
bob radius (16.0 mm), an outside bob radius (17.5 mm), and an outside cup radius (18.5 mm). The
sample was immersed in the cup and bob at a height of 53.0 mm. The PP geometry had a radius R
of 30 mm. The gap height between the plates hPP was set to 200 μm.

Figure 2(a) displays measurements of μ as a function of γ̇ for the 170 ppm XG solution and water
at 25 ◦C. The μ for water was measured between γ̇ of 2 and 140 s−1 using the DG geometry and γ̇

between 60 and 2000 s−1 using the PP geometry. For the rigid polymer solution, measurements of
μ using the DG geometry are presented for 0.8 s−1 < γ̇ < 180 s−1. Results using the PP geometry
were performed between γ̇ of 10 and 2500 s−1 for the XG solution. The lower limit of γ̇ for the
viscosity measurements is a result of the low-torque limit of the rheometer [39]. The upper limit is
a result of secondary or inertial flow instabilities that produce an increase in the measured torque
and hence tamper with the measurements of μ. In the DG geometry, the secondary instabilities
are Taylor vortices, while for the PP geometry secondary instabilities are radial flows or turbulence
[39]. Davies and Stokes [40] demonstrated that secondary flows tampered with the PP measurements
when the Reynolds number RePP = ρ�RhPP/μ was greater than 100. Here � is the angular velocity
of the upper plate in radians per second. Therefore, measurements of μ using the PP geometry
with RePP > 100 were disregarded. Measurements using the PP geometry at low hPP can also
be subjected to errors caused by gap offsets and surface tension [39–41]. Appendix A critically
evaluates the consistency in measurements of μ for different gap heights and with alterations in
the surface tension of the fluid by adding a small amount of Tween 20 to the XG solution. We
observed that measurements of μ were consistent for different hPP, the RePP = 100 conservatively
predicted the onset of inertial instabilities for different hPP, and Tween 20 had little influence on the
measurements of μ. Based on the results presented in Appendix A, we concluded that gap offset
errors were minimal, the assumed inertial limitation from Davies and Stokes [40] was valid, and
surface tension did not corrupt the measurements of μ.
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The average and standard deviations in measurements of μ for water were 0.86 mPa s ± 3.2%.
The average value of μ for water was approximately 3.5% different from the theoretical viscosity
of water at 25 ◦C, i.e., 0.89 mPa s [37,38]. Therefore, a 3.5% relative systematic uncertainty was
assumed for all measurements of μ, including measurements of the XG solution. This uncertainty
propagates to other variables, including those used for inner normalization of flow velocity.

The trend in μ as a function of γ̇ for the XG solution, shown in Fig. 2(a), was well approximated
by the Carreau-Yasuda (CY) model

μ − μ∞
μ0 − μ∞

= 1

[1 + (λCYγ̇ )a]n/a
, (1)

where μ0 is the zero-shear-rate viscosity, μ∞ is the infinite-shear-rate viscosity, λCY is a fitting
constant with dimension of time, n is a dimensionless exponent, and a is a fitting parameter
introduced by Yasuda et al. [25,26]. A Levenberg-Marquardt nonlinear least-squares method was
used to fit Eq. (1) to the measurements of μ as a function of γ̇ in MATLAB. The resulting CY fit
for the XG solution had a μ0 of 5.4 mPa s, μ∞ of 0.89 mPa s, λCY of 0.11 s, n of 0.55 s, and
a of 0.67. Equation (1) with these values is shown for reference in Fig. 2(a) by the black solid
line. The root mean square (rms) in the absolute deviation between the measurements and the
CY model was 0.05 mPa s. The rms of the relative deviation was 2.1%. This was considered a
relative random uncertainty in the measurements of μ for XG. Together with the 3.5% systematic
uncertainty assumed from our viscosity measurements of water, the total relative uncertainty in our
measurements of μ for XG was conservatively assumed to be 5.6%.

D. Skin-friction coefficient and drag reduction

Plots of the skin-friction coefficient Cf = 2τw/ρU 2
b as a function of Re are shown for water and

XG in Fig. 2(b). To determine Cf for the XG flows, the wall shear stress had to first be established.
The τw of each rigid polymer flow condition was derived based on measurements of �P. The near-
wall shear rate γ̇w was determined invoking the CY model coupled with pressure drop measurements
by substituting μw = τw/γ̇w into the left-hand side of Eq. (2) and using τw = h�P/�x, after which
the values of μw = τw/γ̇w of each XG flow were determined. Subsequently, the variables Re, uτ , λ,
and Reτ were obtained, all of which are listed in Table II for the rigid polymer flows. The resulting
values of Re were then used in plots of Cf shown in Fig. 2(b). Error bars in the data points of Cf

as a function of Re propagate from random errors in measurements of Ub and �P, as well as the
assumed uncertainty in μw determined in the preceding section.

Measurements of Cf for water and XG show consistency with previous investigations. The
equation Cf = 0.073 Re−0.25, shown at the top of Fig. 2(b), is the empirical correlation relating
Cf and Re for two-dimensional (2D) Newtonian turbulent channel flows prescribed by Dean [42].
The current measurements of Cf for water agree well with the equation derived by Dean [42] and
are within 5% of the Cf power-law equation. The lower equation shown in Fig. 2(b) is the Virk
MDR asymptote Cf = 19 log10(ReC1/2

f ) − 32.4 [43]. The measurements of Cf for the XG flows
are between the Cf correlations of Dean [42] and Virk et al. [43]. Therefore, the XG flows do
exhibit DR; however, none of the drag-reduced flows are at MDR. The Cf measurements for XG
also reasonably agree with the expected trend for flows of type B drag-reducing additives with
increasing Re. Virk and Wagger [11] detailed that type B additives exhibit a ladder effect, where the
trend in Cf as a function of Re would be lower but parallel to the Newtonian Cf correlation equation.
In Fig. 2(b) a trend in Cf for XG that is approximately parallel to the Dean [42] correlation with
increasing Re can be observed.

Drag-reduction was quantified by the attenuation in τw of the polymer solution relative to a
turbulent Newtonian flow of similar Re. The level of attenuation in τw was described by the percent
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drag reduction

D = 100

(
1 − τw,R

τw,N

)
, (2)

where τw,R is the wall shear stress of the rigid polymer solution and τw,N is the wall shear stress
of a Newtonian fluid of similar Re. Comparing Newtonian and non-Newtonian fluids of like Re
accounted for changes in the viscosity due to shear thinning [8,17,22]. Measurements of water and
XG were performed at the same Ub and not Re. The Re are dissimilar considering XG has a higher
shear viscosity than water, as demonstrated in Fig. 2(a). To establish a Newtonian value of τw,N that
shares a common Re with the XG flows, τw,N was calculated using the equation of Dean [42] for
Cf . The D was then subsequently determined for each flow condition of XG, the values for which
are listed in Table II. As previously mentioned, the experimental measurements of Cf for water was
within 5% of the Dean [42] skin-friction correlation. Therefore, using this equation to interpolate or
extrapolate the Cf measurements of water was considered an adequate approximation.

The present investigation considers the reduction in �P/�x, at a fixed Re. Comparing different
DR techniques is best done when a constant power input is maintained, where power is taken to be
the product between Q and �P. Roccon et al. [44] considered a drag-reduced lubricated wall flow
with a constant power input based on the procedure laid out by Hasegawa et al. [45]. Experimentally
considering DR based on a constant power input is feasible, provided real-time measurements of
the pressure gradient and volumetric flow rate are fed into a controller to maintain a constant
power through manipulation of the flow rate. Such a procedure is not performed in the present
investigation, but may yield better avenues for comparison between DNS and experiments with
like conditions and across different DR techniques in the future. In addition, it is more relatable to
industrial applications, which strive to mitigate energy dissipation, but also deliver more volumetric
flow.

E. Planar particle image velocimetry

Planar PIV was used to characterize the velocity of the Newtonian and non-Newtonian channel
flows. Images were collected using a digital camera (Imager Intense, LaVision GmbH) with a
1376×1040 pixel2 charged-coupled device sensor. Each pixel was 6.45×6.45 μm2 in size with
a digital resolution of 12 bits. A reduced sensor size of 1376×605 pixel2 was used to enable a
higher image acquisition rate and therefore a faster convergence in velocity statistics. A Sigma lens
with a focal length f of 105 mm and an aperture size of f /8 was used to focus on the full height of
the channel at its midspan. The resulting magnification was 0.55, the depth of field was 1.30 mm, and
the scaling factor was 11.81 μm pixel−1. Figure 3 illustrates the flow measurement setup relative to
the test section. The camera was arranged in a portrait orientation such that the 1376 pixel dimension
of the sensor was parallel to the height of the channel. Therefore, the field of view (FOV) of the
images was (�x,�y) = 12.28×16.25 mm2. Along the x direction, the center of the FOV was placed
at the center of the glass test section, which is 107H downstream of the channel inlet.

The illumination source for the planar PIV measurements was a 90 mJ pulse−1 Nd:YAG laser
(Gemini PIV 30, New Wave Research Inc.). Two spherical lenses (one concave, the other convex)
and one concave cylindrical lens expanded the 4.5-mm diam beam output from the laser head into a
20-mm-wide (along the x direction) by 1-mm-thick (along the z direction) laser sheet at the measure-
ment location. Silver-coated hollow glass spheres, 2 μm in diameter, were used to seed the flows
(SG02S40 Potters Industries). Das and Ghaemi [46] demonstrated that these small silver-coated
particles have strong side scattering and relatively consistent sizing. Synchronization between the
camera and the laser was achieved using a programmable timing unit (PTU 9, LaVision GmbH)
and DAVIS 7.3 software (LaVision GmbH). One data set consisted of 9000 pairs of double-frame
images, recorded at an acquisition rate of 7.4 Hz. The time delay �t between image frames was
50–400 μs depending on the Re of the flow. The specific value of �t was chosen such that the
maximum particle displacement between image frames was approximately 12 pixels.
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FIG. 3. Isometric three-dimensional model of the planar PIV setup relative to the glass test section and
channel section.

All PIV processing was performed using DAVIS 8.4 software (LaVision GmbH). First, the mini-
mum intensity of all images was subtracted from each image. Next, each data set was normalized
with their respective average ensemble intensity. The instantaneous velocity vector was defined
as U . Its components along the streamwise and wall-normal directions were defined as U and V ,
respectively. Angular brackets were used to denote the ensemble average of the variables over
time and the x direction. The latter averaging is applied due to the homogeneity of the fully
developed turbulent channel flows in the streamwise direction. Fluctuations in the streamwise and
wall-normal velocities were denoted by u and v, respectively. High spatial resolution profiles of
mean streamwise velocity 〈U 〉 were established using the ensemble-of-correlation method with a
final interrogation window (IW) size of 6×6 pixel2 (0.07×0.07 mm2) and 83% overlap between
neighboring IWs [47]. The resulting profiles of 〈U 〉 had a single pixel spatial resolution (0.3λ–1.5λ,
depending on Re). The lower limit of the measurements in 〈U 〉 was y = 35 μm, which corresponds
to y+ = 0.76–3.15, depending on Re. The instantaneous velocities U and V were determined using
a multipass cross-correlation algorithm with an initial IW size of 64×64 pixel2 and a final IW
size of 32×32 pixel2 (0.38×0.38 mm2), both with 75% overlap between adjacent IWs. The spatial
resolution of instantaneous velocity measurements was 8 pixels or 0.09 mm (2λ–12λ). Vector
postprocessing using the universal outlier detection algorithm developed by Westerweel and Scarano
[48] was used to remove any spurious vectors in the measurements of U and V , after which the
Reynolds normal stresses 〈u2〉 and 〈v2〉 and the Reynolds shear stress 〈uv〉 were determined. All
first- and second-order velocity statistics attained reasonable statistical convergence with minimal
random errors, as demonstrated in Appendix B.

The wall location was determined based on the local intensity maximum Imax that forms due to
the glare line of the wall in the average intensity distribution of the PIV images. The uncertainty
in the wall location was considered to be the extent of the high-intensity glare, which was assumed
to be the �y separating Imax and Imax/e2 [49]. The corresponding uncertainty in the wall location
was estimated to be approximately 3 pixels or 35.4 μm (0.8λ–4.4λ). Errors in the wall location
were treated as an uncertainty in y and were a contributing factor to the error bars in wall-normal
distributions of mean velocity and Reynolds stresses.

Variables scaled using inner normalization were identified with the superscript +. Velocity
statistics were normalized with the friction velocity uτ = (τw/ρ)1/2, positional coordinates were
normalized with the wall units λ = μw/uτ ρ, and viscosity variables were normalized by the wall
viscosity μw, as listed in Tables I and II. Error propagation was used to derive the uncertainties in uτ
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and λ based on the assumed errors in μw (see Sec. II B) and random errors in �P. A conservative 0.1
pixel uncertainty in the PIV measurements of U and V was also assumed [50]. Such uncertainties
in the inner scaling variables and the velocity measurements were reflected by error bars in plots of
〈U 〉+, 〈u2〉+, 〈v2〉+, and 〈uv〉+.

F. Flow field analysis

Assuming the present XG solution follows the shear-thinning trend shown in Fig. 2(a), we
obtained an approximation for the 2D instantaneous distribution of μ within the turbulent channel
flow using the following procedure. First, a 2D version of the strain rate γ̇ = (2S : S)1/2 was
determined. Here S = (∇U + ∇U†)/2 is the rate of strain tensor, the dagger denotes a matrix
transpose, and the colon operator represents the double dot product of the rank-2 tensors. Con-
sidering the PIV vectors were two dimensional, γ̇ was determined using U and V alone, i.e.,
γ̇ = {2[(∂U/∂x)2 + 1/2(∂U/∂y + ∂V/∂x)2 + (∂V/∂y)2]}1/2. Therefore, our version of γ̇ was an
approximation that does not take into account spanwise velocity W or spatial gradients along
the spanwise direction. A moving second-order polynomial plane with a size of 40×40 pixel2,
or 0.45×0.45 mm2, was fit along instantaneous distributions of U and V . Each 2D polynomial
function was differentiated to obtain the spatial gradients in the velocity, i.e., ∂U/∂x, ∂U/∂y, ∂V/∂x,
and ∂V/∂y. The 2D instantaneous distribution of μ was then established by substituting γ̇ into the
CY model (1) that relates shear viscosity to shear rate for the XG solution. Time averaging was
performed on the instantaneous viscosity profile to obtain a mean viscosity 〈μ〉 and fluctuating
viscosity μ′ = μ − 〈μ〉 similar to those derived in DNS using GN constitutive models [33–36],
after which plots of the inner-normalized mean viscosity 〈μ〉+ = 〈μ〉/μw and the inner-normalized
root mean square of the fluctuating viscosity R(μ′)+ =

√
〈μ′2〉/μw were determined. A two-point

correlation of μ′ was used to characterize the length scale of the viscosity fluctuations. The
correlations coefficient ρμ′μ′ can be represented by the equation

ρμ′μ′ = 〈μ′(x0, y0) μ′(x0 + δx, y0 + δy)〉√
μ′2(x0, y0)

√
μ′2(x0 + δx, y0 + δy)

, (3)

where (x0, y0) is the streamwise and wall-normal coordinate of the reference point and δx and δy
represent the spatial shifts in the x and y directions, respectively. We considered two reference
points, the first being (x0, y0) = (0.1h, 0.07h) and the second being (x0, y0) = (0.1h, 0.42h).

Assuming the GN constitutive model holds for XG and the 2D approximation of γ̇ is appropriate,
the inner-normalized mean stress τ+ across the half channel can be determined based on

τ+ = τ+
v + τ ′+

v − 〈uv〉+, (4)

where τ+
v = 〈μ〉+∂〈U 〉+/∂y+ is the mean viscous stress and τ ′+

v = 2〈μ′+s+
xy〉 is the turbulent vis-

cous stress, named by Singh et al. [33]. Note that s = S − 〈S〉 is the fluctuating component of the rate
of deformation tensor and sxy = (∂u/∂y + ∂v/∂x)/2. When normalized, s+

xy = sxyλ/uτ = sxy/γ̇w.
Alternatively, the mean shear stress can be equally represented as τ+ = 1 − y+/Reτ . Previous inves-
tigations have referred to τ ′+

v as a polymer stress, estimated from the deficit τ ′+
v = τ+ − τ+

v + 〈uv〉+
[19,51]. Given that all components listed in Eq. (4) can be explicitly determined, the CY shear-
thinning GN constitutive equation can be used to establish τ ′+

v and comment on its contribution
to τ+.

Another component of our analysis involved a spatial gradient in the mean velocity profile along
y, i.e., d〈U 〉/dy. To remove high-frequency experimental noise and to differentiate the profile, a
moving second-order polynomial filter was applied to the distribution of 〈U 〉 with respect to y.
The length of the filter was 24 pixels or 283 μm (6λ–35λ, depending on Re). Coefficients of the
fitted second-order polynomial were used to calculate d〈U 〉/dy and then established the indicator
function ζ = y+d〈U 〉/dy+. Calculating 〈μ〉 near the wall was limited by the spatial resolution of
measurements in U and V . Better spatial resolutions were achieved in 〈U 〉 due to the utilization
of the ensemble-of-correlation method. To approximate 〈μ〉 near the wall we assumed that the
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FIG. 4. Inner-normalized distributions of (a) mean streamwise velocity and (b) the indicator function, for
Newtonian flows.

dominant component of γ̇ very close to the wall was d〈U 〉/dy. The wall-normal gradient in
the mean viscosity was then substituted into the CY model to obtain an approximation of 〈μ〉 near
the wall. This is an assumption, one that is rather bold for a turbulent flow. As such, we refer to the
profile as a pseudomean viscosity and denote it by μ̃.

III. RESULTS

A. Newtonian turbulent channel flow

This section begins by comparing measurements of the mean velocity profiles for water with the
Newtonian law of the wall in Fig. 4. For brevity, only experimental data for water with a Reτ less
than or equal to 620 are plotted. These conditions of Reτ were chosen because they are similar in
magnitude to the Reτ conditions of the XG flows listed in Table II. Following the plots of 〈U 〉+,
measurements of the Reynolds stresses for water are shown in Fig. 5. Three experimental Reynolds
stress profiles with Reτ of 270, 390, and 510 are presented on the same axes as the Reynolds stresses
derived from Newtonian channel flow DNS by Iwamoto et al. [52] at Reτ = 300 and Lee and Moser
[53] at Reτ = 550. The error bars in Figs. 4 and 5 are a result of uncertainties propagating from μ,
�P, U , and y. For clarity, only two error bars are shown for each profile, one approximately in the
buffer layer and the other within the outer layer.

Figure 4(a) demonstrates that all experimental profiles of water show good agreement with the
law of the wall. The profiles were limited to y > 35 μm, which corresponds to y+ = 1.29–2.89 for
Reτ between 270 and 620. For y+ < 5 and greater than their respective lower limit, experimental
measurements overlap with the profile of the linear viscous sublayer, 〈U 〉+ = y+. Farther from
the wall, all of the experimental distributions in Fig. 4(a) overlap with the logarithmic law 〈U 〉+ =
1/κ ln y+ + B. A von Kármán constant κ of 0.41 and intercept B of 5.17, as prescribed by Dean [42]
for 2D Newtonian channel flows, is shown for comparison. Distributions of ζ shown in Fig. 4(b)
accentuate the logarithmic dependence of 〈U 〉+ with respect to y+. The profiles of ζ imply that κ

is larger than 0.41 in the logarithmic layer for all profiles of water. Comparing the experimental
profiles of 〈U 〉+ for different Reτ , all distributions appear to overlap with one another within the
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FIG. 5. Inner-normalized profiles of (a) streamwise Reynolds stress and (b) wall-normal and Reynolds
shear stresses, for Newtonian flows.

boundaries of measurement uncertainties. The DNS of a Newtonian channel flow by Lee and Moser
[53] demonstrated that profiles of 〈U 〉+ over a wider Reτ range of 180–5000 also overlapped. The
current experimental results for water also reflect universality in their distributions of 〈U 〉+ and ζ

among different Reτ .
Figure 5(a) presents experimental profiles of 〈u2〉+ relative to Newtonian channel flow DNS.

For water with a Reτ = 510, instantaneous PIV measurements with IWs of 32×32 pixel2 and 75%
overlap, which translates to a spatial resolution of 7.8λ. As a result, the linear viscous sublayer and
a portion of the buffer layer is missed in these measurements. However, for lower Reτ the spatial
resolution of the measurements improve. The scenario with Reτ = 270 has a spatial resolution of
3.5λ and has measurements that extend to wall-normal locations as small as y+ = 9. Within the
logarithmic and outer layers, the experimental results overlap with their DNS counterparts at similar
Reτ . The moderate Reτ = 390 case demonstrates consistency, considering it lies between the two
DNS and experimental profiles at lower and higher Reτ . Figure 5(b) shows experimental and DNS
profiles of 〈v2〉+ and 〈uv〉+. Similar to the distributions in 〈u2〉+, experimental profiles in 〈v2〉+ and
〈uv〉+ agree well with the DNS results at similar Reτ . However, there are some small discrepancies.
For example, the experimental profile of 〈v2〉+ at Reτ = 510 appears to be minutely larger than
the DNS profile of 〈v2〉+ at Reτ = 550 for y+ > 100. Overall, the experimental mean velocity and
Reynolds stress measurements show consistency and agreement with 2D Newtonian channel flow
DNS. Therefore, we can proceed to the results of the non-Newtonian solution with relatively good
confidence in the validity of the measurements. It should also be noted that the spatial resolution
of the measurements will improve with the addition of polymers, considering D is coupled with a
reduction in uτ and an increase in λ. This can be observed by comparing the larger values of λ for
XG flows with the λ values of water in Tables I and II.

B. Non-Newtonian turbulent channel flow

The current section investigates the turbulent flow of the XG solution with varying Reτ . The
section is divided into three portions. Section III B 1 presents a wall-normal distribution of the mean
velocity profile 〈U 〉+, indicator function ζ , and pseudoviscosity profile μ̃ obtained from the vector
fields with high spatial resolution. Section III B 2 investigates spatial distributions of the viscosity
derived from the 2D shear rate. Section III B 3 delves into the Reynolds stresses and viscous stresses
of non-Newtonian flows at different Reτ .
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FIG. 6. Inner-normalized distributions of (a) mean streamwise velocity and (b) the indicator function, for
flows with 170 ppm XG solution.

1. Mean velocity profile

Profiles of 〈U 〉+ for the XG scenarios are shown in Fig. 6(a). Near the wall, experimental
distributions of 〈U 〉+ conform well with the linear viscous sublayer profile y+ = 〈U 〉+ for all
Reτ under consideration. The upper limit of the linear viscous sublayer appears to grow relative
to Newtonian wall turbulence. For a Newtonian turbulent channel flow, the linear approximation
of the viscous sublayer is valid to within 10% at y+ = 5 [54]. If a 10% confidence interval from
y+ = 〈U 〉+ is used as a threshold, we can approximate the size of the linear viscous sublayer for
the non-Newtonian profiles shown in Fig. 6(a). Table III lists the size of the linear viscous sublayer
for the flows, in both inner and outer scaling. The size in inner scaling is denoted by y+

v , while
the size in outer normalization is yv/h. All values of y+

v are between 8 and 12, demonstrating
that the linear viscous sublayer is expanded relative to Newtonian wall turbulence, which has a
y+
v between 3 and 5 [54]. With increasing Reτ , the non-Newtonian values of y+

v increase subtly,
implying that the very-near-wall profiles might be slightly different and potentially depend on the
small increase in D with increasing Reτ , as shown in Table II. However, with error bars, these

TABLE III. Linear viscous sublayer sizes for non-Newtonian flows in inner and
outer scaling.

Reτ y+
v yv/h

170 8.3 0.051
260 9.1 0.036
350 10.1 0.030
440 10.8 0.025
530 11.5 0.023
610 11.2 0.019
700 11.4 0.017
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differences could be a result of uncertainty in the measurements. At the larger Reτ , between
530 and 700, the linear sublayer appears to saturate and nearly approach the trisection point
(y+, 〈U 〉+) = (11.6, 11.6), where the Virk MDR asymptote 〈U 〉+ = 11.7 ln y+ − 17 intersects with
y+ = 〈U 〉+ and the Newtonian logarithmic law. Values of the outer-scaled thicknesses yv/h decrease
with increasing Reτ , mainly due to the large shrinkage in yv caused by increasing Reτ .

Farther from the wall at y+ > 30, Fig. 6(a) demonstrates a larger 〈U 〉+ relative to the logarithmic
law of the wall, an observation common for drag-reduced flows. Virk [27] and later Warholic et al.
[51] demonstrated that LDR flows form a Newtonian plug profile, which is observed as an increase
in the logarithmic law intercept B but a similar κ , relative to the logarithmic law distribution of
a Newtonian fluid. Virk [27] detailed that the growth in B was proportional with D. A larger D
would result in an increased buffer layer thickness (deemed the elastic sublayer) and hence an
enhancement in B. Findings from Warholic et al. [51] showed that a Newtonian plug exists only
for LDR flows with D < 35%. Given D of the present XG flows are between 27% and 33% (see
Table II), the current XG flows satisfy the criteria for LDR. Therefore, our measurements agree well
with previous observations of 〈U 〉+ profiles for polymer drag-reduced LDR flows. Furthermore,
Fig. 6(a) demonstrates that profiles of 〈U 〉+ for XG have little dependence on Reτ . There is perhaps
a subtle increase in B for 170 < Reτ < 440; however, this could be attributed to the small growth
in D with increasing Reτ . The uncertainty in the flow measurements, shown by the error bars, also
captures the small variations in B.

White et al. [55] reevaluated the efficacy of the Virk [27] elastic sublayer model using the
indicator function ζ , which highlights regions of strong logarithmic dependence. They compared
mean velocity profiles from various experimental and numerical investigations of different D,
canonical flows, and Re. For LDR flows, White et al. [55] observed constant ζ (generally for
y+ > 50), which is indicative of a Newtonian plug. Profiles of ζ shown in Fig. 6(b) also demonstrate
regions of constant ζ , providing further evidence of a Newtonian plug for rigid polymer solutions.
For all Reτ , these regions of constant ζ are observed for y+ > 60. This lower limit of y+ = 60 is
larger than the lower limit of y+ = 30 for the Newtonian logarithmic layer [54], demonstrating an
expansion of the viscous sublayer. The peak values of ζ for XG at y+ = 15 are greater than the peak
values of ζ for water as shown in Fig. 4(b). The implication is that the slope of 〈U 〉+ within the buffer
layer is larger for flows of XG relative to water. A larger slope in 〈U 〉+ is indicative of an effective
slip in the buffer layer, which in turn results in an increase in 〈U 〉+ within the logarithmic layer
[27,56]. Another observation is that the constant value of ζ for the XG flows in the Newtonian plug
layer are marginally larger than the values of ζ observed for water in the logarithmic layer shown in
Fig. 4(b). White et al. [55] similarly observed that κ was slightly larger than water in the Newtonian
plug for LDR flows. White et al. [55,57] broadly suggested that the inner-normalized mean velocity
profile of a polymer drag-reduced flow depends on the Reynolds number, polymeric properties, and
the canonical flow. We demonstrate that if D is constant, distributions of the inner-normalized mean
velocity profiles of a rigid polymer solution are relatively independent of Reτ within the inner layer
of the flow.

Figure 7 demonstrates distributions of the normalized pseudoviscosity μ̃+ with respect to y+ for
the XG flows of different Reτ . The profiles of μ̃ are an approximation of the mean viscosity in
the near-wall region. Intuitively, the decreasing trend in μ̃+ with increasing Reτ at a given y+ is
plausible. Flows of higher Reτ have larger d〈U 〉/dy; hence μ̃ should be correspondingly lower
relative to a flow of smaller Reτ . For y+ < 10, all XG flows have distributions of μ̃+ that are
approximately constant, only growing subtly by about 1% with increasing y+. As y+ increases
beyond 10 all profiles experience a dramatic increase in the magnitude of μ̃+. The precise y+
location where this inflection in μ̃/μw occurs depends on the Reτ being considered. The thickness
of the near-wall region of approximately constant μ̃ appears to conform well with the peak in
profiles of ζ , shown in Fig. 6(b) and indicative of the central location of the buffer layer. The
inner-normalized thickness of this region of constant μ̃ grows with increasing Reτ . However, the
value of μ̃+ appears to monotonically decrease with increasing Reτ at any chosen value of y+.
Flows of large Reτ experience a less aggressive change in μ̃ with respect to y+, but the size of
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FIG. 7. Pseudomean viscosity normalized by wall viscosity as a function of inner-normalized wall location.

their near-wall region of low viscosity is larger. Generally, all flows experience a large and sudden
change in μ̃ for y+ between 10 and 30. For example, the XG flow with Reτ = 170 has a μ̃ that is
50% larger than μw at y+ = 30. A near-wall region of constant mean viscosity that suddenly and
dramatically increases with respect to y+ has also been observed from numerical simulations using
GN models [33–36]. Our results appear to qualitatively agree with the results of DNS using inelastic
shear-thinning GN models near the wall [33–35]. This is despite the approximation used to derive
the pseudoviscosity profile μ̃ based on 2D velocity data.

2. Turbulent shear viscosity

Figure 8(a) shows an instantaneous contour of u for XG with Reτ of 170, while Fig. 8(b) shows
a snapshot of μ. The contours in Figs. 8(a) and 8(b) are extracted at the same time instance.
In Fig. 8(a), zones of low- and high-speed flow are observed. Figure 8(b) demonstrates that the

FIG. 8. Instantaneous contour of (a) streamwise velocity fluctuations and (b) viscosity for XG at Reτ = 170.
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FIG. 9. Probability density function of fluctuating viscosity taken at x of 0.1h and y of (a) 0.07h and
(b) 0.42h.

viscosity near the wall is low and within 20% of μw for y/h < 0.2. Away from the wall, y/h > 0.2,
most of the fluid has a μ between 1.5 and 3 times larger than μw. In general, the spatial distribution
of μ shows large streamwise-elongated zones of low and high viscosity that contain small-scale
viscosity fluctuations. For example a large, low-viscosity slug can be found at around y/h = 0.6 and
extending from x/h = 0 to 0.6 in the snapshot shown in Fig. 8(b). The location of this low-viscosity
slug appears to coincide roughly with the interface between the low- and high-speed zones, shown
in Fig. 8(a). A second streamwise-elongated zone of low viscosity is observed extending from the
wall at a shallow angle. Similarly, this low-viscosity zone overlaps with the shear layer between
low- and high-speed zones.

Probability density functions (PDFs) of μ′+ are shown in Fig. 9 for the XG flows at different
Reτ within the inner and outer layers of the flow. Figure 9(a) shows the PDFs of μ′ at y/h of 0.07,
while Fig. 9(b) shows the PDFs at y/h of 0.42. Within both the inner and outer layers of the flow,
PDFs of μ′+ are positively skewed. Within the inner layer, flows with smaller Reτ (e.g., Reτ = 170)
tend to have a more narrow PDF than flows of larger Reτ and demonstrate a smaller PDF peak.
In contrast, Fig. 9(b) demonstrates that at y/h = 0.42, the peak PDF in μ′+ is larger for flows of
high Reτ . This implies that viscosity fluctuations are likely larger for low-Reτ flows within the outer
layer. Wall-normal profiles of 〈μ〉+ and R(μ′)+ better demonstrate these differences.

Figure 10 provides inner-normalized profiles of the mean viscosity 〈μ〉+ and the rms of μ′ for
the non-Newtonian flows of different Reτ . Figure 10(a) shows that distributions of 〈μ〉+ appear to
be logarithmic, consistent with DNS using GN constitutive models [33–36]. The profiles of 〈μ〉+
for different Reτ do not overlap; flows with lower Reτ have larger 〈μ〉+ in the outer layer of the
flow. Figure 10(b) shows the inner-normalized rms profiles of μ′, which also reflect a dependence
similar to that of 〈μ〉+ with respect to Reτ . Unlike the present findings of Fig. 10, Singh et al. [34]
observed that 〈μ〉+ and the R(μ′)+ overlapped for pipe flow DNS with a power-law GN model.
We suspect the overlap is contingent on the choice of the rheological model, i.e., the power-law
model. The nominal wall viscosities listed in Table II encroach on the second Newtonian regime
of the CY model and are likely not well described by a power-law equation. Therefore, it appears
that μw is an insufficient scaling parameter. Nonetheless, distributions of 〈μ〉+ demonstrate a lower
average viscosity near the surface and a substantially higher viscosity closer to the core, much like
the implication of the μ̃+ profiles shown in Fig. 7.
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FIG. 10. Wall-normal profiles of (a) mean viscosity and (b) the root mean square of the fluctuating
viscosity. Error bars are shown at y/h of 0.07 and 0.42.

To characterize the length scale of the viscous fluctuations, a two-point correlation of μ′ using
Eq. (3) was performed for each of the XG channel flows with different Reτ . As mentioned in
Sec. II F, two reference points were considered, the first being (x0, y0) = (0.1h, 0.07h) and the
second being (x0, y0) = (0.1h, 0.42h). Therefore, the first point falls within the inner layer of the
channel flow, while the second point is well into the outer layer of each flow (y/h > 0.1).

Figure 11(a) demonstrates distributions of the correlation coefficient ρμ′μ′ along the streamwise
direction δx and at y/h of 0.07. Although Fig. 11 does not show the value of δx at which ρμ′μ′

becomes zero, it can be reasonably inferred that the size of the viscosity fluctuations along the x
direction decrease in magnitude with increasing Reτ . The same observation can be made in the
outer layer based on plots of ρμ′μ′ as a function of δx and at a constant y/h of 0.42, shown in
Fig. 11(b). Figure 12 presents profiles of ρμ′μ′ at x/h of 0.1 and along the wall-normal direction
δy. For all Reτ , ρμ′μ′ decays to zero within 0.06h when y0 is 0.07h, as shown in Fig. 12(a). For

FIG. 11. Two-point correlation of viscosity fluctuations along the streamwise direction at wall-normal
locations of (a) y/h = 0.07 and (b) y/h = 0.42.
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FIG. 12. Two-point correlation of viscosity fluctuations along the wall-normal direction with a reference
wall-normal location of (a) y0 = 0.07h and (b) y0 = 0.42.

lower Reτ cases (e.g., 170 and 260), there is a significant anticorrelation between δy/h of 0.06 and
0.2. The anticorrelation indicates a streaky pattern in the viscosity field, potentially generated by
the shear layer structures between the streamwise-elongated low- and high-speed zones. We suspect
this prevalent anticorrelation cannot be observed for large Reτ due to the choice of y0. For the case
with the lowest Reτ of 170, y0 = 0.07h is equivalent to a y+ of 12, which lies near the center of
the buffer layer or the peak in ζ . For Reτ = 700, a y0 of 0.07h corresponds to a y+ of 49, which is
close to the upper y+ limit of the buffer layer. Therefore, μ′ within the viscous sublayer appears to
be opposite in sign convention to μ′ within the logarithmic and outer regions of the flow. When y0

is set to 0.42h, profiles of ρμ′μ′ are generally the same for all Reτ cases, shown in Fig. 12(b). The
correlation coefficient attains a value of zero, or very close to zero (less than 0.01), within δy of
0.3h. Based on Fig. 8(d), viscosity fluctuations are marginally more elongated along the x direction
relative to y. The size of the structures become more isotropic with growing distance from the wall.

3. Reynolds stresses and mean shear stress budget

Figure 13(a) presents plots of 〈u2〉+ for the XG flows alongside experimental data of water with
Reτ = 510 and Newtonian channel flow DNS from Lee and Moser [53] with Reτ = 550. Unlike the
experimental results for water shown in Fig. 5(a), the peak in 〈u2〉+ could be resolved for at least
the two lowest Reτ scenarios, i.e., Reτ = 170 and 260. The use of XG makes resolving the peak in
〈u2〉+ easier, since drag-reducing additives have been shown to shift the peak in 〈u2〉+ farther from
the wall relative to Newtonian fluids [22,51]. In general, the magnitude in 〈u2〉+ for all Reτ scenarios
is increased relative to the experimental profile for water shown in Fig. 13(a). The amount by which
the XG profile of 〈u2〉+ increases depends on the Reτ being considered. For example, comparing
XG and water at similar Reτ of 510, the XG profile of 〈u2〉+ is larger for nearly all y+.

Profiles of 〈v2〉+ are the positive distributions shown in Fig. 13(b). Relative to Newtonian profiles
of similar Reτ , distributions of 〈v2〉+ for the XG solutions demonstrate significant attenuation along
all values of y+. This can easily be seen by comparing the plots of 〈v2〉+ for XG at Reτ = 530 with
the experimental profile of water at Reτ = 510. Distributions of 〈uv〉+ correspond to the negative
profiles shown in Fig. 13(b). Unlike 〈v2〉+, profiles of 〈uv〉+ are only strongly attenuated near the
wall, relative to Newtonian distributions of comparable Reτ . The values of 〈uv〉+ are similar for
y+ > 150 when comparing XG and water at a Reτ of 510, while for y+ < 150, the XG solution
shows a large reduction in the magnitude of 〈uv〉+ when contrasted with the profile of water with a
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FIG. 13. Inner-normalized profiles of (a) streamwise Reynolds stress and (b) wall-normal and Reynolds
shear stresses, for flows with 170 ppm XG solution.

similar Reτ of 510. Therefore, relative to Newtonian profiles of similar Reτ , solutions of XG at LDR
exhibit strong attenuation in 〈v2〉+ throughout the complete half channel; however, attenuation in
〈uv〉+ is confined to a portion of the channel near the wall. Comparing the Reynolds stress profiles of
XG with one another, all distributions for XG shown in Fig. 13 increase in magnitude monotonically
with increasing Reτ at a given y+, similar to the trend in the Reynolds stresses for Newtonian fluids
of increasing Reτ .

Different components of the mean stress balance are presented in Fig. 14. For brevity and to
avoid clutter, the mean stress balance is shown for only three of the seven Reτ cases (170, 440, and
700) of XG. The XG flows exhibit a trade-off in the budget or contribution of τ+

v and −〈uv〉+ to
the total mean stress τ+ depending on the y+ location. Specifically, near the wall τ+

v contributes
more to τ+ than −〈uv〉+, while closer to the core of the channel, the opposite can be observed, i.e.,

FIG. 14. Inner-normalized mean stress balance of XG at three of the seven Reτ conditions. The lines
correspond to · · · , 1 − y+/Reτ ;——, τ+; • • •, 〈uv〉+;– –, τ+

v ; and – ·, τ ′+
v . Error bars are shown at y/h

of 0.07 and 0.42.
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−〈uv〉+ is larger than τ+
v . For all XG flows, the turbulent viscous stress τ ′+

v contributes little to τ+,
regardless of the y+ location being considered. Distributions of τ+, represented by the solid lines
in Fig. 14 and determined from the summation of τ+

v , τ ′+
v , and −〈uv〉+ [i.e., Eq. (4)], agree well

with 1 − y+/Reτ within the margin of experimental uncertainty, represented by the downsampled
error bars. Therefore, we can assume measurements of τ+

v , 〈uv〉+, and τ ′+
v are approximately valid.

Arosemena et al. [35,36] demonstrated that τ ′+
v accounted for less than 5% of τ+ within the inner

layer, based on DNS using a channel flow with a shear-thinning GN constitutive model that had
D ≈ 10%. Although the present non-Newtonian flows have almost three times the D as Arosemena
et al. [35,36], τ ′+

v also appears to be less than 5% for XG. Therefore, a drag-reduced turbulent flow
of XG can largely be explained by Reynolds and viscous stresses, with very little influence from
stresses imposed by the fluctuating non-Newtonian viscosity.

In summary, the rigid polymer solution demonstrated larger profiles in 〈U 〉+ within the loga-
rithmic layer relative to water, conducive of a Newtonian plug. Non-Newtonian flows of different
Reτ and similar D had overlapping profiles in 〈U 〉+, within the margin of measurement uncertainty.
When compared to experiments of Newtonian turbulence at a similar Reτ , XG exhibited larger
profiles in 〈u2〉+ and smaller profiles in 〈v2〉+ for all y+. Attenuation in 〈uv〉+ was observable, but
only near the wall. These findings are similar to those of numerical investigations using inelastic
models, such as the GN power-law or Carreau constitutive equations. Singh et al. [34] used a
power-law model to simulate an inelastic non-Newtonian turbulent pipe flow of Reτ between 323
and 750. Constant material properties were maintained across their different cases of Reτ to evaluate
the effect of Re on the flow statistics, much like what is demonstrated in the present experimental
investigation. Singh et al. [34] observed a Newtonian plug for all flow conditions, profiles of
〈U 〉+ that overlapped across different Reτ , an enhancement in 〈u2〉+, attenuation in the radial and
azimuthal Reynolds stresses, and a confined near-wall attenuation in 〈uv〉+, relative to a Newtonian
flow of similar Reτ . Contrasting this with experiments using flexible polymers or DNS using elastic
models, such as FENE-P, the same observations can be made for mean velocity statistics of generally
any LDR flow, including the current findings. Consistency in the mean velocity statistics of elastic
and inelastic DR suggests that the net effect of DR using elastic or inelastic additives is the same, at
least for flows at LDR. This is despite their dramatically different rheology and potentially unique
mechanisms for mitigating drag.

IV. DISCUSSION OF THE LUBRICATING LAYER

The classical theories of polymer DR have insinuated that polymers interact with turbulence
in a manner that quells regions of high strain and vorticity through either an enhanced extensional
viscosity or elasticity [14,15]. Indeed, experiments with flexible polymers in isotropic homogeneous
grid turbulence demonstrate suppression of the small-scale turbulent eddies that correspond to
regions of the flow with high extensional strain and thus high extensional viscosities [58]. However,
shear-thinning properties of rigid polymers work against these postulates, in that regions with high
shear rates have lower viscosities, not enhanced. A comparison of isotropic turbulence using FENE-
P versus inelastic shear-thinning constitutive models could directly contrast the local instantaneous
effect of flexible and rigid polymers on turbulence. Rather, we argue that the phenomenon of DR
for inelastic shear-thinning fluids is primarily attributed to a wall-normal gradient in shear viscosity
induced from the wall. Numerical investigations that employ inelastic shear-thinning constitutive
models seem to support this claim. Arosemena et al. [36] performed channel flow DNS using an
inelastic Carreau constitutive model and commented on the near-wall turbulent structures within
the flow. They demonstrated that forces arising from fluctuations in the viscosity do not necessarily
act in opposition of turbulent structures, such as quasistreamwise vortices and low- and high-speed
streaks. Instead, Arosemena et al. [36] surmised that the local enhancement in the viscosity with
increasing distance from the wall produces less energetic vortices and DR.

In the present experimental investigation, evidence of a striking demarcation in the viscosity,
as well as the viscosity fluctuations, with growing distance from the wall are observed. For

064605-20



NEAR-WALL LUBRICATING LAYER IN DRAG-REDUCED …

example, Figs. 7, 8(b), and 10(a) imply that the viscosity within the outer layer of the channel
can be 20%–300% higher than the nominal wall viscosity. Figures 11 and 12 demonstrate that the
size of correlated viscosity fluctuations are thin (δy/h ≈ 0.06) and long (δx/h > 0.4) within the
buffer layer, but become more isotropic with increasing y. Moreover, spatial two-point correlations
along the wall-normal direction show an anticorrelation between viscosity fluctuations within the
near-wall region and the outer layer of the flow. It is apparent that the characteristics of the viscosity
field are considerably different between the inner and outer layers of the flow. Furthermore, the mean
stress balance, shown in Fig. 14, demonstrates that DR can largely be accounted for by a balance
between viscous and Reynolds stresses alone, with little dependence on turbulent viscous stresses
that arise from viscosity fluctuations. What is common among the present experimental investigation
and DNS involving inelastic GN fluids [33–36] is a thin layer of nearly constant low-viscosity fluid
close to the wall followed by a sharp increase in the mean viscosity with increasing distance from
the wall.

This thin near-wall layer of low viscosity is perhaps analogous to the low-viscosity lubricating
layer in the DNS of Roccon et al. [59]. In this numerical investigation, a thin layer of immiscible
fluid with a different viscosity was introduced in the near-wall region. When the near-wall region
had a viscosity comparable to that of the bulk fluid, Roccon et al. [59] observed that the surface
tension between the two fluids produced DR. However, for the cases where the near-wall fluid
had a lower viscosity, they commented that the near-wall fluid acts as a lubricating layer that
results in a lower wall friction and consequently DR. In addition to this observation, there are
some notable similarities with respect to the present investigation. In their DNS, Roccon et al. [59]
demonstrated that the average thickness of the lubricating layer was similar to the thickness of the
expanded linear viscous sublayer, yv/h, in the present experimental findings for XG. The DNS by
Roccon et al. [59] attained D of 24% with a lubricating layer that was 0.038h in thickness, a value
comparable to those of yv/h for XG, which are between 0.017h and 0.051h, as listed in Table III.
However, we should note that the D measured by Roccon et al. [59] is based on a enhancement of
volumetric flow rate considering they maintain a constant pressure gradient in their DNS, similar
to most numerical investigations involving turbulent DR, including those of Arosomena et al.
[35,36] using GN constitutive models. In contrast, the present investigation considers a constant
Re and evaluates the change in pressure gradient (a saving of “money” according to Frohnapfel
et al. [60]).

Turbulent DR using shear-thinning liquids may also share commonalities with DR using superhy-
drophobic surfaces. Adding microscale roughness to a hydrophobic material produces a thin layer of
air between the liquid and the solid boundary [61]. The air layer causes the moving liquid to “slip,”
generally resulting in large quantities of DR [62,63]. This apparent slip of the liquid phase produces
a mean velocity profile where values of 〈U 〉+ are larger for all y+, but parallel to the Newtonian law
of the wall, seemingly reminiscent of the Newtonian plug in polymer DR. Indeed, Lumley [56] and
Virk [27] regarded the Newtonian plug for polymer DR as being an effective slip. The Newtonian
plug is realized in a polymer drag-reduced flow when the logarithmic layer is displaced upward to
larger 〈U 〉+ [27]. The Newtonian plug and the effective slip were alluded to in the results pertaining
to profiles of 〈U 〉+ and were realized by the large peak in ζ . For rigid polymer solutions, slippage
and the Newtonian plug are perhaps manifestations of the fluid’s shear-thinning rheology and the
near-wall lubricating layer.

V. CONCLUSION

Solutions of xanthan gum polymer have historically demonstrated little viscoelastic and exten-
sional properties, two rheological features often attributed to polymer drag reduction. Few existing
experimental investigations have demonstrated the turbulence statistics of rigid polymers in a
turbulent channel flow. The primary objective of our investigation was to scrutinize the effect of
varying Reynolds number Re on the mean velocity and Reynolds stress profiles, independent of
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change in DR. Our second objective was to evaluate the wall-normal gradient in the shear viscosity
for drag-reduced flows of rigid polymers.

Measurements of the mean velocity profile and Reynolds stresses for an aqueous XG solution at
friction Reynolds numbers Reτ between 170 and 700 were provided. Compared to flows of similar
Re, the XG solution exhibited drag-reduction percentages D, between 27% and 33% with varying
Reτ . The XG solution reflected D with little dependence on the Re and skin-friction coefficient
values, consistent with previous observations of DR using type B additives. A torsional rheometer
equipped with a double-gap concentric cylinder and a parallel plate was used to measure the shear
viscosity for shear rates between 1 and 2500 s−1. A Carreau-Yasuda fit was used to model the shear
viscosity curve.

Inner-normalized mean velocity profiles for the XG flows of different Reτ approximately
overlapped. This observation demonstrated that the inner-normalized mean velocity profiles are
independent of Reτ for a constant DR. Relative to the Newtonian law of the wall, the intercept
of the logarithmic layer was considerably larger and the slope demonstrated marginal growth
(i.e., a Newtonian plug flow). Compared to Newtonian Reynolds stress profiles of similar Reτ ,
distributions for XG exhibited enhancement in streamwise Reynolds stresses and attenuation in
wall-normal Reynolds stresses for all inner-normalized wall-normal coordinates. Attenuation in
the Reynolds shear stress was only observed near the wall. The effect of increasing Reτ in the
non-Newtonian flows was the same as that in Newtonian flows, i.e., the Reynolds stresses increased
in the logarithmic layer monotonically with increasing Reτ . The modification to the first- and
second-order velocity statistics reflected consistency with results obtained from DNS using elastic
and inelastic constitutive models and previous experiments with flexible polymers.

The CY model and the spatial gradient in the velocity were used to approximate the instantaneous
viscosity of each drag-reduced flow. All XG flows possessed a near-wall region that was thin and had
a low mean viscosity. Fluid at wall-normal locations immediately above this region demonstrated
dramatic growth in the mean viscosity. Viscosity fluctuations similarly reflected different size and
characteristics with increasing distance from the wall. However, these viscosity fluctuations were
shown to have a negligible contribution to the mean stress balance of the flow. Instead, DR was
primarily driven by a trade-off between viscous and turbulent Reynolds stresses in the budget of
mean stress. We referred to the thin low-viscosity layer as a lubricating layer, analogous to the
wall-normal viscosity stratification observed in lubricated wall-bounded flows of immiscible fluids.
This lubricating layer encapsulated the expanded linear viscous sublayer and portions of the buffer
layer for flows of the XG solution. Its extent corresponded roughly to the peak in the indicator
function ζ . Unlike the classical theories of polymer DR, we hypothesize that rigid polymer DR
is largely attributed to gradients in the mean velocity coupled with the solution’s shear-thinning
rheology. The lubricating layer is a by-product of this interaction and a mechanism for generating
an effective slip within the buffer layer.
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APPENDIX A: INFLUENCE OF GAP HEIGHT AND SURFACE TENSION
ON PARALLEL-PLATE SHEAR RHEOLOGY

Steady shear viscosity measurements using a parallel plate geometry can be subjected to sev-
eral sources of error, especially when dealing with small gap heights hPP [39,40]. Inertial flow
instabilities, viscous heating, gap offsets, and surface tension are some of the many factors that
can corrupt the viscosity measurements. Techniques have been introduced to correct or account for
these errors. For example, gap offset errors can be corrected by measuring μ for different hPP [40].
Measurements of μ at different hPP are shown for the 170 ppm XG solution in Fig. 15. In this figure,
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FIG. 15. Shear rheology of the 170 ppm XG solution measured for the PP geometry with different hPP.

the upper shear rate threshold depended on the gap height and measurements were often terminated
due to radial ejection of the fluid from the sides of the plates. Secondary flow instabilities are well
demonstrated by the steep increase in μ at high γ̇ . The RePP = 100 threshold [40], demonstrated
by the color-coordinated dashed lines in Fig. 15, conservatively estimated the critical γ̇ at which
the inertial instabilities corrupted the measurements of μ. At γ̇ between 10 and 2500 s−1 and
ignoring viscosity measurement with RePP > 100, the measurements of μ for different hPP are in
good agreement; therefore, gap offset errors were considered negligible when RePP < 100.

Surface tension can corrupt measurements of μ using the PP geometry when rotational symmetry
is not maintained. The most likely scenario where this may occur is when the fluid sample is im-
properly added between the plates (sample underfilling or overfilling) [41]. To identify if interfacial
tension influenced the measurements of μ, we performed additional viscosity measurements that
compared the 170 ppm XG solution with and without a small amount of Tween 20 (CAS 9005-64-5,

FIG. 16. Shear rheology of the 170 ppm XG solution measured for the PP geometry with and without
Tween 20 and an hPP of 0.2 mm.
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FIG. 17. Statistical convergence of (a) 〈U 〉, (b) 〈u2〉, (c) 〈v2〉, (d) 〈uv〉, (e) 〈γ̇ 〉, and (f) 〈μ〉, for the flow of
XG at its smallest and largest Reτ cases of 170 and 700 and at a y+ of 100.

Sigma Aldrich). Bąk and Podgórska [64] performed interfacial tension measurements of various
aqueous Tween 20 solutions. They observed that a Tween 20 concentration of 0.2 mM reduced
the interfacial tension of water by about 30% and a concentration of 0.6 mM reduced the surface
tension of water by 40%. The XG solution was given enough Tween 20 to achieve a concentration
of 0.5 mM. Based on the work of Bąk and Podgórska [64], a Tween 20 concentration of 0.5 mM
would have a significant influence on the surface tension of the solution. Figure 16 demonstrates
the measurements of the XG solution with and without Tween 20 at hPP of 0.2 mm. There is good
agreement among the measurements of μ using the DG geometry and the PP geometry with and
without Tween 20. Therefore, we can confidently assume that the solution was loaded properly into
the PP and surface tension has little influence on the shear viscosity measurements.

Although using the PP allowed us to obtain measurements of μ for much higher γ̇ than we would
have otherwise been able to achieve using just the DG geometry, there are more ideal measurement
techniques for obtaining high-shear-rate viscometry. For example, microfluidic channels or dedi-
cated high-shear-rate rheometers can obtain viscosity measurements for γ̇ on the order of 105 s−1

with high accuracy and a low probability for human error. Pipe et al. [65] were able to measure μ for
γ̇ up to 80 000 s−1 using a microfabricated channel. Similarly, Sepulveda et al. [66] measured the
viscosity of various XG solutions using a microfluidic rheometer for γ̇ up to 2×105 s−1. Utilizing
such measurement techniques could yield better quality of the CY fit and more certainty in the
near-wall scaling.
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TABLE IV. Random error estimated from the range in the convergence of n/N = 0.8 to 1, for the velocity
statistics of XG at its smallest and largest Reτ cases of 170 and 700 and for y+ of 50, 100, and 200.

Reτ y+ 〈U 〉 〈u2〉 〈v2〉 〈uv〉 〈γ̇〉 〈μ〉
170 50 0.13% 1.00% 0.69% 1.45% 0.37% 0.11%
170 100 0.05% 1.09% 1.24% 2.91% 0.49% 0.11%
170 200 0.03% 0.78% 0.65% 4.83% 0.21% 0.04%
700 50 0.07% 0.63% 1.47% 1.67% 0.25% 0.08%
700 100 0.08% 0.83% 0.55% 1.09% 0.22% 0.06%
700 200 0.03% 0.59% 0.62% 0.93% 0.37% 0.11%

APPENDIX B: STATISTICAL CONVERGENCE

Figure 17 demonstrates the convergence distributions of the first- and second-order statistics of
velocity, as well as γ̇ and μ, for XG with Reτ of 170 and 700 and at a y+ location of 100. The
variable n denotes an instantaneous data point, while N is the total number of data points. Variables
with a subscript of n, i.e., 〈· · · 〉n, represent the average from the first data point to the nth data point.
Each convergence plot is normalized with their respective average over the complete ensemble of
data points 〈· · · 〉N . All distributions converge to the ensemble average approximately within the
last 20% of the data (from n/N = 0.8 to 1). A random error is calculated by determining the range
(maximum subtracted from the minimum) in the convergence from n/N of 0.8 to 1, the results of
which are shown in Table IV. The random errors for y+ of 50 and 200 are also provided. Generally
all random errors listed in Table IV are less than 5%, implying good statistical convergence for all
variables.
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