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Effect of Weissenberg number on polymer-laden turbulence
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Direct numerical simulation of polymer-laden turbulent flow is performed for the investi-
gation of the two-way interaction. Lagrangian dynamic simulation is adopted for a finitely
extensible nonlinear elastic (FENE-2) dumbbell model to observe polymer dynamics in
turbulent flow. The impact of the polymers on fluid momentum is described using the
elastic force between two beads. The elasticity of the polymer is characterized using the
Weissenberg number, We∗ = τp

τk
, where τp and τk denote the elasticity timescale and the

Kolmogorov timescale, respectively. We observe that for We∗ � 1.0 most of the polymers
are in a coiled state and the hydrodynamic properties of fluid remain unchanged. The coil-
stretch transition is observed at approximately We∗ = 3.0. The highly stretched polymers
in turn contribute to significant turbulence modification for large values of the Weissenberg
number. The effect of the Weissenberg number on various turbulent statistics is computed
and analyzed. The highly stretched polymers tend to rotate around the vortical structures.
The feedback force effectively suppresses the turbulence structures for large values of the
elasticity parameter. The effect of We∗ on the alignment between the end-to-end distance
vector, vorticity vector, and the eigenvector of the rate of strain tensor is presented. A
better insight into the effect of polymers on turbulence is obtained through the direct force
modeling in stationary turbulence although the effect itself has been known for a long time.
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I. INTRODUCTION

It has been known that polymer additives are responsible for turbulent drag reduction [1]. Owing
to their various applications to industrial devices, such as irrigation pumps, water circulating devices
including heating-cooling systems, fire-fighting equipment, and long-distance pipelines for liquid
transportation [2], numerous investigations have been carried out to understand how polymers
interact with turbulence for several decades.

Traditionally, most numerical studies have used a continuum or often referred to as the Eulerian-
Eulerian approach to investigate the dynamics of the dilute polymer solution. In this approach,
constitutive equations for polymer models [3] such as Oldroyd-B or finitely extensible nonlinear
elastic - Peterlin (FENE-P) models are described in an Eulerian frame. The drag reduction associated
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with polymers was explained by using these models. However, the Oldroyd-B model, which is
equivalent to the Hookean model, is unphysical while the FENE-P model requires closure approx-
imation. In the FENE-P model, the polymer chain is represented by the dumbbell model in which
two beads are connected by a finitely extensible elastic spring. The conformation tensor was used
to characterize the averaged second moment of the polymer chain end-to-end distance vector. Then
the polymer stress tensor was constructed to describe the effect of polymers on the turbulent flow.
The fully coupled direct numerical simulation (DNS) has been carried out to observe drag reduction
due to polymers for different flow geometries [3–9]. The statistically steady homogeneous isotropic
turbulence laden with polymers was investigated using the FENE-P model [10–12]. They reported
a significant reduction in kinetic energy, dissipation, and modification in kinetic energy spectrum.
This approach, however, has some drawbacks from the analysis point of view. Detailed behavior
of polymers such as orientation and stretching or the resulting interaction between polymers and
turbulence, which can provide better insight into dynamics, cannot be easily examined.

The Eulerian-Lagrangian approach, in which DNS is performed for Naiver-Stokes equations and
a significant number of polymers are tracked in the Lagrangian framework, became feasible due to
advancement of computing resources. This approach has been used to study the behavior of passive
polymers (i.e., those having no effect on fluid) [13–15] and then extended to where the effect of
polymers on the flow field is considered [16–19]. This approach is useful to get detailed information
on the behavior of polymers such as the polymer orientation and extensibility for different values
of the Weissenberg number. However, the use of interpolation and a large number of polymers for
statistical convergence result in a huge computational cost, which is a drawback of this approach.

Within the one-way coupling range, the Lagrangian nature of polymers has been studied in DNS
of stationary homogeneous isotropic turbulence by Jin and Collins [13]. They considered finitely
extensible nonlinear elastic spring models for polymers with N number of beads, the so-called
FENE-N model, where N = 2, 5, 10, and 20, and compared their performance with the FENE-P
model. For large Weissenberg numbers, they found the error in magnitude of the polymer stress
to be around 10–15% between the FENE-N and FENE-P models. Another aspect they described
in the FENE-P model is the spatial resolution requirements. Due to the hyperbolic nature of the
conformation tensor, discontinuities were observed in the polymer stress tensor magnitude and
orientation. Watanabe and Gotoh [14] analyzed polymer statistics for the FENE-20 model and
showed that polymer elongation is highly dependent on the value of the Weissenberg number in their
one-way coupled Lagrangian simulation of polymers. They found that the coil-stretch transition
occurred at We = 3–4. They also found that the FENE-2 (dumbbell) model can reproduce similar
statistics for polymers if a mapping formula for comparison between the two models, proposed
by Jin and Collins [13], is properly used. Vincenzi et al. [15] compared the FENE-P and FENE-2
models in their one-way coupled simulation of forced homogeneous isotropic turbulence. In their
DNS study, only a qualitative agreement was observed between the results of these two models.
A weak tendency was observed for the alignment of polymers with both the eigenvectors of the
strain rate tensor and vorticity vector of the fluid. For large Weissenberg numbers, the FENE-P
model overpredicted the probability density functions (PDFs) of large extensions of polymers and
underpredicted the correlation times of the polymer extension and orientation.

There have been several attempts to consider the two-way coupling interaction between polymers
and turbulence in the Lagrangian simulation. For example, Peters and Schumacher [16] used the
point force method, which is popularly used in the two-way coupled DNS with the Lagrangian
point-particle tracking technique [20–26], to investigate the two-way effect of polymers in ho-
mogeneous shear turbulence in their DNS study for 1 � We � 25. As the Weissenberg number
increased, the FENE dumbbells were aligned in the mean flow direction. When vortex stretching
or biaxial strain dominated the flow, the dumbbells were highly stretched. Watanabe and Gotoh
[17,18], ,19] investigated the effect of polymers on turbulence in their DNS of decaying isotropic
turbulence for a wide range of Weissenberg numbers. In their studies, the two-way coupling effect
in the Navier-Stokes equations was modeled by the divergence of the polymer stress tensor. A large
number of polymers was used to observe significant turbulence modification in their studies. For
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1 � We � 25, a reduction in fluid dissipation, kinetic energy, and its spectrum was observed and
the polymer feedback forces played a vital role in suppressing vortical structures as the Weissenberg
number increased. For 25 � We � 200, power-law spectra for kinetic energy and pressure variance
were obtained when the ensemble-averaged potential energy for polymers was much greater than
the average fluid kinetic energy.

Those studies on two-way coupling in the Lagrangian simulations mentioned above are investiga-
tions on polymer dynamics in decaying turbulence or homogeneous shear turbulence. The coupling
between the polymer and turbulence in decaying turbulence was implemented using a polymer stress
tensor, which requires a large number of polymers such as O(1013) to obtain the convergent solution,
resulting in huge computational cost. To the best of our knowledge, the effect of two-way coupling
was not fully investigated for a wide range of Weissenberg numbers in stationary homogeneous
isotropic turbulence. In this study of two-way coupled DNS of stationary homogeneous isotropic
turbulence, we use the point-force formulation for the interaction between polymers and turbulence
in the FENE-2 model since the FENE-2 model captures most dynamics of the FENE-N model with
higher N [14]. The direct comparison between the one-way and two-way coupling results helps us
understand the behavior of polymers in stationary turbulence. The coil-stretch transition in polymers
in the presence of coupling is investigated. The alignment of highly stretched polymer end-to-end
distance vector with the principal axis of the rate of strain tensor is also investigated. Another aspect,
which we focus on, is the polymer effect on vorticity and enstrophy dynamics. The spectral analysis
and the polymer’s influence on kinetic energy spectra, dissipation, and energy transfer rate are also
investigated for a wide range of Weissenberg numbers.

This paper is organized as follows. Section II on the computational approach describes the
governing equation for fluid motion, polymer model equations, two-way coupling force, numerical
simulation, and the parameters used in current problem. Section III provides various results for the
interaction between turbulence and polymers. Finally, the conclusion is given in Sec. IV.

II. COMPUTATIONAL APPROACH

A. Governing equations

The governing equations for fluid motion in polymer-laden incompressible turbulent flow is the
continuity equation and the Navier-Stokes equation given by

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇ )u = − 1

ρ f
∇p + ν f ∇2u + f e + f , (2)

where u, ν f , and ρ f denote velocity vector, the kinematic viscosity, and density of fluid, respectively.
f e is an external forcing to maintain stationary turbulence. f represents the coupling between
polymers and turbulence. Detailed descriptions of the external and coupling forces are provided
in Secs. II C and II B, respectively.

Among various polymer models [3], the dumbbell model is adopted. A couple of mass-less beads
connected by nonlinear spring is referred to as a finitely extensible nonlinear elastic (FENE-2)
model. Polymers can translate, rotate, and stretch when advecting through fluid. The dilute polymer
solution is considered in the Lagrangian frame and the interaction between different dumbbells is
neglected. The trajectory of the mth dumbbell (m = 1, 2, ..., Nr ) (Nr : real number of dumbbells)
can be described by a set of equations for end-to-end distance vector Q(m) and the center of mass
Q(m)

c position vector. The polymer model equations for the mth polymer are written as [19]

dQ(m)

dt
= u(m)

1 − u(m)
2 − γ (z)

2τp
Q(m) + Q0√

2τp

(
ξ

(m)
1 − ξ

(m)
2

)
, (3)

dQ(m)
c

dt
= 1

2

(
u(m)

1 + u(m)
2

) + Q0√
8τp

(
ξ

(m)
1 + ξ

(m)
2

)
, (4)
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where Q(m)(t) = q(m)
1 − q(m)

2 and Q(m)
c (t) = (q(m)

1 + q(m)
2 )/2 with q(m)

1 and q(m)
2 denoting the bead

positions. u(m)
1,2 is the fluid velocity at a bead position. The γ (z) = 1/(1 − z2) represents finitely

extensible nonlinear elastic model [3] with z = |Q(m)(t )|/Qmax. The Brownian force in base is
represented by ξ

(m)
1,2 (t ); it is also referred to as random force. The random force obeys Gaussian

statistics with white-in-time correlation [19]:〈
ξ

(m)
α,i (t )

〉 = 0, (5)〈
ξ

(m)
α,i (t )ξ (n)

β, j (s)
〉 = δαβδnmδi jδ(t − s), (6)

where α, β = 1, 2, i, j = 1, 2, 3, and n, m = 1, 2, ..., Nr . The angle bracket 〈...〉 here denotes the
ensemble average over the computational number of dumbbells. The polymer relaxation time is
τp(≡ζ/4H ), where ζ = 6πν f ρ f rb, the friction coefficient, H is the spring constant, and rb is the
bead radius. Q0(≡√

kBT/H ) is the equilibrium length of the polymers when u(x, t ) = 0. kB and T
represent the Boltzmann constant and absolute temperature, respectively. The elastic force between
two beads prevents the polymers from stretching beyond their maximum stretching length Qmax.

B. Coupling between polymers and turbulence

A conventional numerical approach to investigate the interaction between polymers and tur-
bulence is the continuum approach, in which the dynamics of fluid and polymers is simulated
in the Eulerian frame [4,5,27]. The continuum approach has been applied to various polymers
such as Oldroyd-B, FENE-P, Maxwell, and Giesekus models [3,6,8,28]. Recently, the Brownian
dynamic simulation in the Lagrangian frame was introduced as an alternative to the continuum
approach to study the polymer dynamics. In this approach, various models such as bead-rod chain,
bead spring chain (FENE-N), and bead spring dumbbell (FENE-2) were tested. These models
require high computational cost, but they are supposed to simulate dynamics more accurately
[13,14,16,18,19,29].

Particularly, the coupled hybrid Eulerian-Lagrangian simulation using a dumbbell model for
various values of elasticity parameter was applied to polymer-laden decaying turbulence [19]. The
coupling between polymers and turbulence was described by introducing polymer stress tensor
[18,19]. However, to achieve statistically convergent results and proper turbulence modification,
a huge number of dumbbells was necessary. Two-way coupling simulation in shear turbulence
for FENE dumbbell model (bead inertia �= 0) was performed by Peters and Schumacher [16].
The polymer-turbulence coupling was modeled by direct implementation of forces acting between
each bead and turbulence. In the present study, we adopt the direct force approach of Peters and
Schumacher [16]. We also tested the polymer stress approach used in Refs. [14,19], but we found
that the polymer stress approach requires computing spatial derivatives of delta functions, which
introduces much noise, and for this reason a huge number of polymers is necessary to guarantee
converged statistics. Meanwhile, the direct approach to computing coupling forces requires the
implementation of δ-function forces only, and thus converged calculation requires a much fewer
number of polymers than the polymer stress approach.

In the absence of polymer inertia, the elastic force between beads of the mth dumbbell is balanced
by drag force due to the stretching motion of fluid and Brownian force. The back-reaction force by
the first bead of a polymer is

F(m)
1 = −Hγ (z)

(
q(m)

1 − q(m)
2

)
, (7)

while on the second bead, F(m)
2 = −F (m)

1 . Then, the back-reaction force by all polymers at the
Eulerian grid points is

f (x, t ) = 1

ρ f

Nc∑
m=1

[
δ
(
x − q(m)

1

)
F(m)

1 + δ
(
x − q(m)

2

)
F(m)

2

]
. (8)
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TABLE I. Forcing parameters.

N ν f κ f σ f T f
L

963 0.03 2
√

2 0.055 0.4312

This force is projected on the nearest eight grid points of computational mesh using linear interpo-
lation weights, which is expressed for two bead positions ∀ j = 1, 2;

W
(
x − q(m)

j

) =
{

1−ri
�V if

∣∣x − q(m)
j

∣∣ < �xi

0 otherwise
,

where i = 1, 2, 3, ri = |x − q(m)
j |/�xi is the distance between the bead and computational node.

�V is the volume of a computational cell with grid size �xi.

C. Numerical simulation

A pseudospectral method is used for the numerical simulation of Navier-Stokes equa-
tions [Eq. (II C)]. The primitive variables in the governing equations are expanded using discrete
Fourier series with periodic boundary conditions in three spatial directions. The computational
domain is a cubic box of size L3

box = (2π )3 with 963 number of grids. Turbulence is maintained
artificially by a statistically stationary force at low wave number modes 0 < κ � κ f , where κ is the
magnitude of a wave number vector κ [30]. The external force f e in Eq. (II C) is formulated in the
Fourier space,

f̂ e = F̂e − κ

κ2
(κ · F̂e), (9)

where f̂ e is the Fourier coefficient of f e and F̂e is a stochastic process characterized by a timescale
T f

L and the standard deviation σ f satisfying the Langevin equation,

dF̂e = − F̂e

T f
L

dt +
√√√√2σ 2

f

T f
L

dW t , (10)

where dW t is an increment of the Wiener process obeying the Gaussian distribution with mean zero
and variance dt . The values for T f

L and σ f are chosen such that the timescale is larger than the
eddy turnover time, and the forcing parameters are listed in Table I. Although Eswaran and Pope
[21,30] provided the estimate for predicted values of parameters such as dissipation rate and the
Kolmogorov length scale, these forcing parameters are tuned to generate turbulence at a specific
Reynolds number for the given grid number.

Although the polymer dynamics was investigated in decaying turbulence [18,19], the role of
polymers in modifying stationary isotropic turbulence has not been discussed for a wide range of
Weissenberg numbers yet. Furthermore, by considering stationary turbulence, we can make more
quantitative analysis from the time-averaged statistics that are free from transient behavior due to the
initial condition. As shown in Fig. 2(a), this artificial effect due to the initial condition of polymers
lasts for a long time and time-averaged statistics are obtained over a time span of t = 25Te, where Te

is an eddy turn-over time. The same initial condition was also used in decaying isotropic turbulence
in Refs. [18,19].

The polymer model Eqs. (3) and (4) are solved in the Lagrangian frame. The polymers are
randomly distributed initially [18,19] in the flow domain. The initial configuration is Q(m)(0) =√

3Q0n̂(m), where n(m) is a random unit vector.
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TABLE II. Artificial factor Nr/Nc and the computational number of polymers Nc used in test for We∗ = 5.0.

Case A B C D E

Nr/Nc (in 106) 0.625 1.25 2.5 5.0 10
Nc (in 106) 21.088 10.544 5.272 2.636 1.318

The third-order, three-stage Runge-Kutta method is used for time advancement of both fluid and
polymer phases. For the interpolation of fluid velocity at the bead position, a four-point Hermite
interpolation is used. A complete description of the interpolation scheme is provided by Choi et al.
[31].

The length and timescale parameters of polymers are the equilibrium length Q0, the maximum
stretching length Qmax, and the relaxation time τp. The values of these parameters are determined
from the experimental study performed by Ouellette et al. [32] and the numerical simulation
performed by Watanabe and Gotoh [18] in decaying turbulence. The initial value of the Kolmogorov
length scale ηk (0) is used to set the dumbbell equilibrium Q0 = 0.03ηk (0), maximum stretching
Qmax = 0.3ηk (0), and bead radius rb = 7 × 10−5ηk (0) [18]. The nondimensional Weissenberg
number We∗ = τp/τk (0) is used as the key parameter in this study for different values of polymer
relaxation times with a fixed value of τk (0), which is the Kolmogorov timescale of unladen
turbulence. Alternatively, the Weissenberg number (hereinafter referred to as We), We = τp/τk

based on time-averaged value τk is used.
The volume fraction φv is defined as φv = (8πNr/3)(rb/Lbox)3, where Nr represents the real

number of dumbbells and Lbox is the length of the domain. The value of volume fraction
φv = 2.525 × 10−6 is found to be sufficient in the current study to observe the significant turbulence
modification with reasonable computational cost. The computational number of dumbbells Nc was
fixed using the artificial factor Nr/Nc as suggested in previous studies [18,19,33] both in particle-
and polymer-laden turbulence.

To fix the value of Nr/Nc, a test with five different values was performed for We∗ = 5.0 as shown
in Table II. If the number of computational dumbbells is very small and large Nr/Nc is used, it
cannot represent real physics properly. However, if a very large number of dumbbells are tracked,
computational cost rises. To find the optimum value for the artificial factor, the turbulence and
polymer statistics for different values of the artificial factor under the same physical condition were
obtained and compared. All the statistics for these tests are computed for We∗ = 5.0 since coil-
stretch transition (presented below) in polymers is observed at We∗ = 3.0 and thus most polymers
are stretched enough at We∗ = 5.0, significantly modifying turbulence.

The polymer behavior is captured by the magnitude of end-to-end distance vector |Q(t )| [18],
which is used to represent the elongation of polymers. The time-averaged magnitude of the end-to-
end distance vector is denoted by Q = |Q|. For We∗ = 5.0, the time-averaged Q value normalized
with the maximum stretching length for different values of Nr/Nc is shown in Fig. 1(a). The variation
in polymer elongation is not significant as Nr/Nc decreases. The PDF of magnitude is shown in
Fig. 1(b), indicating that the distribution converges as Nr/Nc decreases.

The time-averaged Eulerian quantities of modified turbulence such as dissipation rate ε, kinetic

energy q, and the mean vorticity magnitude ω′ =
√

ω2 for different values of Nr/Nc are shown in
Fig. 1(c). The mean values are normalized by the corresponding values for polymer-free case values.
As Nr/Nc decreases, all statistics tend to converge to values smaller than 1, indicating that there is
a reduction in mean dissipation, kinetic energy, and rms of vorticity. This convergent behavior of
statistics justifies the use of point force approximation for the polymers feedback force. Based on
this test, we decided to use Nc = 1.0544 × 107 and the corresponding Nr/Nc = 1.25 × 106. The
computational number of dumbbells used in the present study is less than Nc = 5.04 × 108 used in
previous studies [17–19].
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FIG. 1. Numerical test with different Nr/Nc: (a) time-averaged magnitude of the end-to-end distance vector;
(b) PDF of magnitude of end-to-end distance vector; and (c) time-averaged mean dissipation, kinetic energy,
and rms of vorticity.

III. RESULTS

In the following sections, the simulation results for polymer-laden turbulent flow are presented.
The simulations were performed with Nc = 1.0544 × 107 based on the test given earlier. The ensem-
ble average for polymer quantities is performed over the computational number of dumbbells, while
the spatial average of turbulence quantities is carried out in the Eulerian frame. The ensemble/spatial
average is denoted by angle brackets 〈·〉, while time- and space/ensemble-averaged quantities are
represented by an overline.

The simulations are performed for a wide range of Weissenberg numbers listed in Table III with
corresponding values of polymer relaxation time. The time variation of statistics is plotted using
the nondimensional time t∗ = t/τk (0). When t∗ � 275, the statistically steady state is observed for
turbulent flow and time-averaged statistics are obtained in the range 275 � t∗ � 460.

A. Polymer statistics

In this section, the behavior of polymers is first described in terms of statistics. The dumbbells
advecting through fluid are influenced by three kinds of forces: drag by fluid motion, elastic force

TABLE III. Cases considered in the present study for polymer-laden turbulence. ε0(= 10.58) and q0(=
10.303) are values for unladen turbulence. We∗ = τp/τk,0 and We = τp/τk where τk,0 is the Kolmogorov
timescale for unladen turbulence.

Reλ τp We∗ We ε/ε0 q/q0 τk ηk le Te λ κmaxηk

47.21 1.0 1.0 0.054 0.040 0.653 1.712 0.419 1.80
45.31 0.0054 0.1 0.10 0.98 0.96 0.054 0.040 0.632 1.611 0.533 1.80
45.66 0.027 0.5 0.503 0.97 0.95 0.054 0.040 0.637 1.629 0.535 1.80
46.58 0.054 1.0 1.03 0.94 0.97 0.053 0.040 0.631 1.656 0.532 1.80
43.86 0.108 2.0 2.06 0.93 0.90 0.053 0.040 0.601 1.517 0.534 1.80
47.15 0.163 3.0 2.97 0.86 0.93 0.055 0.041 0.670 1.725 0.538 1.84
48.30 0.190 3.5 3.49 0.87 0.96 0.056 0.040 0.679 1.781 0.561 1.83
48.71 0.218 4.0 3.85 0.81 0.94 0.057 0.041 0.711 1.836 0.569 1.86
49.48 0.272 5.0 4.64 0.75 0.92 0.059 0.042 0.750 1.917 0.584 1.90
52.60 0.544 10 8.08 0.57 0.85 0.067 0.045 0.913 2.249 0.612 2.03
52.51 1.088 20 14.80 0.47 0.77 0.074 0.047 0.998 2.347 0.678 2.13
53.40 2.176 40 28.75 0.45 0.76 0.076 0.047 1.042 2.439 0.684 2.14
55.31 4.352 80 55.84 0.42 0.77 0.080 0.048 1.112 2.609 0.690 2.19
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FIG. 2. Polymer statistics of the end-to-end distance magnitude (a) mean and (b) rms; here the solid line
with symbol represents the one-way coupling case results.

between two beads, and thermal fluctuations due to Brownian motion. The role of the elasticity
parameter in the alteration of polymer configuration (i.e., from coiled to maximum stretched state)
is inevitable [14,18]. The Eulerian and Lagrangian statistics were obtained for a wide range of
elasticity parameter We∗. The rms of the end-to-end distance-vector magnitude is represented by
Q′(t ) =

√
〈[|Q(t )| − Q(t )]2〉. The ensemble averaged values of the mean and rms quantities were

normalized with the maximum stretching length. The time variation of the average magnitude of the
end-to-end distance vector in the early transient period is presented in Fig. 2(a). The comparison
between the one- and two-way coupling simulations is shown only for selected values of the
elasticity parameter for the sake of clarity. We find that the averaged values remain very small in both
cases, when We∗ � 2.0, although for reference only cases with We∗ = 1.0 are shown in Fig. 2(a).
This indicates that most polymers are in a coiled configuration, where the elastic force between two
beads dominates over the stretching motion due to fluid. There is no significant contribution from
polymer feedback force in the two-way coupling case for these two values. The increment in mean
value is observed for We∗ � 3.0 as shown in Fig. 2(a) for both cases. This observation is consistent
with previously reported studies [18]. The polymers are more stretched in case of one-way coupling
compared to two-way coupling. The stretching in the polymers in two-way coupling cases is limited
due to the presence of feedback force. The stretched polymers contribute much to the feedback force
and the resulting suppression in turbulence is observed, as will be discussed later.

The comparison between the rms Q′(t ) for different values of We∗ in both one- and two-way
coupling cases is shown in Fig. 2(b). The rms for We∗ � 2.0 is very small, similar to the mean
value. The fluctuations increase for We∗ � 3.0. However, when We∗ � 10.0, the fluctuations rapidly
increase and the peak value is observed at approximately t∗ = 91 and then the decay is observed.
This decay is more pronounced for We∗ = 20, 40, 80. This kind of different transient behavior of
polymers for different We∗ is due to different stiffness of the polymers; Stiff polymers with small
We∗ show overdamped behavior, while less stiff polymers with large We∗ tend to be underdamped.
A large value of the converged rms for We∗ = 10 is observed, as compared to other values when
t∗ � 183. Most polymers are stretched toward maximum stretching length, while there exist some
polymers in a coiled configuration. This contributes much to the fluctuations, resulting in an increase
in the rms value. For We∗ � 20, the polymers are highly stretched and the peak is completely shifted
toward the maximum stretching length [see Fig. 4(b)]. Both the mean stretching and its rms statistics
indicate that a statistically steady state is attained when t∗ � 275.

The coil-stretch transition [34,35] (hereinafter referred to as CST) is observed in a polymer
solution when the value of the elasticity parameter reaches its threshold value. When it occurs, the
stretching dominates over the polymer molecule relaxation, or in other words, the characteristic
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FIG. 3. Effect of We∗, We on variations in (a) Q and (b) σ for both one-way and two-way coupling cases.

timescale of turbulence (τk) is smaller than the polymer relaxation time (τp). The CST was
previously discussed in stationary turbulence for passive polymers by Watanabe and Gotoh [14].
For dumbbell and polymer chain (FENE-20) models, CST was observed when elasticity parameter
is in the range of We∗ = 3–4. In the present study, we used wide range of elasticity parameter
0.1 � We∗ � 80 to compute the CST in the presence of two-way coupling for stationary turbulence.
For this purpose, the mean value of the end-to-end distance-vector magnitude and mean standard
deviation (referred to as σ ) σ = (|Q|2 − Q2)1/2 are calculated for different values of elasticity
parameter.

Figure 3(a) presents the comparison between the time-averaged values Q of both one- and two-
way coupling simulations. The averaged value is the same for both cases when We∗, We � 1.0. The
polymers are more stretched in both cases as the elasticity parameter is increased. The averaged
value for the one-way case is larger than the two-way coupling when plotted against We∗. The
two-way coupling effect on polymer statistics is enhanced, as elasticity parameter We∗ is increased.
We observe that the stretching in polymers is constrained due to the presence of feedback force.
However, this modification is compensated when the Weissenberg number is defined by τk of the
modified turbulence.

As shown in Fig. 3(b), the mean standard deviation σ normalized by the mean value Q is obtained
for both one- and two-way coupling cases. The value of σ is almost identical for both cases when
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FIG. 4. Probability density function of the end-to-end distance vector magnitude for different values of the
elasticity parameter.
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Open symbols are for one-way coupling and closed symbols are for the two-way coupling case.

We∗, We � 3.0. When We∗ > 3.0, however, the mean standard deviation is slightly larger for the
two-way coupling case as compared to the one-way case. However, for We > 3.0, the curves are
almost collapsed into each other. The peak value of the mean standard deviation of one- and two-
way cases is observed when We∗ = 3.0. The CST in this study is observed for We∗ = 3.0 and
We = 2.97. It seems that the CST in polymers is not affected by the presence of feedback forces at
this volume fraction.

The CST can be investigated in the PDF of |Q| normalized with the maximum stretching length
as shown in Fig. 4. The PDF for We = 2.06 clearly demonstrates that the peak is observed near zero
and a few polymers are stretched towards the Qmax. When the value of We increased, the probability
that polymers remains in coiled configuration was decreased. The polymers are gradually stretched
due to increments in the elasticity parameter and the tail is extended toward maximum stretching
length. For We = 8.08, the polymers are almost uniformly distributed except for both extreme
values, where coiled and maximum stretched states are observed. The polymers are significantly
stretched as We further increases, and the peak of the PDF emerges at the maximum stretching
length. This finding is consistent with previously reported studies [18].

Next, we investigated the alignment between the polymer end-to-end distance vector and the
principal axis of the rate of strain tensor at the polymer position since the motion of inertia-free
polymer dumbbells is predominantly determined by the local straining motion of the fluid. Statistics
of the cosine angles between these vectors, cos θi = Q · σ i/|Q||σ i|, is investigated for the one- and
two-way coupling cases, where σ i is an eigenvector of eigenvalue λi of the rate of the strain tensor.
The eigenvalues are ordered in such a way that λ1 > λ2 > λ3, with the corresponding eigenvectors
representing the most stretched, intermediate, and compressed directions, respectively. Figure 5
shows the conditional PDF of cos θi for i = 1, 2, 3 for We∗ = 5.0 and 20, when |Q(t )| > 0.65Qmax.
We∗ = 5.0 is chosen because the polymers are substantially stretched as the value is slightly larger
than the value for which CST is observed. In the one-way coupling case, when We∗ = 5.0, the
peak value of the PDF for cos θ1 and cos θ2 is observed at 1. However, the peak value of the PDF
of cos θ2 is smaller than that of cos θ1, which means that the end-to-end distance vector tended to
preferentially align with the σ1 direction. For cos θ3, the peak value of the PDF is observed at zero.
When We∗ = 20, however, we find that the most probable direction in this case is σ2 as presented in
Fig. 5(b). This indicates that as the elasticity parameter is increased, the polymers are preferentially
aligned with the σ2 direction in the one-way coupling case.

For the two-way coupling case, the peak value of the PDF of cos θ1 and cos θ2 is observed at
1 for We∗ = 5.0. The polymers align with the σ1 or σ2 direction at equal probability as shown in
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Fig. 5(a). This behavior is different from the one-way coupling case, where most of the polymers are
preferentially aligned with the σ1 direction for the same value of We∗. This observation provides
evidence that in the case of two-way coupling, the stretching in polymers is constrained due to
feedback forces. Meanwhile, the peak value of the PDF is observed when cos θ3 = 0. For We∗ = 20,
the most probable direction of the polymers is the direction of σ2, but a reduction in the peak value
is noticeable as compared to the one-way case. However, in the case of two-way coupling with
We∗ = 20, the probability for σ1 is smaller compared with that of the one-way case. The shift in
the peak location from 1 to 0.85 is observed for cos θ1 in the two-way coupling case. This shift
in the peak will be discussed in Sec. III B 2. We observe that for two-way coupling cases, the
end-to-end distance vector tends to be preferentially aligned with the σ2 direction and this trend is
insensitive to the Weissenberg number as long as We∗ > 10. This alignment seems to be against
intuition. However, since large We∗ implies long response time of a polymer, the probability that an
instantaneous alignment between the polymer and the local stretching motion would be decreased
compared with polymers with low We∗. Furthermore, polymers tend to be strongly aligned with the
local vorticity vector for large We∗ as will be discussed in Sec. III B 2 and the vorticity vector has
been known to align with σ2 [36].

Finally, we investigated the alignment between the vorticity vector and eigenvectors of strain
rate tensor at the polymer position subject to the condition |Q(t )| > 0.65Qmax. The cosine angle
between the two vectors, cos θi = ω · σ i/|ω||σ i|, is evaluated for the one- and two-way coupling
simulations for We∗ = 5.0 and 20. For We∗ = 5.0, the peak value of the PDF in cos θ1 for one-way
coupling case is observed at 1, while in two-way coupling case, the PDF value is smaller than that
of the one-way case. The most probable direction that the vorticity vector aligned with is σ2 for the
one-way coupling case, consistent with previous investigations in turbulent flow [36]. However, for
the two-way coupling case, we found that the vorticity vector has equal probability to preferentially
align with either σ1 or σ2 as shown in Fig. 6(a). This finding is similar to what we observed in the
end-to-end distance vector in the two-way coupling case. For σ3, the probability is slightly higher
compared to the one-way case when cos θ3 � 0.5, and lower when cos θ3 > 0.5. For We∗ = 20, the
vorticity vector in the two-way coupling case is aligned with the σ2. The peak value of the PDF
for σ1 is shifted from cos θ2 = 1 to 0.85 as shown in Fig. 6(b). A similar shift was observed in
the end-to-end distance vector. This shift in peak location is due to the antialignment between the
vorticity vector and vortex stretching vector, which will be discussed later.

064303-11



UR REHMAN, LEE, AND LEE

We

E p

10
-1

10
0

10
1

10
20

0.1

0.2

0.3

0.4

Ep

(a)

We

q,
ε,

ψ
p

10
-1

10
0

10
1

10
20

2

4

6

8

10

12

14
q
ε
ψp

(b)

FIG. 7. Effect of the Weissenberg number on (a) Ep and (b) q, ε, and ψp.

B. Turbulence modification by polymers

The effect of the Weissenberg number on polymer statistics such as polymer elongation, coil-
stretch transition, and alignment between the end-to-end distance vector and rate of strain tensor
were presented in the previous section. In the following sections, the effect of the Weissenberg
number on the turbulence modification by polymers is discussed.

1. Effect of Weissenberg number on turbulence

The physical parameters of the unladen turbulence, which is used for the initial condition and
the reference case for comparison, are listed in Table III. The rms of the fluid velocity is given
by u′ = √

uiui. The mean fluid dissipation and kinetic energy is defined as εD = 2ν f 〈si jsi j〉 and
k = 1

2 〈uiui〉, respectively, where si j = 1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) is the strain rate tensor. The time-averaged

turbulence dissipation and kinetic energy are represented by ε = εD and q = k, respectively.
The Taylor microscale is defined as λ = √

15ν f u′2/ε. The turbulent motion is characterized by
Taylor microscale Reynolds number Reλ = u′λ/ν f . The Kolmogorov length and timescales are ηk =
(ν f /ε)1/2 and τk = (ν3

f /ε)1/4, respectively. The eddy length scale and turnover time are le = u′3/ε
and Te = le/u′, respectively.

Due to the elastic nature of polymers, the kinetic energy of turbulence transfers to elastic energy
of polymers. The elastic energy of polymers Upol(t ) is defined as [19]

Upol(t ) = −U0
1

Nc

Nc∑
m=1

ln

[
1 −

( |Q(m)(t )|
Qmax

)2
]
, (11)

where U0 = νp

2τp
( Qmax

Q0
)
2

is constant. νp = ν f β is polymer viscosity and β is the ratio of polymer

to fluid viscosity known as zero-shear viscosity [19] and is given by β = (3Q0/4rb)2φv . In the
presence of polymers, the energy is transferred from kinetic to elastic or from elastic to kinetic
energies. Therefore, there exists a trade-off between fluid kinetic energy and elastic energy of
polymers [11,18,19]. The time-averaged value of the elastic energy of polymers is represented by
Ep = Upol and is plotted against different values of We in Fig. 7(a). For We � 1.03, the averaged
value of elastic energy is small, since most of the polymers are in a coiled configuration as shown in
Fig. 3(a). However, when We > 2.06, an increment in averaged value was observed as compared to
We = 1.03. This trend of increment in elastic energy value is enhanced as the We value is increased.
The maximum value of averaged elastic energy is observed at We = 8.08. When We � 14.80, the
depreciation in elastic energy value was observed, because the polymers are highly stretched, and
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these stretched polymers suppress turbulence through the feedback force. As a result, the averaged
kinetic energy is substantially decreased compared to its initial value as shown in Fig. 7(b). In this
suppressed turbulence, the polymers are less stretched.

The evolution equation for mean-kinetic energy in the presence of feedback force fi is derived
from Naiver-Stokes equations, Eq. (II C),

dk

dt
= F − εD − εp, (12)

where the first term on the right-hand side F (= 〈ui fe,i〉) is the energy production contributed from
large-scale forcing and the second term is mean dissipation rate of the kinetic energy. The third
term εp = −〈ui fi〉. However, 〈ui fi〉 is the work done by the polymers to fluid, which is negative
in most cases since the spring force of a polymer tends to suppress stretching motion of fluid.
Therefore, εp is positive. Time-averaged value ψp = εp along with ε and q is illustrated in Fig. 7(b),
clearly indicating that as We increases ψp increases while ε decreases. In the previous studies
[11,19], in which two-way coupling simulations were performed by using FENE and FENE-P
models, the energy decay due to polymers in both decaying and stationary turbulence was computed
by using polymer stress tensor. However, in the present study this force is computed by using
point-force approximation. Due to the two-way coupling force, the kinetic energy is transferred to
the elastic energy of polymers. This term is responsible for the extraction of energy from turbulence
in the two-way coupling, as suggested in both particle- and polymer-laden turbulent flow studies
[11,19,23,37,38]. The spectral analysis of turbulent kinetic energy is further discussed related to
this term in Sec. III B 3.

The statistical comparison of several representative turbulence quantities for both polymer-free
and polymer-laden cases is provided for different values of τp listed in Table III. The values of the
Kolmogorov length and timescales of the modified turbulence, ηk and τk , increase as the value of
We is increased. This increment is observed due to the reduction in the dissipation ε, as shown
in Fig. 7(b). The eddy length le and turnover time Te increase for all values of We, because there
exists a reduction in the rms of fluid velocity, which can be seen from the reduction in the mean
fluid kinetic energy as shown in Fig. 7(b). The Taylor microscale λ increases for large values of
elasticity parameters. The spatial resolution of a spectral simulation [30,39,40] depends on the value
of κmaxηk , which should be greater than 1, for correct simulation of low-order statistics such as mean,
rms of velocity, and dissipation. For high-order statistics such as skewness and flatness, the value
must be greater than 1.5. The values of κmaxηk listed in Table III clearly fulfill the spatial resolution
requirement.

As shown in Fig. 7(b), when We = 0.1 and 0.5, the kinetic energy and dissipation are the same
as the corresponding values for the unladen turbulence and ψp is almost zero, indicating that the
polymers remain in the coiled configuration. For We = 1.03 and 2.06, a slight increment in q and
ε is observed. Then, both q and ε decrease when We � 2.97, where the coil-stretch transition in
polymers is observed. The polymers start stretching and contribute to the polymers’ feedback force.
The suppression in dissipation and kinetic energy tend to reach maximum as the elasticity parameter
further increases. The contribution of the feedback force fi increases for large values of We. The
role of feedback force in the extraction of energy from turbulence is increased. When We � 2.06,
ψp is enhanced.

The PDF of local fluid dissipation is presented for different Weissenberg numbers in Fig. 8.
The probability in the low dissipation region is enhanced as the elasticity parameter is increased
as shown in the plot in the linear scale in Fig. 8(a). However, when the PDF expressed on the log
scale, we find that the probability at the high dissipation region is reduced monotonically with We
more significantly as compared to the low dissipation region. This indicates that high dissipation
regions are suppressed in the presence of polymers. This reduction is more pronounced for larger
Weissenberg numbers as presented in Table III, where the mean dissipation is reduced significantly
from We = 0.1 to We = 80 owing to the highly intermittent nature of local dissipation.
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FIG. 8. Effect of polymers on the probability density function of local fluid dissipation for different values
of We.

2. Effect of polymers on vorticity

In this section, we investigate the vorticity dynamics as modified by the polymers since the
stretching motion of the fluid, which is responsible for the polymer stretching, is mostly caused
by coherent rotational structures in turbulence. The vorticity equation derived from Naiver-Stokes
equations is

Dωi

Dt
= ω j si j + ν f

∂2ωi

∂x j∂x j
+ εi jk

∂ fk

∂x j
+ εi jk

∂ fe,k

∂x j
, (13)

where the terms on the right-hand side represent the vortex stretching, viscous diffusion, the direct
effect of polymers on vorticity, and contribution by the artificial forcing, respectively. First, we
focus on the alignment between the vorticity vector and the first two terms on the right-hand
side of Eq. (13), the vortex stretching and viscous diffusion of vorticity. For this purpose, the
PDF of cos θ1,2 = ωiWi/|ωi||Wi|, where θ1,2 is the angle between vorticity vector and Wi, where
either Wi = ω j si j or Wi = ν f ∂

2ωi/∂x j∂x j . Figure 9 presents the PDF of the cosine angle between
vorticity ωi and vortex stretching Wi for various values of the elasticity parameter compared with
the polymer-free case. The maximum probability for the polymer-free case is found to be positively
skewed toward 1 as shown in Fig. 9(a), which means that the stretching in vortex dominates over
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FIG. 9. PDF of the cosine angle between ωi and (a) ω j si j and (b) ν f ∂
2ωi/∂x j∂x j for various We.
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compression, which is consistent with previous studies [4,27]. In the polymer-laden cases, however,
the maximum probability near θ1 = 0◦ reduces as We increases compared to the polymer-free case.
This indicates that the vortex stretching process is suppressed by polymers in such a way that
vorticity and stretching are less parallel with each other than the polymer-free case. Meanwhile,
we find that the PDF of the cosine angle increases where θ1 = 180◦, as the elasticity parameter
increases. This shows that the probability that ωi and Wi are antiparallel is higher, which ultimately
strengthens the vortex compression.

The PDF of the cosine angle between ωi and Wi = ν f ∂
2ωi/∂x j∂x j shown in Fig. 9(b) indicates

that polymers clearly modify the dynamics of vorticity diffusion. While for the polymer-free case,
a large value for the PDF is observed at cos θ2 = −1, indicating the strong antialignment, for the
polymer case, the peak value of PDF is reduced, implying the suppression of the antialignment by
the polymers. However, when −0.7 < cos θ2 < 0.5, the PDF of the polymer-laden case is larger
than that of the polymer-free case, which indicates that vorticity and viscous diffusion of vorticity
tend to be more orthogonal. The vorticity orientation is influenced in the two-way coupling case,
when Wi acts perpendicular to vorticity. This behavior is opposite to that of the angle between
vorticity vector and vortex stretching vector shown in Fig. 9(a).

The polymer stress tensor defined by τ
p
i j = ν f β

τp
( L3

box
Nr

)
∑Nr

1 [
Q(m)

i Q(m)
j

Q2
0

γ (z) − δi j]δ(x − Q(m)
c ) has

been used to describe the polymer influence on turbulence [4,18,19,27,41]. The gradient of the
polymer stress tensor (∂τ

p
i j/∂x j) is the feedback force added to the Naiver-Stokes equations. In the

previous studies on drag reduction induced by polymers in wall-bounded turbulent flows [37,38,41],
it was found that highly stretched polymers remain in the near-wall region and the direct interaction
between polymers and the near-wall structures result in the suppression of the quasi-streamwise
vortices. The spatial gradients of the polymer stress tensor produced two effects, one opposing
the motion of the vortices by gradients [38] and the other extracting energy from the vortices and
transferring it to the polymers [42]. The feedback force in the current study is based on the elastic
force between the two beads. The feedback force from polymers on turbulence depends on the
spring constant H , which is inversely proportional to the polymer relaxation time τp, or We. The
large We indicates that the polymers stretch over a longer period. The polymers are influenced by the
stretching due to the fluid motion. We find that the highly stretched polymers are preferentially found
around the vortical structures as shown in Fig. 11(a), and these structures are suppressed by the
polymer feedback force. This finding is similar to what previous studies reported for wall-bounded
turbulent flows [37,38,41].

Figure 10 presents the comparison of isosurface of the vorticity magnitude |ωi| for one-way
coupling and two-way coupling cases at We = 2.97, 4.64 and 8.08. Previous studies [43,44] without
polymers related to DNS of homogeneous isotropic turbulence suggested that for large value of |ωi|,
isosurfaces are filamentary. Recently Perlekar et al. [10] performed the DNS of stationary turbulence
in the presence of polymer additives in which they used the FENE-P model. They found that in the
presence of polymers the filaments are suppressed and this suppression is more pronounced as We
increases. In the current study using the FENE model, we observe similar behavior and found that
for large values of We the suppression is more pronounced, as shown in Figs. 10(b), 10(c), and
10(d).

The PDF of the cosine angle cos θ3 = Q · ω/|Q||ω| is computed to investigate the alignment
between these two vectors. The PDF is shown for We = 4.64 and We = 55.84 for both one-way and
two-way coupling cases in Fig. 11(b). In the one-way coupling case, the peak value of probability
is observed at approximately 1 for all chosen Weissenberg numbers, which means that Q and ω

tend to be parallel to each other. However, in the case of two-way coupling for We = 4.64, the
peak value at 1 decreases compared to one-way case. This explains why vortex compression is
observed more often than vortex stretching in the presence of polymers. The back-reaction force
from polymers plays a role in the suppression of the vortex tube. The reduction in the peak value at
1 is more pronounced in the case of We = 14.80. This reduction is more significant in the case of
We = 55.84 as shown in the inset of Fig. 11(b).
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FIG. 10. Comparison of the isosurfaces of |ωi| in flow (a) without polymers and [(b), (c), (d)] with polymers
at We = 2.97, 4.64, 8.08,. The level is chosen by |ωi|/σω = 3.5. where σω is the standard deviation of |ωi|.
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FIG. 11. (a) Distribution of end-to-end distance vector along with fluid vorticity component in an x-z plane
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For a better interpretation of the effect of polymers on vorticity, we further investigate the
dynamics of vorticity through the dynamics equation of enstrophy given by

D

Dt

(
1

2
〈ωiωi〉

)
= 〈ωiω j si j〉 + ν f

〈
ωi

∂2ωi

∂x j∂x j

〉
+ εi jk

〈
ωi

∂ fk

∂x j

〉
+ εi jk

〈
ωi

∂ fe,k

∂x j

〉
, (14)

where terms on the right-hand side represent the averaged enstrophy production, dissipation,
polymer effect on enstrophy transport, and the contribution by the artificial force, respectively. The
time-averaged quantities are represented as � = 1

2 〈ωiωi〉, �p = 〈ωiω j si j〉, �D = ν f 〈ωi∇2ωi〉, and

�pol = εi jk〈ωi
∂ fk

∂x j
〉. The contribution by the artificial force is not investigated since it is negligibly

small. The computed values of average enstrophy production, dissipation, polymer contribution,
and the sum of all three terms are presented in Fig. 12(a). The polymer contribution is negligible
for We � 2.06, and thus production is balanced by dissipation. The monotonic decay in the average
enstrophy production is observed when We � 2.97. The decay in time-averaged value is due to
feedback forces, as we observed that the vorticity generation is suppressed in the polymer-laden
flow. It is noteworthy that the direct contribution to enstrophy of the feedback forces is positive but
they also suppress vortex stretching, resulting in significant suppression of enstrophy production.
Enstrophy dissipation is also suppressed by the polymer feedback forces.

The PDF distribution of local enstrophy � is shown in Fig. 12(b). The effect of polymers on
the distribution of � becomes significant as the Weissenberg number increases. PDF for the low
enstrophy region increases, while PDF for the high enstrophy region decreases as the elasticity
parameter increases. The reduction at the high enstrophy region is more prominent than the low
enstrophy region, resulting in an overall reduction in 〈�〉 as the Weissenberg number increases.
These results are in qualitative agreement with the experimental study [45] wherein dilute polymer
solution was investigated.

3. Spectral analysis

Finally, we investigated the spectral dynamics of the two-way coupling between polymers and
turbulence. Although the scale of the stretched polymers is extremely small, the effect of the
feedback forces extends to various large-scale motions of the fluid through the energy exchange
between different scales. To observe the effect of We∗ on spectral dynamics, the kinetic energy
equation in spectral space was investigated [20],

dE (κ )

dt
= Te(κ ) − ε(κ ) − ψp(κ ) + F (κ ), (15)
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FIG. 13. (a) Three dimensional kinetic energy (b) dissipation spectra for different values of We.

where κ = |κ| is the magnitude of the wave-number vector. E (κ ) represents the energy spectrum,
Te(κ ) is the spectral energy transfer rate, ε(κ ) is the dissipation rate spectrum, and ψp(κ ) is the
rate of the two-way interaction energy. F denotes the contribution of the artificial force to maintain
turbulence. These terms are expressed respectively as [20]

E (κ ) =
∑

κ�|κ|<κ+1

1

2

[
û∗

j (κ)û j (κ)
]
, Te(κ ) =

∑
κ�|κ|<κ+1

Re
{
û∗

j (κ)N̂L j (κ)
}
, (16)

ε(κ ) = 2νκ2
∑

κ�|κ|<κ+1

1

2

[
û∗

j (κ)û j (κ)
]
, ψp(κ ) = −

∑
κ�|κ|<κ+1

Re
{
û∗

j (κ) f̂ j (κ)
}
, (17)

where û j and û∗
j denote the Fourier coefficient of u j and its complex conjugate, respectively.

N̂Li(κ) = Ĥi − κiκ j Ĥ j/κ
2 is the Fourier coefficient of the projected nonlinear term of the Navier-

Stokes equation and Ĥi = εi jk û jω̂k with ω̂k denoting the Fourier coefficient of vorticity vector. Re
indicates the real part of a complex variable. f̂ j is the Fourier coefficient of the feedback force from
polymers.

In Figs. 13 and 14, we show the turbulence spectra and the spectral two-way coupling energy
rate for various Weissenberg numbers. As shown in Fig. 13(a), when We � WeCST(= 2.97), the
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kinetic energy spectrum is hardly modified by the two-way coupling feedback. When We > 2.97,
however, energy in the range 0.2 � κηk,0 � 1.5, is suppressed, whereas small-scale components
in the range 1.5 < κηk,0 are enhanced. In their DNS study of stationary isotropic turbulence at
Reλ = 80, Perlekar et al. [10] also showed, using the FENE-P model, that the kinetic energy
spectrum decreases at intermediate wave numbers for similar Weissenberg numbers (Weissenberg
numbers of 3.5 and 7.1 based on the Kolmogorov timescale of the polymer-free flow). They further
conducted a high-resolution, low-Reλ DNS without aliasing errors to demonstrate that polymer
additives enhance the kinetic energy spectrum in the deep dissipation range. In Fig. 13(a), the
modification due to polymers seems to be saturated as We is further increased. Owing to the
suppression in most scales, the total kinetic energy decreases as listed in Table III.

The dissipation spectra presented in Fig. 13(b) show similar behavior to the kinetic energy
spectra. The dissipation spectrum for polymer-free case shows two peaks, the one of which at
κηk,0 = 0.088 is due to the external forcing to maintain turbulence, similar to the peak in the energy
spectrum shown in Fig. 13(a). For We � 2.97, the modification is negligible. When We > 2.97,
the dissipation is suppressed in most of the ranges of scales. Particularly, the suppression in the
range 0.2 � κηk,0 � 1.0 is significant although the suppression becomes saturated as We is further
increased. A slight increase in the dissipation spectra on a small scale is negligible, resulting in more
suppression in the total dissipation than the total kinetic energy, as shown in Table III.

The effect of polymers on the energy transfer between different scales is displayed in Fig. 14(a).
The negative peak on a large scale is hardly modified by polymers, whereas for 0.175 < κηk,0 �
1.0, the monotonic suppression of the positive energy transfer is observed as We increases. Fig-
ure 14(b) presents the direct contribution of polymers to the spectral energy. For all Weissenberg
numbers, the spectral two-way coupling energy rate is negative at low wave numbers, with a peak
at κηk,0 ≈ 0.1, where large-scale energy is supplied from the forcing. This indicates that despite
their small size (smaller than the Kolmogorov scale), stretched polymers collectively interact with
large-scale turbulent motions, as clearly seen in Fig. 11(a) and as explained by Watanabe and Gotoh
[18]. The negative contribution of ψp(κ ) at low wave numbers is also consistent with previous
observations from Eulerian-Eulerian simulations of steady isotropic turbulence and homogeneous
shear turbulence with the FENE-P model ([11,12]; [46]) and from Eulerian-Lagrangian simulations
of decaying isotropic turbulence with the dumbbell model (Watanabe and Gotoh [18]). It is worth
noting that Watanabe and Gotoh [18] showed that in decaying isotropic turbulence, a positive
contribution of ψp(κ ) at κηk > 1 is responsible for the formation of a power-law decay of the
kinetic energy spectrum, for their largest Weissenberg number (Weissenberg number of 25 based on
the Kolmogorov timescale of the polymer-free case when the dissipation rate reaches its maximum
value). Valente et al. [12] also found a transfer of energy from elastic to kinetic energies at high
wave numbers when the polymer relaxation time is large (Weissenberg numbers of We ≈ 5 and 10)
in their DNS of steady isotropic turbulence with the FENE-P model. Consistent with these observa-
tions, positive ψp(κ ) is also observed at high wave numbers in our Eulerian-Lagrangian simulation
of steady isotropic turbulence with the dumbbell model, as shown in the inset of Fig. 14(b), although
the magnitude of ψp is quite small compared to the negative contribution at large scales. In the inset
of Fig. 14(b), as the Weissenberg number increases, the positive contribution of ψp(κ ) becomes
significant progressively toward low wave numbers. For our two largest We, positive peaks appear
at κηk ≈ 0.6. The effect of We on the turbulence spectra and the two-way coupling energy rate
spectrum is consistent with the We dependence of polymer stretch shown in Fig. 3(a).

IV. CONCLUSION

In this paper, the direct numerical simulation of polymer-laden homogeneous isotropic turbu-
lence was performed using the Eulerian-Lagrangian approach to investigate the two-way coupling
effect. The polymer tracking was carried out by adopting the finitely extensible nonlinear elastic
dumbbell model. The parametric study of the Weissenberg number was performed to investigate
the polymers’ stretching and its effect on turbulence modification. The spring force between
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two beads was modeled as a back-reaction force from polymers on turbulence through the point
force approximation. We found that at the volume fraction φv = 2.525 × 10−6, the N number
of polymers, where Nc = O(107), is sufficient to observe the converged turbulence modification.
Therefore, direct implementation of a pair of feedback forces is more efficient than the polymer
stress approach.

The polymer statistics were computed for the end-to-end distance vector magnitude. When
We � 2.06, the polymers are not significantly stretched and thus most polymers remain in a coiled
configuration. We note that the stretching of polymers is limited owing to the presence of a two-way
coupling force, compared to one-way coupling. The stretching phenomenon in polymers is charac-
terized by the PDF of the end-to-end distance vector magnitude. For large Weissenberg numbers, the
polymers are stretched closer to the maximum value. The coil-stretch transition is investigated for
the two-way coupling simulation. The coil-stretch transition in polymers occurs when We = 2.97 or
We∗ = 3.0. This finding is similar to the one-way coupling result, where the coil-stretch transition
for passive polymers in stationary turbulence was reported when We = 3.0–4.0.

The alignment between the end-to-end distance vector, vorticity vector, and eigenvectors of
strain-rate tensor was investigated. In the case of the end-to-end distance vector, we found that
when We∗ < 10, the polymers are preferentially aligned along the σ1 direction, the most stretching
direction of rate of strain tensor. However, for We∗ = 20, 80, the polymers tend to align along the
σ2 direction corresponding to the intermediate eigenvalue, and the probability that the polymers
aligned along the σ1 direction is reduced. An investigation of the alignment between the vorticity
vector and the eigenvectors of rate of strain tensor revealed that when We∗ = 5.0, the vorticity vector
has a tendency to preferentially align along either the σ1 or σ2 direction. However, the alignment
trend when We∗ = 20, 80 is similar to that of the end-to-end distance vector. With an increase in the
Weissenberg number, the probability that the vorticity vector and the eigenvector of rate of strain
tensor are parallel decreases.

No substantial modification in turbulence was observed when We � 2.06. When We � 2.97,
however, polymers are substantially stretched, and they contributed more to turbulence modification.
The turbulent kinetic energy on large scales and dissipation on small scales were reduced as We
increased. The polymers extract the kinetic energy from the fluid and store in the form of elastic
energy. The polymers store maximum elastic energy when We = 8.08, and for higher We the elastic
energy is stored less due to attenuation in turbulence.

The polymers rotate around the vortical structures, and highly stretched polymers are observed at
the edge of vortical structures. The vortical structures are more suppressed as the elasticity parameter
increased. Polymers contribute to maintaining the turbulence, when the enstrophy production is
reduced for large We. The antialignment trend between the vorticity and the vortex stretching vector
increases when the elasticity parameter increases, thus indicating that the role of the polymers is
vortex compression instead of vortex stretching. The augmentations in kinetic energy spectra were
observed on both large and small scales for all values of We. The two-way interaction energy rate
is dependent on the choice of the Weissenberg number. The decay in dissipation spectra is found at
the intermediate wave numbers.

We present a detailed study on polymers and their interaction with isotropic turbulence for a
wide range of Weissenberg numbers. Although polymers have been known to be responsible for
the suppression of turbulence for a long time, our approach based on direct forcing in stationary
turbulence showed a potential for a more physical insight. Similar investigation on anisotropic
turbulence such as shear flow or near-wall turbulence would be interesting. Particularly, the drag
reduction mechanism in polymer-laden boundary layer flow could be investigated under the La-
grangian treatment of polymer dynamics.
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