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Bifurcations in droplet collisions
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Saffman and Turner [P. G. Saffman and J. S. Turner, J. Fluid Mech. 1, 16 (1956)] argued
that the collision rate for droplets in turbulence increases as the turbulent strain rate in-
creases. However, the numerical simulations of Dhanasekaran et al. [J. Dhanasekaran et al.,
J. Fluid Mech. 910, A10 (2021)] in a steady straining flow showed that the Saffman-Turner
model is oversimplified because it neglects droplet-droplet interactions. These result in a
complex dependence of the collision rate on the strain rate and on the differential settling
speed. Here we show that this dependence is explained by a sequence of bifurcations in
the collision dynamics. We compute the bifurcation diagram when strain is aligned with
gravity and show that it yields important insights into the collision dynamics. First, the
steady-state collision rate remains nonzero in the limit Kn → 0, contrary to the common
assumption that the collision rate tends to zero in this limit (Kn is a nondimensional
measure of the mean free path of air). Second, the nonmonotonic dependence of the
collision rate on the differential settling speed is explained by a grazing bifurcation. Third,
the bifurcation analysis explains why so-called closed trajectories appear and disappear.
Fourth, our analysis predicts strong spatial clustering near certain saddle points, where the
effects of strain and differential settling cancel.

DOI: 10.1103/PhysRevFluids.7.064401

I. INTRODUCTION

Turbulent aerosols are suspensions of particles or droplets in a turbulent flow. Common examples
are droplets or ice crystals in atmospheric clouds [1] and dust particles in circumstellar accretion
disks [2]. The physical properties of such systems are determined by collisions between the
particles [3,4]. In clouds, turbulent strains bring droplets into close contact [5]. Apart from this
mechanism, their collision dynamics is influenced by gravity, hydrodynamic forces, and direct
electrostatic interactions if the droplets are charged [6]. Fluid-mediated hydrodynamic interactions
tend to bend the paths of two approaching droplets around each other [7], potentially preventing
collision. However, when the droplets are very close, i.e., when their interfacial separation is
smaller than the mean free path of air, the hydrodynamic approximation breaks down, reducing
the hydrodynamic repulsion of approaching droplets [8]. Another factor that affects collision rates
is particle inertia, which allows the droplets to detach from the flow, increasing the collision rate [9].
Larger droplets may accelerate the surrounding fluid significantly, so convective fluid inertia must be
taken into account for similar-size droplets [10]. In other words, the collision dynamics of droplets
in turbulence is quite complex, and though it has been studied for more than 50 years, it is not

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI. Funded by Bibsam.

2469-990X/2022/7(6)/064401(15) 064401-1 Published by the American Physical Society

https://orcid.org/0000-0002-6613-3821
https://orcid.org/0000-0002-3672-6538
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.064401&domain=pdf&date_stamp=2022-06-16
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1017/jfm.2020.942
https://doi.org/10.1103/PhysRevFluids.7.064401
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


DUBEY, GUSTAVSSON, BEWLEY, AND MEHLIG

FIG. 1. Two droplets settling in a straining flow (thin red lines), shown in the rest frame of the smaller
droplet, with radius a1 < a2. The compressive direction of the strain is aligned with gravity g. Since the system
has rotation symmetry about the R3 axis, it suffices to analyze the dynamics in the R1-R3 plane.

known how to parametrize the collision rate in terms of the nondimensional parameters: the Stokes
number St (particle inertia), the nondimensional differential settling speed Q (gravitational settling),
turbulence intensity (strength of the turbulent strains), Reynolds and Strouhal numbers (fluid
inertia), the Coulomb number (electrostatic interactions), the Knudsen number Kn (breakdown of
the hydrodynamic approximation at distances smaller than the mean free path of air), and the ratio
of droplet radii.

Saffman and Turner [5] computed the effect of turbulent strain on the collision rate, assuming
that the droplets follow the flow, neglecting all other interactions between them. They found that the
collision rate for droplets of radii a1 and a2 increases with strain s as Rs ∼ n0(a1 + a2)3s, where
n0 is the particle-number density. They compared with the collision rate of small spherical droplets
settling under gravity in a quiescent fluid, Rg ∼ n0vs(a1 + a2)2, where vs = 2ρp

9ρ f
(a2

2 − a2
1)g/ν is the

differential settling speed with viscosity ν, gravitational acceleration g, and ratio of droplet and air
mass densities ρp/ρ f � 1. Their main conclusions are that turbulence facilitates collisions between
droplets of similar sizes and that the collision rate increases as the turbulent strain s increases.
However, Fig. 10 of Ref. [11] indicates that this picture may be oversimplified. Dhanasekaran et al.
[11] computed the collision dynamics of small spheres settling in a steady straining flow, taking
into account hydrodynamic interactions and the breakdown of the hydrodynamic approximation at
small separations. Their model neglects effects of particle and fluid inertia, electrostatic interactions,
van-der Waals forces, and unsteady turbulent fluctuations. Their numerical results show that the in-
teractions reduce the collision rate and that it depends sensitively on the nondimensional differential
settling speed Q, a measure of the relative strength of strain and gravity.

Here we show that the observed dependence of the collision rate upon Q reflects qualitative
changes—bifurcations—in the collision dynamics as Q is varied. We analyzed the bifurcations for a
specific example [11]: two droplets of different sizes settling in a steady straining flow. We chose a
straining flow aligned with the direction of gravity (Fig. 1). We found the equilibria of the collision
dynamics and we determined how they appear, disappear, and how their stabilities and invariant
manifolds change as the parameter Q is varied.

The bifurcation analysis allows the following conclusions. First, for a certain range of Q values,
the steady-state collision rate becomes independent of Kn for small Knudsen numbers, contrary to
the common assumption that droplets cannot collide in this limit [1,12–14]. Second, a global grazing
bifurcation (called α© below) causes a sensitive dependence of the collision rate upon Q. Third, our
bifurcation analysis allows us to understand the significance of so-called closed trajectories that
appear and disappear as Q is varied. These are trajectories that start and end on the collision sphere
[11,15–17]. Fourth, we find strong spatial clustering near certain saddle points, on their unstable
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invariant manifolds. In our model this leads to a divergent pair correlation function at separations of
the order of several droplet radii.

Our main conclusions rely on the fact that the collision dynamics has a boundary at R = a1 + a2.
The global grazing bifurcation occurs when an invariant manifold collides with this boundary
[18,19]. Grazing bifurcations are usually discussed for piecewise smooth dynamical systems
[19–21]. In such systems boundaries occur between the smooth parts. In our case, however, the
radial derivative of the relative droplet velocity diverges at the boundary R → a1 + a2, so our system
is not piecewise smooth. This is the origin of the sensitive dependence of the collision rate upon Q
mentioned above.

II. MODEL

We begin with the definition of the nondimensional parameters St and Q. The Stokes number is
defined as St = sτp with strain rate s and particle response time τp = (2ρp/9ρ f )(a2/ν), where a =
(a1 + a2)/2 is the mean particle radius. The effect of gravity is parametrized by the nondimensional
differential settling speed Q = vs/as. Here we consider droplets small enough so that we can take
the limit St → 0. At the same time we assume that Q remains finite. In this overdamped limit, the
relative dynamics is just given by Ṙ = V (R), where R = x(2) − x(1) is the spatial separation between
two particle centres and V = v(2) − v(1) is their relative velocity. This limit neglects singularities
and multivalued particle velocities in the inertial collision dynamics due to caustics [22–24]. The
probability of observing two droplets at separation R is given by the continuity equation

∂P(R, t )

∂t
+ ∇ · [V (R)P(R, t )] = 0, (1)

with the boundary condition P(R, t ) → 1 as R → ∞. This boundary condition reflects the uniform
spatial distribution at large separations of small droplets in an incompressible flow. The collision
rate is given by [25]

Rt = − lim
R→a1+a2

n0

∫
d�VR(R)P(R, t )�(− VR(R)), (2)

where VR = V · R̂ is the radial relative velocity, R = |R| is the center-of-mass distance between the
droplets, � is the solid angle, and � is the Heaviside function.

Following Ref. [11], we consider a steady straining flow with velocity u(x) = 1
2 (sx1ê1 + sx2ê2 −

2sx3ê3), where êi denotes the unit vector in direction Ri (Fig. 1). The strain-rate matrix S is diagonal
with entries S11 = s/2, S22 = s/2, and S33 = −s. We assume that the compressive axis of the strain
is aligned with the gravitational acceleration (Fig. 1).

In the overdamped limit, the relative velocities V (R) are computed using the hydrodynamic
mobility tensor that relates particle velocities to the given external forces in a linear flow [7]. The
elements of this tensor depend on the particle radii a1 and a2 and on the particle separation R. In
nondimensional variables (R → R/a and t → ts) the equations of motion read [11]

Ṙi = Vi,

Vi = Si jR j −
[
A

RiRk

R2
+ B

(
δik − RiRk

R2

)]
Skl Rl −

[
L

RiRk

R2
+ M

(
δik − RiRk

R2

)]
Q δk3, (3)

where summation over repeated indices is implied. Here A, B, L, and M are mobility functions,
formed using elements of the mobility tensor mentioned above. These mobility functions depend
only upon the droplet separations and their radius ratio. The mobility functions are not known in
closed form. To evaluate A, B, L, and M, we use series expansions in a/R derived in Refs. [26–28].
In this hydrodynamic approximation, the radial mobilities 1 − A and L decay linearly to zero as
the interfacial separation between the droplets vanishes. However, when the interfacial separation
between the droplets becomes comparable to the mean free path of air 
, the hydrodynamic
approximation breaks down. This gives rise to nonhydrodynamic effects, parametrized by the
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Knudsen number Kn = 
/a. Sundararajakumar and Koch [8] derived how these effects change the
functional form of the mobility functions on close approach. Dhanasekaran et al. [11] showed how
to match the radial noncontinuum mobilities A and L to the series expansions of their hydrodynamic
counterparts. We followed this approach, and like Ref. [11] we did not account for Kn corrections
to the tangential mobilities B and M. While noncontinuum effects may change how the mobilities
approach their values upon contact [29], it is expected that this change has a small effect on the
collision dynamics [11], at least when the droplet radii are not too different.

There are two reasons why the collision dynamics (3) is not smooth. First, the mobility functions
are nonsmooth at R = 2. The radial mobilities decay to zero as (log log Kn

R−2 )−1 as R → 2 and the
radial derivative of this expression diverges in this limit. This means that the dynamics is not
unique once it reaches R = 2. The tangential mobilities behave as (log 1

R−2 )−1 near R = 2. The
nonsmoothness of the mobilities means that bifurcations at R = 2 need not have the normal forms
known for smooth dynamical systems [30,31]. Second, we assume that the droplets coalesce upon
collision, so the dynamics arrests on the collision sphere, at R = 2. The collision sphere therefore
acts as a boundary, allowing global grazing bifurcations [18,19] to occur.

III. RESULTS

A. Phase portraits

Figure 2 shows phase portraits of the collision dynamics. We plotted the droplet paths in the
R1-R3 plane, in the rest frame of the smaller droplet. It suffices to consider the dynamics in the R1-R3

plane because the system has rotational symmetry about the R3 axis when the compressive axis of
strain is aligned with gravity. Figure 2(a) shows the phase portrait for Kn = 10−3 and a small value
of the nondimensional settling velocity (Q = 0.9) where strain dominates and gravitational settling
is of secondary importance. There are four fixed points, labeled I, II, III, and II′. The phase portrait
is symmetric under the reflection R1 → −R1, and we label the symmetric counterpart of a fixed
point by a prime. The phase portrait shown in Fig. 2(a) is very similar to that at Q = 0, just slightly
distorted. At Q = 0, the relative-velocity field V (R) is symmetric under reflections R3 → −R3 and
R1 → −R1. Therefore, V must be parallel to ê3 for R1 = 0, and V ∝ ê1 for R3 = 0. Using that the
radial velocity vanishes at R = 2, we obtain[

2
0

]
(I),

[
2
π
2

]
(II),

[
2
π

]
(III),

[
2
3π
2

]
(II′) (4)

for the locations [R∗, θ∗] of the four fixed points at Q = 0. Here R ≡ |R| and θ is the polar angle
measured from the positive R3 axis (Fig. 1). For nonzero values of Q, symmetry implies that θ∗
remains at 0 for I and at π for III. The precise locations of II and II′ on the collision sphere are
given in Appendix A. The velocity field cannot be linearized on the collision sphere. Nevertheless,
the flow near these fixed points resembles that near a saddle, with stable and unstable manifolds.
Saddles I and III have stable manifolds on the R3 axis, while II and II′ have unstable manifolds on
the R1 axis. In addition, the fixed points are connected by manifolds on the collision sphere (not
shown). Figure 2(a) indicates that droplets approach along the stable manifolds of saddles I and III
and escape along the unstable manifolds of II and II′. The trajectory separating colliding trajectories
from noncolliding ones is a grazing trajectory: It is tangential to the collision sphere at the point
where it touches the collision sphere (marked by a circle).

Figure 2(b) corresponds to Q = 6.20 and Kn = 10−3. This phase portrait is qualitatively different
from that in Fig. 2(a). There are additional fixed points, suggesting that bifurcations occurred. The
new fixed points are a stable node N and a saddle point IV as well as their symmetric counterparts.
Note that the node N is very close to the saddle point II; they cannot be distinguished in the
figure. We see that a grazing trajectory determines collision outcomes for paths approaching from
R3 = +∞. However, for paths approaching from R3 = −∞, the separatrix between colliding and
noncolliding trajectories is formed by stable manifolds of the saddle points IV and IV′. One stable
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FIG. 2. (a)–(d) Phase portraits of the collision dynamics for different values of the nondimensional differ-
ential settling speed Q. Trajectories lead to collision (blue), no collision (red), invariant manifolds and grazing
trajectories (black solid), and the collision sphere (dashed). In (b)–(d) closed trajectories that begin and end
on the collision sphere are plotted as blue dotted lines. Encircled red crosses denote fixed points. Small white
circles on the collision sphere denote end points of grazing trajectories or invariant manifolds. (a) Q = 0.9,
a1/a2 = 0.9, and Kn= 10−3. (b) Q = 6.20. (c) Q = 7.64. (d) Q = 8.09. In (c) and (d) the stable manifolds of
IV and IV′ and of V, respectively, coming from R3 = ∞ are close to but do not touch the collision sphere. (e)
and (f) Bifurcation diagrams for a1/a2 = 0.9 and Kn = 10−3, showing the locations [R∗ − 2, θ∗] of the fixed
points I–VI, N, and their symmetric counterparts (primed). Blue curves correspond to numerical data and red
lines in (f) to Eq. (B8). The inset in (e) shows the same data, but with a logarithmic y axis. The table lists
the locations of the bifurcations A©– E©, also shown as vertical lines in the panels on the right. (g) Steady-state
collision rate R∞ as a function of Q for a1/a2 = 0.9 and Kn = 10−1 (red), 10−2 (blue), and 10−3 (green).
Dashed lines show the collision rate due to droplets approaching from R3 = +∞, while solid lines correspond
to droplets approaching from R3 = −∞. Also shown are the locations of the three grazing bifurcations α–γ

for Kn = 10−3.

and one unstable manifold of the saddle IV intersect the collision sphere. The same is true for IV′.
Between these stable and unstable invariant manifolds, there are closed trajectories that start and
end on the collision sphere [11,15–17], shown as blue dotted lines.

Figure 2(c) shows the collision dynamics for Q = 7.64 and Kn = 10−3. The nodes disappeared
and the stable manifold of the saddle IV which previously intersected the collision sphere now
extends to R3 → +∞. It does not touch the collision sphere. This is difficult to see in Fig. 2(c),
but important because it allows trajectories approaching from above to hit the collision sphere from
below. The same conclusion holds for the invariant manifolds of IV′. In other words, the separatrices
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between colliding and noncolliding trajectories from above are no longer grazing trajectories, but
the stable manifolds of IV and IV′. As in Fig. 2(b), there are closed trajectories in the small regions
delineated by the stable and unstable manifolds of IV and IV′ (shown as blue dotted lines).

Figure 2(d) corresponds to Q = 8.09 and Kn = 10−3. We see that the saddle IV and its symmetric
counterpart IV′ collided, giving rise to two new saddles V and VI. Now the collision sphere is
entirely shielded from below by the unstable manifolds of VI. The stable manifolds of V extend to
R3 → +∞ without touching the collision sphere. So again, some trajectories coming from R3 = ∞
can collide from below. Finally, we see that the fixed points II and II′ merged with III, which turned
into a stable node.

In summary, the phase portraits in Fig. 2 are qualitatively different and we expect that the
qualitative changes to the fixed points and their manifolds affect how the collision rate depends
on Q and upon the Knudsen number Kn. To explain these dependences, we must first locate and
characterize the bifurcations of the collision dynamics.

B. Bifurcations

The dynamical system (3) exhibits three different types of bifurcations when the parameters Q
and Kn are varied. First, there are bifurcations of equilibria (labeled A©– E© below), where the number
or types of equilibria change. Those bifurcations that occur at R > 2 are smooth; they must have
the standard normal forms of smooth dynamical systems [30,31]. However, bifurcations at R = 2
need not be smooth, because the radial derivatives of the mobilities diverge as R → 2, as mentioned
above. Third, grazing bifurcations (labeled α©– γ© below) are global bifurcations, where an invariant
manifold, such as a separatrix, touches the collision sphere.

We begin by discussing the bifurcations of equilibria. Figures 2(e) and 2(f) show how their
equilibrium locations [R∗, θ∗] change as Q is varied. The first bifurcation A© occurs at Qc = 5.46.
It is a saddle-node bifurcation where the saddle IV and the node N are created, as well as their
symmetric counterparts IV′ and N′. For Kn = 10−3, this occurs at R∗ − 2 ≈ 0.011, quite close to
the collision sphere. Nevertheless, since the dynamical system is smooth for R > 2, this is a standard
smooth bifurcation. The location of the node is most clearly seen in the logarithmic scale of the inset
in Fig. 2(e).

The next bifurcation B© is at Qc = 6.67 where the nodes N and N′ collide with the saddles II
and II′ on the collision sphere, and II and II′ change from saddles to stable nodes. This bifurcation
cannot occur in smooth dynamical systems, because in the absence of boundaries one can show that
the sum of Poincaré indices of the fixed points participating in a bifurcation does not change [30].
We note that the Poincaré-index argument is readily extended to systems with boundaries: Enclose
the fixed points II and N by a curve that starts and ends on the collision sphere, infinitesimally close
to II. Since the saddle II changes into a node, the angle of rotation of the velocity field along this
curve is conserved before and after bifurcation B©.

Numerical integration becomes difficult as N and N′ approach the collision sphere. We therefore
sought an asymptotic approximation describing how the location R∗ of the nodes approach the
collision sphere as Q tends to the bifurcation value Q B©

c . We found

R∗ ∼ 2 + exp[−20.49/(Q B©
c − Q)] (5)

for Q < Q B©
c . Details of the derivation are given in Appendix B, which also contains a more accurate

albeit more complicated expression [Eq. (B8)], plotted in Figs. 2(e) and 2(f) as red lines. The
nonanalytic dependence on the parameter Q in Eq. (5) is a result of the divergence of the radial
derivatives of the tangential mobility. In smooth systems, by contrast, bifurcation locations depend
algebraically on Q B©

c − Q [30]. Equation (5) implies that R∗ − 2 is almost zero long before Q has
reached its bifurcation value Q B©

c .
Bifurcation C© happens at Q = 7.88, where the saddles IV and IV′ collide to form two new

saddles V and VI. Since this bifurcation occurs at R∗ > 2, it is a smooth bifurcation. At the
bifurcation, two stable and two unstable manifolds of fixed points IV and IV′ merge into a stable and
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an unstable one. Both are oriented along ê3. The fixed point therefore has six invariant manifolds
at the bifurcation: three stable and three unstable ones. After the bifurcation, the saddle points split
along ê3, connected by a new heteroclinic trajectory.

At Q = 8.04, the fixed points II and II′ collide with III in a supercritical pitchfork bifurcation D©
(see Appendix B), leaving behind only III, which turned from a saddle point to a stable node. This
bifurcation occurs at R = 2, but it is nevertheless smooth. The reason is that the fixed points move
along the collision sphere and the corresponding one-dimensional dynamical system is smooth. The
nonsmooth behavior of the tangential mobilities does not qualitatively alter the bifurcation.

The last bifurcation of an equilibrium, E©, occurs at Qc = 10.41, where the saddle point V collides
with the node III on the collision sphere, which turns into a saddle point. This bifurcation cannot
occur in smooth systems, where a saddle-node collision cannot result in a single saddle, as explained
above. Note that the results shown in Figs. 2(e) and 2(f) are independent of the Knudsen number.
The locations of the fixed points I, II, II′, and III depend only on tangential mobilities which do
not depend upon Kn in the model considered here. The other fixed points depend upon the radial
mobilities only through the combination L/(1 − A), which is independent of the Knudsen number,
as explained in Appendix B.

In addition to these bifurcations of equilibria, there are three grazing bifurcations, labeled with
greek letters. Their locations are not shown in Figs. 2(e) and 2(f) because they are global bifurcations
not described by changes in equilibria. For Kn = 10−3, the grazing bifurcation α© occurs at Qc =
5.67, larger than but quite close to Q A©

c . At this bifurcation, the unstable manifolds of the saddles IV
and IV′ approaching the collision sphere end up intersecting it. The points of intersection are shown
as circles in Fig. 2(b).

The grazing bifurcation β© occurs at Q β©
c = 7.6 for Kn = 10−3, when the stable manifolds of IV

and IV′ approaching from R3 = ∞ graze the collision sphere, allowing paths from above to hit
the collision sphere from below for Q > Q β©

c . A final grazing bifurcation γ© occurs at Q γ©
c = 8.1,

where stable manifolds of the saddle V begin to graze the collision sphere, preventing trajectories
approaching from above from colliding from below.

The locations of the grazing bifurcations depend on the Knudsen number. As Kn → 0, we
find that Q α©

c , Q β©
c → Q B©

c , while Q γ©
c → Q E©

c . To see this, recall that invariant manifolds begin to
intersect the collision sphere at these grazing bifurcations. This cannot happen for Kn = 0, where
the radial mobilities vanish linearly in ξ ≡ R − 2 as ξ → 0. In this limit, the grazing bifurcations
must therefore coincide with bifurcations B© and E©, where a stable node appears or disappears at
R = 2.

C. Collision rate

What are the consequences of these bifurcations for the collision rate? Figure 2(g) shows the
steady-state collision rate R∞ = limt→∞ Rt for a1/a2 = 0.9 as a function of the nondimensional
settling speed Q, for three different values of the Knudsen number: Kn = 10−1, 10−2, and 10−3.
Since the phase portraits in Fig. 2 suggest different behaviors for paths approaching from below and
from above, the collision rate was computed separately for the two cases.

When the separatrices delineating collisions from no collisions are grazing trajectories, as in
Fig. 2(a), the collision rate decreases as Kn decreases, as seen in Fig. 2(g) for Q < Q α©

c . The
reason is that as the Kn number decreases, fewer trajectories approaching from large separations
collide. However, Fig. 2(g) shows that the collision rate becomes independent of Kn for trajectories
approaching from below, for small Kn, and for a certain range of nondimensional settling speeds Q
(between bifurcations α© and C©). This means that the collision rate does not vanish in this range for
small Knudsen numbers.

The bifurcation analysis summarized above explains why the collision rate remains nonzero. The
argument goes as follows. Between bifurcations A© and α© there is a stable node at R > 2. In this
regime, collision outcomes for trajectories from above are determined by a grazing trajectory, and
so R∞ depends on Kn. The fate of trajectories approaching from below is more subtle. Trajectories
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approaching from below between the stable manifolds of IV and IV′ may either collide or asymptote
to the stable node. Again, whether the trajectories collide or miss and approach the node depends on
the Knudsen number. However, at bifurcation α©, the invariant manifold connecting the stable node
N to the saddle IV hits the collision sphere. As a consequence, all trajectories approaching from
below between the stable manifolds of saddles IV and IV′ must collide. Since these fixed points
and their stable manifolds are far from the collision sphere, for the Knudsen numbers considered,
their location does not depend on Kn. This implies in turn that the collision rate is independent
of Kn for trajectories approaching from below. This mechanism is analogous to that determining
collisions of oppositely charged droplets settling in a quiescent fluid [6], where the separatrices are
also formed by the stable manifolds of a saddle point of the collision dynamics. The former occurs
when differential settling due to gravity and Coulomb attraction cancel. Thus the two bifurcations
A© and α© have important consequences for the collision rate: A© gives rise to the saddle IV, whose
stable manifold determines the collision rate for trajectories approaching from below, for Q > Q α©

c .
The change in the mechanism determining the collision rate from a grazing trajectory for Q <

Q α©
c to an invariant manifold for Q > Q α©

c leads to a sensitive dependence of the collision rate on Q
near this bifurcation, seen as sharp peak near Q = 5.67 for the green curve in Fig. 2(g). The reason
is that the collision rate jumps at Q α©

c in the limit Kn → 0. Before the bifurcation, the collision
rate tends to 0 as Kn → 0, but after the bifurcation the collision rate asymptotes to a nonzero Kn-
independent limiting value.

Finally consider the small nonmonotonic bump in the collision rate for trajectories approaching
from the upper half plane for very small Knudsen number Kn = 10−3. Dhanasekaran et al. [11]
pointed out that the bump is due to trajectories that encircle the collision sphere and collide from
below. The Knudsen number needs to be small enough for this to occur, so that grazing separatrices,
such as those in Fig. 2(c), can exist. At Kn = 10−3, this gives a very small contribution to the
collision rate. Nevertheless, this mechanism leads to a nonzero collision rate in the limit Kn → 0
when Q B©

c < Q < Q E©
c , for trajectories approaching from above.

D. Spatial clustering

The dynamics close to a saddle point can lead to an accumulation of trajectories—spatial
clustering—if the stability exponents of the saddle point satisfy certain constraints. To find these
conditions, we start from the steady-state continuity equation, obtained from Eq. (1) by setting
∂P
∂t = 0. Now consider what happens close to the saddle point VI in Fig. 2(d). Its stable and unstable
directions are ê3 and ê1, respectively. At the fixed point, V = 0. In its vicinity we linearize the
velocity field V1 = λ+R1 and V3 = λ−δR3, where λ+ and λ− are positive and negative stability
exponents of the saddle and δR3 = R3 − R∗

3. The resulting steady-state continuity equation can then
be solved using separation of variables. We find

P(R1, δR3) ∼ |δR3|−λ+/λ−−1 as R1, δR3 → 0. (6)

We conclude that P diverges algebraically as one approaches the unstable manifold in the vicinity
of the fixed point, provided 0 > λ+/λ− > −1.

Figure 3 shows results for P(R) for Q = 8, a1/a2 = 0.9, and Kn = 10−3 obtained by numerically
solving Eq. (1) using the method of characteristics. The saddle points V and VI are shown as
encircled red crosses, just as in Fig. 2. The phase portrait for Q = 8 is similar to Fig. 2(d). For
the saddle point VI, λ+/λ− = −0.439, and we observe regions of very large probability P that
coincide precisely with its unstable manifolds. For the saddle point V, by contrast, λ+/λ− = −1.23.
Since this ratio is smaller than −1, no clustering near its unstable manifold is expected. The large
probabilities observed along the line R1 = 0 are due to a different mechanism, explained next. The
probability P diverges also very close to the collision sphere. This divergence, hard to see in Fig. 3
because it occurs so close to the collision sphere and because it is much weaker, was discussed in
Refs. [11,32]. Since the radial relative velocity decays to zero as VR ∼ (log log Kn

R−2 )−1 as R → 2,
the steady-state continuity equation implies that P diverges as ∼1/VR in this limit.
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FIG. 3. Spatial clustering on invariant manifolds. Shown is the probability P(R) for Q = 8, Kn = 10−3 in
the R1-R3 plane, color coded on a logarithmic scale. The probability diverges along manifolds of fixed point VI
[see Fig. 2(d)]. The collision sphere is shown as a dashed circle. The encircled red crosses shows the location
of the saddle points V and VI. The gray regions cannot be reached from R = ∞.

Near the saddle VI, the divergence is stronger. Consider the pair-correlation function g(R). It is
defined as the probability to find the two particles at separation R [9], g(R) = 〈P(R)〉R. Here the
average is over the polar angle θ at a fixed separation R. Using Eq. (6), we find that g(R) exhibits an
algebraic divergence as R → R∗.

IV. DISCUSSION

We concluded above that the collision rate for trajectories approaching from below becomes
independent of Kn for small Kn between bifurcations α© and C©. Since α© is a grazing bifurcation,
its location Q α©

c must depend on Kn. Equation (5) shows that R∗ − 2 ∼ 10−8 when Q ≈ 6, still very
far from Q B©

c = 6.67. In order to understand how α© depends on Kn, consider how the invariant
manifold connecting IV and N approaches the node. Its eigenvalues have nonzero imaginary parts,
which means that the manifold passes between the node and the collision sphere before it reaches
the node. As a first rough estimate let us assume that this happens when R∗ − 2 is of the order of
Kn. Using this estimate and Eq. (5), we obtain Q α©

c ∼ Q B©
c + 20.49/log Kn. This indicates that the

Kn derivative of Q α©
c may diverge as Kn → 0, implying that Q α©

c depends sensitively on the Knudsen
number.

It is commonly stated that droplets cannot collide in the hydrodynamic approximation because
it would take infinite time for them to touch [1,12–14], implying that the collision rate vanishes
as Kn → 0. However, we concluded here that this is correct only when the trajectory delineating
collisions from no collision is a grazing trajectory, as in Fig. 2(a). In this case, the flux of
colliding trajectories approaching from afar tends to zero because the grazing trajectories touch
at R3 = ∞ in the limit Kn → 0, so the steady-state collision rate from above must vanish. However,
when collisions are determined by the invariant manifolds of saddle points, as for the trajectories
approaching from below in Fig. 2(b), the flux of approaching trajectories does not depend on Kn if
the distance between the stable manifolds and the collision sphere is larger than Kn. The time these
trajectories take to collide depends weakly on the Knudsen number, proportional to log(1/Kn). So

064401-9



DUBEY, GUSTAVSSON, BEWLEY, AND MEHLIG

the time it takes to collide grows as Kn → 0, but the steady-state collision rate remains finite in this
limit, because the number density of droplets builds up as their dynamics slows down.

Our bifurcation analysis explains closed trajectories in relative dynamics, first reported by
Batchelor and Green [15] and later by Zeichner and Schowalter [16] and Dhanasekaran et al. [32].
These closed trajectories arise because some trajectories starting close to the stable node N (or close
to the stable nodes II, II′, or III, depending on the value of Q) start and end on the collision sphere.
At larger values of Kn, there are more such closed trajectories, because some paths that grazed the
collision sphere at small Kn collide instead. Zeichner and Schowalter [16] connected an observed
decrease in collision rate to the appearance of such closed trajectories. Our results show, however,
that is not the correct explanation, at least in the model considered here. The collision rate decreases
between Q α©

c and Q C©
c because the collision rate for trajectories approaching from below decreases.

Since the closed trajectories do not contribute to collision rate for trajectories approaching from
below, they cannot explain the decrease of collision rate in this model. The correct explanation,
outlined in the preceding section, is that the collision rate is determined by the stable invariant
manifolds of the fixed points IV and IV′.

Only the bifurcations A©, C©, and D© are well explained by bifurcation theory for local equilibria in
smooth dynamical systems, because they occur at R∗ > 2 where the system is smooth. Bifurcations
B© and E© occur at R = 2 where the system is not smooth: The radial derivative of the tangential
mobility diverges. One consequence is the nonanalytic behavior described by Eq. (5), very different
from the algebraic scaling observed for smooth systems [30] and also different from the behaviors
found in piecewise smooth systems [18,19].

In our case, the collision dynamics stops at the boundary at R = 2 because we imposed that the
droplets coalesce. Recent experiments [33] considered the collision dynamics of glass spheres in
turbulence. Glass spheres may roll along the collision sphere at R = 2, leading to new bifurcations
[34]. If the particles collided elastically instead, they could bounce. This might lead to interesting
bifurcations similar to those seen in impacting systems [20]. We note also that Bragg et al. [33]
observed pairs of spheres that stuck together. These could be the result of inelastic collisions,
corresponding to a third qualitatively different collision outcome. All of the three cases mentioned
above may result in new bifurcations and might even lead to chaotic dynamics [18].

In our analysis we considered only one value of the radius ratio, a1/a2 = 0.9. Because the
mobility functions are not sensitive to changes of this ratio when it is close to unity [26], the
bifurcation analysis should remain similar as the ratio becomes larger. The limit a1/a2 → 0, by
contrast, is expected to be quite different. In this case, Kn corrections to the tangential mobilities
qualitatively change the dynamics [29]. How the phase-space portraits and the bifurcation diagrams
change in this limit are open questions.

We assumed that the strain is aligned with gravity. Dhanasekaran et al. [11] studied numerically
how the collision rate changes when the angle between strain and gravity changes. Their results
indicate that the peak in the collision rate at Q ≈ 6 is instead replaced by a minimum as the
angle between strain and gravity changes. How are phase-space portraits affected and what are
the corresponding changes to the bifurcation diagram? When strain and gravity are aligned, the
dynamics is rotationally invariant. As a consequence, there is a continuous circle of fixed points
[30], of which we considered only one pair, IV and IV′. For nonzero angles, this circle breaks up.
Numerical simulations show that the qualitative conclusions regarding how the invariant manifolds
determine collision outcomes remain similar for small but nonzero angles. An investigation for the
future is to locate and characterize the new bifurcations that must occur as the angle is varied and to
analyze their effect upon the collision rate.

The spatial clustering we described is very anisotropic because it occurs for large values of
the nondimensional differential settling speed Q where gravity dominates. Another important point
is that the probability diverges not only close to the particle, but also at separations of the order
of a few droplet radii. As explained above, this is a consequence of the existence of saddle
points in the relative dynamics. An open question is how misalignment between strain and gravity
affects the spatial clustering. It is likely that an anisotropy persists if one averages over randomly
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oriented strains, because gravity breaks up-down symmetry. However, the details remain to be
worked out.

The results reported here concern very small, inertialess droplets. How do the phase portraits
change when particle inertia is included? First, the full phase-space dynamics including velocities
must be considered, as described in Ref. [6]. Second, particle inertia allows the particles to overshoot
the saddle point IV in Fig. 3. This could reduce the spatial clustering. Third, while in the inertialess
case the relative velocity at contact must vanish, inertia allows collisions at nonzero relative
velocities [9], causing the collision rate to increase. An example is given by Bec et al. [35], who
describe how particle inertia increases the collision rate of small particles colliding with a large one.
Furthermore, for solid spheres, collisions at nonzero relative velocities could give rise to chaotic
dynamics, similar to transitions to chaos observed in impacting systems [18].

Finally, our analysis considered steady flow. In time-dependent flow, such as turbulence, the
bifurcation analysis becomes more difficult since one has to consider a driven dynamical system.
In particular, it remains to be seen to what extent the spatial clustering is weakened when the flow
becomes time dependent. We note that recent experimental studies [33,36] of colliding particle
in turbulence show strong spatial clustering at small separations. Whether or not the clustering
mechanism described above can offer an explanation of these observations depends on whether it
survives averaging over different steady linear flows and to what extent it is weakened by stochastic
driving in a time-dependent flow.

V. CONCLUSION

We investigated bifurcations in the collision dynamics of small droplets settling in a strain-
ing flow. We considered the case where the compressive direction of strain is aligned with
gravity. We showed that the collision dynamics is not smooth because the radial derivatives of
the mobility functions diverge on the collision sphere. As a consequence, we observed types
of bifurcations that cannot occur in smooth dynamical systems where index theorems constrain
the possible normal bifurcation forms. We found three different kinds of bifurcations: standard
smooth bifurcations of equilibria, but also nonsmooth bifurcations of equilibria, as well as grazing
bifurcations.

The grazing bifurcations determine the global phase portraits of the collision dynamics and
explain that the collision rate approaches a nonzero constant for small Kn, for a range of nondi-
mensional settling velocities. This is surprising, because it is commonly stated that droplets cannot
collide in the hydrodynamic approximation [1,12–14], implying that the steady-state collision rate
vanishes. Our results show that this argument is correct only when the trajectories separating
colliding from noncolliding paths graze the collision sphere. This is the case for droplets with
different radii settling in a quiescent fluid. However, when differential settling competes with a
straining flow, we concluded here that these separatrices are, in a certain parameter range, formed
by the stable manifolds of saddle points that are far from the collision sphere. In this case the
steady-state collision rate becomes independent of the Knudsen number for small Kn.

Our analysis shows that saddle points may give rise to spatial clustering, causing trajectories to
accumulate close to the saddle point in question, leading to a flux along the unstable manifold of
the saddle. We demonstrated that this can result in an algebraic divergence of the pair-correlation
function g(R) at separations R of the order of several droplet radii. Since gravity breaks the up-
down symmetry of the problem, the observed spatial clustering is highly anisotropic. When the
compressive axis of the straining flow is aligned with gravity, there is a high probability of observing
the larger sphere below the smaller one. This prediction may be tested experimentally by looking at
snapshots of droplets in gravity-dominated straining flow.

Our results show that understanding smooth and nonsmooth bifurcations of the collision dy-
namics yields important insight into the physics of the collision process. In the future we therefore
intend to perform this analysis for more general cases. The first step is to consider droplet radius
ratios other than a1/a2 = 0.9. We expect that the results remain similar when the ratio is larger than
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this value. However, when a1/a2 → 0, the model considered here may fail because it neglects Kn
corrections to the tangential mobilities which may become important in this limit.

Second, we intend to investigate the bifurcations when strain is not aligned with gravity.
Third, in order to describe droplet collisions in turbulence, we need to consider what happens

when the flow is time dependent. In order to understand how the collision rate depends on Kn, the
timescales at which stable manifolds of saddle points move have to be considered. Moreover, it is
unclear to what extent spatial clustering survives in this case. If it does, it could be a mechanism for
the extreme spatial clustering observed in recent experiments [33,36], which remains unexplained.

Fourth, particle inertia matters for larger droplets, because it allows them to detach from the flow
[9]. The bifurcation analysis in this case is more challenging because it must be performed in phase
space including separations and relative velocities.

Finally, in an earlier study [6], we analyzed the effect of electrical charges on the collision
dynamics. Reference [6] did not account for the breakdown of the hydrodynamic approximation
close to the collision sphere; therefore, we considered charges large enough that the relevant
equilibria were far from the collision sphere. In this limit we found the phase portraits to be
qualitatively different from those for neutral droplets. However, we do not know at what amount
of charging this qualitative change happens. It might occur already for small charges of the order
of typical charges observed in warm rain clouds [37]. This could have important implications for
droplet collisions in rain clouds.
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APPENDIX A: FIXED-POINT LOCATIONS OF I–III AND ANALYSIS OF BIFURCATION D©

Equation (3) can be expressed in radial and angular components of relative velocity VR ≡ Ṙ and
Vθ ≡ R θ̇ as

VR = −LQ cos θ + (A − 1)
R

4
(1 + 3 cos 2θ ), (A1a)

Vθ = MQ sin θ + (1 − B)
3R

4
sin 2θ. (A1b)

Here L and M are the radial and tangential mobility functions for spheres due to sedimentation,
while A and B are the radial and tangential mobility functions for spheres in shear flow [15,38].

Fixed points may be found by solving the equations VR = 0 = Vθ . The fixed points I, II, II′, and
III lie on the collision sphere where VR = 0. In order to find these fixed points, we must solve Vθ = 0
at R = 2,

[M0Q − 3B0 cos θ ] sin θ = 0. (A2)

Here B0 and M0 are the values of the tangential mobility functions upon contact. Equation (A2)
has solutions θ∗ = 0 and π , corresponding to fixed points I and III, respectively. In addition, if
Q � 3 B0/M0 the equation has solutions θ∗ = ± arccos M0Q

3B0
. These correspond to fixed points II

and II′. As Q increases from zero, the fixed points II and II′ move along the collision sphere until
Q D©

c = 3 B0/M0 when they collide with III. This is bifurcation D©, a supercritical pitchfork bifurcation
[30]. For Q > Q D©

c , the equation cos θ = M0Q
3B0

admits no real solutions.
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APPENDIX B: FIXED-POINT LOCATION OF N AND ANALYSIS OF BIFURCATION B©

In order to compute the location [R∗, θ∗] of the node N, we solve VR = 0 for the fixed-point
angle,

θ∗ = arccos

(−4k − √
k2 + 48

12

)
, (B1a)

with

k = LQ

(1 − A)R∗ . (B1b)

Inserting this expression for θ∗ into Vθ = 0, we obtain

3(1 − B)
R∗

4
sin 2θ∗ + MQ sin θ∗ = 0. (B2)

This is an implicit equation for R∗ because the mobility functions as well as θ∗ [Eq. (B1)] are
functions of R∗. In general, this equation must be solved numerically; however, asymptotic solutions
can be obtained when R∗ is close to the collision sphere, using known asymptotic expansions for
the mobilities for small ξ ≡ R − 2.

The radial mobility functions A and L depend upon the Knudsen number only through the
functions �nc

11 and �nc
21 defined in Eqs. (4.2)–(4.6) in Ref. [11]. From their Eqs. (4.2) and (4.3), it

follows that the ratio L/(1 − A) is independent of both �nc
11 and �nc

21. Thus, the ratio L/(1 − A) does
not depend upon the Knudsen number. For small ξ , this ratio approaches the constant [15,26,38]

L(ξ )

1 − A(ξ )
∼ 1

C
. (B3)

Equation (B3) allows us to approximate k in Eq. (B1b) as

k ∼ Q

C(2 + ξ )
for ξ � 1. (B4)

The asymptotic expansions for the tangential mobilities in the limit ξ → 0 read [26]

B, M ∼ c(1)
B,M log2 ξ − c(2)

B,M log ξ + c(3)
B,M

log2 ξ − e(1) log ξ + e(2)
. (B5)

The coefficients c(i)
B,M and e(i) depend only on the radius ratio a1/a2. While the coefficients c(i)

B,M in
the numerator are different for the two mobility functions B and M, the coefficients e(1) and e(2) in
the denominator are the same for these functions.

We now insert Eqs. (B5), (B4), and (B1a) into Eq. (B2), obtaining an equation for the fixed-point
location valid for small ξ and η ≡ −1/log ξ . In order to find its asymptotic solutions in the limit
ξ → 0, note that order-ξ terms are subleading to order-η terms. Ignoring the former, one obtains a
quadratic equation in η. The solution yields η as a function of δQ = Q B©

c − Q,

η = f (δQ), (B6a)

Q B©
c = B0

√
3C

M0(CM0 − B0)
. (B6b)

The function f has a zero at Q = Q B©
c , corresponding to the value of Q at which the node N

touches the collision sphere. This corresponds to bifurcation B©. For a1/a2 = 0.9, we obtain Q B©
c =

6.6759, and the function f has the series expansion

f (δQ) = 0.0488δQ − 0.0255δQ2 + 0.0147δQ2 + · · · (B7)

064401-13



DUBEY, GUSTAVSSON, BEWLEY, AND MEHLIG

in δQ = Q B©
c − Q. Changing variables from η back to ξ , we arrive at

ξ = exp[−1/ f (δQ)]. (B8)

Inserting f (δQ) ≈ 0.0488δQ yields Eq. (5).
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