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Chaotic mixing in an acoustically driven cavity flow
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In this numerical study, we investigate the mixing properties of an acoustic driven
flow in a parallelepipedic cavity with square basis in view of applications in photovoltaic
crystal growth configurations. A single acoustic source is used, but, relying on non-normal
reflections, an acoustic beam with a square path is obtained, generating a global complex
flow in the cavity. Depending on the power of the source, the flow field may be steady,
periodic in time, or chaotic. We restrict here on the steady and periodic cases and show
that those flow fields enable chaotic advection. In the case of oscillating periodic flow
fields, the chaotic region invades the whole cavity, as shown by numerical simulations
of Poincaré sections and animations of mixing. This illustrates that acoustic streaming at
moderate powers can be used successfully as a nonintrusive tool to mix efficiently.
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I. INTRODUCTION

Acoustic streaming can be seen as a nonintrusive way to stir liquids and generate mixing in
a number of processes ranging from microfluidics [1,2] to organic chemistry and food process-
ing [3–5]. A number of former studies focused on mixing enhancement at very small scales [6,7].
But mixing at greater scales has also been considered, generally based on the possibility of creating
jetlike flows. Since the pioneering works by Eckart, Lighthill, and Nyborg [8–10], a good knowledge
of the scaling of such acoustic streaming flows occurring along a beam has been developed [11–13].
A possible configuration is to introduce an acoustic beam propagating along the cylinder axis, thus
leading to a flow dominated by a possibly unstable vortex ring with downward velocity along the
cylinder axis [14,15]. Interestingly, Ref. [16] also used several ultrasonic sources to increase the
geometric complexity of the flow and generate chaotic mixing in a cylindrical container. Our team
is interested in improving mixing in parallelepipedic cavities in connection with photovoltaic crystal
growth configurations [17,18]. In this context, relying on non-normal reflections of an acoustic beam
on the container walls makes it possible to generate several jets with a single acoustic source [19,20],
thus leading to 3D flows prone to destabilize and even reach chaotic states [21,22] when increasing
the acoustic power introduced in the liquid. But, even in the case of the steady flows observed at
very low forcing, the geometric complexity of these flows could yield efficient Lagrangian mixing;
this is the starting point of the present paper.

The ability of a given laminar flow field to generate chaotic trajectories was demonstrated by Aref
[23]: He proved that a two-dimensional (2D) time-periodic flow produced by blinking vortices in
perfect fluid could lead to efficient stirring, and named this phenomenon chaotic advection. Dombre
et al. [24] extended this study to the case of three-dimensional (3D) steady flows with the ABC
flows. The matter further triggered a great amount of theoretical, numerical, or experimental works
on the subject (see, for instance, Refs. [25–33]). Note finally that chaotic advection also applies for
dynamical systems of higher dimension, as, for instance, 3D time-periodic flows [34–38]. Chaotic
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FIG. 1. Sketch of the configuration: The base of the cavity is square. The acoustic beam enters with an
angle π/4, reflects on the walls, and leaves the cavity at the place where it entered.

advection has many fields of application in mixing, like microfluidics [39–41] or heat exchangers at
the macroscale [42–44].

In this paper, we numerically investigate how acoustic streaming induces mixing in a parallelepi-
pedic tank at the macroscale. While the acoustic forcing is essentially 2D, we show that the 3D-flow
field produced is complex enough, even at low acoustic powers, to enable chaotic advection. At
moderate acoustic powers, when the flow field becomes periodic in time in addition to 3D, chaos is
global in the whole domain.

Note that in the following, we only consider the dispersion of a fluid particle by the velocity field,
and we did not take into account the effects of molecular diffusion. Indeed, in liquids, molecular
diffusion is very weak, so its effects in poorly mixing flows are visible on very long timescales [45].
In the case of chaotic mixing, the flow field is known to produce very thin scalar structures, which are
rapidly mixed by molecular diffusion, at timescales of the order of the typical dispersion time [46].

II. NUMERICAL FLOW FIELD AND TRAJECTORIES

A. The acoustically driven flow

The flow field considered here is the acoustic streaming flow presented in Ref. [22] and corre-
sponding to the experimental investigation by Cambonie et al. [21].

As shown in Fig. 1, it is created at midheight of a closed parallelepipedic cavity of square
horizontal section, filled with water, by an acoustic beam emitted by a 2-MHz circular plane
transducer of diameter 28.5 mm. This beam enters the cavity horizontally at the center of one of
the vertical walls with an angle of π/4 and reflects successively on the three other vertical walls
before leaving the cavity at the place where it entered, determining a square path at midheight of
the cavity (see the comments on the choice of such a configuration in Ref. [47]).

As shown in Ref. [22], the flow is governed by the Navier-Stokes equations with a force term
corresponding to the acoustic forcing. To make these equations dimensionless, we choose the height
of the cavity H as reference length, and we introduce a reference viscous time H2/ν, where ν is the
kinematic viscosity of the fluid, and a reference pressure ρν2/H2 with ρ the fluid density. The
acoustic force can thus be expressed as

F(x, y, z) = 4 A I (x, y, z) ep, (1)
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where I (x, y, z) is the normalized acoustic intensity distribution, ep is the acoustic beam direction of
propagation, and A is the acoustic streaming parameter defined as

A = 2αPacH3

π c R2
t ρ ν2

. (2)

In this expression, α is the acoustic attenuation (m−1), Pac is the acoustic power delivered by
the transducer (W), c is the sound velocity, and Rt is the transducer radius. For the parameters
of the experiment by Cambonie et al. [21] (i.e., α = 0.1 m−1, ρ = 103 kg/m3, c = 1480 m/s,
ν = 9.3 × 10−7 m2/s, Rt = 0.01425 m, and H = 0.16 m), A = 106 corresponds to a dimensional
power Pac = 1 W. The reference time is 27 500 s and the reference velocity, expressed as ν/H , is
5.8 × 10−6 m/s. The normalized acoustic intensity distribution I (x, y, z) in the cavity is computed
for the above parameters by means of the Rayleigh integral for each beam (see Eq. (5) in Ref. [19]
and the normalization in Ref. [22], based on Ref. [48]). The cavity (which corresponds here to the
experiment by Cambonie et al. [21]) has dimensionless size 1 along x (from −0.5 to 0.5) in the
vertical direction, 1.14 along y (from −0.57 to 0.57) and 1.14 along z (from 0 to 1.14) (square
horizontal cross section), and the acoustic streaming flow is forced at midheight (i.e., at mid-x),
while the beam enters the cavity at mid-y. No-slip boundary is applied at the walls.

The numerical flow field used to compute the trajectories is obtained by unsteady simulations
with a spectral finite-element code [22,49]. The grid comprises two elements in the vertical direction
(with 21 points per element) and two elements in each of the two horizontal directions (with 31
points per element), which gives 41 × 61 × 61 grid points in the x × y × z directions. It was shown
in Ref. [22] that this grid provides a good discretization of the imposed acoustic forcing and a good
precision for the calculation of the flow.

The acoustic streaming parameter A is varied from 104 to 2.4 × 106. The flows at A = 104, 105,
and 106 are steady. The flows at A = 1.5 × 106, 2 × 106, and 2.4 × 106 are oscillatory periodic.
Note that, because of the divergence and attenuation of the acoustic beam considered in the
calculation of the acoustic intensity, the forcing is different in the four branches of the acoustic
beam, preventing any exact symmetry on the velocity field to occur between these branches. The
only possible symmetry in this configuration is the up-down symmetry about the mid-x plane
(x = 0). This symmetry is found to be effective in the steady flows, but it is broken in the oscillatory
periodic flows.

To characterize the flow, it is usual to define a Reynolds number of the flow, Re = V H/ν, based
on a reference velocity V (here, Re is simply the nondimensional velocity). In this flow, there is no
obvious choice for the reference velocity, so we propose three different choices: one based on the
maximum of velocity in the flow, the second on the average velocity in the midheight horizontal
plane where the acoustic ray is located, and the third based on the average velocity in the tank.
As can be seen in Fig. 2(a), the three Reynolds numbers are quite proportional to one another and
behave similarly with A. Using dimensional analysis, Ref. [12] showed that the velocity field in
the acoustic beam scales with the acoustic streaming parameter A in the viscous regime (Stokes
range) and as A1/2 in the inertial range. The cases studied here are obviously in an intermediate
range, where the velocity field is no more proportional to A, but not yet in the inertial range. We more
precisely checked that the flow remains in the viscous regime, with a linear variation of its intensity
with A, up to A = 103. Inertial effects are then perceptible for A = 104 and further amplified for
larger values of A.

In parallel with the increase of the flow intensity, the width of the acoustic jets seems to decrease
with A [see, for instance, Figs. 3(a)–3(c) in the horizontal midplane, and Figs. 3(d)–3(f) in a vertical
plane], favoring larger velocity gradients. We can evaluate quantitatively this effect using the shear
rate |γ̇ | = √

0.5(∂ui/∂x j + ∂u j/∂xi )2; this quantity is maximum in the jet where it roughly features
the ratio of the jet velocity to its width. Interestingly, this maximum shear rate remains reasonably
proportional to A in the range of A studied, as shown in Fig. 2(b). Because the maximum velocity
fails the proportionality with A at large values of the acoustic streaming parameter [Fig. 2(b)], this
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(a) (b)

FIG. 2. (a) Reynolds number of the flow, Re = V H/ν, as a function of the acoustic streaming parameter
A, based on different reference velocities V : +: maximum velocity in the flow; ×: average velocity in the
horizontal midheight plane where the acoustic ray is located; ∗: averaged velocity in the whole tank. For
the cases considered in the following (A � 104), inertial effects are clearly present, and become non-negligible
for A � 105. (b) Maximum shear rate |γ̇ | = √

0.5(∂ui/∂x j + ∂uj/∂xi )2 in the flow as a function of A. The
dash-dotted line has equation max(|γ̇ |) = 0.15 × A. Unlike the maximum velocity, the maximum shear rate is
fairly proportional to the acoustic streaming parameter A on the whole range of A.
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z z z
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FIG. 3. Plots for the acoustic streaming steady flows. Left column: A = 104, middle column: A = 105, right
column: A = 106. Top views: Isocontours of the horizontal velocity norm in the horizontal yz plane at mid-x.
The step between the contours is constant: Nine contours between 5 and 45 in (a), eight contours between
30 and 240 in (b), ten contours between 100 and 1000 in (c). The arrows indicate the direction of the entering
acoustic beam. Middle views: Velocity field in the vertical zx plane at mid-y. Bottom views: Poincaré sections in
the zx plane at mid-y. We considered six initial points (−0.25, 0.2, 0.3), (−0.175, 0., 0.2), (−0.1, 0., 0.45), and
(0.25, 0.2, 0.3), (0.175, 0., 0.2), (0.1, 0., 0.45), and the evolution time is t = 50.
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implies that the width of the jet is roughly constant for small A and decreases when inertial effects
come into play (A > 104).

B. Trajectories of tracers

The calculations of the trajectories of tracers for the different acoustic streaming cases are
performed using MATLAB, with the solver function ode45 which adapts the time step to the
required precision. Moreover, because the flow field is calculated on a grid, and stored at given
instants in the case of time-periodic flows (49 instants for A = 1.5 × 106 and 97 instants for
A = 2 × 106 and 2.4 × 106), we need to interpolate in space and time our original data. This is
done using MATLAB function griddedInterpolant. This interpolation function and the precision
needed in ode45 were tested on analytical flows, either steady or time periodic (see Appendixes A
and B for the validation of the method). The precision finally chosen for the acoustic streaming
cases was of 10−6, a better precision (down to 10−10) requiring more computational time, but not
changing the results.

C. Tools of chaos: Poincaré sections and Lyapunov exponents

A Poincaré section of a dynamical system is the ensemble of points formed by the intersection
of a given trajectory (or a few of them) with a lower-dimensional subspace. For all cases considered
thereafter (either 3D steady flows or 3D time-periodic flows), the Poincaré sections chosen are
vertical or horizontal planes located at the center of the box; for vertical Poincaré sections, we
only show the zx plane located at mid-y, because the Poincaré sections are very similar to what is
observed in other vertical planes, as the mid yx plane.

The Lyapunov exponent characterizes the exponential rate of separation of infinitesimally close
trajectories. In the case of 3D flows, there are three Lyapunov exponents and the sum of those
exponents is zero if the flow is incompressible, as in our case. If the flow is steady, the trajectories
and streamlines coincide; therefore, one of the exponents is zero since two points on the same
streamline never separate exponentially and the two other Lyapunov exponents have equal moduli
and opposite signs. When the flow is both 3D and time periodic, there can be three nonzero
Lyapunov exponents, the sum of them being still zero because of incompressibility.

In practice, Poincaré sections and Lyapunov exponents are calculated together. Note that because
very few initial points are considered, trajectories have to be followed on a very long time so as
to have enough intersection points for the Poincaré sections. This also ensures that the Lyapunov
exponents are sufficiently converged. Therefore, the times considered for the calculation of those
quantities are orders of magnitude higher than the typical time needed for dispersing many tracers
initially located in a spot, as shown in the three videos of blob dispersion given in the Supplemental
Material (see the discussion later in Sec. V).

III. LOW ACOUSTIC POWERS: 3D STEADY FLOWS

We first discuss the case of low acoustic powers, corresponding here to an acoustic streaming
parameter A in between 104 and 106. In those cases, the flow is steady, and symmetric with respect
to the mid-x horizontal plane. Therefore, the velocity has no vertical component in this plane, so
trajectories can never cross this plane, and remain forever in their initial half of the cavity, either
top or bottom. Figures 3(a)–3(c) show the norm of the velocity field in this horizontal plane for
increasing values of the acoustic streaming parameter A. The global velocity field in the cavity has
its maximums in this plane. In fact, four maximums are obtained, connected with the acceleration
experienced in each portion of the acoustic beam. For the smallest value of A (A = 104), no inertial
phenomenon is visible, and the main flow follows the beam trajectory, giving a rather circular flow
pattern. When A is increased, inertial effects become visible and the patterns invade the corners of
the cavity. For the largest value of A shown [Fig. 3(c)], the main flow consists of jets which impinge
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on the walls of the cavity and flow further along these walls by inertia. In any case, a global rotation
of the fluid about the vertical axis is induced in the whole cavity.

3D characteristics of the flows can also be obtained by looking in a vertical plane: Figs. 3(d)–3(f)
show the velocity field in the zx plane at mid-y for the same values of the acoustic streaming
parameter (similar velocity fields are obtained in the yx plane at mid-z). Note first that the up-down
symmetry is visible in this plane for the three cases. For the smallest acoustic power corresponding
to A = 104 [Fig. 3(d)], the flow has a cellular structure with four vortices. The fluid flows toward
the horizontal midheight plane all around the central vertical axis and flows back along the
vertical boundaries. This flow structure is a consequence of the depression created at the center
of the acoustically induced rotating flow in the horizontal midheight plane. When A is increased
[Figs. 3(e)–3(f)], these structures are modified by the impinging jets, which create flows on both
sides of the midheight plane by inertia. The shape of the vortices is thus changed, the flow toward
the midheight plane occurring obliquely in the direction of the impinged zone rather than vertically.
The center of the vortices is also displaced closer to the vertical walls.

Trajectories issued from six different points have been calculated for these three steady cases.
In Figs. 3(g)–3(i), we show the corresponding Poincaré sections in the vertical zx plane at mid-y.
For A = 104 [Fig. 3(g)], we recover the vortical structures shown in the velocity field in this plane,
here corresponding to four regular elliptic regions. In 3D, those regions are connected in pairs
into two donut-shaped regions, symmetrical to each other with respect to the midheight horizontal
plane where the acoustic forcing is imposed. Inside those structures, the trajectories are essentially
regular, as visible in the figure where four of the initial points out of six were located inside those
domains. Mixing between the fluid inside those structures and outside can only occur through
diffusion, that is, at a timescale much larger than what can be expected in chaotic regions [45].
Outside those structures, the chaotic trajectories wander in their half plane, as expected from the
up-down symmetry of the flow field.

For A = 105 [Fig. 3(h)], a sticky region (region where points remain for a while [50]) is still
visible in the vicinity of the former regular region at A = 104; for A = 106 [Fig. 3(i)], regular and
sticky regions have completely disappeared. The region around the central vertical axis (at mid-z
in the picture), which is less visited, corresponds to zones at the center of the acoustically induced
global rotation where the velocity perpendicular to the plane vanishes: the fluid particles will then
rarely cross the Poincaré section at those locations. For all those Poincaré sections, we kept the
total evolution time t = 50. Therefore, because the characteristic velocity is about four times more
important for A = 106 than for A = 105 (see Fig. 2), the number of points in Fig. 3(i) is about four
times higher than in Fig. 3(h).

Note that although the fluid particles do not cross the horizontal midheight plane in theses cases,
mixing between the upper and lower halves of the cavity can occur in practice when taking into
account molecular diffusion; however, as already explained, this mechanism is not efficient.

The evolution of the Lyapunov exponents corresponding to the trajectories obtained from three
initial points [those from Figs. 3(g)–3(i) that are located in the lower half of the cavity] is finally
shown for these steady cases in Fig. 4. As expected for a 3D steady flow, for each trajectory, one
of the three Lyapunov exponents is zero. For A = 104 [Fig. 4(a)], two of the three initial points
were taken in the regular regions, and their corresponding Lyapunov exponents go to zero. For the
two higher values of A [A = 105 in Fig. 4(b)], the Lyapunov exponents converge to the same values
whatever the initial point considered, which is expected for points located in the same chaotic region.
Note also that the positive Lyapunov exponent is all the more important as the acoustic streaming
parameter is high. We will come back to this point later, when also considering even higher acoustic
powers.

IV. MODERATE ACOUSTIC POWERS: 3D OSCILLATORY PERIODIC FLOWS

When the acoustic streaming parameter A is further increased, the flow field becomes time
dependent [21,22]. A first supercritical Hopf bifurcation occurs, leading for A = 1.5 × 106 to an
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(a () b)

FIG. 4. Lyapunov exponents λ as a function of time obtained with trajectories issued from three different
initial points for the acoustic streaming steady flows at A = 104 (a) and A = 105 (b). The points considered are
�: (−0.25, 0.2, 0.3); •: (−0.175, 0., 0.2); �: (−0.1, 0., 0.45); the colors are matching those in Figs. 3(g)–3(i).

oscillatory periodic flow with a period T ≈ 0.0065. A period doubling is then observed, leading to
a periodic state with an increased period (T ≈ 0.0105) for A = 2 × 106. A chaotic flow window
then appears for A between 2.2 × 106 and 2.3 × 106, before a return to an oscillatory periodic flow
for A = 2.4 × 106, but with a smaller period than before (T ≈ 0.0040). Finally, beyond this value
of A, the time periodicity is lost and progressively more chaotic flows are obtained [22]. In the
following, we restrict our study to cases where the flow field is oscillatory periodic, i.e., the cases at
A = 1.5 × 106, 2 × 106, and 2.4 × 106.

In such oscillatory situations, the flow field can be decomposed into a nonfluctuating part (the
time-averaged flow, thereafter called the base flow) and a fluctuation. For A = 1.5 × 106, while the
base flow still shows the up-down symmetry, the time-dependent fluctuation breaks this symmetry,
so the global oscillatory periodic flow is no more symmetric. The corresponding root mean square
(rms) values of the fluctuation of the horizontal velocity norm in the midheight horizontal plane
are shown in Fig. 5(a). Although much smaller in amplitude than the base flow (maximum value
of about 100 compared to 1000 for the base flow), the fluctuation is highest in regions between
the acoustic jets and the walls, avoiding the trapping of the fluid particles near the walls and in the

(a () b)

FIG. 5. Isocontours of the rms velocity fluctuation in the midheight horizontal plane for the oscillatory
periodic case at A = 1.5 × 106 (T ≈ 0.0065). (a) rms values for the horizontal velocity norm; (b) rms values
for the vertical (crossing) velocity. The step between the contours is constant and equal to 10, starting from the
contour at 10 close to the walls where the value is 0. The thick black contour associated with the value 700 of
the horizontal velocity norm for the base flow gives the location of the base flow jets in this case.
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Poincaré sections in different planes for the acoustic streaming periodic flows obtained at different
values of parameter A. Left column: A = 1.5 × 106, T = 0.0065; middle column: A = 2 × 106, T = 0.0105;
right column: A = 2.4 × 106, T = 0.0040. The top views concern the vertical zx plane at mid-y and the bottom
views the horizontal yz plane at mid-x. For all those sections, the six initial points considered are those given
in Figs. 3(g)–3(i) (the evolution time of the trajectories is t = 5).

corners [51–54]. The rms values of the vertical component of the velocity in the same horizontal
plane is also shown in Fig. 5(b): Although slightly smaller than the horizontal fluctuation, the
vertical fluctuation now allows fluid particles to cross between the upper and lower halves of the
cavity, even in the absence of molecular diffusion. Similar properties are found in the periodic case
at A = 2 × 106. For the periodic case at A = 2.4 × 106, which occurs after a chaotic flow window
at smaller A, even the base flow has already lost the up-down symmetry.

This loss of the up-down symmetry indeed affects the vertical Poincaré sections, as shown in
Figs. 6(a)–6(c): The fluid particles now wander from the top half to the bottom half and reversely,
whatever the periodic state considered (A = 1.5 × 106, 2 × 106, and 2.4 × 106). The blue region in
Fig. 6(a) corresponds to a fluid particle that remains for a while in the vicinity of a given trajectory,
but escapes eventually after some time; thus, this is not a regular region as that shown in Fig. 3(g).
For the larger acoustic streaming parameters considered here [Figs. 6(b) and 6(c), corresponding,
respectively, to A = 2 × 106 and 2.4 × 106], we did not find any such regions: Indeed, the points
in the vertical Poincaré sections are rather well distributed in the whole surface, except for the
region around the central vertical axis where the normal velocity is weak and which appears as
nearly empty, and the vicinity of the acoustic jet (along the vertical boundaries at mid-x) where the
velocity is highest and which is more populated.

Figures 6(d)–6(f) show the horizontal Poincaré sections for the same initial points and acoustic
streaming parameters as above. As expected, those sections are less populated than the vertical
sections, since the oscillating vertical flow allowing the fluid particles to cross this plane is much
less intense than the base flow which is responsible for the global rotation in the cavity. In Fig. 6(d),
we recognize the nearly circular less populated region, which corresponds to the region where the
rms values of the vertical fluctuation are weak in Fig. 5(b).
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FIG. 7. Histograms of the time intervals 	t between crossings of a Poincaré plane for a single trajectory
[initial point (−0.25, 0.2, 0.3)] for the oscillatory flow corresponding to A = 2 × 106 (T = 0.0105). (a) vertical
zx plane at mid-y; (b) horizontal yz plane at mid-x.

When comparing vertical and horizontal Poincaré sections, it is also interesting to consider the
time intervals between crossings of a Poincaré section (also called waiting time [55] or time of
flight [53]). Figure 7 shows the histograms of those times for the vertical and horizontal Poincaré
sections at A = 2 × 106 [Figs. 6(b) and 6(e)]. As expected, the number of counts is much larger for
the vertical Poincaré plane [Fig. 7(a)] than for the horizontal plane [Fig. 7(b)] [the maximum number
of counts in a bin is twice more in Fig. 7(a) than in Fig. 7(b); the five more populated bins have above
80 counts in Fig. 7(a) compared to only 10 in Fig. 7(b)]. The shapes of the two distributions are also
very different: In the case of the vertical Poincaré plane, the distribution is peaked around a time
of flight 	t = 0.00475 corresponding to a typical travel time with the base flow. For example, a
typical length for half a rotation is about 1, and in the midheight plane where the maximum velocity
is about 1600, the mean velocity is about 500 (see Fig. 2), which gives a travel time of 	t = 0.002.
This is a good order of magnitude. Moreover, most trajectories are, in fact, outside this midheight
plane, in regions of smaller velocities, which explains the somewhat larger travel time found. Note
that in all three oscillatory flows studied here, the period T of the flow is of the same order as the
typical timescale of the flow 	t . Therefore, we expect this oscillatory flow to be very efficient for
spreading uniformly in the domain [56]. Indeed, the points in the vertical Poincaré sections are much
more homogeneously distributed in the oscillating cases [Figs. 6(a)–6(c)] than in the steady cases
[Figs. 3(g)–3(i)]. In contrast, for the horizontal Poincaré plane, the most probable travel time value
is zero; this can be explained by the fact that the base flow is parallel to this plane at midheight and
only the weak oscillating flow allows crossing it, thus creating a lot of almost tangent trajectories.

Finally, the Lyapunov exponents for the oscillatory periodic flows are displayed in Fig. 8.
Because the velocity has a small oscillatory component, the intermediate exponent is not zero, but
slightly positive. Interestingly here, while those simple laminar flows have only undergone a few
bifurcations, we recover the same positive sign for the intermediate exponent as what has always
been found in turbulent flows [57]. Once again, the highest positive exponent increases with the
acoustic streaming parameter. The dependence of the largest positive Lyapunov exponent λmax with
the parameter A for all the cases considered in this study is shown in Fig. 9: In the range of A studied
corresponding to nonchaotic velocity fields (either steady or time periodic), the Lyapunov exponent
is found to be quite well proportional to A. To explain this behavior, it is first interesting to note
that, from dimensional analysis, the Lyapunov exponent scales as a velocity gradient. As shown in
Fig. 2(a), the typical velocity increases less rapidly than A outside the Stokes range, when inertial
effects come into play. But, in parallel, the jet tends to become thinner, so the maximum velocity
gradient remains approximately proportional to A, as illustrated through the shear rate in Fig. 2(b).
We can then finally conjecture that the proportionality of the maximum Lyapunov exponent with A
is due to the fact that it scales like the maximum velocity gradient in the jet.
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FIG. 8. Lyapunov exponents obtained with trajectories issued from three different initial points for the
acoustic streaming oscillatory flows at A = 1.5 × 106, A = 2 × 106, and A = 2.4 × 106. The points are those
already used in Fig. 4: �: (−0.25, 0.2, 0.3); •: (−0.175, 0., 0.2); �: (−0.1, 0., 0.45). In all cases, the
intermediate Lyapunov exponent is slightly positive.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the chaotic properties of trajectories issued from an acoustically
driven laminar flow. At low acoustic powers, the flow field is 3D and steady: If the spreading of
fluid particles is limited by the presence of regular islands for the lowest powers, we have also
shown that, in any case, an up-down symmetry exists, which prevents mixing between the upper
and bottom halves of the cavity. At moderate powers, the flow field becomes time dependent. We
restricted our study to cases with time-periodic dependence, and showed that the oscillatory part
not only enables a more homogeneous spreading of the fluid particles but also breaks the up-down
symmetry: Trajectories can thus cross the midheight horizontal plane, allowing paths between the
upper and lower halves of the cavity, as shown in Fig. 10. In that figure, the trajectories were

FIG. 9. Maximum positive Lyapunov exponent λmax as a function of the acoustic streaming parameter A
(log-log plot because of the large range of parameters). The fit is linear, with equation λ = 1.25 × 10−4 × A;
the Lyapunov exponent is fairly proportional to A on more than two decades.
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FIG. 10. (a) Steady flow at A = 106: Trajectories issued from symmetric points in the lower and upper
halves of the cavity [(−0.25, 0.2, 0.3) and (0.25, 0.2, 0.3)]. Each trajectory remains in its half part, showing
the very good up-down symmetry for those steady flows. The evolution time of the trajectories is t = 3.
(b) Oscillatory flow at A = 1.5 × 106: trajectory issued from the point (−0.25, 0.2, 0.3) in the lower half
part of the cavity. The evolution time of the trajectory is t = 5.

followed for a dimensionless time t = 3 for the steady case at A = 106 [Fig. 10(a)] and t = 5 for
the oscillatory case at A = 1.5 × 106 [Fig. 10(b)]. These may seem very long times: Indeed, when
brought back to the case of the experiment depicted in Sec. II, dimensional times of about 1 day
and 1.5 days, respectively, are obtained. In practice, however, mixing does not consist of following
a single trajectory, but rather a large number of fluid particles, generally initially released together
at some place in the flow: The particles begin to separate from each other at a typical timescale of
the order of the inverse of the Lyapunov exponent. Typically, for a blob of size 
 submitted to an
exponential stretching characterized by a positive exponent λ, the blob is considered as stretched
macroscopically when its size reaches the size of the container L, at a time tmacro ≈ (1/λ) ln(L/
),
and is rapidly mixed thereafter. .

As an illustration, we show three videos of mixing in those flows as Supplemental Material, two
of which corresponding to the cases depicted in Fig. 10 (steady flow at A = 106 [58] and oscillatory
flow at A = 1.5 × 106 [59]), and the last one being the oscillatory case at A = 2.4 × 106 [60].
The blob of dye to be mixed consists of a little cube of size 0.001, which contains 1331 particles
(11 points in each direction of space), initially located at a given point of space [(−0.25, 0.2, 0.3), the
same for all videos]. The particles are represented by circles so as to be more visible (the particles
are at the center of the circles). The positions of the particles are sampled every 10−3 instants; there
are 120 such instants in the steady case at A = 106 (total time t = 0.12, which corresponds to a
dimensional time less than an hour), while in the periodic cases, 50 instants are given for a total
time t = 0.05 (around 20 min in dimensional time). For the three videos, given the size of the blob
and taking L = H , we have tmacro approximately equal to 0.07 (A = 106), 0.03 (A = 1.5 × 106),
and 0.02 (A = 2.4 × 106). As already pointed out in Sec. II C, those times are orders of magnitude
smaller than the times needed to build a Poincaré section; for illustrative purposes, those times
would correspond to 32, 14, and 9 min, respectively, in dimensional time. In all cases, tmacro is less
than the total time represented on the videos, although of the same order of magnitude (see the
comments on the videos in Ref. [61]). In the oscillatory cases, the total time was enough to see a
complete dispersion of the fluid particles in the whole space.

One could wonder whether there is a particular interest in using acoustic streaming for mixing
in a tank of macroscopic size. First, as already noticed, acoustic is a nonintrusive method to
create a flow field: Therefore, it could be used in processes where the absence of impurities
is a technological issue. Another scientific challenge is the case of crystallization processes. If
chaotic advection was shown to speed up crystallization in natural conditions like solidification
of magma [62], what are the possibilities in industrial processes? Chaotic advection induced by
acoustic streaming could be used, for instance, in the directional solidification processes for pho-
tovoltaic silicon purification, which is an important issue since the presence of impurities strongly
impacts solar cells efficiency [63]. In such processes, an efficient mixing in the liquid phase is
required to sweep the impurities from the solid-liquid interface and homogenize the liquid phase.

064501-11



QU, HENRY, MIRALLES, BOTTON, AND RAYNAL

Chatelain et al. [18] studied the possibility to use a mechanical stirrer. The moving solid-liquid
front, however, renders difficult the introduction of a mechanical stirrer, which would have to
be progressively removed from the tank. Other complexities lie in the fact that the stirrer has to
resist to strong temperatures, and also that there is a risk of impurities release during the process.
To cope with these problems, the use of acoustic streaming is a real alternative. The velocities
obtained by acoustic streaming are indeed smaller than those obtained with the stirrer (about 1 cm/s
compared with several cm/s). The solidification front velocity is, however, very weak in directional
solidification (vfront ∼ 10−3cm/s [18]), so the typical timescales found in this study afford the
possibility of using chaotic advection produced by acoustic streaming for mixing in this type of
technology.
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FIG. 11. Poincaré sections in different planes for the analytic flow obtained for U1 = 0.5 and U2 = 0.346.
The top views concern the xz plane at mid-y and the bottom views the xy plane at mid-z. Three trajectories
have been calculated to get these Poincaré sections, initiated from the points (0.01, 0.01, 0.01) (blue dots),
(0.1, 0.1, 0.1) (red dots), and (0.3, 0.3, 0.3) (orange dots). Left column (a)–(c): Trajectories obtained from
analytic velocity values; right column (b)–(d): Trajectories obtained from velocity values interpolated from
values stored on a grid (41 × 61 × 61 points).
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FIG. 12. Lyapunov exponents obtained with trajectories issued from the initial point (0.2, 0.2, 0.2) for
two analytic oscillatory flows with U1 = 0.25 and U2 = 0.387 (see text) and with flow velocities obtained
either analytically or by interpolation from values stored in time (150 fields in the period) and on a grid of
41 × 61 × 61 points.

APPENDIX A: VALIDATION OF THE CALCULATION OF TRAJECTORIES
FOR 3D STEADY FLOWS

To validate the interpolation on the parallelepipedic lattice, we used a 3D analytical stationary
flow in a cubic 1 × 1 × 1 cavity (coordinates from 0 to 1 in each direction), which exhibits chaotic
advection [64]:

vx = −U1 sin πx cos πz, (A1)

vy = −2U2 sin πy cos 2πz, (A2)

vz = U1 cos πx sin πz + U2 cos πy sin 2πz. (A3)

For the case of nonglobal chaos U1 = 0.5 and U2 = 0.346, we have calculated trajectories on a time
interval of 5000 with a time step dt = 0.1. The solver of MATLAB ode45 adapts its own time step
to get a precision of 10−6. The trajectories are used to calculate the Lyapunov exponents (Wolf
method) and to get Poincaré sections in the three principal planes. Moreover, in view of testing the
fair accuracy of the interpolation on a grid, the trajectories are obtained on one side from analytic
velocity values and on another side from velocity values interpolated from stored values on a grid of
41 × 61 × 61 points, the same grid as in the numerical simulations of acoustic streaming. Poincaré
sections obtained in each case are shown in Fig. 11. For both Poincaré sections, the comparison
is very good, with results which are also similar to what was obtained in Ref. [64], validating the
calculation of trajectories and the space interpolation process. Note that the Lyapunov exponents
obtained are also in accordance with the values given in Ref. [64].

APPENDIX B: VALIDATION OF THE CALCULATION OF TRAJECTORIES FOR 3D
OSCILLATORY PERIODIC FLOWS

We have generated an analytic oscillatory flow from the analytic stationary flow used in the
previous section, but with the choice of U1 = 0.25 and U2 = 0.387 corresponding to globally
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chaotic trajectories. To obtain three nonzero Lyapunov exponents, we have chosen a period T = 3
divided in three different phases with equal duration Tp = 1. For the first part, we choose the usual
steady flow; for the second part, the same flow with a first permutation of the axes, and for the
third part, the flow obtained after a new permutation of the axes, see Ref. [65]. Because this flow
changes abruptly between each phase, we also introduced a smoother oscillatory flow, obtained
by multiplying the flow in each phase by sin2(π t/Tp)/2. As the integral of sin2(π t/Tp)/2 for t
between 0 and Tp is equal to 1, both oscillatory fields ought to give equivalent displacements of the
fluid particles by the flow and then equivalent Lyapunov exponents. On these examples, we have
tested the interpolations in both space and time. Indeed, we have calculated the trajectories and
the Lyapunov exponents on one side from the analytic velocity values and on the other side from
velocity values interpolated from stored values taken at 50 times during each phase of the period
and on a grid of 41 × 61 × 61 points. The Lyapunov exponents obtained in these different cases are
shown in Fig. 12. We see that, for both oscillatory flows, the Lyapunov exponents obtained after a
time t = 20 000, either analytically or with interpolations, are very similar and correspond to what
is expected in such situation [65]. This validates the time and space interpolation process.
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