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Diffusion in a fluid flow generated by a source at the apex of a wedge
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We consider a particle diffusing inside a wedge with absorbing boundaries and driven
by a radial flow of incompressible fluid generated by a source at the apex. The survival
probability decays as (time)~# with 8 depending on the opening angle of the wedge and the
Reynolds number associated with the hydrodynamic flow. The computation of the exponent
B reduces to finding the ground-state energy of the quantum particle in an infinitely deep
potential well with a shape determined by the radial flow velocity.

DOLI: 10.1103/PhysRevFluids.7.064502

I. INTRODUCTION

The problem of survival of a Brownian particle inside a wedge with absorbing boundaries has
been investigated by Sommerfeld [1] in the 19th century. This and similar problems are encountered
in various settings [2—7]. For instance, suppose we seek the probability that N one-dimensional
Brownian particles do not meet during the time interval (0, ¢). This is equivalent to the probability
that a single Brownian particle remains confined to the conical region x; < x, < --- < xy in RV,
For three particles, the corresponding single Brownian particle remains inside a wedge formed by
two intersecting planes (the angle of the wedge depends on the ratios of diffusion coefficients [2]).
Other properties of Brownian particles often admit a similar interpretation in terms of a single
Brownian particle confined to a conical region [8—17], and this conical region is a wedge in the case
of three particles. The properties of diffusion inside a wedge with absorbing boundaries also explain
the long-time kinetics of several one-dimensional reaction-diffusion processes [2,18,19].

In this paper we analyze the behavior of a Brownian particle that is advected by a flow of
incompressible fluid generated by the source or sink at the apex of the wedge and absorbed on
the boundaries of the wedge. The velocity field is purely radial. The mathematical description of
the processes in unidirectional flow fields is significantly simpler than in the case of generic flows.
Therefore the phenomena in unidirectional flow fields have been investigated in numerous contexts
such as microfluidics [20,21], transport in porous media [22], stochastic processes [2,23], biological
reactions [24], electrokinetic phenomena [25], etc. Most analyses consider flows in the pipe [26-28]
that are unidirectional and uniform, that is, independent on the. longitudinal coordinate. The flow
field in the wedge is unidirectional (radial) but nonuniform, albeit the r~! variation with the distance
from the apex is still sufficiently simple that helps in the analysis.

We consider the wedge with an opening angle 2« and absorbing boundaries. The particle
eventually gets absorbed, and the probability that it has survived during time interval (0, ¢) has
an algebraic ¢ ~# long-time tail. In the case of no-flow, Q = 0, the persistence exponent 8 = 7 /(4a)
is well known, see, e.g., Refs. [2,18,19].

For the ideal incompressible fluid, the velocity field is v = Q/(2ar) where Q is the strength of
the source. The exponent 8 in this situation is given by (Sec. II)

VAT2D? 4+ 0% - Q0

8aD

B = ; ey

where D is the diffusion constant.
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For the viscous incompressible fluid, the velocity remains radial, v = u(6)/r. The Navier-Stokes
equations are solvable in this situation [29-32]. The exact solution for the viscous flow in the wedge
goes back to Jeffery [33] and Hamel [34]. The Jeffery-Hamel solution is tricky [30,35,36] in the case
of the source (Q > 0) when its validity is questionable for sufficiently large Reynolds numbers.
Computing the decay exponent § is mathematically equivalent (Sec. III) to finding the ground-
state energy of the quantum particle in an infinitely deep potential well: U(£w) = oo and U(0)
proportional to u(6) when || < «. The analogy with Schrodinger equation describing stationary
states of a quantum particle in a one-dimensional potential is amusing, albeit we do not use it in
computations. What is needed are the basic properties of the Jeffery-Hamel solution describing
the viscous flow in the wedge. These properties are outlined in Sec. IV. In Secs. V-VI we employ
perturbation techniques and deduce analytical predictions for g in the limiting cases of high and low
Reynolds numbers. Three-dimensional analogs of the wedge problem, particularly the diffusion-
advection in the jet flow, are briefly discussed in Sec. VII. Conclusions are presented in Sec. VIII.

II. IDEAL INCOMPRESSIBLE FLOWS IN WEDGES

At time ¢t = 0, the particle is released inside the wedge. In polar coordinates (, 9), the wedge is
the region r > 0 and |0| < o with 2« being the opening angle of the wedge. Let S(r, 6, t) be the
probability that the particle released from (r, 6) has not touched the boundaries of the wedge during
the time interval (0, ¢). This survival probability satisfies

8,S = DV?S + (v- V)S. (2)

Here D is the diffusion constant and v the velocity field. The advection term (v - V)S is on the right-
hand side because S(r, 6, t) depends on the initial position of the particle, and therefore Eq. (2) is
the backward advection-diffusion equation.

The velocity field of ideal incompressible fluid generated by a source of strength Q reads

o .
—f.

oar

v(r) = 3)
In rotationally symmetric situations with velocity field inversely proportional to the distance from
the origin, advection can be absorbed into diffusion by an appropriate shift of the spatial dimension
[37-40]. The advection-diffusion equation (2) with velocity field (3) becomes

as 3°S  1+PedS 1 3°S
2 -p(= 2420, )
ot ar? roor r? 902
where Pe = 20% is the Péclet number. In a rotationally symmetric situation in d dimensions, the
diffusion equation reads
aS %S d—103S 1 9°S
— =D — —+=—). )
ot or? roor  r? 962

Equations (4) and (5) coincide if we identify d = 2 + Pe. Thus the two-dimensional advection-
diffusion process with a point sink or source of mass may be recast as a pure diffusion process in a
fictitious space of dimension d = 2 + Pe.

An exact analysis of the linear governing Eq. (5) subject to the initial condition S(r, 6,0) = 1
and the absorbing boundary conditions S(r, 2o, t) = 0 is possible. Our chief goal, however, is the
extracting of the large time behavior, and we shall take advantage of the useful feature of the survival
probability in this limit, namely its algebraic decay:

S(r,0,1)~ d(r,0)t". (6)
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Substituting (6) into the advection-diffusion equation (4) and noting that the time derivative becomes
negligible in the long-time limit we find that ®(r, €) satisfies

PP 14+Pedd 1 3%
P e T2l
The dependence of ®(r, 6) on the radial coordinate can be determined using dimensional analysis.
In principle, ®(r, ) = &(r, 6]|D, Pe), so ® depends on two dimension-full quantities » and D. The
dimension of ® is T# where T denotes the dimension of time; this is obvious from (6) since the

survival probability is dimensionless. The only variable with dimension 7# which can be composed
of r and D is (r2/D)?. Thus

=0. @)

r2 B
o(r,0) = <5> v(0). (®)
Plugging (8) into (7) we obtain

¥'(0) + [4B% + 2B Pely () = 0, (€))

where prime denotes the derivative with respect to . There are infinitely many linearly independent
solutions of (9) satisfying the boundary conditions

Y(£a)=0 (10)

describing absorbing boundaries of the wedge. These solutions are ,, = cos(A,0) with A, =
w(2n+1)/2a)and n =0, 1, 2, .. .. The physical requirement of positivity, ¥ (6) > 0 when || <
a, allows us to select the unique physically relevant solution

70
v = cos<%) (11)

and determine the decay exponent

P V(T /) +Pe? — Pe (12)
= I )

This formula coincides with the announced result (1). From (1) or (12) we recover the well-known
[2] expression 8 = - in the no-flow case (Pe = 0).
The mean exit time of the Brownian particle

T(r,@):/ dtt[—§:| :/ dt S(r,0,t1) (13)
0 dt 0

diverges when 8 < 1; for B > 1, the mean exit time is finite. The boundary between these two
regimes is determined from B = 1 which in conjunction with (12) yield Pe + 2 = n2/(8a?).
Recalling that the effective dimension of the pure diffusion process with the same decay exponent
is d = Pe 4 2 we conclude that the mean exit time is finite when (see also Fig. 1)

j.[2

If B > 1, the mean exit time 7T (r, 8) satisfies

EREE Y s 0
or? r or r? 962 D
(see, e.g., Ref. [40]). The dependence of the mean exit time on the radial coordinate is fixed by
dimensional analysis,
2
T(r,0)= D 7(0). (16)
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FIG. 1. The average lifetime of the Brownian particle is finite in the filled region defined by (14).

Plugging (16) into (15) we obtain
" 4+ (44 2Pe)t = —1. a7

Solving (17) subject to (£« ) = 0 and selecting the physically relevant solution satisfying t(6) > 0
when |0| < o we arrive at the neat expression for the mean exit time

2 9) —
T(r.g) = - So8P9) — cos () p =4+ 2Pe, (18)
D p? cos(par)

big

applicable when pa < 7, equivalently Pe + 2 < 72/(8a?), which is exactly the requirement that

B> 1.

First-passage characteristics of a Brownian particle advected by ideal incompressible flows have
been investigated in several studies, particularly in two dimensions where one can use complex
analysis, conformal mappings, the Wiener-Hopf technique, etc. (see, e.g., Refs. [41-43]). First-
passage characteristics of a Brownian particle advected by viscous incompressible flows can be
investigated analytically in a few situations since exact solutions of the Navier-Stokes equations are
rare [29-32]. Most of such exact solutions are unidirectional flows [27,31,32]. The viscous flow in
the wedge is one such solvable case with purely radial flow.

III. VISCOUS INCOMPRESSIBLE FLOWS IN WEDGES: FIRST-PASSAGE CHARACTERISTICS

In the case of incompressible viscous fluid, the velocity field generated by the source at the
apex of the wedge is radial and inversely proportional to the distance from the apex. The chief
distinction from the ideal flow is that the velocity now depends on 6. The incompressible viscous
flow in the wedge was first studied by Jeffery [33] and Hamel [34]. This flow represents a rare
exact solution of the Navier-Stokes equations of the incompressible viscous fluid. The solvability
of the Navier-Stokes equations is the consequence of the unidirection nature of the flow and simple
dependence on the radial coordinate:

V(r, 0) = ;u(e). (19)

The function u(6) is dimensionless since we have used the kinematic viscosity v as a pre-factor.
With velocity field (19), the advection-diffusion equation (2) becomes

as 32S 1 0) 08 RN
_D[ + ou( )_ :|’ (20)

E_ ﬁ r or ﬁ@
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where o = v/D is the Prandtl number.
Using the ansatz (6) we find that ®(r, 6) satisfies

RRL n 1 +ou@) 0 1 9°®

— — =0. 21
or? r ar  r? 962 @
Seeking again the solution in the form (8) we arrive at
¥"(0) + [4% + 2Bou@)]y () = 0. (22)

One can think about this linear ordinary differential equation as a Schrodinger equation de-
scribing stationary states of a particle in a one-dimensional potential [44]. Finding the exponent
constitutes a (nonlinear) eigenvalue problem. The solution must be positive inside the wedge, so we
are seeking the ground state of a quantum particle in an infinitely deep potential well —« < 6 < «.
The potential is

| -VEou®) 19 <a
U(Q)_{oo 6] = o (23)

where E = 482 is the energy of the ground state. Inside the well, the potential is —v/E ou(0). The
function u(0) is expressible in terms of elliptic integrals [33,34]. The potential is also proportional
to +/E and it then determines the energy E of the ground state, so we effectively have a nonlinear
eigenvalue problem. Finding a ground state is analytically impossible due to the complicated nature
of u(@). In the limiting situations of high and low Reynolds numbers, one can employ asymptotic
methods to obtain perturbative results as we show in Secs. V-VI.

If B > 1, then the mean exit time 7 (r, 0) satisfies

PT  1+ou®) dT 1 3°T 1

—_—t — - — =——. 24
or? r or + r2 962 D 24

The ansatz (16) remains applicable, so (24) simplifies to
(@) + [4 + 20u(@)]T(0) = —1. (25)

IV. JEFFERY-HAMEL SOLUTION

Here we outline a few properties of the Jeffery-Hamel viscous flow necessary for the analysis of
advection-diffusion in the wedge. The velocity field (19) has a single radial component, so it mani-
festly satisfies the continuity equation for the incompressible fluid. Navier-Stokes equations [29,30]
reduce to

av n ap v 1 v v 1 8%v (26a)
VvVt —=V|—+-——-=+ = =), a
or  or orz  r or r2  r? 302
ap  2v Jv
%= 7 30" (26b)

for purely radial two-dimensional flows. (The density of an incompressible fluid is constant, we
have set it to unity without loss of generality.)
Using (19), one rewrites (26b) as

op 2v% du
30 r* do’
which is integrated to yield
212
p=—gul)+ f). 27)
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Substituting (19) and (27) into (26a) we obtain
it
dr

The left-hand side of (28) depends on r, while the right-hand side depends on 8. Hence both sides
must be equal to the same constant. Multiplying

=V [’ + du + u?]. (28)

W' +4u+u* =G (29)
by 2u’ and integrating one obtains
W) + 4u* + 27“3 =2Cyu+ C. (30a)
The boundary conditions are
u(xa) = 0. (30b)

The solution of the boundary-value problem (39¢)—(30b) can be written in terms of elliptic integrals.
These results were already known to Jeffery [33] and Hamel [34]. The problem is more rich
[30,35,36] than it was initially believed. For instance, depending on ¢, the Reynolds number Re =
|Q|/v and the sign of Q there can be situations with infinitely many solutions; see Refs. [45,46] for
the classification of solutions.

Simpler behaviors occur if the volume flux

0= v/ do u() (31)
is negative, that is, the flow is generated by a sink; flows in a wedge generated by sinks are
also known as flows in converging channels. A convergent symmetric flow, that is a solution
with everywhere negative u(6) satisfying u(0) = u(—6), exists for any Q < 0 if « < 7. This has
been established in Refs. [30,36] for convergent flows with arbitrary Reynolds numbers. For small
Reynolds numbers, |Q|/v < 1, symmetric solutions with everywhere negative (when Q < 0) or
positive (when Q > 0) velocity exist for all ¢ < a, = 2.2467 .. ., see Sec. VI for details.

If Q > 0, then the symmetric solutions with everywhere positive velocity do not exist when
the Reynolds number Re = Q/v is sufficiently large, although there may be symmetric solutions
involving regions of inward and outward flow [36,45,46]. The stability of some of these solutions
has been studied, see Refs. [47-49]. In the physically interesting case of large Reynolds numbers,
Re = |Q|/v > 1, the main results can be summarized as follows:

(1) Convergent flows approach to the solution of the Euler equations, (3), except narrow
boundary-layer regions, o — |6| ~ Re™!/2.

(2) For divergent flows, the number of alternating minima and maxima diverge as Re — o0, so
there is no definite limiting solution. In experiments, nonstationary and turbulent flows are observed.

Let us now analyze diffusion in convergent channels at large Reynolds numbers.

V. CONVERGENT FLOWS AT HIGH REYNOLDS NUMBERS

For sink flows at high Reynolds numbers (O < 0 and Re >> 1), the velocity field is close to the
potential flow (3), so the exact expression (12) for the decay exponent in the ideal (nonviscous) fluid
may provide a good approximation. Re-writing (12) as

oRe oRe\? 7T \2
Bideal = Ba + \/(8_05) + (%) , (32)
one deduces
Re 72 . 5
Bidew =0 — + —— (Re)™ + O(Re™) (33)
do  doa
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when Re > 1. The leading term in (33) is asymptotically exact, but the subleading correction
decaying as (Re)~! is erroneous. The asymptotically exact subleading correction is an increasing
function of the Reynolds number that scales as (Re)!/? as we show below. More precisely,

Re  3-6 [Re
= 0 — + o FR—

p 4o o 4o

We derive (34) using perturbation techniques [50]. We need an expression for u(6) when Re > 1.

An exact solution of the boundary-value problem (39¢)—(30b) simplifies in the Re — oo limit:

(34)

0
% = 2 + 3tanh?[2Ba + ¢] — 3 tanh?[B(a — 0) + ¢]
—3tanh’[B(a + 6) + ¢1, (35)
where
4 /2
¢ = tanh 3= 1.14621583 .. .. (36)

The expression (35) for the flow field is uniformly valid in the entire |#| < « region and it reveals
the presence of the boundary layers near the walls. The thickness of these boundary layers is of the
order of B~'. Using (35) we compute Q = v [ d6 u(6) to yield

Rez_%:4a32_4(3_%)3+..., (37)

Re 3-46
po fRe,32V6 (38)
4o 2a

Due to the symmetry, u(6) = u(—0), it suffices to consider the half wedge: 0 < 6 < «. In the
outer region

from which

Bl«a—6<a, (39a)
the function u(8) given by (35) is independent on 6 in the leading order:
u=—2B% (39b)

Indeed, the arguments of two hyperbolic tangents in (35) diverge as Re — co. The argument of the
third hyperbolic tangent is also large, as B(o — 6) > 1 in the outer layer. Thus we obtain (42) in
the leading order. A more precise approximation of (35) is

u(0)

g = —1+12° ©=Ba—-0)+4¢, (390)
showing that the deviation from u = —2B? is exponentially small as ® > 1 in the outer layer.
Inside the boundary layer
0<a -0k, (40a)
the velocity varies according to
u 2
e 2 — 3tanh” ©. (40b)

In the outer region (39a), the governing Eq. (22) simplifies to ¥ + [48° — 4B0oB*]y = 0, from

which
W = cos(2bB), b= +/(B/B)? — Bo. 1)
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In the inner region (40a), the governing Eq. (22) becomes

S PO L P (42a)
=0, a
d®? cosh? ®
where (@) = ¢ (0). The boundary condition |g—, = 0 yields
(O =¢)=0. (42b)

Equation (33) implies that the term in the square brackets in Eq. (42a) scales as Re when the
Reynolds number is large. This suggests to apply WKB techniques [50]. The WKB solution to

(42a)—(42b) reads
_ © 3Bo
W ~ sin 2/ dx [b* + |- (43)
® cosh”x

This solution can be rewritten as

U ~ sin[2bB(a — 6) + 26)] (44a)
with
% 3
w=[ dx|: wy P2 —b]. (44b)
¢ cosh”x

In (44b) we used again the shorthand notation b defined in Eq. (41) and we also replaced the upper
limit ® by oo since the matching the inner solution (44a) with the outer solution (41) is made when
0> 1.

Massaging the integral in (44b) we obtain

*® dx 1
6y = 380 2
cosnx 30
¢ b+ cosh?x +b

/. T
=380 ,
Vi3 P2+ 3Bo(1 —y2) + b

where we made the transformation x — y = tanh x and used tanh ¢ = /2/3. We do not display an
exact cumbersome expression for the last integral and only show the asymptotically exact result. To
derive it we notice that b = O(1) in the Re — oo limit as we will confirm a posteriori. Hence we
neglect b and arrive at

00 = C\/3po (45)

with

C /l dy il arcs'n\/3 0.6154797
— —_ — 1 — = U. e
VIs 1=yt 2 3

Matching the inner solution (44a) with the outer solution (41) yields

bB + ) = %, (46)

leading to /82 — BoB% + C/3Bo = 7 /4 or, equivalently,

— (B2 0 _ T [30
B =o(B>+3C% ZC/IB-F ) (47)
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FIG. 2. The rescaled velocity u/Re vs rescaled angular coordinate 6/« for the opening angle o =
b4 g

4 4
5 5 4 5 (topto bottom).

Comparing (47) and (38), which we rewrite as
_ Re

3—46 [Re
B = — =
4oc+ o 40t+

we conclude that 8 ~ o B2. This yields the announced result (34).
Finally, we show how to determine b using (47):

2 2
v =ﬂ[£ —a:| ~ ﬂo[% — 1} ~ 3C%2.

Thus indeed b = O(1) in the Re — oo limit.

VI. ADVECTION-DIFFUSION AT LOW REYNOLDS NUMBERS

In the low-Reynolds-number limit the inertial terms in the Navier-Stokes equations are omitted.
In the present situation, we drop the term vd,v on the left-hand side of (26a). Instead of (29) we
obtain

u” 4 4u = const. (48)
A solution of Eq. (48) satisfying the boundary conditions (30b) reads

_ QO cos(26) — cos(2ax)
" v sina) — 2« cosRw)’

(49)

where the amplitude was fixed by (31). The velocity has the same sign as Q inside the wedge when
a < 7, see Fig. 2. This is no longer true when 7 < o < a, with a, defined by by Eq. (50), see
Fig. 3.

The denominator in Eq. (49) vanishes at @ = o, which is the smallest positive root of

tan (2o, ) = 2a,. (50)
This root is o, ~ 2.2467047 or o, & 128.727°. The solution (49) explodes at o = o, and it is
well defined only when o < «,. Thus the Jeffery-Hamel solutions have rich structure even in the

low-Reynolds-number limit.

064502-9



P. L. KRAPIVSKY

u/Re

SN g
02 0406608 1.0

—2"

FIG. 3. The rescaled velocity u/Re vs. rescaled angular coordinate 6/« for the opening angle o =

%”, 91—’31, 112—7” The velocity vanishes inside the wedge, namely at 0 = 7 — .

A. Wedge witho = 7

As a concrete example, consider the wedge with right opening angle, 2 = 7. The dependence
of the velocity on 6 is particularly simple in this case:

u= g cos(20). (1))
v
The governing equation (22) turns into an ordinary differential equation
¥"(0) + [4B° + Be cos(20)]y(6) = 0, (52)
known as the Mathieu equation. Here we shortly write
2
€ =20 Q = —Q (53)
D
We seek a symmetric solution, ¥/ (0) = ¥ (—6), of Eq. (52) which is positive for all [f] < 7 and

vanishes on the boundaries: (£ /4) = 0. In principle, one can solve the problem analytically by
using Mathieu functions which arise in numerous problems, see, e.g., Refs. [51,52]. However, the
velocity field (51) is applicable only at small Reynolds numbers, i.e., |¢| < 1, and it suffices to
determine a perturbative solution of (52). The form of the unperturbed solution, ¥y = cos(26) and
Bo = 1, suggests to seek the perturbative solution in the form

B=14+Ac+ -, (54a)
Y =cos(20) + ey (0)+--- . (54b)
Substituting (54a)—(54b) into (52) we obtain
U + ¥ + [8A + cos(20)] cos(26) = 0. (55)
The symmetric solution to this equation reads
Y1 = 5 cos’(20) — £ — 2A0 sin(20), (56)

where we omitted Ccos(20) term which can be absorbed into the unperturbed solution.
The boundary condition (£m/4) =0 fixes the amplitude A = —1/(3m). Thus the decay
exponent is

B=1- 10 (57)
3
Recalling (53), we thus have

2
ﬂ=1—§%+~-~. (58)
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B. Narrow wedges: a < o,

In the general case of arbitrary opening angle in the range o € (0, o), the governing equa-
tion (22) with velocity field (49) is again the Mathieu equation

V" + {487 + Be[cos(20) — cos(2a)}¥ = 0, (59)
with a slightly modified small parameter

_ 20 !

= . 60
D sin(2a) — 2a cos(Ra) (60)
We seek the perturbative solution in the form
B="—tAct---, (61a)
4a
o
Yv=vYo+eP+---, wo=005(£>. (61b)
The perturbation 11 (6) now obeys
T2 b4
v+ (—) U1 + 2= [8A + cos(20) — cos(2a)] iy = 0, (62)
20 4o

from which

Y1 =

% cos(%) cos(20) + sin(%) sin(@) cos(0) ECANR!
@an) —4 +6 sm(—) |:— cos(Ra) — 2Ai|. (63)

The boundary condition ¥ (£a) = 0 fixes the amplitude A. The decay exponent becomes

g=1 i[za cos(2ar) + ﬂ} T (64)
4o 16« QRa/m)? -1
or, equivalently,
7, 0 cosQo) + GERe
p= da + 4D sinQa) — 2a cos(2a) ©5)
C. Mean exit time
The governing equation (25) for the mean exit time becomes
" 4+ {4 + €[cos(20) — cosa)]}T = —1 (66)
with € given by (60). Plugging the perturbative solution
T=T1+€Tr +--- (67)
into (66) we find
7y + 419 = —1, (68a)
7/ 4+ 411 = —[c0s(26) — cos(a)] 7. (68b)
The boundary conditions are
(o) =0, 71(+a) = 0. (69)

064502-11



P. L. KRAPIVSKY

Solving for 7y and then for 7; we obtain
_ cos(20) — cosRa)

o= 4 cos(a)
cos(49) —3cos(4a)—6 1 . 3 + cos(4a) — 3a sin(4a)
= -6 260 20). 70
o 96 cos(2a) + g 0sin(26) + 48[cos(2a) ]2 cos(28).  (70)

Thus in the Stokes regime a physically sensible solution for the mean exit time is only possible for
acute opening angles 2 < 7. The mean exit time in this situation reads

2
T(r,0) = %[ro<9>+en<9)+-~] (71)

with 19, 7; given by (70) and € given by (60). Interestingly, there are a few exact viscous similarity
solutions in the wedge that also exist only for acute opening angles [53,54].

D. Wide wedges: o« > «,

The singularity of the velocity at « = «, has been noted by Fraenkel [45]. The same angular
dependence as in Eq. (49) has appeared in several problems concerning wedges, e.g., in a problem
[55] related to elastic wedges and in fluid dynamics problems [54,56]. A possible resolution of the
singularity at o = «a, relies on a more physical realization of the Jeffery-Hamel flow. Indeed, we
have assumed that the size of the input region is equal to zero. We have used the boundary condition

Vlp=ta =0 (72)
for the radial velocity and the boundary condition
Wlp=ta =0 (73)

for the tangential velocity. To ensure that the flux has a nonzero strength Q and emerges from an
apex one must rely on generalized functions (distributions). Physically, the size of the input region
is finite. Intriguingly, relying on this realistic property, one can overcome the singularity of the
velocity at o = a,.. To model the finiteness of the input region, it proves convenient [54] to replace
the boundary condition (73) by
_ _|For O<r<a

w(r,0 = to) = {O rea . (74)
The flux is thus introduced through the boundaries in the input region r < a near the apex. The total
flux is

0= 2/ dr wr = wa’. (75)
0

The Jeffery-Hamel problem is recovered when the flux is introduced in the tiny region, more
precisely in the limit a — 0 and @ — oo with Q = wa? constant.

If ¢ < oy, then the flow field far away from the input region (r >> a) is the Jeffery-Hamel solution
(49) in the leading order. The stream function defining the radial and tangential velocity components
viav = r~ '8¢, w = —d, is given by

v = %Qf(@), f= sin(20) — 26 cos(2a) (76)

sin(2a) — 2a cos(2a)

in the leading order. The details of the input region, viz. the parameters a and w, do not affect the
behavior.

For a > «a,, however, the leading term is different, it depends on the details of the input region
even far away from it. The stream function is [54]

v = 0(r/a) "F(0) (77)
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FIG. 4. The root p = p(«) of Eq. (78) that determines the leading behavior (77) of the flow field far away

from the input region, r >> a, for sufficiently wide wedges (o > ).

in the leading order. Here p = p(«) is the proper root of
W(p) = (p+ 1)sin(Ra) — sin[2(p + )] = 0. (78)

There are many roots of W (p) = 0, real and complex [54]; the proper root, p = p(«), is a decreasing
function of angle in the o, < o < 7 range, with p(a,) =0 and p(wr) = —%, see Fig. 4. The
dependence of the stream function on the angular coordinate is [54]

cos[(p + 2)a] % — cos[pa] —Si“;"fzz)e
F6) = 0 . (79)

The details of the hydrodynamic solution, such as the precise form of the angular dependence,
Eq. (79), do not affect the ultimate fate of the diffusing particle. The only relevant features are the
sign of the input Q and the negativity of p(«) when in the @, < o < 7 range. For source flows, Q >
0, the radial displacement grows as ¢'/(?*2) while the tangential scales diffusively as ¢!/2. Since p <
0, the radial displacement dominates, #'/"*2 > ¢1/2_ Thus we effectively have a diffusing particle
in a growing interval with absorbing walls receding faster than diffusively. In this situation, the
diffusing particle survives with a finite probability [11,12]. The computation of S (7, 6) is difficult,
but the chief property, Soo(r, 8) > 0 if Q > 0, is clear. In the case of sink flows, Q < 0, the particle
is hovering on distances r ~ R with

1/p
R ~ a(%) . (80)

(We tacitly assume that ‘% <« 1 which is consistent with the low-Reynolds-number limit, % <1,

in the natural situations when transport coefficients are comparable, v ~ D.) The survival probabil-
ity is then exponential in time, S ~ ¢~P"/R" that is,

D 4
Swexp|:—a—2t<l%) i| (81)
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Finally, a word of caution regarding the low-Reynolds-number limit. The effective local Reynolds
number

Re ~ % (r/a)" (82)

eventually becomes large since —% < p < 0. Therefore when o > «, the low-Reynolds-number
treatment of the Jeffery-Hamel flow is inconsistent far away from the apex even if the source
Reynolds number Q/v is small.

VII. THREE-DIMENSIONAL ANALOGS OF THE WEDGE FLOWS

An obvious three-dimensional analog is a flow in a circular cone. Unfortunately, the Navier-
Stokes equations do not admit an analytical solution for the flow inside a cone. Fortunately, the
decay exponent S is independent of the flow. Indeed, if the particle has survived for a long time,
then it is far away from the apex. On large distances, the velocity field is v ~ Q/r?, so advection is
negligible compared to diffusion and the decay exponent § = B(«) is the same as if there were no
flow [2,16]. This decay exponent is the smallest root of the Legendre function:

Pyg(cosa) = 0. (83)

At B = B. = 1, the opening angle is . = Arccos(1/~/3).

The decay exponent determined by Eq. (83) gives the ultimate large-time asymptotic. At inter-
mediate times, the hydrodynamic flow field cannot be ignored. In the Appendix we outline some
properties of the flow field. We rely on the Stokes approximation valid far away from the apex:
r > Q/v. The analysis in the Appendix reveals that the hydrodynamic solution changes depending
on whether o smaller, equal, or larger than o, = s

A more interesting three-dimensional analog of the flow in the wedge is the jet flow caused by
the point source of force (rather than mass as in the Jeffery-Hamel flow). For the jet flow the velocity

components are also inversely proportional to the distance from the origin
v v
v, = —u@), vy=—v(). (84)
r r

Although the velocity field (84) is not unidirectional, the 7~! dependence of the velocity components
makes the hydrodynamic problem solvable [57-59].
The angular dependence of the velocity components is

A% —1 2sinf
u=2—m -1, v=——7—"77— (85)
(A — cos0)? A — cosf
and the pressure is given by [30,32]
4v? Acosf — 1
= -_—— 86
P= P ™ T (A —cos o2 (86)
The parameter A is related to the momentum of the jet
8 A+1
M = 8mv?A{2 — Al . 87
v { t3aro) nA—l} &7)

The quantity v='+/M plays the role of the Reynolds number of the jet flow.

Overall, the jet flow is a much better analog of the Jeffery-Hamel flow than the flow in the cone.
The dimensionless momentum of the jet (equivalently, the Reynolds number Re = v='+/M, or the
parameter A) affects the exponent §. The same happens in the wedge where the dimensionless
strength of the source (the Péclet number) affects the decay exponent S.

The analysis of the Brownian particle advected by the jet flow (84)—(85) differs only in details
from the analysis in the Jeffery-Hamel case. Suppose we want to determine the probability that a
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particle remains in the % > 0 half-space during the time interval (0, ¢). Using the same ansatz (6)

we find that ®(r, 0) satisfies
3P  24o0ud® 1 3*P  coth+ov 0P

- —+ ———=0.
or? r or  r? 962 r2 90
Seeking the solution in the form (8) we arrive at
¥’ + (cotd +ov)¥ +282B8 + 1+ ou)y =0. (88)

Setting (71 /2) = 0 ensures that the particle remains in the 7 > 6 half-space.

The Sturm-Liouville equation (88) can be reduced to the Schrodinger equation. The physical
requirement of positivity, ¥ > 0 when 0 < 6 < 7, implies that we are seeking the ground state of
a quantum particle in an infinitely deep potential well. The determination of the exponent § may be
easier than in the case of the wedge since the potential is expressible through trigonometric functions
rather than elliptic functions. Leaving this to future work, we only consider weak jets. In this limit

A > 1, so (85) simplifies to
4 2 .
u=—cosf, v=——sinb (89)
A A

and (88) becomes
Y + (cotd — 8sin@)y’ +2B82B + 1+ 28cosO)yr =0 (90)

with § =20 /A < 1. When § =0 (no flow), By = % and vy = cosf. For small §, we seek a
perturbative solution

28 =1+ B, Y (0) =cos6 + 8y1(0) 91)
and find
¥} + cot O] + 2 + 1 + (cos@)* + 3Bcosf = 0. (92)
Solving this equation subject to (7 /2) = 0 yields
3 (cos0)? = 31n(1 + cos6)
B = -1 Uy = 1 . (93)

The general solution of Eq. (92) contains an extra term (3 4+ 4B) In(1 — cos#), so the choice B =
—3 ensures that ¥, remains regular on the axis of the jet (¢ = 0). Thus
1 3o

B = 5 T/rl +0A7?) 94)

for weak jets.

VIII. CONCLUSION

We studied the first-passage characteristics of a particle diffusing in a wedge with absorbing
boundaries, and advected by the flow generated by a source at the apex of the wedge. The survival
probability decays algebraically with time. The decay exponent is easy to compute in the case
of an ideal incompressible fluid. For the viscous fluid, we have reduced the determination of the
exponent to finding the ground-state energy of the quantum particle in an infinitely deep potential
well. The shape of the well is determined by an exact solution of the Navier-Stokes equations for
the incompressible viscous flow inside the wedge.

We employed perturbation techniques and deduced analytical predictions for the exponent
describing the decay of the survival probability and for the mean exit time which is finite when
B > 1. The calculation of the mean exit time in planar domains is an active research subject [23,60—
65]. Due to the scale invariance of the wedge, the dependence of 7' (r, 8) on the distance » from
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the apex is fixed by dimensional arguments, Eq. (16). The angular dependence is simple for ideal
flows, Eq. (18). In the viscous case, we have established the angular dependence in the Stokes limit,
Egs. (70)—(71).

Amongst three-dimensional analogs of advection in the wedge, the closest is the jet flow
(Sec. VII). The analysis of the first-passage characteristics is parallel to the analysis in the case
of the wedge.
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APPENDIX: CIRCULAR CONES

In contrast to the wedge case, one cannot define a global Reynolds number in the case of the
flow in a cone. Far away from the apex v ~ Q/r?, so the local Reynolds number rv/v ~ (Q/v)r~!
asymptotically vanishes irrespectively on the strength of the source. Thus, at least sufficiently far
from the apex, one can employ the low Reynolds number approximation. In this » > Q/v region,
the velocity is purely radial: v = (v, 0,0) in the spherical (7, 6, ¢) coordinates. The continuity
equation and axial symmetry fixes the radial dependence,

v=r"2u), (A1)
of the velocity. The Stokes equations are

1ap d8*v 29v 2 1 B < 81))
-— = sinf —

et T A2
vor 0rr r dr r?  r’sinf 06 (A2)

and (26b) as in the case of wedge [where (r, 8) were polar coordinates]. Using the ansatz (A1) we
recast (26b) into

dp _ 2v.du (A3)
30 3 do’
which is integrated to yield
2v
p= =3 u@) + F(r). (A4)
Substituting (A1) and (A4) into (A2) we obtain
dF
I 5 = ' +u coth + 6u. (A5)
r

The left-hand side of (A5) depends on r, while the right-hand side depends on 6. Hence both sides
must be equal to the same constant. In particular

u” +u' cot® + 6u = const. (A6)
Solving (A6) subject to the no-slip boundary condition
u(@) =0 (A7)
and the symmetry requirement
W(0)=0 (A8)

one finds u(6) = C[cos 26 — cos 2« ]. The amplitude C is fixed by mass conservation

0=2r f " 46 sin 60 u(®). (A9)
0
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The final solution reads
3 20 — 2
u() = -2 0826 —cos — (A10)
167 (14 2cosa)sin® §

Note that it becomes singular at o, = 27 /3, so the solution (A10) is applicable only when o <
21 /3.

For wide cones, o > 27 /3, the leading behavior is different from (A1) and (A10). As in the case
of the wedge (see Sec. VID) one can take into account the finiteness of the input region.
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