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Multitime structure functions and the Lagrangian scaling of turbulence
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We define and characterize multitime Lagrangian structure functions using data stem-
ming from two swirling flows with mean flow and turbulent fluctuations: a Taylor-Green
numerical flow and a von Kármán laboratory experiment. Data is obtained from numerical
integration of tracers in the former case and from three-dimensional particle tracking
velocimetry measurements in the latter. Multitime statistics are shown to decrease the
contamination of large scales in the inertial range scaling. A timescale at which contami-
nation from the mean flow becomes dominant is identified, with this scale separating two
different Lagrangian scaling ranges. The results from the multitime structure functions
also indicate that Lagrangian intermittency is not a result of large-scale flow effects. The
multitime Lagrangian structure functions can be used without prior knowledge of the
forcing mechanisms or boundary conditions, allowing their application in different flow
geometries.
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I. INTRODUCTION

Structure functions, the statistical moments of velocity increments as a function of the spatial or
timescale, are a fundamental tool to study fully developed turbulent flows and to assess how strong
the intermittency is, i.e., how much the statistics deviate from the scaling predicted by Kolmogorov’s
1941 (K41) theory [1]. In the context of K41 theory, for very large Reynolds numbers and at
scales (both spatial and temporal) that are small compared to the typical energy injection scales,
the statistics of the flow should be self-similar and universal, and therefore independent of the
forcing mechanisms. However, deviations from this prediction in the form of intermittency have
been observed even at very high Reynolds numbers in homogeneous and isotropic turbulent flows,
indicating that its occurrence is not a finite Reynolds effect [2]. Such deviations were also found in
fractional, low-order exponents of structure functions, which are less affected by extreme events
and by departures from universality [3]. To quantify the deviations from self-similarity, proper
identification of the bounds of the inertial range in structure functions is key, and in the Eulerian
frame the third-order moment of the longitudinal velocity increments has been recognized as a less
ambiguous indicator of inertial-range scaling [4].

In the last decades, the Lagrangian approach to turbulence, being the most natural for problems
of mixing and transport, has received more attention as both numerical and experimental methods
became available to track individual particles at high rates and in large volumes [5,6]. In spite of
this, the Lagrangian characterization of turbulence and the understanding of intermittency in the
Lagrangian frame remain challenging. Tracers’ velocity structure functions are known to display
short ranges compatible with Kolmogorov scaling, with an amplitude and width that grows slowly
with the Reynolds number [7–10]. Furthermore, large-scale flows have been found to affect both
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small-scale Lagrangian and Eulerian turbulent statistics [11–15]. More recently, long Lagrangian
trajectories were shown to retain information of the large-scale flow topology [16]. Evaluating how
these effects impact the observed scaling is important for the development of accurate models
of Lagrangian turbulence [17,18]. As an example, statistical theories derived directly from the
Navier-Stokes equations without fitting parameters result in measurable relations for the exponents
of Lagrangian velocity structure functions, which are expected to hold even in the absence of scaling
[19]. It has been speculated that Lagrangian intermittency may result from the coupling of slow
and fast timescales, arising from correlations between acceleration and velocity increments [20]. It
was also reported that the squared acceleration of tracers, coarse-grained over viscous timescales,
recovers Gaussian statistics [21].

Many tools have been developed to improve the observed scaling and to reduce mean-flow and
anisotropy effects induced by forcing mechanisms. In the Eulerian frame, extended self-similarity
(ESS) [22] has been widely used to analyze scaling properties at finite Reynolds numbers. Angle
averaging of structure functions has also been proposed as a way to recover isotropy in Eulerian
statistics of arbitrarily forced flows [23,24]. Indeed, performing an SO(3) decomposition to velocity
correlation or structure functions has been used to disentangle anisotropic from isotropic contribu-
tions to the scaling in numerical simulations [24–27]. In the Lagrangian frame, considering data
conditioned to small spatial regions is also a usual practice to recover more homogeneous and
isotropic statistics [13,28] and also to reduce sweeping effects from the large-scale flow on the
particles’ velocity statistics [15]. The Lagrangian acceleration spectrum has been used as a better
proxy for inertial-range scaling, as it is less affected by the mean flow and finite Reynolds number
effects [9]. Complementarily, the Hilbert-Huang transform methodology has been generalized and
applied to single-particle velocity data to extract the hierarchy of the Lagrangian scaling exponents
without resorting to structure functions or the ESS procedure [29].

Higher-degree velocity differences, for instance, using wavelet analysis [30] and coarse-graining
[31], have been proposed as unbiased quantities to study Eulerian and Lagrangian statistics and as
a way to detect high-order singularities in the velocity field. In the Eulerian frame, they provide a
robust and straightforward technique to quantify intermittency in a signal with a steep power spec-
trum, such as those observed in surface wave turbulence [32]. A related tool, the so-called multipoint
Eulerian structure functions, become useful as well to filter out the contribution of smooth and
large-scale fields as in the case of studies of sub-ion-scale fluctuations in plasma turbulence, where
the turbulent scaling is subleading and the power spectra are also steep [33,34]. The importance
of multipoint measurements has also been pointed out as a general way to distinguish between
turbulent fluctuations and waves in space plasmas [35].

In this paper, we construct and characterize multitime differences (or high-degree differences)
of the Lagrangian velocity and study their moments, employing particle data from two turbulent
swirling flows: Taylor-Green (TG) direct numerical simulations (DNSs) and a von Kármán (VK)
laboratory experiment. In both systems, sweeping is observed to affect the particles’ statistics, as the
tracers are affected by the large-scale counter-rotating eddies that make up the mean, macroscopic
flow. At this point, it is worth noting that these flows display a mean flow (or circulation) with
a complex geometry, together with large- and small-scale fluctuations. This contrasts with the
paradigmatic case of homogeneous and isotropic turbulence (HIT). Distinguishing between mean
circulation and large-scale fluctuations is not trivial, especially in the Lagrangian framework and
for flows in which the mean flows are not stationary and average to zero in volume [36,37]. How
to disentangle these contributions in realistic flows is a long-standing problem in turbulence (see,
e.g., a method proposed by Batchelor [38] and a recent application [39]). Our main motivation
is then to reduce the contribution resulting from large-scale flow components, which in our flows
entangle mean circulation and random sweeping (the case of HIT without a mean flow will be also
considered), and to evaluate Lagrangian intermittency once this effect has been alleviated. When
compared to their two-times counterparts, we observe that multitime Lagrangian structure functions
display a significant reduction of the large-scale flow contribution on the tracers’ statistics. This
allows us to identify a timescale at which contamination from the mean flow becomes dominant, and
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which separates two different Lagrangian scaling ranges. The results from the multitime analysis
also suggest that Lagrangian intermittency is not a result of large-scale flow effects. The method
presented here is suitable for other types of flow geometries, as a priori knowledge of forcing
mechanisms or boundary conditions is not required for its application.

II. MULTITIME LAGRANGIAN STRUCTURE FUNCTIONS

In this section, we introduce the multitime technique, following the presentation for the multi-
point Eulerian structure functions given in Cho [40]. The goal is to remove slow (or large-scale)
variations in a signal to isolate the turbulent-like fluctuations.

For the sake of consistency with our Lagrangian case (and without loss of generality), we take that
signal to be a time series of the particle velocity, denoted herein by v(t ). This signal is considered
to be composed of short-scale (i.e., fast) fluctuations vS (t ) with correlation time τS , and large scale
(i.e., slow) fluctuations vL(t ), so v(t ) = vL(t ) + vS (t ). First, the fast fluctuations are assumed to
have turbulentlike statistics in the sense that its power spectral density follows some power law
scaling, with the largest power present at timescale τS , and with less power present as the timescale
decreases. Second, the mean of vS (t ) is taken to be equal to 0 when averaging over time intervals
larger that τS , i.e., 〈vS (t )〉�t>τS = 0. Central differences using multiple times (or points in the time
series) are then defined as

�v(2pt)
τ (t ) = v(t + τ ) − v(t ), (1)

�v(3pt)
τ (t ) = v(t + τ ) − 2v(t ) + v(t − τ ), (2)

�v(4pt)
τ (t ) = v(t − τ ) − 3v(t ) + 3v(t + τ ) − v(t + 2τ ), (3)

and so on. Given a number of times n, the corresponding structure function of order p is then

Snpt
p (τ ) = �(npt)〈∣∣�v(npt)

τ

∣∣p〉
, (4)

where 〈·〉 indicates an average over the time t , and �(2pt) = 1, �(3pt) = 1/3, and �(4pt) = 1/10 (see
Appendix A of Ref. [40] for a general expression of �v

(npt)
τ and Snpt

p ). Strictly speaking, the velocity
differences defined above are high-degree differences, which are always centered around the same
time instant t . Since we are interested in studying high-order moments of said differences, and for
consistency with the name used in plasma physics in the Eulerian frame of multipoint structure
functions, we refer to the structure functions defined in Eq. (4) as multitime structure functions.

Let’s now consider a random signal with a given and fixed variance and with a slow trend. If
for τ � τS the difference associated to the slow (large-scale) variations is smaller than the one
associated to the fast (small-scale) variations, i.e., |�v

(npt)
τ,L | < |�v

(npt)
τ,S |, then the structure function

using n times is able to substantially remove the contributions corresponding to the slow modulation.
In particular, it can be shown that a structure function using n times (or points) can completely
remove slow polynomial contributions of order n − 2 [40]. Focusing on the case p = 2, this implies
that while structure functions using a small number of times will still show contamination from the
slow variation, for sufficiently large n and for τ � τS a plateau with amplitude proportional to the
squared standard deviation of the small scale fluctuations σ 2

S should become visible for our random
signal. To illustrate this behavior, we consider a synthetically generated random signal superimposed
on a slow variation (in this example, a first-degree polynomial), as shown in Fig. 1(a). The inset
shows the power spectral density of the fast fluctuations vS (t ) in log-log scale, which displays a
power-law decay for f τS � 1. In Fig. 1(b), the second-order structure function calculated using
2 and 3 times are shown, compensated by 2σ 2

S . Note that the two-times second-order structure
function, S2pt

2 , presents a plateau only at a very reduced range of time lags. In contrast, the
three-times counterpart, S3pt

2 , successfully removes the effect of the slow variations, displaying a
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FIG. 1. Illustration of the multitime method: (a) A synthetically generated signal v, composed of fast
(small-scale) fluctuations vS superimposed on a slow (large-scale) trend vL (chosen in the example as a first
degree polynomial), and normalized by the standard deviation of vS , denoted by σS . The inset shows the power
spectral density of vS . (b) Normalized second-order structure function using 2 and 3 times.

significantly broader plateau which extends beyond a decade and whose amplitude is proportional
to σ 2

S .

III. DESCRIPTION OF THE DATA SETS

While multipoint structure functions (or related techniques using, e.g., wavelets) were used with
Eulerian data in plasma physics and wave turbulence [32,40], with a few exceptions they have
not been used to analyze Lagrangian statistics [30], and higher-order moments of the statistics
were not considered. We thus consider two different data sets (albeit with similar large-scale flows
in spite of differences in the boundary conditions and the forcing mechanism [15,37]) to study
whether multitime methods can reduce the effect of the large-scale flow in Lagrangian statistics,
and recover previously observed scaling laws. The two data sets stem from two sources: a VK
laboratory experiment and TG DNSs.

The VK experiment consists of two facing disks of diameter D = 19 cm, each fitted with eight
straight blades, separated by a distance of 20 cm and contained in a square cross-section cell
with side of 20 cm. As the propellers counter rotate, they agitate the fluid, which in this case
is water. This generates two large counter-rotating circulation cells, which produce (on average)
a strong shear layer in the midplane of the propellers, as well as a secondary circulation in the
axial direction. In this way, we obtain a three-dimensional (3D) fully developed turbulent flow in
a confined region of space of dimensions (20 × 20 × 20) cm3. The flow has a mean, macroscopic
structure which is anisotropic: the large-scale structures in the horizontal direction (i.e., parallel to
disks’ plane) are larger that the structures in the axial direction. For this paper, we consider two
values for the rotation frequency of the disks f VK

0 , namely, 0.83 Hz and 1.25 Hz (or, equivalently,
50 rpm and 75 rpm, respectively). These choices were made to have Reynolds numbers in the
experiment of the same order as those obtained in the DNSs described below. The flow is seeded
with tracer particles, which are neutrally buoyant (density 1 g cm−3) polyethylene microspheres of
diameter d = 250−300 μm (Cospheric). The measurement of their dynamics is done using particle
tracking velocimetry, employing two high-speed cameras at sampling frequency f VK

S ≈ 2/τη, with
τη = (ν/ε)1/2 being the Kolmogorov timescale. The 3D individual evolution of each particle is
tracked in a region of size (16 × 16 × 16) cm3 around the geometrical center of the cell, whose size
is comparable to the entire experimental volume. It comprises both the shear-dominated region of
the flow and the areas closer to the propellers, where energy is injected. After several realizations of
the experiment there are O(104) trajectories with a mean duration of 0.34/ f VK

0 . From the individual
trajectories, the instantaneous velocity is then computed after applying a Gaussian filter. For further
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details on the experimental setup and the measurement technique, see Ref. [15] (see also [12,28,41]
for studies on other VK experiments).

For the TG simulations, we performed DNSs of the incompressible Navier-Stokes equations,
where the turbulence is sustained by an external volumetric forcing F. The equations are solved
in a 3D cubic, 2π -periodic domain using a parallel pseudospectral method with the GHOST code
[42,43], with spatial resolutions of 5123, 7683, and 10243 grid points. The mechanical forcing F is
based on the TG flow [44], with Cartesian components

Fx = F0 sin(kF x) cos(kF y) cos(kF z), Fy = −F0 cos(kF x) sin(kF y) cos(kF z), Fz = 0, (5)

and with forcing wave number kF = 1. This forcing consists of a periodic array of counter-rotating
large-scale vortices. Note that it is anisotropic: it is similar in the horizontal (x, y) direction but
it injects no energy into the z component of the velocity. As a result of the symmetries that the
flow presents in a statistical sense, while still being anisotropic, the full domain can be split into
eight cells of size π3. In each of these cells, the resulting flow strongly resembles the large-scale
geometry of the VK flow: two counter-rotating large-scale vortices separated by a shear layer in
the midplane; these similarities with the experiment hold for both the Eulerian and Lagrangian
descriptions and have been exploited in several studies (see Refs. [15,37] and references therein).
In the turbulent steady state of this flow, 106 Lagrangian particles are evolved in time along with
the flow according to

dxP

dt
= u(xP, t ), (6)

where xP is the position of the Lagrangian tracer at time t and u(xP, t ) is the velocity of the fluid
element at position xP(t ). The instantaneous position, velocity, and acceleration of each particle are
computed as it evolves. Note these particles are ideal tracers, as they do not interact with each other
nor do they affect the flow’s dynamics.

To characterize both flows, and considering their anisotropy, we use the one-component root
mean square (rms) value of the tracers’ velocity U , associated to motions in the horizontal plane.
That is, we define U as

U =
√〈

v2
x + v2

y

〉
/2, (7)

where vi is the tracers’ velocity component along the i direction and the brackets 〈·〉 denote
averages over time and trajectories (in previous studies, we observed that this way of estimating
the rms velocity in the TG and VK flow results in better comparisons between nondimensional
parameters in DNSs and experiments [15]; taking into account the three components of the velocity
does not change significantly the estimation of U , resulting in values 4 to 8% smaller). We also
define the integral length scale L0 based on the scale where energy is injected into the systems.
In the experiments, LVK

0 = D = 0.19 m, the diameter of the disks. In the TG DNSs, the squared
norm of the perpendicular components of the forcing wave vector (with respect to ẑ) satisfy
kF⊥ · kF⊥ = 2, so LTG

0 = 2π/|kF⊥| = 2π/
√

2 (we use kF⊥ for consistency with the experiment,
where we only consider the diameter of the disks as the energy injection scale, ignoring the vertical
flow dependence). In this way, an integral time can then be defined as

T0 = L0

U
. (8)

The energy injection rate ε is directly available in the DNSs. In the VK flow, we estimate it as

ε = α
U 3

L0
, (9)

where α is a nondimensional proportionality constant. We use the TG DNSs to estimate α by
computing ε/(U 3/L0), and observe that it varies by less than 5% in the range of Reynolds numbers
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explored. Thus, we use α = 1.69, which corresponds to the TG DNS value using 10243 grid points,
i.e., for the simulation with the largest Reynolds number available.

We can then estimate two Reynolds numbers based on Lagrangian quantities to compare exper-
iments and DNSs on an equal footing. An integral Reynolds number based on the tracers’ velocity
U is defined as

Re = UL0

ν
, (10)

where ν is the kinematic viscosity. This number should not be confused with a Reynolds number of
the flow at the particle size, as we only consider tracers in this paper. Also, using the definition of ε

in Eq. (9), the Taylor-based Reynolds number can be estimated as

Reλ =
√

15 U 4

ν ε
. (11)

Finally, besides the integral time T0 we can also estimate a Lagrangian correlation time directly
from the tracers’ dynamics. The particles’ velocity correlation function R(i)

L (τ ) = Cv (τ )/Cv (0) =
〈vi(t ) vi(t + τ )〉/〈v2

i (t )〉 is computed for each of the Cartesian components of the tracers’ velocities.
The one-dimensional Lagrangian correlation time τ

(i)
L is then estimated from its corresponding

correlation function as the time of the first zero crossing. Then, for each data set, the correlation
time is defined as τL = (τ (x)

L + τ
(y)
L )/2. Note that we base this estimation on the correlation function

of the horizontal components of the velocity, as the largest structures in the flow lie in the x−y
plane, and as a result the correlation time of the tracers is dominated by these large-scale eddies. In
the experiments, the correlation function is also affected by the different lengths of the trajectories:
the shorter the curves, the faster the decay observed in RL(τ ). In particular, in the experiments
where particles can get in or out of the measurement volume, the trajectories do not have the same
extension in time, and the distribution of lengths of trajectories has an exponential decay with the
trajectory length. To take into account the effect of this on the estimation of the correlation time,
we subsampled the numerical data to obtain a similar distribution of trajectories lengths. To this
end, we randomly picked a subset of trajectories from the 106 trajectories available in each run,
and each one was cropped from an initial time chosen randomly, up to a final time, so the lengths
of all cropped trajectories followed the same distribution of lengths observed in the experiments.
From this synthetically subsampled data, we computed the velocity correlation function and the
time lag of the first zero crossing and compared its value with τL, the zero crossing of RL(τ ) using
the complete data set with the long trajectories. This allowed us to estimate the finite-time (or finite
sampling) correction to the time τL measured in the experiments.

All the resulting parameters for the two experimental and the three numerical data sets are listed
in Table I. Unless stated otherwise, the results presented in the following sections correspond to the
largest Reynolds numbers available in each setup: the VK experiment at 75 rpm and the TG DNS
with 10243 grid points.

IV. RESULTS

A. Multitime Lagrangian second-order velocity structure functions

We begin by computing the multitime second-order velocity structure functions S2(τ ), using
2, 3, and 4 times. Figure 2 shows these curves, compensated by the inertial range prediction
S2(τ ) ∼ ετ , for each of the Cartesian components of the velocity, x, y, and z [panels (a), (b), and (c),
respectively) in the VK experiment and the TG simulations. As the number of times employed in
the calculation of the structure function increases from 2 to 3, a scaling compatible with τ appears
more clearly. Not only is the plateau broader but its limits are also steeper, allowing for a better and
less ambiguous identification of the range of timescales consistent with inertial-range behavior. By
further increasing the number of times used from 3 to 4, one can identify more clearly the limits
of the region for which the scaling S2 (τ ) ∝ τ is approximately satisfied. Also, and as observed in
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TABLE I. Values of the parameters for both laboratory experiments and numerical simulations. DNS values
are dimensionless. The label corresponds to the frequency of the propellers in the experiments (in rpm), and to
the spatial resolution in the DNSs. U denotes the root-mean-square value of the particles’ horizontal velocity.
T0 stands for the integral time, and τL represents the particle correlation times (in units of T0). The kinematic
viscosity is symbolized by ν, and ε is the energy injection rate. Re is an integral-scale Reynolds number based
on the particles’ velocity U and Reλ = √

15U 4/(νε) is the Taylor microscale Reynolds number.

U T0 ν ε

Flow Label [m/s] [s] τL/T0 ×10−6 [m2/s] ×10−2 [m2/s3] Re Reλ

VK 50 rpm 0.11 1.8 0.38 1 1.2 2.1 × 104 430
VK 75 rpm 0.17 1.1 0.38 1 4.3 3.2 × 104 530

TG 5123 0.84 5.3 0.40 675 24 5.5 × 103 215
TG 7683 0.85 5.2 0.42 450 24 8.4 × 103 270
TG 10243 0.85 5.2 0.44 300 23 1.3 × 104 335

Ref. [15] for 2-times Lagrangian structure functions, and as will be shown below for higher-order
structure functions, the Lagrangian statistical properties of the VK experiment and the TG flow are
similar.

In a previous study, we showed that the effect of sweeping by the large-scale flow (present both in
the VK experiment and the TG flow) is partially the reason for the poor scaling of S2pt

2 with the time
lag [15]. Indeed, we have observed that in these flows S2pt

2 (τ ) presents a scaling proportional to τ 2/3

for time lags of the order of τL, which is consistent with sweeping by large-scale eddies. A power
law with this exponent (which results in −1/3 when compensated by τ ) is shown as a reference in
Fig. 2. In Ref. [15], this was also verified by conditioning the statistics to different spatial regions
where the large-scale flow has larger or smaller intensity (with the associated improvement in the
inertial-range scaling in the latter case). Note that random sweeping cannot be neglected even for
the idealized case of HIT [45] and its effect cannot be removed simply by moving to a Lagrangian
frame [46]. The contamination of the Lagrangian scaling by sweeping caused by the mean flow is
further supported here by the fact that when we consider multitime structure functions, such as S3pt

2

or S4pt
2 , which are expected to remove slow modulations, they display a scaling proportional to τ at

time lags τ � τL, while S2pt
2 does not.
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FIG. 2. Second-order tracers’ velocity structure functions for the VK experiment (dots) and for the TG
DNSs (solid curves) using 2, 3, and 4 times; for each of the Cartesian components x, y, and z in panels (a), (b),
and (c) respectively. A power law with exponent −1/3 m which corresponds to sweeping by the mean flow
given by S2 ∝ τ 2/3, is indicated by the dashed line. The timescale τ ∗ where this contribution is comparable to
inertial range scaling is indicated by arrows (normalized by τL) for both data sets. The insets show S2pt

2 /S3pt
2

and S2pt
2 /S4pt

2 for each Cartesian component. Labels are the same as in the main panels.
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In the Eulerian description of turbulence, it is usual to relate the second-order structure function
at a scale � with the energy contained in eddies with characteristic size r < �. However, eddies larger
than � make a non-negligible contribution to S2 of order �2(∂ru|r=�)2 (see, e.g., Ref. [47]). In the
Lagrangian framework, this argument can be recast as follows: For a sufficiently smooth velocity
field, S2(τ ) = S2pt

2 (τ ) = 〈(�vτ )2〉 = 〈[v(t + τ ) − v(t )]2〉 can be approximated as

S2(τ ) ∼ τ 2

〈(
∂v

∂t

)2〉
T >τ

, (12)

where the subindex indicates the average must be computed over times T longer than τ . In the case
of a rough field with Kolmogorov scaling, in contrast, the eddies with a turnover time T � τ make
a contribution to S2(τ ) which is proportional to τ , and then

S2(τ ) ∼ τ + τ 2

〈(
∂v

∂t

)2〉
T >τ

. (13)

As a result, in this expression the term proportional to τ is associated to the contribution from
fluctuations with timescale τ or faster, while the term proportional to τ 2 comes from the eddies with
turnover time slower than τ (i.e., from the smooth part of the field). The latter term can be readily
estimated as

τ 2

〈(
∂v

∂τ

)2〉
T >τ

∼ τ 2 δU 2
τ

τ 2
, (14)

where δUτ is the typical variation of the slowly evolving component of the flow over times τ . As a
Lagrangian particle moves through the fluid over a time τ in the inertial range, the smooth, slow (and
large-scale) flow should not change significantly as its turnover time is larger than τ . Consequently,
the variation δUτ seen by the fluid element must result from the displacement � of the particle across
the large-scale flow structure, with � ∼ Uτ . It follows that δUτ ∼ δU�|�=Uτ ∼ �1/3|Uτ ∼ (Uτ )1/3,
assuming Kolmogorov scaling. Finally, including quantities missing using dimensional analysis, as
well as the missing prefactors, we expect that

S2(τ ) ≈ C0ετ + βε2/3U 2/3τ 2/3, (15)

where C0 is the Lagrangian constant and β ≈ 2 is the Kolmogorov’s constant [48]. Note that
sweeping of the particles by a large-scale flow results in a ∝ τ 2/3 scaling of the 2-times Lagrangian
second-order structure function. This expression is compatible with the behavior of S2pt

2 (τ ) in Fig. 2:
for long time increments S2pt

2 (τ ) ∝ τ 2/3, and only in a very short interval S2pt
2 (τ ) ∝ τ . The effect of

sweeping by the smooth, large-scale flow becomes of the same order as that of the rough scales
for a time lag τ ∗ ∼ (β/C0)3U 2/ε. It is worth noting that, for a given flow, the range of timescales
dominated by sweeping is approximately independent of the Reynolds number.

Using β = 2 and estimating C0 as the maximum value of S2pt
2 /(ετ ), the estimated values of τ ∗/τL

for the VK and the TG data are τ ∗/τL ≈ 7 × 10−2 and ≈1.1 × 10−1, respectively. These estimations
are compatible with the time lags for which S3pt

2 and S4pt
2 present the most significant differences with

S2pt
2 (i.e., while the plateau in S2pt

2 compensated by ετ is only visible around that time lag, the same
plateau is visible for a much wider range of time lags in the compensated versions of both S3pt

2 and
S4pt

2 ). In other words, for τ � τ ∗ the range of time lags for which large-scale sweeping becomes
O(1) is clearly visible in the 2-times second-order structure function and is not present in the 3- and
4-times structure functions. This indicates that indeed the multitimes structure functions are able to
reduce the contamination in the inertial range scaling by the large-scale flow.

The insets in each panel of Fig. 2 show S2pt
2 /S3pt

2 and S2pt
2 /S4pt

2 . Notably, the relative change in the
amplitude of the structure functions as the number of times used is increased is similar in the VK
experiment and in the TG DNS. In all cases, there is a considerable amplitude decrease with n in the
dissipative range as well as near the integral timescale. In particular, for time lags comparable with
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τL, while the numerical curves collapse for 3 and 4 times, the experimental curves display a sharp
decrease in amplitude. This difference may be related to how localized the forcing is in Fourier space
in each of the two setups considered, which also affects the degree of contamination by the mean
flow at intermediate scales. Furthermore, in the experiment the sharp decrease in amplitude near τL

is also related to finite-volume effects, as the computation of structure functions for large τ requires
long trajectories. These correspond to particles that are slow enough to remain in the field of view for
a sufficiently long period of time, which introduces a bias toward smaller velocity variances. The
increase in the number of times used to compute the multitime structure functions requires even
longer curves, which further increases the drop in the amplitude. Note also the difference between
VK and TG near τL in this respect: in the simulation, where the total number of trajectories is the
same for all time lags and where the sampling is uniform, no finite sampling effects are present and
the use of 3 or 4 times only shortens the total range of time lags available.

Finally, it is worth pointing out that even in HIT, which does not present a mean circulation,
inertial range scaling is also affected by the large-scale velocity fluctuations. Appendix A presents
the multitime second-order structure function using 2, 3, and 4 times in a 10243 simulation of HIT
with random forcing. A cleaner Kolmogorov-like scaling for all the Cartesian components of the
Lagrangian velocity is observed (similar results are obtained for higher-order moments). This further
supports the idea that the presented multitime structure functions are able to reduce large-scale flow
effects, irrespective of their nature (i.e., mean global circulation effects or random sweeping by
large-scale velocity fluctuations).

B. Higher-order Lagrangian structure functions

As higher-order moments of the velocity differences are considered, identifying a scaling that
may differ or may be compatible with the nonintermittent inertial-range prediction, Sp ∝ τ p/2,
becomes harder at finite Reynolds numbers. In light of our previous results for p = 2, it is natural to
wonder whether using multitime statistics also improves the scaling for higher values of p. Figure 3
shows the 2-, 3-, and 4-times structure functions of order p, compensated by the inertial-range
prediction, for both experiments and simulations. These results are arranged as follows. Each row
of panels corresponds to a different number of times n used in the computation: 2 at the top, 3 at
the center, and 4 at the bottom. Columns, in turn, gather each Cartesian component of the tracers’
velocity from which the corresponding structure functions are calculated: x on the left, y on the
center, and z on the right. Within each individual panel, the multitime structure functions Snpt

p of
orders p = 1 to 5 are displayed in ascending order from bottom to top.

In the first row in Fig. 3, corresponding to the standard S2pt
p structure functions, very narrow

plateaus (or, otherwise, power-law ranges compatible with inertial-range scaling corrected by inter-
mittency) are visible in all-order compensated structure functions. Also note that as p is increased,
the range of time lags compatible with inertial-range scaling seems to shift toward smaller time
lags τ . This apparent shift of the inertial range toward shorter (or smaller) scales, also observed
in Eulerian structure functions, was previously reported in Ref. [49]. In spite of the short ranges
compatible with power-law scaling, note that both the VK and TG data sets display a similar
behavior of all the structure functions, as also expected from previous comparisons between the
two flows [15].

By comparing curves of the same order p between panels in different rows in Fig. 3 (i.e., with
increasing number of times n, from top to bottom), it becomes evident that increasing the number
of times improves the power-law scaling of the structure functions. Remarkably, this effect can be
seen in both the VK experiments and the TG DNSs. Also, the apparent shift of the range of scales
compatible with inertial-range scaling becomes either negligible or very small. Focusing on the case
with p = 2, and as already discussed in Sec. IV A, increasing n from 2 to 3 or 4 results in a wider
compensated inertial-range plateau. And when values of p 
= 2 are considered, ranges compatible
with power-law behavior can be easily identified in the same inertial range of Snpt

2 (for n = 3 and
4), albeit without perfect ∼τ p/2 scaling. As will be discussed in the next section, this is the result
of intermittency corrections to the scaling of higher-order structure functions. By comparing the
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FIG. 3. Multitime Lagrangian velocity structure functions Snpt
p of orders p = 1 to 5, compensated by the

nonintermittent Lagrangian inertial-range prediction Sp(τ ) ∝ τ p/2 for tracers in the TG and VK data sets
(represented by lines and individual markers, respectively). The top, middle and bottom row panels correspond
to calculations using 2, 3, and 4 times, respectively. Each column gathers one individual Cartesian component
of the particles’ velocity. In all panels, the arrows indicate increasing order p.

curves with n = 3 and n = 4, it is also clear that increasing the number of times improves the
scaling specially for large values of p.

Finally, we can compare the different columns in Fig. 3. While the structure functions of the x
and y components of the velocity are similar (for the same values of n and p), the structure functions
of the z-velocity component show some differences (specially for n = 2). This is the result of the
flow anisotropy in both the VK and TG flows: the large-scale z velocity does not feature the same
amplitude as the horizontal components, as the forcing mechanism is not isotropic. Also note that
the curves in Fig. 3(c) display the largest differences between the DNS and the experiment. As
shown in Ref. [15], the level of large-scale anisotropy in the VK and TG flows is not quite the same,
and this has an impact in S2pt

2 (τ ), especially in the z direction.

C. Local scaling exponents and Lagrangian intermittency

We now evaluate the local scaling exponents (LSEs) of order p, ξ
npt
p , via the logarithmic

derivative of the corresponding n-time structure function

ξ npt
p (τ ) = d log

[
Snpt

p (τ )
]

d log(τ )
, (16)
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FIG. 4. Logarithmic derivative of the multitime structure functions of orders p = 1 to 5; for tracers in the
VK and TG data sets (represented by markers and lines, respectively). Panels at the top, middle, and bottom
rows correspond to ξ npt

p calculated using 2, 3, and 4 times, respectively. Each column shows one individual
Cartesian component of the particles’ velocity (x, y, and z, respectively). The shaded areas correspond to the
inertial range, for practical purposes identified as the range in τ/τL for which 0.9 � ξ

npt
2 � 1.1.

for p = 1 to 5, and n = 2, 3, and 4. In particular, we are interested in the values of the LSEs within
the Lagrangian inertial range. For practical purposes, to identify the inertial range we will use the
range of time scales for which S2(τ ) ∼ ετ . More precisely, we identify it as the range [τ1, τ2],
where τ1,2 are such that ξ

npt
2 (τ2) = 0.9 and ξ

npt
2 (τ1) = 1.1, i.e., they bound symmetrically the range

where the second-order scaling exponent presents a value compatible with Kolmogorov scaling
(ξ2 = 1). We verified that using more stringent conditions on ξ

npt
2 (τ1) and ξ

npt
2 (τ2) did not change

the determination of the other exponents within the error bars. The LSEs thus determined are shown
in the different panels of Fig. 4. The presentation of these results is similar to that in Fig. 3, with
the three columns corresponding to estimations for the x, y, and z velocity components, and the
three rows corresponding to increasing number of times used in the computation of the structure
functions. In each panel, the shaded areas indicate the location of the Lagrangian inertial range,
identified as previously described.

In Fig. 5, the inertial range exponents (normalized by the second-order exponent) are shown, for
each number of times n considered in the computation of the structure functions. These exponents,
and their uncertainty, are computed by taking the mean and the standard deviation, respectively, of ξp

in the range [τ1, τ2]. The dashed line in all panels corresponds to p/2, the expected nonintermittent
(i.e., self-similar) Lagrangian inertial-range scaling. The exponents for the VK and TG data are also
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FIG. 5. Inertial-range local scaling exponents of order p, normalized by the exponent corresponding to
p = 2 and computed from multitime structure functions for the TG and VK data. The exponents are compared
with other results from experiments and simulations with different flows from Refs. [41,49–51]. From left to
right: (a) ξp/ξ2 for the x component of the velocity, (b) for y, and (c) for z. In all panels, the dashed line indicates
the nonintermittent (i.e., self-similar) Kolmogorov scaling

compared with results by Mordant et al. [41], Xu et al. [49], Benzi et al. [50], and Sawford and
Yeung [51], all computed using ESS for different turbulent flows in laboratory experiments or in
numerical simulations. Our exponents are in close agreement with the exponents reported in the
literature. The multitime structure functions allow for a better estimation of the scaling exponents
at finite Reynolds numbers, as they result in a broader range of timescales with power-law scaling,
specially for high-order (in p) structure functions. The scaling exponents of the multitime structure
functions computed using ESS (listed in Appendix B, with their uncertainties) also yield values
which are consistent with those previously reported in the literature, and present a similar behavior
to the LSEs computed using Eq. (16).

Note that in Fig. 5 no significant differences in the deviation of the scaling exponents from
the self-similar prediction can be identified between the exponents computed using 2-, 3-, and 4-
times statistics. In other words, the level of Lagrangian intermittency is the same in all cases. It has
been argued that the origin of Lagrangian intermittency may be associated to the coupling of the
fast eddies with the mean flow or with long-time correlations in the dynamics and, in particular,
with very slow modulations with timescales longer than the Lagrangian correlation time (see, e.g.,
Refs. [20,41]). As the 3- and 4-times structure functions were shown to significantly reduce the
contamination by the mean flow, while still maintaining the same level of intermittency, this result
suggests that intermittency is more of an intrinsic feature of inertial-range Lagrangian turbulence.

Figure 6 shows the absolute width τ2 − τ1 of the estimated inertial range (using the criteria
described above) as a function of the number of times n used in the multitime second-order structure
function. For both VK and TG flows, and for all Cartesian components of the velocity considered,
increasing the number of times employed in the structure function enlarges the width of the inertial
range with respect to that obtained from S2pt

2 . The increase from n = 2 to n = 3 is significant,
and in most cases it doubles the width of the range of time scales compatible with inertial-range
scaling, while further increasing the number of times from n = 3 to n = 4 results in a smaller
improvement in some cases and in saturation in others. These improvements ultimately result in
a better determination of inertial-range scaling and of the scaling exponents, as can be seen from
comparing the estimated uncertainty for each scaling exponent in both flows considered and for
different values of n, shown in Table II.

D. Reynolds number dependence

So far, we considered only the VK experiment and the TG DNS at the largest available Reynolds
number for each case. In the two types of swirling flows considered, the effect of the mean flow on
the Lagrangian statistics should be similar for different values of this number, since the macroscopic
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FIG. 6. Absolute width of the inertial range, normalized by the Lagrangian correlation time, as a function
of the number of times n used to compute the structure functions for each Cartesian component of the velocity
and for the VK experiment (triangles) and the TG DNS (squares).

structures that make up the mean flow depend mostly on the energy injection mechanism and the
boundary conditions, which remain the same as Re is increased and, as a result, the mean flow should
depend only weakly on Re in the fully developed turbulent state. However, the subleading inertial
range scaling of the Lagrangian structure functions should depend on Re. In this section we thus
compare the multitime second-order structure function for the different Reynolds numbers available
in the simulations and in the experiments.

To illustrate the effect of varying the Reynolds number, we show only the multitime second-order
structure function of the x-velocity component using 2 and 3 times; our results exhibit a similar
behavior for the other Cartesian velocity components, as well as when using 4 times. In Fig. 7(a),
Snpt

2 (τ ), using n = 2 and 3 times and compensated by ετ is shown for the TG DNSs with 5123, 7683,
and 10243 grid points, while in Fig. 7(b) the curves correspond to the VK experiment with forcing

TABLE II. Local scaling exponents (LSEs) ξp of orders p = 1, . . . , 5 for the x, y, and z components of the
Lagrangian velocity in the TG and VK data sets, computed from logarithmic derivatives of structure functions
using 2, 3, and, 4 times. Uncertainties are listed below each LSE value.

TG VK

2pt 3pt 4pt 2pt 3pt 4pt

p x y z x y z x y z x y z x y z x y z

1 0.57 0.56 0.58 0.57 0.56 0.60 0.58 0.56 0.60 0.54 0.55 0.54 0.55 0.55 0.56 0.55 0.56 0.55

±0.04 ±0.04 ±0.04 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.05 ±0.03 ±0.04 ±0.04

2 0.98 0.98 0.98 0.96 0.95 0.98 0.96 0.95 0.98 0.98 0.99 0.98 0.99 0.99 1.01 1.01 1.03 1.00

±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.05 ±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.06 ±0.05 ±0.06 ±0.06

3 1.25 1.26 1.24 1.22 1.22 1.21 1.21 1.21 1.21 1.31 1.34 1.34 1.31 1.34 1.38 1.36 1.41 1.38

±0.06 ±0.06 ±0.06 ±0.04 ±0.03 ±0.04 ±0.03 ±0.03 ±0.04 ±0.08 ±0.08 ±0.07 ±0.07 ±0.06 ±0.06 ±0.06 ±0.06 ±0.07

4 1.43 1.44 1.38 1.38 1.392 1.34 1.364 1.382 1.33 1.54 1.58 1.63 1.55 1.61 1.69 1.62 1.70 1.71

±0.04 ±0.04 ±0.06 ±0.01 ±0.009 ±0.03 ±0.005 ±0.004 ±0.02 ±0.09 ±0.09 ±0.08 ±0.07 ±0.05 ±0.07 ±0.07 ±0.06 ±0.09

5 1.53 1.55 1.45 1.46 1.49 1.384 1.44 1.47 1.370 1.7 1.8 1.9 1.71 1.81 1.95 1.8 1.9 2.0

±0.03 ±0.03 ±0.05 ±0.01 ±0.01 ±0.008 ±0.03 ±0.03 ±0.007 ±0.1 ±0.1 ±0.1 ±0.06 ±0.08 ±0.08 ±0.1 ±0.1 ±0.1

064603-13



ANGRIMAN, MININNI, AND COBELLI

10−3 10−2 10−1 100

τ/τL

10−1

100

S
2/

(ε
τ
)

−1/3(a)

5123 2pt
5123 3pt

7683 2pt
7683 3pt

10243 2pt
10243 3pt

10−3 10−2 10−1 100

τ/τL

−1/3(b)

50 rpm 2pt
50 rpm 3pt

75 rpm 2pt
75 rpm 3pt

FIG. 7. Second-order structure functions using 2 and 3 times compensated by the inertial range prediction,
for all values of the Reynolds number considered in this study. (a) shows the structure function for the TG
simulations, labeled according to grid resolution. (b) shows the data corresponding to the VK experiment for
different rotation frequencies of the propellers. Larger number of grid points in DNSs and higher rotation
frequencies in experiments correspond to higher Reynolds numbers (see Table I). A power law with exponent
−1/3, which corresponds to sweeping by the mean flow given by S2 ∝ τ 2/3, is indicated by the dashed line.

frequencies f VK
0 = 50 rpm and 75 rpm. For fixed n, the overall shape of the structure functions is

similar at the largest time lags for all Reynolds numbers, in agreement with the independence of the
sweeping-dominated range with Re. For n = 2, a scaling S2pt

2 (τ ) ∝ τ 2/3, shown by the dashed line
in Fig. 7, is apparent at those timescales and increasing Re also results in a small increase of the
inertial range compatible with Lagrangian Kolmogorov scaling, S2(τ ) ∼ ετ , for shorter times.

Increasing the number of times used in the computation of the multitime structure functions
reduces the effect of the large-scale flow in the scaling, in a similar way for all Re, and as already
discussed results in a faster drop of the curves at the dissipative scales. When using 3 times, the
compensated plateau compatible with S3pt

2 (τ ) ∝ τ scaling increases with increasing Re, and when
comparing TG and VK data at the largest available Re, is slightly wider for the VK data. This
results from a slightly larger Re in the experiments and from the different spectral widths of the
forcing mechanisms in the experiments and the simulations. These results confirm the capacity
of the multitime structure functions to reduce large-scale contamination effects on the Lagrangian
statistics in flows with different forcing mechanisms, without the need of a priori knowledge of the
large-scale flow geometry or the boundary conditions. Moreover, it is worth mentioning that even
in idealized conditions (e.g., when using delta-correlated in time isotropic forcing, as is usual when
studying HIT numerically), the effect of random sweeping by large-scale eddies is not negligible,
and is know to also contaminate the inertial-range scaling at finite Reynolds numbers, at least in the
case of Eulerian studies [45].

E. Velocity power spectra

A common physical interpretation of the two-times second-order structure function is associated
with its relation to the energy spectrum through the Wiener-Khinchin theorem. As a result, S2(τ ) (or
S2(�) in the Eulerian case) is associated, sometimes misleadingly, to the energy or the variance of the
velocity field at a given scale. As discussed here and thoroughly in the literature (see, e.g., Ref. [47]),
structure functions at a given scale also have contributions from slower (or larger) eddies. Structure
functions are also not only relevant to study intermittency but as a way to estimate the energy
spectrum from experiments, for which data is not periodic in space or in time. Thus, the question
of how the multitime structure functions are related with the energy spectrum has some relevance.
In particular, considering that in spectral space, the inertial-range scaling has been reported to be
under some circumstances less affected by sweeping. As an example, in laboratory experiments a
−2 power-law scaling (compatible with a scaling ∝ τ of the structure function) has been reported
for the Lagrangian velocity power spectrum [41].
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FIG. 8. Lagrangian velocity power spectra computed from the velocity correlation function (E 2pt, filled
markers) and from the 3-times second-order structure function (E 3pt, empty markers), in log-log scale. Square
and triangle markers denote results from simulations and experiments, respectively. The inset shows E 3pt/E 2pt

for each data set in log-lin scale.

We can expand the 3-times second-order structure function S3pt
2 (τ ) = 1

3 〈[v(t + τ ) − 2v(t ) +
v(t − τ )]2〉 and rewrite it in terms of the velocity correlation function Cv (τ ), to obtain

S3pt
2 (τ ) = 2 Cv (0) − 8

3 Cv (τ ) + 2
3 Cv (2τ ). (17)

Note that this expression is the 3-times extension of the standard relation S2(τ ) = 2Cv (0) − 2Cv (τ ),
linking the velocity correlation function to the 2-times second-order structure function. By isolating
the second term on the right-hand side of Eq. (17),

Cv (τ ) = 3
4 Cv (0) − 3

8 S3pt
2 (τ ) + 1

4 Cv (2τ ), (18)

it is straightforward to obtain an expression for the energy spectrum by means of the Wiener-
Khinchin theorem. As this spectrum is based on S3pt

2 (τ ), we symbolize it as E3pt( f ); its definition
being

E3pt( f ) = 3
4 Cv (0) − 3

8
̂S3pt
2 (τ ) + 1

8 E2pt( f /2), (19)

where the hat operator ( ·̂ ) indicates the cosine transform using a Blackman window, and where
E2pt( f ) represents the usual power spectrum calculated as the transform of the velocity correlation

function, i.e., E2pt( f ) = ̂Cv (τ ) ≡ Cv (0) − ̂S2pt
2 (τ )/2. In this context, the 3-times energy spectrum

can be thought of as a correction to the standard, 2-times based, energy spectrum. Following this
procedure, expressions similar to Eq. (19) can be derived for Enpt( f ) which would involve multitime
structure functions computed using a number of times less than or equal to n.

Figure 8 shows E3pt( f ) computed as in Eq. (19), compared to E2pt( f ) obtained from the 2-times
second-order structure function, for an arbitrary Cartesian component of the Lagrangian velocity
(similar results are observed for the other components). The spectra computed using 3 times and the
one obtained from the correlation function (or, equivalently, from the 2-times second-order structure
function) are in good agreement. The quotient E3pt/E2pt is shown in the inset of Fig. 8. For the
numerical data, the 3-times energy spectrum has slightly more energy at intermediate frequencies,
which correspond to the Lagrangian inertial range. These results are in agreement with the VK data
within experimental uncertainties.

Besides showing that the spectrum can be reconstructed from the multitime structure functions,
the expressions derived here illustrate explicitly that both the 2-times structure functions as well as
the energy spectrum mix with different weights contributions from different scales.

064603-15



ANGRIMAN, MININNI, AND COBELLI

V. DISCUSSION

In this paper, we studied multitime structure functions (or high-order differences) of the La-
grangian velocity, and their moments, considering particle data from two turbulent flows: a VK
experiment, and TG DNSs. In previous studies, it was observed that the poor agreement between
theory and data in the scaling of the Lagrangian inertial range [7,9,10,25] may be the result of
large-scale flow effects [11,13,14,20]. In a recent study, we pointed out how the effect of sweeping
by the macroscopic swirling flow (common to both flows considered in the present study) might be
responsible for the anomalous scaling observed in the Lagrangian second-order structure function
[15]. In particular, we found a scaling proportional to τ 2/3 for time lags τ � τL, consistent with
sweeping of fluid elements by the large-scale eddies, and indicative of the fact that sweeping plays
a relevant role in the particles’ evolution even in the Lagrangian frame. Motivated by these results,
in this paper we considered the multitime Lagrangian structure functions as a way to quantify the
effect of sweeping on Lagrangian statistics, and to disentangle its contribution from inertial-range
scaling, further extending the analysis to also consider Lagrangian intermittency. In the Eulerian
case, multipoint structure functions were already shown to reduce the effect of sweeping and to
provide better results for the determination of steep scaling laws (see, e.g., Refs. [30,32,40]).

To this end, we first considered the multitime structure functions of order 2, which we computed
for 3 and 4 times, and compared to the standard 2-times S2pt

2 . Increasing the number of times leads to
broader and better-delimited scaling laws, from which we found a scaling proportional to τ for time
lags smaller or of the order of the Lagrangian correlation time. It is worth noting that this scaling,
compatible with the Lagrangian K41 prediction, was not present in the (standard) 2-times second-
order structure function, except for a very narrow range at significantly smaller timescales. Our
results show that the range of timescales for which the multitime structure functions display the most
significant differences with S2pt

2 corresponds to the timescale at which the effects of sweeping by
the large-scale flow become dominant over the turbulent inertial-range contributions. This allowed
us to derive a phenomenological expression for the scaling of S2pt

2 (τ ), and to identify a timescale at
which the two effects become comparable.

The scaling of higher-order Lagrangian structure functions Sp(τ ) (with p > 2) pose a
considerable challenge in experiments and simulations due to their heightened sensitivity to finite-
Reynolds-number effects and finite width of their inertial range. Multitime structure functions of
order p ranging from 1 to 5, using 2, 3, and 4 times, showed an increasing width of the range of
timescales compatible with power-law scaling and a reduced contamination from the mean flow. The
values obtained from the scaling exponents are, within uncertainties, in good agreement with those
reported in the literature for different flows [41,49–51], which are often obtained using ESS as a
way to compensate for the narrow scaling range and the poor statistics. The agreement of the scaling
exponents independently of the number of times considered indicates that the large-scale flow is not
the direct cause behind departures from self-similarity in Lagrangian scaling. Intermittency is an
inherent property of Lagrangian turbulence, which may still result from some other subtle coupling
between slow and fast timescales, or may be associated, e.g., with the time irreversibility reported in
tracers’ trajectories in turbulent flows [52]. Besides this, the multitime structure functions provide
for a direct and flow-agnostic method to improve scaling without the need of ESS and results in an
effective broadening of the inertial range, leading to a more precise determination of the associated
exponents.

A study of the behavior of multitime statistics on the Reynolds number, using all our data sets
spanning microscale Reynolds number in the range Reλ ∈ [215, 530], confirmed that the sweeping
range is independent of Re, a result in agreement with a phenomenological argument and with the
fact that the intensity of the large-scale flow is controlled mostly by the boundary conditions and the
energy injection mechanism (even though the mean flow geometry is expected to depend weakly on
Re). For structure functions using 3 and 4 times, an increase in the Reynolds number results in a
widening of the inertial range, as expected. For all values of Re considered, the multitime structure
functions also considerably decrease the contamination of the inertial scaling.
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Can we expect scaling to improve indefinitely as more times are used in computation of the
structure functions? Our results indicate that if a given structure function displays inertial-range
scaling, increasing the number of times n improves the scaling. But although it may seem advanta-
geous to then use a larger number of times, in practice data sets have finite length in time, both in
simulations and in experiments. As n is gradually increased, the range of available time lags shrinks
drastically. This can also result in noisier structure functions and scaling exponents due to the lack of
statistical convergence associated to the reduced number of data employed in their determination.
As a consequence, there is an optimal value for the number of times that should be considered,
which depends on the amount of data available.

As a tool, multitime Lagrangian structure functions succeed in reducing the sweeping effect of
the large-scale flow on the Lagrangian statistics of tracers. The technique is also suitable for other
types of flow geometries, as a priori knowledge of the forcing mechanisms or boundary conditions
is not required for its application. These structure functions also have a relation with the energy
spectrum, providing an interesting link with other tools used in the characterization of turbulence.
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APPENDIX A: MULTITIME STRUCTURE FUNCTIONS OF HOMOGENEOUS
AND ISOTROPIC TURBULENCE

To analyze the performance of the multitime structure functions in flows which do not present a
mean large-scale flow but do present large-scale velocity fluctuations, we performed a DNS of HIT
using the same numerical methods as the ones used for the TG simulations. The incompressible
Navier-Stokes equation was solved in a periodic cubic domain using 10243 grid points, and
turbulence was sustained by injecting energy in all modes in the vicinity of the Fourier shell with
kF ≈ 1, with each mode having random phases with a correlation time of 0.5 large eddy turnover
times. The resulting Taylor microscale Reynolds number was Reλ ≈ 330. Once a turbulent steady
state was reached, 106 Lagrangian tracers were evolved in the flow following the same procedures
used for TG DNSs. From the Lagrangian data, the second-order multitime structure functions were
computed using 2, 3, and 4 times, for each of the Cartesian components of the tracers’ velocities.
The compensated structure functions are shown in Fig. 9. An improvement in the scaling is observed
when using 3 and 4 times, indicating multitime statistics also reduce large-scale flow contamination
in HIT. Similar results were obtained for higher-order structure functions.

10−3 10−2 10−1 100

τ/τL

10−2

10−1

100

S
2/

(ε
τ
)

(a) - x

HIT 2pt
HIT 3pt
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(b) - y

HIT 2pt
HIT 3pt
HIT 4pt
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τ/τL

(c) - z

HIT 2pt
HIT 3pt
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FIG. 9. Compensated second-order tracers’ velocity structure functions in a 10243 simulation of homoge-
neous and isotropic turbulence (HIT) with random forcing, using 2, 3, and 4 times, for each of the Cartesian
components x, y, and z of the velocity in (a), (b), and (c) respectively.
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TABLE III. Scaling exponents (LSEs) computed using ESS, ξESS
p , of orders p = 1, 3, 4, and 5 for the x, y,

and z components of the Lagrangian velocity in the TG and VK data sets, using 2, 3, and 4 times. Uncertainties
are listed below each exponent value.

TG VK

2pt 3pt 4pt 2pt 3pt 4pt

p x y z x y z x y z x y z x y z x y z

1 0.5821 0.5783 0.5903 0.600 0.589 0.614 0.603 0.592 0.614 0.5563 0.5539 0.554 0.559 0.551 0.555 0.549 0.543 0.549

± 0.0008 0.0009 0.0005 0.002 0.002 0.002 0.002 0.002 0.002 0.0008 0.0007 0.001 0.002 0.002 0.003 0.001 0.002 0.003

3 1.277 1.290 1.258 1.259 1.287 1.237 1.254 1.284 1.236 1.3375 1.344 1.361 1.332 1.356 1.369 1.346 1.367 1.382

± 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.0009 0.001 0.003 0.002 0.005 0.006 0.002 0.006 0.003

4 1.449 1.485 1.407 1.417 1.489 1.374 1.405 1.482 1.370 1.578 1.594 1.659 1.567 1.63 1.68 1.595 1.65 1.714

± 0.005 0.006 0.005 0.006 0.007 0.007 0.007 0.007 0.007 0.001 0.002 0.005 0.005 0.01 0.01 0.008 0.02 0.006

5 1.547 1.62 1.485 1.502 1.63 1.44 1.48 1.62 1.43 1.730 1.761 1.919 1.718 1.84 1.94 1.76 1.86 1.99

± 0.008 0.01 0.007 0.009 0.01 0.01 0.01 0.01 0.01 0.002 0.002 0.005 0.009 0.03 0.02 0.02 0.04 0.01

Note that the scaling in Fig. 9 improves gradually as the number of times used in the analysis is
increased. The differences in the inertial range between S2pt

2 and S3pt
2 are significant. In comparison,

differences between S3pt
2 and S4pt

2 are smaller but still noticeable. The reason for this is that using n
times does not remove all slow (or smooth) flow components, but only those that can be described by
polynomials of order up to n-2. Thus, improvements (albeit gradually smaller) can still be expected
as the number of times is further increased. Interestingly, S3pt

2 and S4pt
2 seem to converge faster (i.e.,

to be less different) in the inertial ranges of the TG flow and of the VK experiment than in the case
of HIT. This can be expected, as the randomness of the forcing used in HIT, when compared with
the mean, smooth, and large-scale flow in the TG flow and VK experiment, can require higher-order
polynomial contributions to successfully remove the sweeping. As a result, the differences between
S3pt

2 and S4pt
2 in the inertial range in Fig. 9 indicate that some contamination due to the sweeping

remains. In spite of this, the multitime structure functions result in a more clear inertial range scaling
when compared with S2pt

2 .

APPENDIX B: MULTITIME SCALING EXPONENTS USING EXTENDED SELF-SIMILARITY

As in the literature, the scaling exponents of Lagrangian structure functions are usually reported
using ESS. For an easier comparison, we also performed the calculation of the exponents of the
multitime structure functions using ESS, ξ

ESS,npt
p , using 2, 3 and, 4 times. The exponents were

calculated by performing a fit of Snpt
p as a function of Snpt

2 (with p = 1, 3, 4, and 5). Their 95%
confidence intervals were estimated from the fit. The exponents and their uncertainties are listed in
Table III. The values are compatible with the ones previously reported using ESS in the literature and
with the exponents computed using Eq. (16) and shown in Table II, but with smaller uncertainties,
as expected when assuming ESS.
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