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Wavy regime of a colloidal falling film
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In this paper, we study the linear stability and the subsequent formation of nonlinear
waves in a colloidal, gravity-driven falling film flow. We first investigate the system’s
stability by performing a linear stability analysis and observe that the presence of colloidal
particles stabilizes both the long-wave surface and the short-wave shear instability modes.
The stabilization is attributed to Brownian diffusion equilibrating the leading order particle
volume fraction, causing a uniform increase in viscosity. With the particle evolution
equation decoupled from the momentum equation in the linear limit, we analytically
study the damped yet intricate evolution of perturbations to the particle concentration
field. The particle mode decays via three different asymptotic routes: Brownian diffu-
sion, anomalous diffusion, and Taylor dispersion. To study the nonlinear waves, we then
derive nonlinear models in the framework of long-wave theory using Benney’s gradient
expansion approach and the integral-boundary-layer approach. Subsequently, we use a
central-manifold approach to derive a depth-averaged equation for the particle volume
fraction evolution, incorporating Brownian diffusion and Taylor dispersion. Comparisons
of the linear predictions of the nonlinear models with the linear stability calculations show
good agreement in the limit of small wave numbers.
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I. INTRODUCTION

Falling liquid films are ubiquitous, from water trickling down a windowpane during rainfall to
the tear film protecting our eyes. They are observed in diverse engineering and natural scenarios and
can occur over a vast range of length and timescales. In industrial processes, the dynamics of falling
films play a crucial role in deciding the quality of a coated surface and the heat and/or mass exchange
processes across the gas-liquid interface. Falling film dynamics is also an intriguing free-boundary
problem that exhibits a prominent wavy regime, often serving as a canonical problem for studying
spatiotemporal chaos. Investigations into these wavy dynamics began with the seminal work of
Kapitza and Kapitza [1] in 1949 and since then has been extended with further additional physics
of electric field [2], thermal effects [3], intermolecular forces [4], topography [5], and surfactants
[6] to name a few (also see reviews by Oron et al. [7], Craster and Matar [8]). Although several
thin-film flows are particle-laden, a falling film’s wavy dynamics when the underlying fluid has an
evolving microstructure is relatively unexplored. This paper probes the dynamics of a falling film
of colloidal suspension, both in the linear and nonlinear regimes.

In the absence of any underlying microstructure, experiments and theoretical investigations on
falling film dynamics have shown that waves’ inception occurs via long-wavelength disturbances
triggering instabilities in an initially uniform laminar flat film—a Nusselt flow [9]. This instability
is characterized by the surface waves propagating twice as fast as the mean fluid velocity. Benjamin
[10] and Yih [11] predicted the critical Reynolds number for the onset of this instability via a linear
stability analysis of the Nusselt flow in the long-wave limit. The subtle effects of unsteady inertia act
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as a growth mechanism for these long-wavelength instabilities as they compete with the stabilizing
effect of the wall-normal component of gravity [12]. The falling film also exhibits a shear mode
instability, similar to other wall-bounded flows [13], with waves propagating slower than the mean
fluid velocity and occurring over shorter wavelengths. As observed by Chin et al. [14], a distinct
difference is that the long-wave surface mode instability has the disturbance amplitude peaking at
the free surface; the disturbance amplitude peak occurs closer to the wall in the case of the shear
mode instability. They also observed an increase in surface tension and a decrease in inclination
angle stabilized the surface mode while destabilizing the shear mode. The shear mode instability
occurs at Reynolds numbers that are significantly higher than that of the critical Reynolds number
of the long-wave instability, except for very small inclinations [15].

A natural question to ask is what happens to the waves in a falling film when nonlinear effects
become important? Benney [16] in 1966 addressed this by performing a long-wave expansion and
derived a nonlinear evolution equation for the film height h. The Benney equation correctly predicts
the onset of the long-wave instability and its subsequent nonlinear modulations when fluid inertia
isn’t large. The Benney equation’s description of waves in falling films is well studied, including in
the framework of dynamical systems [17]. In the small-amplitude limit, the Benney equation reduces
to the equation derived by Homsy [18] (also known as the Kuramoto-Sivashinsky equation in
literature), a popular reduced-order model for the Navier-Stokes equation for smooth interfaces
[9,19]. However, beyond the stability threshold, the Benney equation is susceptible to finite-time
blowup [17,20]. The Benney equation’s drawback arises from h being the only degree of freedom,
thus introducing a high degree of nonlinearity, rendering it unusable for even a modest Reynolds
number (Re = ρu0h0/μ f , where ρ is the fluid density, u0 is the flow velocity, h0 is the flow length
scale, and μ f is the fluid viscosity). This limitation can be removed using an approach of depth
averaging the momentum equation—the integral boundary layer (IBL) approach [21]. This approach
involves applying the boundary-layer approximation to the momentum equation and subsequently
depth averaging the equation by assuming a self-similar velocity profile alongside the long-wave
approximation. A system of two equations is then obtained: an evolution equation for the free
surface and an evolution equation for the flow rate. This system no longer faces the finite-time
divergence issues that plague the Benney equation.

Recently, several studies have attempted nonlinear modeling of falling films with an additional
evolving scalar field in the context of thermocapillary instabilities, with the evolving scalar field
being the temperature field inside the film. While investigating thermocapillary instability in falling
films, an interfacial instability triggered due to variations in surface tension, Kalliadasis et al. [22,23]
studied the effects of a local heat source and a uniformly heated bottom plate, respectively. By
coupling the momentum and energy equation via the surface tension, which in turn would be a
function of temperature, they wrote depth-averaged equations using the IBL approach. Ruyer-Quil
et al. [24], and Scheid et al. [25] later improved the model using an IBL approach but with
polynomial test functions for both the velocity and the temperature fields and showed improvements
in the predictions of the criticality conditions. They observed that the increase in Prandtl number
has a destabilizing effect at small Reynolds numbers and a stabilizing influence at large Reynolds
numbers. However, they also observed that their model leads to unphysical negative temperatures in
the system for larger Prandtl numbers. Trevelyan et al. [26] countered this issue by improving the
previous model with modifications to the weight functions.

The dynamics of particle-laden flows can be mapped into a parameter space spanned by three
nondimensional numbers: the Reynolds number Rep = ρpγ̇ a2/μ f acting as a measure of fluid
inertia, the Stokes number St = (2/9)a2ρpu0/μ f h0 describing the importance of particle inertia, and
the Peclet number Pep = γ̇ a2/D0 quantifying the role of Brownian motion. Here, ρp is the density
of the particle, γ̇ is the shear rate, a is the particle size, D0 = kBT/6πμ f a, kB is the Boltzmann
constant, and T is the temperature of the system. For free-surface particle-laden flows, a large body
of work exists in the St � 1 limit—granular flows [27–30]. Shallow granular flows act as good
models for avalanches, mudslides, and pyroclastic flows. The opposite limit, St = 0, is relevant for
a wide array of problems in thin films of colloidal suspensions and has received relatively less

064307-2



WAVY REGIME OF A COLLOIDAL FALLING FILM

attention. The presence of particles influences the fluid rheology, with concentration-dependent
viscosity and density being the most obvious changes [31]. Einstein [32] calculated the intrinsic
viscosity [O(φ)] of a dilute suspension of rigid spherical particles. Analyzing the hydrodynamic
interaction of a particle pair, Batchelor and Green [33] calculated the next correction [O(φ2)]
to suspension viscosity. However, these relations are inadequate for high particle concentrations
wherein one then uses different empirical models, the Krieger-Dougherty correlation being one
of them [34–37]. Also, the particles in the fluid get advected by the motion of the fluid and also
diffused either due to thermal effects, as would be in the case of Brownian suspensions [37] or by
hydrodynamic effects, as would be the case of non-Brownian suspensions [36,38,39].

Coating processes involve thin films of colloidal suspensions [40–42] and a key requirement
in such processes is the deposition of a uniform layer over the substrate, specifically in the
paint and inkjet printing industry. Thus it becomes essential to study the stability of shallow
layers of colloidal suspension. Several authors have studied drying colloidal thin films using both
theoretical and numerical calculations and experiments [42–44]. With the suspended particles
being colloidal, implying Pep � 1, Brownian diffusion dominates in dictating the dynamics of the
particles. Goehring et al. [45] studied the mechanical instabilities in colloidal film drying using an
advection-diffusion equation for the particle phase while accounting for Brownian diffusion and
electrostatic contributions to the osmotic pressure with good agreement with experiments. While
studying a similar drying process, Wang and Brady [46] performed calculations using both a simple
advection-diffusion equation accounting only for Brownian diffusion and compared the results
with Brownian dynamics (BD) simulations. They show that the model agrees well with the BD
simulations as long as Pep � 1. Sobac et al. [47] predicted the onset of the Benard-Marangoni
instability using a similar advection-diffusion equation with good agreement with experiments. In
the context of freezing colloidal suspensions, Peppin et al. [48] performed a linear stability analysis
using a similar formulation and identified a mechanism for pattern formations. Nevertheless, what
is left unexplored is the interfacial stability and wavy dynamics of a gravity-driven colloidal film.

In the problem of a thin film with a moving contact line with negatively buoyant non-Brownian
suspensions, Zhou et al. [49] used the lubrication approximation and balance of viscous and
gravitational forces to arrive at a coupled set of equations. However, they assumed the concentration
constant along the gradient direction, not allowing particles to settle. Cook [38] extended the model
to include the effect of particle settling by a balance of settling to shear-induced migration using the
diffusive flux approach. Murisic et al. [36,39] extended the model developed by Cook [38] to study
the well-mixed and settled regimes of the particles in the film. Mavromoustaki et al. [50] extended
the work of Murisic et al. [36] with the inclusion of the surface tension terms. They observed that the
inclusion of surface tension terms helped regularize the film height by suppressing the unphysical
singular shock that is known to occur in its absence. To study the accumulation of non-Brownian
particles in the advancing meniscus leading to a viscous fingering instability, Chen et al. [51] derived
a depth-averaged particle concentration equation showing a self-similar behavior of the particles.
In the case of Brownian suspensions, Espin and Kumar [37] studied the spreading of thin films
and droplets with colloidal suspensions using a similar lubrication theory-based formalism. In the
absence of shear-induced migration and gravitational fluxes, the particle concentration is uniform in
the wall-normal direction at leading order (diffusion is the sole agent in the gradient direction and
acts rapidly to equilibrate the concentration field). Pham and Kumar [52] used a similar formulation
for the problem of an evaporating drop with colloidal suspensions on a permeable substrate. They
showed that evaporation and imbibition tend to have the same effect in promoting an increase in the
particles’ concentration toward the droplet’s contact line.

This paper focuses on studying the interfacial stability of a gravity-driven falling colloidal liquid
film, starting from a linear stability analysis to a long-wave nonlinear analysis. In the present paper,
we will be studying Brownian suspensions, ignoring the effects of shear-induced migration and
particle-induced normal stresses. Our goal is twofold: analyze particle concentration field evolution
in a Nusselt flow and then derive a consistent reduced-order model for describing particle transport
in falling films. If we exclude fluid inertia (Re = ρu0h0/μ f = 0), velocity disturbances on a falling
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FIG. 1. Schematic of a colloidal falling film.

film will manifest as traveling damped waves, entirely along expected lines. Even in this seemingly
uninteresting regime, the particle concentration field φ displays vibrant dynamics. We conduct a
linear stability analysis to find an analytical solution for particle concentration perturbations, labeled
as a particle mode. As expected, it is a purely damped mode but has three asymptotics limits for
the decay rate: a pure Brownian mode (∼k2/Pe), a Taylor mode (∼k2Pe), and an anomalous mode
(∼√

k/Pe). Here k is the streamwise wave number and Pe = u0h/D0 is the Peclet number defined
based on film thickness (h0). The insights from the linear stability analysis are crucial in formulating
the nonlinear wave models. Using central manifold analysis [53], we derive a nonlinear evolution
equation for φ(x, t ) that captures the physics of Taylor dispersion. Next, we incorporate fluid inertia
effects and derive a Benney-like equation and IBL equations describing a particle-laden falling
film’s wavy regime. As discussed earlier in the context of heated falling films, coupling the evolution
of an additional scalar field to the IBL equations is nontrivial. Since the typical Grashof number for
heated falling films is small, most studies ignore the buoyancy forcing in the momentum equations;
the coupling occurs only at the interfacial boundary conditions [9]. Particle-laden falling films, with
concentration-dependent viscosity, do not offer us such comfort. We study the derived reduced-order
models using numerical simulations and analyze the modification of nonlinear waves by particle
concentration.

The organization of the paper is as follows. Section II describes the problem to be studied.
Section III deals with the system’s linear stability analysis, looking into the surface mode, shear
mode, and particle mode. To probe the nonlinear regime, a model based on the asymptotic expansion
approach of Benney [16] is derived in Sec. IV with a center manifold approach used to incorporate
Taylor dispersion for the particle phase. The nonlinear waves after the onset of instability are
studied in Sec. IV A. With the shortcomings of the modified Benney equations, a boundary layer
approximation-based approach is then used to derive the IBL model for the coupled system that
accommodates small to moderate Reynolds numbers in Sec. IV B. Finally, we discuss the linear
stability analysis and the nonlinear models in Sec. V and summarize the work in Sec. VI.

II. PROBLEM FORMULATION

We will consider a particle-laden two-dimensional viscous incompressible thin film falling down
an inclined plane under the action of gravity (see Fig. 1). The particles are colloidal, neutrally
buoyant, and are assumed to be rigid. Therefore, we assume that the Reynolds number (Rep) and
Peclet number (Pep) associated with the particle size are vanishingly small. The substrate is inclined
at an angle α, and the instantaneous height of the film is taken as h(x, t ). With the presence of
particles, the effective viscosity becomes a function of the particle volume fraction (φ) and is written
as μ(φ). The governing equations for this system are

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · T + ρg, (2)
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where u = (u, v) is the velocity field, ρ the density, and T is the stress tensor denoted as

T = −PI + μ(φ)(∇u + ∇uT ). (3)

P is the pressure field and I the identity tensor. In the above system, the particle contribution enters
only through the modification of shear stresses, ignoring the particle normal stresses’ contribution.
Since the problem focuses on capturing the colloidal particles’ effects and normal stresses scale as
particle size squared [54], this simplification holds. We complement the above equations with the
following boundary conditions:

(1) The no-slip, no-penetration boundary conditions at y = 0:

u = 0. (4)

(2) The balance of normal and tangential stresses at the free interface y = h(x, t ),

P = 2μ(φ)

1 + (
∂h
∂x

)2

[(
∂h

∂x

)2
∂u

∂x
− ∂u

∂y

∂h

∂x
− ∂v

∂x

∂h

∂x
+ ∂v

∂y

]
− σ ∂2h

∂x2[
1 + (

∂h
∂x

)2]3/2 , (5)

0 = 4μ(φ)
∂u

∂x

∂h

∂x
− μ(φ)

(
1 −

(
∂h

∂x

)2)(
∂u

∂y
+ ∂v

∂x

)
, (6)

where σ is the surface tension. Marangoni forces due to the inhomogeneity in interfacial particle
concentration are ignored here.

(3) The kinematic boundary condition at the free interface y = h(x, t ):

∂h

∂t
+ u

∂h

∂x
= v. (7)

The concentration-dependent viscosity is obtained from the Krieger-Dougherty correlation [37]
as

μ = μ f

(
1 − φ

0.64

)−2

= μ f κ (φ), (8)

where μ f denotes the fluid viscosity. For convenience, the nondimensional part of viscosity is
written as κ (φ). As can be noted, the viscosity diverges at a volume fraction of 0.64, which for
hard spheres is the maximum random packing fraction. The evolution of the particle concentration
is described by an advection-diffusion equation for the volume fraction of the particles φ,

∂φ

∂t
+ u · ∇φ = ∇(D · ∇φ), (9)

where D is the diffusion tensor. Here the effects of shear-induced migration on the particle flux are
neglected. This is because, in the case of colloidal particles, Brownian diffusion can be seen to be
dominant. For near-equilibrium colloidal dispersions, the diffusion tensor is isotropic (D = DI) and
is given by the generalized Stokes-Einstein relation [31],

D = D0K(φ)
d

dφ
[φZ (φ)],

= D0(1 − φ)6.55 d

dφ

(
1.85φ

0.64 − φ

)
,

= D0(1 − φ)6.55 1.184

(0.64 − φ)2 , (10)

where D0 = kBT/6πμ f a is the free particle diffusion coefficient with kB being the Boltzmann
constant, T being the characteristic temperature, and a being the particle radius. In Eqs. (10),
K(φ) denotes the sedimentation coefficient for which the Richardson-Zaki correlation for the
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sedimentation coefficient is used and Z (φ) is the compressibility factor adopted from Espin and
Kumar [37]. Similar to the way viscosity is written, the nondimensional part of diffusivity is written
as ϒ(φ) such that D = D0ϒ(φ). Equation (9) is complemented by the no-flux boundary condition
at solid substrate y = 0,

∂φ

∂y
= 0, (11)

and the same at the free surface y = h(x, t ):

−D

[
∂φ

∂y
− ∂h

∂x

∂φ

∂x

]
= 0. (12)

The governing equations are rendered dimensionless with the film height (h0) for length scales,
the velocity of a falling film devoid of particles (u0 = ρgh2

0 sin α/3μ f ) for the velocity scale, and
an inertial scale for pressure. With the Reynolds number as Re = ρh0u0/μ f , the Peclet number
as Pe = u0h0/D0, and the Weber number as We = σ/(ρu2

0h0), the nondimensional equations are
written as

∂u

∂x
+ ∂v

∂y
= 0, (13)

Re

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −Re

∂P

∂x
+ ∂

∂x

(
κ (φ)

∂u

∂x

)
+ ∂

∂y

(
κ (φ)

∂u

∂y

)

+ ∂κ (φ)

∂y

∂v

∂x
− ∂κ (φ)

∂x

∂v

∂y
+ 3, (14)

Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −Re

∂P

∂y
+ ∂

∂x

(
κ (φ)

∂v

∂x

)
+ ∂

∂y

(
κ (φ)

∂v

∂y

)

+ ∂κ (φ)

∂x

∂u

∂y
− ∂κ (φ)

∂y

∂u

∂x
− 3 cot α, (15)

Pe

(
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y

)
= ∂

∂x

(
ϒ(φ)

∂φ

∂x

)
+ ∂

∂y

(
ϒ(φ)

∂φ

∂y

)
. (16)

The boundary conditions at y = 0 are

u = v = 0,
∂φ

∂y
= 0, (17)

and at y = h are

Re P = 2κ (φ)[
1 + (

∂h
∂x

)2
][(

∂u

∂x

(
∂h

∂x

)2

− ∂v

∂x

∂h

∂x

)
− ∂u

∂y

∂h

∂x
+ ∂v

∂y

]

− We Re ∂2h
∂x2[

1 + (
∂h
∂x

)2]3/2 ,

0 = 4κ (φ)
∂u

∂x

∂h

∂x
− κ (φ)

(
1 −

(
∂h

∂x

)2)(
∂u

∂y
+ ∂v

∂x

)
,

ϒ(φ)
∂h

∂x

∂φ

∂x
− ϒ(φ)

∂φ

∂y
= 0,

∂h

∂t
+ u

∂h

∂x
= v. (18)

For the sake of brevity, we use the same notation for the nondimensional quantities. It must be
noted that since we are considering the particles to be colloidal, the Reynolds number (Re) and
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Peclet number (Pe) based on the film thickness are taken to be finite, whereas, the Reynolds number
(Rep) and Peclet number (Pep) based on the particle size are negligible.

III. LINEAR STABILITY ANALYSIS

For the linear stability analysis, the solution of a steady, unidirectional flow is taken as the base
state, which is a constant particle concentration φb and a half -parabolic Nusselt flow given by

ub = 3κ−1
b

(
y − y2

2

)
, (19)

where κb = (1 − φb/0.64)−2. A normal mode analysis is done by perturbing the variables in the
problem as a sum of their base states and a sinusoidal wave of wave number k and wave speed c,
with a said infinitesimally small amplitude. Thus, each physical parameter in the system (say X ) are
written in the form X = Xb + X̂ eik(x−ct ), with Xb referring to the base flow variables and X̂ referring
to the infinitesimally small amplitude of the disturbances. This linearization of the momentum and
particle concentration equations [Eqs. (13)–(16)] give a system of linear equations{

ikRe
[
(ub − c)(D2 − k2) − u′′

b

] − κb(D2 − k2)2
}
ψ̂ = κb1(D2 + k2)(u′

bφ̂), (20)

{ϒb(D2 − k2) − ikPe(ub − c)}φ̂ = 0, (21)

where ψ̂ and φ̂ are perturbation stream function and concentration field, respectively, D and primes
denote the derivatives with respect to y of the perturbation and base state quantities, respectively.
κb1 = dκb/dφb is a consequence of expansion of the viscosity term. The linearized boundary
conditions can be subsequently written at y = 1 as{

κb
(
D2 + k2

) − 3

(c − ub(1))

}
ψ̂ = 0, (22)

{
κb

(
D2 − 3k2

)
D + ikRe(c − ub(1))D − (3 cot θ + k2 We Re)

ik

(c − ub(1))

}
ψ̂

+ κb1D
(
u′

bφ̂
) = 0, (23)

−ϒb Dφ̂ = 0 (24)

and at y = 0:

ψ̂ = 0, Dψ̂ = 0, Dφ̂ = 0. (25)

The above set of equations reveal an interesting feature: φ̂ = 0 is a solution of the above system
with the subsequent equations becoming similar to that of Yih [11] but with a modified viscosity.

A. Particle mode

Since the particle perturbation equation is decoupled from the momentum perturbation equation,
it essentially becomes a particle concentration field evolving on top of a background Nusselt flow.
For a Nusselt flow, Eq. (21) that arises from the φ̂ evolution can be written in a more compact form

D2φ̂ = 1

ξ

{
λ + iy

(
1 − y

2

)}
φ̂, (26)

where

ξ = ϒbκb

3kPe
, (27)

λ = −1

3
icκb + k2ξ . (28)
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The above equation admits an analytic solution in terms of Hermite functions as

φ̂ = e−z2/2{C1Hn(z) + C2Hn(−z)}, (29)

where

z = (2ξ )−1/4e−iπ/8(y − 1), (30)

n = −1

2
− 1√

2ξ

(
λ + i

2

)
eiπ/4. (31)

Previous studies on advection-diffusion equations, similar to Eq. (21), have shown that the evolu-
tion of a passive scalar is governed by two distinct timescales, separating three regimes of dispersive
(diffusive) behavior: Brownian diffusion, anomalous diffusion, and Taylor dispersion [55,56]. Here,
Taylor dispersion refers to the enhanced dispersion that occurs along the flow direction under the
combined action of molecular diffusion and shear [57]. Anomalous diffusion, on the other hand,
refers to the intermediary regime that is neither Brownian diffusion nor Taylor dispersion. These
transitions are a consequence of the competition between the asymptotic limits of the Peclet numbers
and the film aspect ratio (ε) [56]. Brownian diffusion would dominate for Pe � 1, with a timescale
of O(Pe). The presence of anomalous diffusion is characterized by a timescale

√
Pe smaller than the

Brownian diffusion. At the same time, Taylor dispersion is associated with a timescale Pe2 smaller
than Brownian diffusion. Thus anomalous diffusion and Taylor dispersion become relevant only in
cases where the relevant Peclet number is large [58]. We will now explore the transition between the
three regimes, guided by the approach of Camassa et al. [56]. First, the limit of ξ → ∞, which in
turn implies that kPe → 0 is studied. Solving Eq. (26) till O(ξ−1) and obtaining λ, the subsequent
wave speed is written as

c(1)
r = Re(c(1) ) ∼ κ−1

b

[
1 + 4

17325

(
kPe

ϒbκb

)2]
, (32)

c(1)
i = Im(c(1) ) ∼ −ϒk

Pe
− 2kPe

105ϒbκ
2
b

. (33)

Here, the superscript Eq. (1) specifies the wave speed corresponding to the particle mode, and the
subscripts r and i denote the real and imaginary parts, respectively. The expression for c(1)

i has two
distinct contributions, the first term coming from the Brownian diffusion, which scales as kPe−1,
whereas the second term is the Taylor dispersion term that scales as kPe. Thus Brownian diffusion
would have the leading contribution for Pe < 1. However, with a large Pe, Taylor dispersion
dominates.

Next we consider the opposite limit, ξ → 0 (kPe → ∞). Inspecting the analytical solution
provided by Eq. (29), this limit implies z → −∞. Thus the complex wave speed is

c(1)
r ∼ 3κ−1

b

[
1

2
−

(
n + 1

2

)√
ξ

]
, (34)

c(1)
i ∼ −ϒk

Pe
−

(
n + 1

2

)
3
√

ξ

κb
. (35)

The contribution of the Brownian diffusion is visible from the first term alongside another that
encompasses the anomalous modes as described by Camassa et al. [56]. Further, as the ratio between
the two goes as

√
Pe/k3, we can infer that the value of Pe has to be large for the anomalous modes

to dominate. Thus Pe can be seen to play an essential role in dictating the occurrence of transitions
between the different classes of modes while otherwise being dominated predominantly by the
Brownian diffusion in the small to order one Pe range.
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TABLE I. Estimates of physical parameters in a particle-laden
falling film.

Parameter Value

Film thickness, h0 (m) 10−5−10−3

Flow length, l (m) 10−2−10−1

Fluid density, ρ (kg m−3) ∼103

Particle density, ρp (kg m−3) ∼103

Surface tension, σ (kg s−2) ∼10−1

Fluid viscosity, μ f (kg m−1 s−1) 10−3−10−1

Particle diameter, a (m) 10−8−10−7

Nondimensional numbers Value

Film aspect ratio, ε = h0
l ∼10−3−10−1

Reynolds number, Re = ρu0h0
μ f

10−3−101

Weber number, We = σ

ρu2
0h0

102–108

Capillary number, Ca = 1
WeRe 10−6–10−2

Peclet number, Pe = u0h0
D0

10–109

Peclet number, Pep = γ̇ a2

D0
10−4–10

Schmidt number, Sc = μ f

ρD0
105–109

B. Surface mode

Equations (20)–(25) permit a solution devoid of particle concentration perturbation (φ̂ = 0).
Taking cues from the surface instability calculations of Yih [11], we explore the surface mode in
the limit of long wavelengths (k � 1). In this limit, one can simplify the problem by expanding the
variables of the problem in powers of wave number as ψ̂ = ψ̂0 + kψ̂1... and c = c0 + kc1... while
taking the solution φ̂ = 0. With this, the resulting equations can be solved till O(k) to obtain the
complex wave speed of the surface mode as

c(2) = c(2)
0 + kc(2)

1 · · · ∼ 3κ−1
b + ikκ−1

b

(
6
5κ−2

b Re − cot α − 1
3 k2We Re

)
. (36)

Here, the superscript Eq. (2) is a label for the surface mode. Also, we retain the k2We term at
O(1) to incorporate the role of surface tension. This can be justified physically since the typical
values of Weber numbers for waterlike systems are large (see Table I). We can easily verify that
the second mode obtained from this linear stability calculation is similar to the one obtained by Yih
[11], except for the presence of viscosity terms (κb) that appear as a consequence of the presence of
particles. Equating Im(c) = 0 and ignoring the surface tension term, we obtain the stability criterion
to be

Rec = 5
6κ2

b cot α, (37)

where Rec denotes the critical Reynolds number. The derived expressions differ from the critical
Reynolds number obtained by Yih [11] with the appearance of a nondimensional viscosity term. The
addition of particles increases the critical Reynolds number, thus bringing an expected stabilizing
effect. This is also evident from the first term in the imaginary part of Eq. (36) as the presence
of viscosity indicates a delay in the onset of instability. We therefore find that the the uniform
increase in bulk viscosity of the base state along the gradient direction acts to stabilize the system.
The hydrostatic pressure term and the surface tension term [second and third imaginary terms of
Eq. (36)] act to stabilize the system. The plots for the different inclinations in Fig. 2(a) show how
smaller inclinations tend to be more stable. It could also be seen that the increase in critical Reynolds
number with an increase in particle volume fraction gets steeper in the case of smaller inclinations.
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FIG. 2. (a) Critical Reynolds number for inclinations of 30◦, 45◦, and 60◦ and (b) critical wave number
plotted for φb = 0.1, 0.2, and 0.3 with inclination angle α = 45◦, We = 103.

Further, a critical wave number can also be obtained by equating the imaginary part of Eq. (36) to
zero as

kc = 1√
We Re

3

√
6

5
κ−2

b Re − cot α. (38)

The critical wave numbers for different values of particle volume fractions are plotted in Fig. 2(b)
for inclination α = 45◦ and Weber number We = 103. The plots show that for a value of Reynolds
number above Rec and wave number 0 < k < kc, the system is linearly unstable. The other notable
effect is with increasing particle volume fraction, the curve shift toward the right. This behavior is
analogous to that of the power-law exponents in the case of a power-law fluid [59] and permeability
in the case of a porous inclined plane [60].

C. Finite wave-number analysis

Next, we investigate the linear response of a colloidal falling film to infinitesimal disturbances
of arbitrary wavelengths. Thus, Eqs. (20) and (21) are posed as an eigenvalue problem for c and
solved numerically using a spectral collocation method [61]. Details on the numerical method
used are in Appendix A. We begin by comparing the asymptotic predictions for the particle mode.
Figure 3 shows the real part of numerically obtained wave speeds, cr , compared with the asymptotic
predictions (dashed lines in the insets) for both k � 1 and k � 1, keeping Pe = 1 fixed. There
is no perceptible change in the values of cr for a higher value of Peclet number Pe = 1000 (see
Fig. 3—blue lines indicating the case of Pe = 1000 overlap the black lines indicating the case
of Pe = 1). However, inspecting ci in Fig. 4(a) shows how Brownian diffusion tends to dominate
throughout the range of k explored for this choice of Peclet number, consistent with the discussion
from the previous section. The inset of Fig. 4(a) shows further detailed comparisons. Once we
subtract the dominant Brownian contribution, the subtle presence of Taylor and anomalous modes
are visible. However, an increase in the Peclet number to 1000 shows a distinct transition between
the three modes. For k � 1, the Taylor mode has the most dominant signature, which is then
succeeded by an intermediate anomalous mode for k ∼ O(1) and, finally, for k � 1 Brownian
diffusion persists [see Fig. 4(b)]. Thus, even though the particle dynamics is purely damped, it
offers rich physics. The spatial scales associated with the disturbance and the value of Pe dictate
the particulate phase’s dispersion. Figures 5(a)–5(f) show the eigenfunctions pertaining to the three
regimes of the particle mode.
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0.02
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FIG. 3. Real part of wave speed corresponding to the particle mode calculated numerically for φb = 0.01,
Pe = 1 (black line) and Pe = 1000 (blue line). Comparisons with the asymptotic calculations indicated by
dashed lines are shown in the inset.

We then consider the momentum Eq. (20) to probe the surface mode. As predicted by the long-
wave calculations, the surface mode instability appears for small wave numbers (see Sec. III B).
Exploring larger wave numbers shows the onset of another instability—the viscous Tollmien-
Schlicting shear mode instability, similar to those found in plane Poisueille and Blasius boundary
layer flows at large Reynolds numbers [62]. The neutral stability curves of both the interfacial and
the shear modes are visible in Fig. 6. As per expectations, on increasing the particle concentration,
the onset of instability is delayed. Investigating the vorticity eigenfunctions for the surface mode
in Fig. 7(a) and that of the shear mode in Fig. 7(b) shows how the structure of the two modes
varies from each other. The O((kRe)1/3) scaling of the wall-normal coordinate for the shear mode
conforms with critical layer arguments [63]. Chin et al. [14] also noted earlier that the shear mode
has a very distinct localized peak near the bottom wall. For the particle-free problem, Floryan et al.
[15] analyzed the dynamics of the two modes in a falling film and observed that the shear mode
could prevail over the surface mode only when the inclination angle is minimal.

10-3 10-1 101 103
10-4

10-2

100

100 102

0.1

0.3

(a)

10-3 10-1 101 103
10-3

10-2

10-1

100

101

(b)

FIG. 4. Comparisons of the imaginary part of wave speed corresponding to the particle mode calculated
numerically with the asymptotic calculations in black lines with (a) Pe = 1 and (b) Pe = 1000 for φb = 0.01
and red lines indicating the corresponding numerical calculations.

064307-11



DARISH JESWIN DHAS AND ANUBHAB ROY

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Eigenfunctions of the particle mode at t = 0.001 for φb = 0.01 with Pe = 1000. (a) Taylor mode
- φ̂; k = 0.001, (b) Taylor mode - ψ̂ ; k = 0.001, (c) Anomalous mode - φ̂; k = 1, (d) Anomalous mode - ψ̂ ; k =
1, (e) Brownian diffusion mode - φ̂; k = 1000, and (f) Brownian diffusion mode - ψ̂ ; k = 1000.

Thus the linear stability analysis for a colloidal falling film has revealed two features: the
stabilization of the surface mode and the intricate decay dynamics of the particle mode. Next, we
will try to understand the wavy dynamics of the particle-laden film in the nonlinear regime, with
insights obtained from the linear stability analysis of the particle mode acting as a helpful guide.

100 105

0.1

0.3

0.5

0.7

100 101 102 103 104 105

0.02

0.04

0.06

FIG. 6. Neutral stability curves corresponding to both the shear mode and the surface mode for φb = 0.01
(—), φb = 0.1 (- - -), φb = 0.2 (· · · ), and φb = 0.3 (-·-·-) with Pe = 1, α = 45◦, We = 103.
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(a) k = 0.025, Re = 20 (b) k = 0.5, Re = 106

FIG. 7. Vorticity fields with streamlines overlaid for the surface mode (a) and shear mode (b) at t = 0.001
for φb = 0.01 with Pe = 1, α = 45◦, We = 103.

IV. NONLINEAR LONG-WAVE THEORY

A falling film of height h0 and flow length l has a natural small parameter, ε = h0/l - the film
aspect ratio. Thus we carry out a long-wave scaling of the governing equations to obtain [7]

∂u

∂x
+ ∂v

∂y
= 0, (39)

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −εRe

∂P

∂x
+ ε2 ∂

∂x

(
κ (φ)

∂u

∂x

)
+ ∂

∂y

(
κ (φ)

∂u

∂y

)

+ ε2 ∂κ (φ)

∂y

∂v

∂x
− ε2 ∂κ (φ)

∂x

∂v

∂y
+ 3, (40)

ε2Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −Re

∂P

∂y
+ ε3 ∂

∂x

(
κ (φ)

∂v

∂x

)
+ ε

∂

∂y

(
κ (φ)

∂v

∂y

)

+ ε
∂κ (φ)

∂x

∂u

∂y
− ε

∂κ (φ)

∂y

∂u

∂x
− 3 cot α, (41)

εPe

(
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y

)
= ε2 ∂

∂x

(
ϒ(φ)

∂φ

∂x

)
+ ∂

∂y

(
ϒ(φ)

∂φ

∂y

)
. (42)

The above equations are complemented by the boundary conditions at y = 0,

u = v = 0,
∂φ

∂y
= 0, (43)

and at y = h

Re P = 2εκ (φ)[
1 + ε2

(
∂h
∂x

)2]
[
ε2

(
∂u

∂x

(
∂h

∂x

)2

− ∂v

∂x

∂h

∂x

)
− ∂u

∂y

∂h

∂x
+ ∂v

∂y

]
− ε2We Re ∂2h

∂x2[
1 + ε2

(
∂h
∂x

)2]3/2 ,

0 = 4κ (φ)ε2 ∂u

∂x

∂h

∂x
− κ (φ)

(
1 − ε2

(
∂h

∂x

)2)(
∂u

∂y
+ ε2 ∂v

∂x

)
, ε2ϒ(φ)

∂h

∂x

∂φ

∂x
− ϒ(φ)

∂φ

∂y
= 0.

(44)
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Now we adopt an approach that is often used for problems in falling film dynamics [7],
performing a perturbative expansion of the physical variables u, v, p, and φ,

u = u0 + εu1..., v = v0 + εv1...,

P = P0 + εP1..., φ = φ0 + εφ1... (45)

On substituting the above expansions, the leading order expression for the particle concentration,
with the no-flux boundary conditions, reveals the dominance of the vertical diffusion. Thus diffusion
equilibrates the particle concentration in the gradient direction, provided εPe � 1, implying φ is
independent of y at this order. This allows us to write the leading order velocity as

u0 = 3

κ (φ0)

(
yh − y2

2

)
. (46)

Following the work of Espin and Kumar [37], it is possible to write an equation for the particle
concentration field under the assumption that Pe is an O(ε) quantity. This assumption is crucial in
to retain the diffusion term. It must be noted that the definition of Peclet number as written by Espin
and Kumar [37] is equivalent to Pe/ε as defined here. With the particle concentration field being
invariant along the gradient direction, it can be decomposed as φ(x, y, t ) = φ00(x, t ) + O(εPe).
Upon substitution of this decomposition in Eq. (42) and integrating across the film height to drop
all y dependencies, we obtain

∂ (hφ00)

∂t
+ ∂ (qφ00)

∂x
= ε

Pe

∂

∂x

(
ϒ(φ00)h

∂φ00

∂x

)
. (47)

Here q = ∫ h
0 udy denotes the flow rate. As stated earlier, the above equation requires Pe to

be a small quantity. However, in the present study of a colloidal falling film, the Peclet number,
based on film thickness as a characteristic length scale, can be large (see Table I). Also, we
previously observed (Sec. III A) that in the limit of small wave numbers and large Peclet numbers,
Taylor dispersion dominates over molecular diffusion. Thus we proceed to incorporate the Taylor
dispersion component in the nonlinear wave equation for a falling film by using the central manifold
approach. Roberts [64] and Mercer and Roberts [53] previously used a similar approach to study
contaminant transport in conduits with spatially varying cross-sectional areas. For this, we first write
the volume fraction evolution equation as

Lφ = εPe

(
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y

)
− ε2 ∂

∂x

(
ϒ

∂φ

∂x

)
, (48)

where L = ϒ∂2/∂y2 is the linear operator. For simplicity, the Brownian diffusivity term (ϒ) is taken
as a function of the depth-averaged concentration field φ̄(x, t ). This is complemented by the no-flux
boundary conditions at both the bottom substrate and the free interface. With this system, assuming
that the variations along x and t happen over large length and time scales, the volume fraction can be
described by a cross-section averaged volume fraction noted as φ̄(x, t ). We thus proceed to describe
the center manifold as

φ = V [y; φ̄], (49)

with the evolution on the center manifold given by

∂φ̄

∂t
= G[φ̄]. (50)

Here, the square brackets denote that the quantities have a functional dependence on φ̄ and
its derivatives with respect to x. Assuming slow variations along x and t , we write an asymptotic
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expansion of the form

V ≈
∞∑

n=0

εnV n G ≈
∞∑

n=0

εnGn, (51)

where n = 1, 2, .... To proceed with the analysis, we also require knowledge of the velocity field.
As noted by Mercer and Roberts [53], it is convenient to fix a velocity profile to evaluate φ at higher
orders. Therefore, inspired by the leading order velocity field Eq. (46), we consider the fluid flow to
be a quasi-Nusselt flow velocity as

u ∼ 3q

h

(
ȳ − ȳ2

2

)
. (52)

The particle concentration evolution is subsequently written in different orders as

LV 0 = 0,

LV n = εPe

(
V n−1

t +
n∑

l=1

n−l∑
p=0

Vφ(p)
∂ pGl

∂xp
+ u

∂V n−1

∂x
+ v

∂V n−1

∂y

)
− ε2 ∂

∂x

(
ϒ

∂V n−2

∂x

)
. (53)

With the calculations done till n = 2, the particle volume fraction obtained is

φ ≈ V 0 + εV 1 + ε2V 2

= φ̄ + εhq
Pe

ϒ

(
1

15
− ȳ2

2
+ ȳ3

2
− ȳ4

8

)
∂φ̄

∂x
+ ε2h

(
ȳ2

2
− 1

6

)
∂h

∂x

∂φ̄

∂x

+ ε2h2q
Pe2

ϒ2

(
− 1

315
+ ȳ2

240
+ ȳ4

24
− ȳ5

20
+ ȳ6

80

)
∂h

∂t

∂φ̄

∂x

+ ε2h3 Pe2

ϒ2

(
− 2

315
+ ȳ2

30
− ȳ4

24
+ ȳ5

40
− ȳ6

240

)
∂q

∂t

∂φ̄

∂x

+ ε2hq2 Pe2

ϒ2

(
− 4

225
+ 8ȳ2

105
+ ȳ3

30
− 11ȳ4

120
− ȳ5

40
+ ȳ6

15
− 3ȳ7

112
+ 3ȳ8

896

)
∂h

∂x

∂φ̄

∂x

+ ε2h2q
Pe2

ϒ2

(
17

1575
− 43ȳ2

560
+ ȳ3

30
+ 3ȳ4

40
− ȳ5

20
− ȳ6

120
+ ȳ7

112
− ȳ8

896

)
∂q

∂x

∂φ̄

∂x

+ ε2h2(1 − Pe)

(
1

6
− ȳ2

2

)
∂2φ̄

∂x2
+ ε2q2h2 Pe2

ϒ2

(
4

525
− 2ȳ2

35
+ ȳ3

30
+ 3ȳ4

40

− ȳ5

8
+ ȳ6

12
− 3ȳ7

112
+ 3ȳ8

896

)
∂2φ̄

∂x2
+ ε2h2 ϒφ̄

ϒ
(1 − Pe)

(
1

6
− ȳ2

2

)(
∂φ̄

∂x

)2

+ ε2q2h2 Pe2ϒφ̄

ϒ3

(
− 2

1575
+ ȳ2

42
− ȳ3

30
− ȳ4

30
+ ȳ5

10
− 19ȳ6

240
+ 3ȳ7

112
− 3ȳ8

896

)(
∂φ̄

∂x

)2

. (54)

Here, ϒφ̄ = dϒ(φ̄)/dφ̄. Subsequently, the evolution of the depth-averaged particle volume
fraction field becomes

∂φ̄

∂t
≈ G1 + εG2

= −q

h

∂φ̄

∂x
+ ε

1

Pe

∂

∂x

(
ϒ

∂φ̄

∂x

)
+ ε

ϒ

Pe

∂h

∂x

∂φ̄

∂x

+ ε
Pe

ϒ

(
2

105
q2 ∂2φ̄

∂x2
+ 2

105

q2

h

∂φ̄

∂x

∂h

∂x
− 2

105
q2 ϒφ̄

ϒ

(
∂φ̄

∂x

)2

+ 4

105
q
∂φ̄

∂x

∂q

∂x

)
. (55)
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Appendix B has the detailed derivation of V n, and Gn evaluated till n = 2. The above can be
rewritten in the conservative form as

∂ (hφ̄)

∂t
+ ∂ (qφ̄)

∂x
= ε

∂

∂x

{(
ϒ(φ̄)

Pe
h + 2Pe

105

q2h

ϒ(φ̄)

)
∂φ̄

∂x

}
. (56)

It should be noted that the above equation is similar to the one obtained by Mercer and Roberts
[53] for studying contaminant transport in a channel with spatially varying width. The n > 2 terms
are responsible for incorporating higher-order models of Taylor dispersion [53,65]. Suppose one
were to do this calculation for a constant film thickness (flat film with a half-parabolic flow profile),
the evolution equation for the depth-averaged particle volume fraction will remain the same as
Eq. (56), but with h and q being constants.

With the particle volume fraction field now evaluated, we proceed to calculate the O(ε) correc-
tion to the flow rate. For this, we use the evaluated particle concentration field till O(ε) [first two
lines of Eq. (54)] and derive an expression for the flow rate

q = κ−1h3

[
1 − ε

(
cot α

∂h

∂x
− ε2WeRe

3

∂3h

∂x3

)
+ εReκ−2

(
κφ̄

2

5
h2 ∂φ̄

∂t
− κ−1κφ̄

8

35
h4 ∂φ̄

∂x
+ 6

5
h3 ∂h

∂x

)

− εκ−2κφ̄

4

105
h4 Pe

ϒ(φ̄)

∂φ̄

∂x

]
, (57)

with the evolution of the film height described by

∂h

∂t
+ ∂q

∂x
= 0. (58)

Here, κφ̄ = dκ (φ̄)/dφ̄. As previously mentioned in Sec. III B, we retain the ε2We term at O(1)
to incorporate the role of surface tension. The above Eqs. (58) and (57) coupled with Eq. (56) form
the modified Benney system of equations. To study the linear stability of the above model equations,
the equations are linearized as previously done in Sec. III. The resulting set of linear equations can
be subsequently solved for c to obtain

c(1) = κ−1
b − iεk

(
ϒb

Pe
+ 2

105

κ−2
b Pe

ϒb

)
, (59)

c(2) = 3κ−1
b + iεkκ−1

b

(
6

5
κ−2

b Re − cot α − We Re

3
ε2k2

)
. (60)

It is immediately evident that for ε → 1, we recover the wave speed expressions that were
obtained from the previous linear stability calculation in Sec. III for the surface mode (c(2)). Also,
the expression for the wave speed corresponding to the particle mode (c(1)) bears resemblance to
Eqs. (32) and (33). The linear stability analysis of the complete system (Sec. III), when analyzed
in the limit of Pe � 1, highlighted the dominance of Brownian diffusion. Instead, suppose we were
interested in larger values of Peclet numbers. In that case, the role of Taylor dispersion becomes
crucial. However, the restriction for the model to be valid dictates that Pe has to be a O(1) quantity.
In the Stokesian limit (Re = 0), a modal linear stability analysis indicates that the particle-laden film
is exponentially stable [Im(c) < 0]. However, the solution of the linear initial value problem (IVP)
reveals the possibility of a transient algebraic growth of disturbances. linearizing the Eqs. (56)– (58)
with h = 1 + δh1(t )eikx and φ̄ = φb(1 + δφ̄1(t )eikx ), where δ � 1, in the limit of Re = 0, we obtain
the following solution:

h = 1 + δ �
[

h1(0)eik(x−c(2)t ) + κb1φb
e−ikc(2)t − e−ikc(1)t

c(2) − c(1)
eikx

]
(61)

φ̄ = φb + δ �[φbφ̄1(0)eik(x−c(1)t )], (62)
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FIG. 8. Evolution of film height h and particle concentration φ for the zero-inertia system with k = 0.25
and Pe = 1 for φb = 0.1 (—) and φb = 0.2 (- - -); α = 45◦, We = 103. The blue lines indicate the solution of
the linear IVP for the corresponding cases.

where c(1) and c(2) are the complex wave speeds of the particle and surface mode respectively [see
Eqs. (59) and (60)]. The linear IVP solution is then compared with the solution of the full nonlinear
system [Eqs. (56)–(58)]. To retain the surface tension terms, we replace We Re with Ca−1. The
nonlinear equations are solved numerically with the initial concentration field taken as φ̄(x, 0) =
φb(1 − 0.1 cos kx), leaving the initial height unperturbed. We perform the numerical calculations
with ε = 0.2, Ca = 10−3 and Pe = 1 since switching to a viscous scaling for pressure would indeed
give us Ca. Figure 8 shows the evolution of the maximum film height (hmax, the maximum value of
h(x, t ) for x ∈ [−π/k, π/k]) and maximum particle volume fraction (φmax, the maximum value of
φ̄(x, t ) for x ∈ [−π/k, π/k]) for φb = 0.1 and 0.2 while excited with perturbations of wave number
k = 0.25. The height perturbations grow as predicted by the nonmodal linear stability analysis.
However, the concentration field decays as expected before further growth, with the nonlinear effects
becoming prominent.

A. Role of fluid inertia

The inclusion of fluid inertia can destabilize the surface mode, subject to the criticality conditions
as shown in Sec. III. With the linear stability calculations predicting the critical wav number (k) and
Reynolds number (Re) for a given set of parameters, we next carry out nonlinear calculations by
exciting the surface mode beyond this threshold of instability. We previously learned in Sec. III
that the perturbation equations in the linear limit are a one-way coupled system, i.e., the velocity
perturbations can affect the particle volume fraction perturbations, but not the other way around.
Therefore, since we are interested in triggering the surface mode, we initialize the film with an
initial height h(x, 0) = 1−0.1 cos(kx), leaving the concentration field unperturbed. With this, the
evolution Eqs. (56)– (58) are solved numerically with ε = 0.2 and Pe = 1.

For disturbances that are close to the critical wave number kc, the waves increase in amplitude and
then subsequently evolve into small amplitude waves with an almost sinusoidal signature [59,66].
The maximum growth rate occurs at km = kc/

√
2 [9]. The black lines in Fig. 9 show the evolution of

maximum film height (hmax) and maximum particle volume fraction (φmax) for φb = 0.01 and 0.1,
when triggered with disturbances of wave numbers marginally lower than kc, k = 0.25 and 0.15,
respectively. The disturbance initially grows according to the linear growth rate, followed by a decay
in amplitude. We learned earlier that an increase in φb leads to a stabilizing effect (φb ↑ Im(c) ↓);
thus, the concentration field has a faster growth with decreasing φb [see Fig. 9(b)]. We are solving
for a two-way coupled system; an enhancement in the particle concentration field would increase the
viscosity and thus stabilize the nonlinear regime of the surface mode [see Eqs. (57) and (58)]. Thus
we observe an interesting feature due to this coupled nonlinear dynamics—with increasing φb, hmax

achieves a delayed and enhanced peak. To check this hypothesis, we compare the predictions of the
two-way coupled system [Eqs. (56)–(58)] with its corresponding one-way coupled system (red lines
in Fig. 9). For the one-way coupled system, we modify Eqs. (56)–(58) by allowing the fluid velocity

064307-17



DARISH JESWIN DHAS AND ANUBHAB ROY

0 20 40 60 80 100
0.95

1

1.05

1.1

0 5

0.1

0.12

(a)

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

(b)

FIG. 9. Comparisons of hmax and φmax/φb between the one-way coupled simulations (red lines) and
two-way coupled simulations (black lines) with Re = 6, We = 103, inclination α = 45◦ and k ≈ kc for the
corresponding initial particle concentrations (—) φb = 0.01; (− − −) φb = 0.1. Inset in (a) shows the initial
growth of the height perturbation hmax − 1.

to affect the particle concentration field, but not the other way around. Unlike the two-way coupled
system, we no longer see the enhanced peak that we observe for the higher particle concentration
with the one-way coupled system [red lines in Fig. 9(a)].

B. Boundary layer equations and depth-averaged model

Benney’s long-wave equation is a useful low-dimensional model for studying the nonlinear
saturation and the formation of solitary waves in an unstable falling film, provided the effects of
fluid inertia are weak. Benney’s approach allows for long waves of arbitrary amplitudes, and thus
the flow rate is enslaved to the instantaneous local height, q = f (h), resulting in a high degree
of nonlinearities. This feature is responsible for finite time blowups in the solutions at moderate
Reynolds number [17], which persists even for the particle-laden Benney Eqs. (57) and (58). To
alleviate this singularity, we attempt alternative modeling when effects of fluid inertia are strong,
adopting the approach of Ruyer-Quil and Manneville [67], popularly known as weighted residual
methods [9]. We consider the nondimensional Eqs. (39)–(42), ignore the O(ε2) terms and then
integrate the y− momentum equation to obtain the expression for pressure. The expression for
pressure is then substituted in the x− momentum equation to obtain an expression that is consistent
until O(ε):

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
− ∂

∂y

(
κ (φ)

∂u

∂y

)
= −3ε cot α

∂h

∂x
+ ε3 We Re

∂3h

∂x3
+ 3. (63)

This is complemented with the boundary conditions at y = 0,

u = v = 0,
∂φ

∂y
= 0, (64)

and at the free surface y = h:

∂u

∂y
= 0, −ϒ(φ)

∂φ

∂y
= 0. (65)

We subsequently decompose the velocity and concentration fields as

u = u0 + εu1, (66)

φ = φ0 + εφ1. (67)
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Here, we make the following ansatz for u0 along the method outlined by Ruyer-Quil and
Manneville [67]:

u0(x, y, t ) = a0(x, t ) f0(ȳ), (68)

where f0(ȳ) is taken to be the base steady-state modified Nusselt flow solution given as

f0(ȳ) = 3

κ (φ)

(
ȳ − ȳ2

2

)
. (69)

As argued in Sec. IV, the volume fraction field φ in the above expression is solely a function of x
and t . On using the expression, the flow rate, q = ∫ h

0 udy, and the constraint condition
∫ h

0 u1dy = 0,
we arrive at

a0 = κq

h
. (70)

The expression for u0 here is similar to the quasi-Nusselt flow velocity profile considered for the
derivation of the Taylor dispersion equation [see Eq. (52)]. In the derivation of the Taylor dispersion
equation, we assume that the velocity profile does not deviate from a parabolic profile. However,
higher-order corrections to u0 could create deviations from the parabolic profile under the influence
of fluid inertia [68]. In this analysis, we do not calculate any such higher-order corrections as we
will find that u0 is sufficient to write the equation consistent till O(ε). Next, the weighted residuals
are obtained by multiplying the equation with a suitable weight function and integrating along the
depth of the film. For choosing the weight function, the Galerkin method is followed [67], which
dictates that the weight function w to be used must be the test function itself, such that w = f0.
It also turns out that the first-order correction term u1 gets canceled out by this choice of weight
function. Using this weight function and substituting for φ till O(ε) from Eq. (54), followed by
subsequent integration, the evolution equation for q is obtained as

εRe
∂q

∂t
= 5

2
h − 5

2
κ (φ̄)

q

h2
+ εRe

(
9

7

q2

h2

∂h

∂x
− 17

7

q

h

∂q

∂x

)
+ ε

Pe

ϒ(φ̄)

2

21
κφ̄

q2

h

∂φ̄

∂x

+ ε

(
−5

2
cot αh

∂h

∂x
+ 5

6
ε2 We Re h

∂3h

∂x3

)
. (71)

The above equation in conjunction with the equation for the film height h given by

∂h

∂t
+ ∂q

∂x
= 0 (72)

can be solved to obtain the height profiles. Here, Eqs. (71) and (72) form the IBL model. Since φ

is only a function of x and t , the evolution of the particle concentration is governed by the Taylor
dispersion Eq. (56).

In the absence of particles, the nondimensional part of the viscosity κ (φ = 0) = 1, reducing
Eq. (71) to the equation obtained for a clear falling film by Ruyer-Quil and Manneville [67]. A check
for consistency with the previously obtained modified Benney equation can be done by performing
an expansion of the flow rate as q = q0 + εq1 + ... in Eqs. (71) and (72) and deriving the flow rate
at O(1) and O(ε) as

q0 = κ−1h3, (73)

q1 = κ−1h3

[
−

(
cot α

∂h

∂x
− ε2WeRe

3

∂3h

∂x3

)
+ Re

(
− (κ−1)t

2

5
h2 + κ−1(κ−1)x

8

35
h4

+ κ−2 6

5
h3 ∂h

∂x

)
− κ−2κφ̄

4

105
h4 Pe

ϒ(φ̄)

∂φ̄

∂x

]
, (74)

064307-19



DARISH JESWIN DHAS AND ANUBHAB ROY

0 10 20 30 40 50

0.01

0.03

0.05

FIG. 10. Neutral stability curves corresponding to the surface mode compared between linearized Benney
equations (blue lines), linearized IBL equations (red lines), and linear stability analysis (black lines) for φb =
0.1 (—), φb = 0.2 (- - -), and φb = 0.3 (· · · ) with We = 103 and inclination α = 45◦.

and subsequently writing the above in the form

∂h

∂t
+ ∂

∂x
(q0 + εq1) = 0, (75)

the modified Benney equation [Eq. (58)] is obtained. We would like to draw the attention of the
reader to a caveat of the present paper—here the entire model is restricted till O(ε). This is unlike
the second-order models as was previously derived by Ruyer-Quil and Manneville [67], Samanta
et al. [68], where the inertia terms are evaluated till O(ε2). This is because a second-order model
would demand evaluation of higher-order Taylor dispersion terms in the particle volume fraction
evolution Eq. (56). We do not look into this aspect in the current paper.

1. Linear stability of the particle-IBL equations

Before proceeding on to the nonlinear simulations, we carry out another consistency check of
the IBL equations by performing a linear stability analysis of the model equations. This is done
by considering the base state as one with a flat film (h = 1) and constant particle concentration
(φ̄ = φb) and perturbing it, just as was done in the case of the modified Benney equation [Eqs. (59)
and (60)]. The linearized equations are solved for the wave speed c to obtain

c(1) = κ−1
b − iεk

(
ϒb

Pe
+ 2

105

κ−2
b Pe

ϒb

)
, (76)

c(2) = 17

14κb
+ i

{
− 5κb

4εkRe
±

√
−5 cot α

2Re
− 125i

28εkRe
− 5

6
ε2k2We − 37

196κ2
b

+ 25κ2
b

16ε2k2Re2

}
. (77)

As expected, the wave speed corresponding to the concentration equation [Eq. (76)] remains the
same as the one obtained previously as the particle mode [Eq. (59)] and is a decaying mode. The
mode dictated by the wave speed given by Eq. (77) is, however, a growing mode.

The accuracy check of the two reduced-order models is done by comparing the numerically
obtained neutral stability curves (from Sec. III) with the ones obtained from the linear Benney and
IBL calculations. Figure 10 shows a favorable comparison between the linear Benney calculations,
linear IBL calculations, and the numerical predictions of the Orr-Sommerfeld analysis for different
concentrations since the neutral stability conditions tend to occur at small wave numbers. Figure 11
displays the comparisons for the real part of the wave speed c(2) for concentrations φb = 0.1, 0.2, and
0.3. We observe good agreement between the two reduced-order models and the Orr-Sommerfeld
analysis in the long-wave limit. Similar observations can be made for comparisons of the corre-
sponding imaginary part in Fig. 12. However, as one moves from the small wave-number limit, the
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FIG. 11. Comparison of wave speed between linearized Benney equations (blue lines), linearized IBL
equations (red lines), and linear stability analysis (black lines) for the case of Re = 20, (—) φb = 0.1,
(- - -) φb = 0.2, and (· · · ) φb = 0.3 with We = 103 and α = 45◦.

IBL model can be seen to have a marked improvement in terms of the range of validity over the
modified Benney equations.

2. Nonlinear analysis of the particle-IBL equations

In this section, we study the full nonlinear solutions of the IBL equations, subjected to an initial
finite-amplitude sinusoidal wave: h(x, 0) = 1 − 0.1 cos(kx). The set of evolution Eqs. (56), (71),
and (72) are subsequently solved numerically. We choose the parameters other than the Reynolds
number to be the same as in the previous analysis (see Sec. IV A). In the case of Reynolds number,
the modified Benney equation is valid only for O(1) values; however, the IBL equations stretch
this validity threshold further. Here we choose Re = 12. As done previously with the modified
Benney system, the simulations are studied for volume fractions φb = 0.01 and 0.1 with the wave
numbers of the disturbance chosen as before to be marginally lower than kc as k = 0.27 and 0.19,
respectively. Figure 13 shows the maximum film height hmax and maximum particle volume fraction
φmax plotted over time for Pectlet numbers Pe = 1 and 2. We find that the disturbances grow initially
in accordance with the linear growth rate and subsequently decay and that increasing φb provides
a delayed and enhanced peak. These findings are consistent with the observations made with the
predictions of the modified Benney equation (see Sec. IV A). The inset in Fig. 13(a) shows the
initial growth remaining the same for the two Peclet numbers. This is because the linear growth
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FIG. 12. Comparison of growth rate between linearized Benney equations (blue lines), linearized IBL
equations (red lines) and linear stability analysis (black lines) for the case of Re = 20, (—) φb = 0.1,
(- - -) φb = 0.2, and (· · · ) φb = 0.3 with We = 103 and α = 45◦.
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FIG. 13. Evolution of film height h and particle concentration φ with Re = 12, We = 103, inclination α =
45◦, and k ≈ kc for the corresponding initial particle concentrations (—) φb = 0.01; (- - -) φb = 0.1; Pe = 1
(black lines) and Pe = 2 (red lines). Inset in (a) shows the initial growth of the height perturbation hmax − 1.

rate is independent of the choice of Peclet number [see Eq. (77)]. However, we observe that the
oscillatory decay of the height perturbation is slower for the higher value of Peclet number.

The evolution of the free-surface waveforms over time for the previously mentioned cases are
visualized in Fig. 14. It is immediately apparent that the higher particle volume fraction slows down
the wave due to increased viscosity. To further study this, we plot the wave profiles and streamlines
at specific instants of time with disturbance wave numbers ks ≈ kc/2 (taken to be k = 0.13 and 0.1
for φb = 0.01 and 0.1, respectively) in Fig. 15. We choose smaller wave numbers to study the free-
surface waveforms because smaller wave numbers are known to create more noticeable distortions
on the wave structure [59]. For φb = 0.01, Fig. 15(a) corresponds to the time close to which the
initial maximum amplitude of the perturbation is reached. This initial maximum is followed by the
formation of secondary waves as indicated in Fig. 15(b). However, although we find that a higher
peak is achieved with φb = 0.1, no such surface distortions with the incidence of secondary waves
can be observed as shown in Figs. 15(c) and 15(d). Further, using the expression for the particle
volume fraction field obtained using the central manifold approach [see Eq. (54)], we visualize
the particle volume fraction field using a contour plot in Fig. 15. As expected, there is minimal
variation in the particle volume fraction field across the depth of the film. We also find that the
maximum particle volume fraction occurs at the location where the height of the film is maximum.

V. DISCUSSION

We considered the problem of a colloidal film falling down an incline under the influence
of gravity. An advection-diffusion equation dictates the evolution of particles, with the diffusive
processes being purely thermal in origin. This is valid under the assumption that the particles are
colloidal. A similar advection-diffusion equation, albeit also including the electrostatic contribution
to the osmotic pressure, was used to model paint drying by Goehring et al. [45], whose predictions
provided good agreement with experiments when the suspended particles are of radii 5 − 14nm.
Also, Sobac et al. [47] was able to predict the onset of Benard-Marangoni instability correctly for
a drying film laden with particles of radii ≈12.5nm. The effect of the dispersed phase enters the
fluid momentum equation through a particle volume fraction dependent viscosity. Linear stability
analysis of the corresponding Orr-Sommerfeld system revealed the presence of two unstable modes,
the surface and the shear modes, and a purely damped particle mode. Expectedly, the surface
and shear modes are stabilized with increasing particle bulk volume fractions. At leading order,
Brownian diffusion dominates and equilibrates the particle volume fraction along the gradient
direction. Thus, the film has an increased viscosity throughout the film, leading to a stabilizing effect
on the system. The particle mode is a purely damped mode. Nevertheless, it exhibits interesting
dynamics based on the magnitude of kPe—the ratio of two timescales, the equilibration time due to
molecular diffusion in the gradient direction (h2

0/D), and the convective timescale associated with
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(a) (b)

FIG. 14. Free-surface wave forms with k ≈ kc for two particle volume fractions with the time interval
between two waves being 5 with Re = 12, Pe = 1, We = 103, and inclination α = 45◦. (a) φb = 0.01 and
(a) φb = 0.1.

streamwise transport over a disturbance wavelength (λ/U0). The decay rate of the particle mode
thus has three asymptotic states: a Brownian mode, a Taylor mode, and an anomalous mode.

The linear stability analysis with the Orr-Sommerfeld equations hinges on the assumption that the
amplitude of disturbances is infinitesimal. To study the formation and evolution of nonlinear waves
in a colloidal falling film, we next derived a system of depth-averaged equations under the long-wave
approximation. In earlier studies, the depth-averaged dynamics of the particulate phase has been
described by a transport equation that includes advection by the fluid and streamwise molecular dif-
fusion. However, in the context of solute transport in channels, Taylor [57] showed that there could
be an enhanced dispersion of solutes along the flow direction, aided by shear. This shear-enhanced
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FIG. 15. Wave profiles and streamlines at different instants in time for the corresponding initial particle
concentrations (a), (b) φb = 0.01; (c), (d) φb = 0.1; (c), (d) excited with wave numbers k ≈ ks. Re = 12, Pe =
1, We = 103, and inclination α = 45◦. The contour plot shows the particle volume fraction field.

dispersion, eponymously known as Taylor dispersion, has previously been calculated in the context
of particle-laden flow inside a pressure-driven pipe flow [69,70] and a gravity-driven dense granular
flow [71]. It has also been studied in the context of the dispersion of a solute in a channel
with periodically varying apertures [72]. Ramachandran [70] used a multiple-timescale expansion
technique to arrive at a nonlinear equation for the flow of a noncolloidal suspension (Pep � 1) inside
a pipe with the absence of fluid inertia (Re = 0). We followed a center-manifold-based approach for
the depth-averaged particle volume fraction equation to incorporate Taylor dispersion in this work.
Our choice of approach was due to the necessity of obtaining an explicit expression for the particle
concentration field valid till O(ε) since it is required to close the system of equations and to capture
the effects of Taylor dispersion. The novelty in our calculation lies in integrating the physics of
shear-enhanced dispersion with a nonlinearly evolving free boundary.

The description of the particle concentration is incomplete without the knowledge of the film
height and flux. To model the evolution of the film height, we initially derived a Benney-type
evolution equation. This long-wave approximation assumes that the variations in the disturbance
occur over long wavelengths but does not restrict the disturbance amplitude. Numerical solutions of
the modified Benney equations revealed an intriguing feature—although the presence of particles
reduced the growth rates, the film height reached a delayed and enhanced peak for increasing
particle concentrations. We found this to be a consequence of the nonlinear dynamics of the two-way
coupled system since we did not see an enhanced peak for higher particle concentrations with the
corresponding one-way coupled system.

Benney-type nonlinear equations are ideal for studying the nonlinear regime, provided we restrict
ourselves to the near-Stokesian regime, studying the effects of small fluid inertia. However, these
equations are susceptible to finite time blowups when the effects of fluid inertia are strong [17]. To
address this, we derived an IBL model using a weighted residuals based approach formulated by
Ruyer-Quil and Manneville [67]. As mentioned previously, the Orr-Sommerfeld equation assumes
that the disturbance amplitudes are small. In contrast, the long-wave approximation of the two model
equations assumes that variations happen over long wavelengths. This implies that the predictions
of the three systems should be consistent in the small-amplitude and small wave-number limit.
To check this, we performed a linear stability analysis on the model equations and compared the
predictions across the three systems of equations. We found that modified Benney equations were
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consistent with the Orr-Sommerfeld equations for a narrow range of small wave numbers. The IBL
equations’ predictions were consistent with the Orr-Sommerfeld equations in the limit of small wave
numbers, albeit for a more extensive range. The numerical simulations of the nonlinear system
revealed trends similar to those observed with the modified Benney equations. Plotting the free-
surface waveforms, we found that increasing particle volume fractions leads to both the retardation
of flow and the suppression of surface deformations. It must be noted that as derived by Roberts
[73], it is possible to obtain the equation for the film height using a central manifold approach as
done here for the particle concentration field. However, as later pointed out by Ruyer-Quil [74], the
central manifold approach brings out a system that is nearly identical to the one obtained using the
IBL approach, albeit with slightly different coefficients, when restricted to O(ε) accuracy. At orders
higher than O(ε), the two approaches provide different results. This is because of the restriction
εRe = O(1) for the central manifold approach to be valid, whereas IBL places no such restriction.
Therefore, we chose to take the IBL approach for the momentum equation.

An important caveat in this study is the exclusion of the effect of particle concentration on
altering the interfacial properties—surface tension and surface viscosity. We incorporate only the
depth-averaged particle volume fraction (φ̄) in the nonlinear models. However, one would note that
the local particle volume fraction at the interface is equal to φ̄ at leading order due to the dominance
of diffusion in gradient direction [see Eq. (54)]. Thus our reduced order model will insufficiently
capture the interfacial dynamics of concentrated systems. When the free interface becomes particle
rich such that it approaches a jammed state, the interface could behave like an elastic solid [75]. The
free interface with a jammed monolayer of floating particles will behave like a flexible sheet that can
undergo buckling instability under compression [76], while also altering the surface tension [77].
Suppose we were to extend our calculations to higher particle volume fractions. In that case, our
model needs to be augmented with concentration-dependent surface tension and surface viscosity
[78] which would possibly introduce the additional physics of Marangoni effects.

This paper has focused on free surface flows laden with neutrally buoyant particles that are
small enough that Brownian diffusion dominates. Therefore, we ignore the roles of shear-induced
migration and particle-induced normal stresses on the system [54]. Shear-induced migration could
lead to particle accumulation at the free interface, resulting in a nonuniform viscosity profile in
the base state. Viscosity stratification, due to thermal effects, is known to influence the stability
characteristics of falling film flows [79]. In a separate study, we studied the linear stability of a
particle-laden shallow flow with the inclusion of shear-induced migration [80]. There, we modeled
the particle flux as one that flows due to the divergence of the particle induced normal stresses as
[81]

J = 2
9 f (φ)∇ · �p, (78)

�p = �NS + (μ(φ) − μ f )(∇u + ∇uT ), (79)

Since we were interested in the regime of finite Pep, meaning the particles’ contribution to both the
thermal and hydrodynamic contributions are together present, we wrote the particle-induced normal
stresses without loss of generality as

�NS
αα = −

[
9

2

1

Pep
A + Qαα

]
, (80)

where α = x, y or z. Here A denotes the isotropic thermal contribution to the particle induced normal
stresses—one that is dominant at Pep � 1, whereas Qαα denotes the anisotropic hydrodynamic
contribution. We subsequently used the model by Buyevich and Kapbsov [82] for A and the
model by Frank et al. [83] for Qαα . We found that with particles whose Peclet number (Pep)
is O(1), the effects of base-state viscosity stratification and momentum forcing arising from the
particle concentration perturbation, both being consequences of shear-induced migration, lead to an
enhanced destabilization of both the surface and shear modes of instability.
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VI. SUMMARY

We have investigated the linear stability of a particle-laden, gravity-driven, shallow free-surface
flow down an incline and the subsequent formation of nonlinear waves. The particles considered
were neutrally buoyant and colloidal. We first performed a linear stability analysis and identified
the particles’ stabilizing effect on both the surface and shear modes of instability. Based on the
magnitude of kPe, the damped particle mode decays via three asymptotic states: Brownian diffusion,
anomalous diffusion, and Taylor dispersion. Next, we use the insights gained from the linear stability
to formulate nonlinear reduced-order models. To incorporate Taylor dispersion along with Brownian
diffusion, we use a central manifold approach to derive the depth-averaged particle volume fraction.
For the film height, we derived nonlinear models in the framework of long-wave theory using
Benney’s gradient expansion approach and the IBL approach.

The current paper incorporating the role of Brownian diffusion solely and its stabilizing effect
aims to act as a step toward developing nonlinear reduced-order models for shallow particle-laden
flows. Extending this, a reduced-order nonlinear model that would include the physics of normal
stresses, shear-induced migration, particle inertia, and buoyancy effects in the dispersed phase will
be beneficial in studying various free surface problems involving sediment transport [84].

APPENDIX A: NUMERICAL METHOD FOR SOLVING THE LINEAR STABILITY EQUATIONS

Equations (20) and (21) are solved numerically for the eigenvalue c using a spectral collocation
method. For this, we first use Lagrange polynomials to approximate the solution of ψ̂ and φ̂, and
discretize the physical domain using Chebyshev grid points [61]:

ψ̂ =
N−1∑
j=0

Li jψ̂ j, φ̂ =
N−1∑
j=0

Li j φ̂ j, c =
N−1∑
j=0

Li jc j . (A1)

Here, ψ̂ j , φ̂ j , and c j are ψ̂ , φ̂, and c at Chebyshev grid points z j = cos( jπ/N ), and N is the number
of collocation points used to discretize the domain. The Chebyshev grid points lie in the interval
[−1,1], whereas the physical domain of the problem lies in the interval [0,1]. Therefore, we map
the Chebyshev grid points to the domain [0,1] using the relation y j = 0.5(1 − z j ). The boundary
condition given in Eq. (23) is nonlinear in the eigenvalue c. To avoid this nonlinearity, we use the
kinematic boundary condition and write an additional equation for the scalar height field h as

{κb(D2 − 3k2)D + ikRe(c − ub(1))D}ψ̂ − ik(3 cot θ + k2 We Re)h + κb1D(u′
bφ̂) = 0, (A2)

ch = ψ + ub(1)h. (A3)

The resulting system can be written in the form of a generalized eigenvalue problem as

A · q = c B · q, (A4)

where, q = {ψ̂ j, φ̂ j, h}, and A and B are matrices of the order 2N + 3. We then proceed to solve the
above eigenvalue problem using the MATLAB subroutine eig.

APPENDIX B: TAYLOR DISPERSION—DERIVATION OF V n AND Gn

At n = 0,

ϒ
∂2V 0

∂y2
= 0, (B1)

with boundary conditions at y = 0 and y = 1 as

ϒ
∂V 0

∂y
= 0. (B2)
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Solving the above system, we obtain

V 0 = φ̄(x, t ), (B3)

where φ̄(x, t ) denotes the depth-averaged particle volume fraction. Subsequently, at n = 1 we have

ϒ
∂2V 1

∂y2
= Pe

(
G1 + u

∂φ̄

∂x

)
, (B4)

with boundary conditions at y = 0 and y = 1 as

ϒ
∂V 1

∂y
= 0. (B5)

Integrating the above system from y = 0 to h and applying the boundary conditions, we obtain

G1 = −q

h

∂φ̄

∂x
. (B6)

Thus the equation at n = 1 becomes

ϒ
∂2V 1

∂y2
= Pe

(
−q

h

∂φ̄

∂x
+ u

∂φ̄

∂x

)
. (B7)

To calculate V 1, we integrate the above equation twice with respect to y to obtain

ϒV 1 = Pe

[
− y

2

q

h

∂φ̄

∂x
+ qh

2

(
ȳ3 − ȳ4

4

)
∂φ̄

∂x

]
+ a1y + a2. (B8)

Using the boundary condition at y = 0, a1 = 0. With the boundary condition at y = 1, we obtain

a2 = Pe
qh

15

∂φ̄

∂x
. (B9)

Thus,

V 1 = Pe

ϒ
qh

(
− ȳ2

2
+ ȳ3

2
− ȳ4

8
+ 1

15

)
∂φ̄

∂x
. (B10)

Finally, to evaluate G2 and V 2, we write the n = 2 equation as

ϒ
∂2V 2

∂y2
= Pe

[
∂V 1

∂t
+ V 0

φ̄
G2 + V 1

φ̄
G1 + V 1

φ̄′
∂G1

∂x
+ u

∂V 1

∂x
+ v

∂V 1

∂y

]
− ∂

∂x

(
ϒ

∂V 0

∂x

)
. (B11)

Here, φ̄′ = ∂φ̄/∂x, V 0
φ̄

= ∂V 0/∂φ̄, V 1
φ̄

= ∂V 1/∂φ̄, and V 1
φ̄

= ∂V 1/∂φ̄′. This is complemented
with boundary conditions at y = 0,

ϒ
∂V 2

∂y
= 0, (B12)

and at y = 1:

ϒ
∂V 2

∂y
= ϒ

∂h

∂x

∂V 0

∂x
. (B13)
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As with the case of n = 1, we integrate the above system from y = 0 to h and use the boundary
conditions to obtain

G2 = 1

Pe

∂

∂x

(
ϒ

∂φ̄

∂x

)
+ ϒ

Pe

∂h

∂x

∂φ̄

∂x
+ Pe

ϒ

(
2

105
q2 ∂2φ̄

∂x2
+ 2

105

q2

h

∂φ̄

∂x

∂h

∂x

− 2

105
q2 ϒφ̄

ϒ

(
∂φ̄

∂x

)2

+ 4

105
q
∂φ̄

∂x

∂q

∂x

)
. (B14)

Substituting G2 in Eq. (B11), integrating twice with respect to y and using the boundary
conditions, we obtain V 2 as

V 2 = h

(
ȳ2

2
− 1

6

)
∂h

∂x

∂φ̄

∂x
+ h2q

Pe2

ϒ(φ̄)2

(
− 1

315
+ ȳ2

240
+ ȳ4

24
− ȳ5

20
+ ȳ6

80

)
∂h

∂t

∂φ̄

∂x

+ h3 Pe2

ϒ(φ̄)2

(
− 2

315
+ ȳ2

30
− ȳ4

24
+ ȳ5

40
− ȳ6

240

)
∂q

∂t

∂φ̄

∂x

+ hq2 Pe2

ϒ(φ̄)2

(
− 4

225
+ 8ȳ2

105
+ ȳ3

30
− 11ȳ4

120
− ȳ5

40
+ ȳ6

15
− 3ȳ7

112
+ 3ȳ8

896

)
∂h

∂x

∂φ̄

∂x

+ h2q
Pe2

ϒ(φ̄)2

(
17

1575
− 43ȳ2

560
+ ȳ3

30
+ 3ȳ4

40
− ȳ5

20
− ȳ6

120
+ ȳ7

112
− ȳ8

896

)
∂q

∂x

∂φ̄

∂x

+ h2(1 − Pe)

(
1

6
− ȳ2

2

)
∂2φ̄

∂x2
+ q2h2 Pe2

ϒ(φ̄)2

(
4

525
− 2ȳ2

35
+ ȳ3

30
+ 3ȳ4

40

− ȳ5

8
+ ȳ6

12
− 3ȳ7

112
+ 3ȳ8

896

)
∂2φ̄

∂x2
+ h2 ϒ(φ̄)φ̄

ϒ(φ̄)
(1 − Pe)

(
1

6
− ȳ2

2

)(
∂φ̄

∂x

)2

+ q2h2 Pe2ϒ(φ̄)φ̄
ϒ(φ̄)3

(
− 2

1575
+ ȳ2

42
− ȳ3

30
− ȳ4

30
+ ȳ5

10
− 19ȳ6

240
+ 3ȳ7

112
− 3ȳ8

896

)(
∂φ̄

∂x

)2

.
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