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Active control of particle position by boundary slip in inertial microfluidics
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Inertial microfluidics is able to focus and separate particles in microchannels based on
the characteristic geometry and intrinsic hydrodynamic effect. Yet, the vertical positions of
suspended particles in the microchannel cannot be manipulated in real time. In this study,
we utilize the boundary slip effect to regulate the parabolic velocity distribution of fluid in
the microchannel and present a scheme to actively control the vertical positions of particles
in inertial microfluidics. The flow field of a microchannel with a unilateral slip boundary is
equivalent to that of the microchannel widened by the relevant slip length, and the particle
equilibrium positions in the two microchannels are consistent consequently. Then, we sim-
ulate the lateral migrations of three kinds of typical particles, namely, circular, elliptical,
and rectangular in the microchannel. Unlike the smooth trajectories of circular particles, the
motions of the elliptical and rectangular particles are accompanied by regular fluctuations
and nonuniform rotations due to their noncircular geometries. The results demonstrate that
the unilateral slip boundary can effectively manipulate the vertical equilibrium positions
of particles. The present scheme can improve the accuracy and flexibility of particulate
focusing, separating, and transport in inertial microfluidics.

DOI: 10.1103/PhysRevFluids.7.064201

I. INTRODUCTION

Microfluidics concerns the manipulation of fluids in channels with dimensions of tens to hun-
dreds of micrometers. It has emerged in recent years as a distinct new area of research thanks
to its application in many diverse fields, such as chemistry, biology, medicine, and physics [1–7].
Nowadays, several technologies have already been proposed and developed to manipulate particles
in microfluidic systems. According to the source of the manipulating forces, these technologies
can be categorized as active and passive types. Active technologies rely on external force fields,
whereas passive technologies depend entirely on the channel geometry or intrinsic hydrodynamic
forces. As a passive technology, inertial microfluidic is used for particle focusing [8], sorting [9], and
enriching [10] in industry, biology, and medicine. The finite inertial of the fluid brings about several
intriguing inertial effects that form the basis of inertial microfluidics, including inertial migration
and secondary flow. Inertial migration is inspired by a natural phenomenon that randomly dispersed
particles in a channel flow migrate spontaneously and laterally to several equilibrium positions
after traveling a sufficiently long distance. As early as the 1960s, Segré and Silberberg found that
suspended spherical particles in a pipe flow would migrate laterally away from the wall and finally
reach a certain lateral equilibrium position [11]. The phenomenon was called the Segré–Silberberg
effect later and can also be observed for other shaped particles, such as cylinder, ellipse, disk, rod,
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biconcave particles, etc. Until 2007, Di Carlo et al. [12] performed the inertial focusing of particles
at a micro–scale. In a pipe with a diameter of the order of microns, the length of pipe required for
particles to reach the equilibrium state was reduced to centimeters or even millimeters. The inertial
migration of particles has now been practically applied in microfluidics.

Different focusing and separation effects were achieved through microchannels with different
structures. The microchannel structure is the important parameter that determines the functionality
and performance of inertial microfluidic devices. Ramachandraiah et al. [13] used U-shaped and
S-shaped microchannels to achieve the focusing of particles and found that the focusing position
of particles is independent of the radius of curvature. Bhagat et al. [14] used a 10-loop spiral
microchannel to achieve three-dimensional (3D) focusing of fluorescently labeled 6 µm particles
without any additional sheath fluids. Sun et al. [15] proposed a passive double spiral microfluidic
device to continuously and efficiently separate and enrich tumor cells from diluted whole blood.
Zhang et al. [16] carefully evaluated the effect of particle centrifugal force on particle focusing
and demonstrated for the first time that a single focusing streak can be achieved in a symmetric
serpentine microchannel. Ciftlik et al. [17] used a channel with 10 µm × 16 µm cross-section and
the length of 8.8 mm to successfully focus particles with the diameter of 2 µm. The Reynolds
number in the system could be changed between 75 to 1500, thus their microfluidics obtained high
throughput.

At the same time, when the characteristic length of the flow field goes to a micron/nanometer,
the interaction between the fluid and the wall must be considered. As a result, the boundary slip will
occur at the wall and it has an important effect on the fluid field at the micro-nano scale [18]. To
quantify the boundary slip, Navier [19] proposed the concept of “slip length,” which is defined as
the distance inside the wall at which the extrapolated fluid velocity would be equal to the velocity of
the wall [20]. Several studies about the effect of the boundary slip have also been reported [21,22].
Li et al. [21] studied the effect of nanobubbles on the slippage experimentally and theoretically. In a
5 µm × 5 µm area, they found an increase from 8 to 512 nm in slip length by increasing the surface
coverage of nanobubbles from 1.7% to 50.8% and decreasing the contact angle of nanobubbles from
42.8◦ to 16.6◦. Their results indicate that nanobubbles can always act as a lubricant and significantly
increase the slip length. Minakov et al. [22] studied the flow regimes and mixing performance in a
T-type micromixer at high Reynolds numbers. They found that the flow regimes and the efficiency
of mixing can be changed by using the slip boundary conditions. Schäffel et al. [23] reported that
the slip length of water on a microstructured superhydrophobic surface was close to 100 microns.
Lee et al. [24,25] showed that the slip lengths of water on the surfaces with posts and grates of
micro-nano structures were up to 140 and 400 microns, respectively.

Many studies have focused on inertial microfluidics by numerical method. In particular, the
lattice Boltzmann method (LBM), as a reliable computational fluid dynamics method, is widely used
for the numerical simulation of microfluidics [26–32]. Sun et al. [27] studied the particle focusing
in a three–dimensional rectangular channel with the lattice Boltzmann method. Huang et al. [28]
used a multi-relaxation-time lattice Boltzmann method to study the rotation of a spherical particle
in a Couette flow. They found seven periodic and steady rotation modes for a prolate spheroid. Wen
et al. [29,30] simulated the migration of biconcave particles in straight channels and made a positive
contribution to the study of blood circulation of birds with elliptical red blood cells. Liu et al. [31]
carried out a three-dimensional numerical simulation of the movement of particles in a serpentine
microchannel and proposed a fitting formula for the inertial lift on a sphere drawn from DNS data
obtained in straight channels. However, there is no method to control particles’ equilibrium positions
in real time in inertial microfluidic.

In this paper, the slip boundary condition is used on the side of the Poiseuille flow. The velocity
distribution of the flow field is controlled by adjusting the slip length, so as to control the equilibrium
positions of particles. The simulation results show that this method can control the target particles
more accurately and the equilibrium positions can be adjusted in real time. In addition, this method
is very simple and robust. The structure of this paper is as follows. In Sec. II, we briefly describe
the lattice Boltzmann method. Section III is devoted to describing the slip boundary condition,
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derivation, and verification of the slip length formula. The effect of boundary slip on the migration
trajectory of different particles is presented in detail in Sec. IV. Section V concludes the paper.

II. NUMERICAL METHOD

To analyze the effect of the boundary slip, the lattice Boltzmann method with single relaxation
time is used for simulating Poiseuille flow. To precisely describe the motion of particles with
different shapes, the moving particle boundary is treated by the quadratic interpolation and the
hydrodynamic force is calculated by the Galileo invariant momentum exchange method [33,34].

Nowadays, the lattice Boltzmann method has developed into an alternative and promising
numerical scheme for simulating complex fluid flows [35,36]. Compared with other traditional
numerical methods, this method combines the advantages of the macroscopic model and the
molecular dynamics model. It has the advantages of a simple description of fluid interaction, easy
setting of complex boundaries, easy parallel computing, and easy implementation of the program.

The lattice Boltzmann model with single relaxation time (SRT) can be written as [26,37,38]

∂ fi

∂t
+ ei · ∇ fi = − 1

τ

(
fi − f (eq)

i

)
(i = 0, 1, 2, . . . , N − 1), (1)

where ei is a discrete velocity vector, fi is the particle distribution function with the velocity ei, f (eq)
i

is the corresponding equilibrium distribution function, N is the number of the different velocities in
the model, and τ is the relaxation time. Equation (1) is discretized in space x and time t :

fi(x + eiδt, t + δt ) − fi(x, t ) = − 1

τ

[
fi(x, t ) − f (eq)

i (x, t )
]
, (2)

where δt is the time step. In the model on a square lattice in two dimensions (D2Q9), the discrete
velocity set is e = {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1)} repre-
senting the nine directions, respectively. f (eq)

i (x, t ) can be calculated by

f (eq)
i (x, t ) = ρωi

[
1 + 3(ei · u) + 9

2
(ei · u)2 − 3

2
u2

]
, (3)

where weight factors ωi are given by ωo = 4/9, ω1−4 = 1/9, ω5−8 = 1/36, ρ and u are the
macroscopic density and the macroscopic velocity vector, respectively, are given by

ρ =
∑

i

fi and u = 1

ρ

∑
i

ei fi. (4)

The lattice Boltzmann method applies two essential steps, collision and streaming, to reveal
phenomena at the mesoscopic scale. During a time step, the particle distribution functions in a
lattice site collide and then flow into its neighboring lattice sites [39]. Hence, the corresponding
computations of Eq. (2) are performed as

Collision : f̃i(x, t ) − fi(x, t ) = − 1

τ

[
fi(x, t ) − f (eq)

i (x, t )
]
, (5)

Streaming : fi(x + eiδx, t + δt ) = f̃i(x, t ), (6)

where fi and f̃i denote precollision and postcollision states of the particle distribution functions,
respectively. The dominant part of the computations, namely the collision step, is completely local,
so the discrete equations are natural to parallelize.

III. REGULATING THE VELOCITY DISTRIBUTION BY BOUNDARY SLIP

The nature of the boundary condition for fluid flows past solid surfaces has been a subject of
interest for a long time. The no-slip boundary condition, that is, the assumption that the velocity
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FIG. 1. Schematic diagrams of shear flows with (a) a no-slip boundary and (b) a slip boundary. (c) A
channel flow with a slip upper boundary and a no-slip lower boundary. Owing to the boundary slip, the position
of maximum velocity in the channel is moved toward the upper boundary, and the deformed parabolic velocity
distribution is equivalent to that of the Poiseuille flow in a channel with width H + Ls.

of a liquid at a surface is always identical to the velocity of the surface, is extremely successful in
describing macroscale viscous flows. However, at the nanoscale, this assumption is usually broken
down [3]. Study shows that slip exists at the microscale and its value is significantly affected
by surface and fluid characteristics [40]. Some early experiments that demonstrate slip boundary
conditions mostly involve the flow of liquids through thin lyophobic capillaries [41,42]. Some new
experiments using more modern technology have also shown evidence of boundary slip [43–45].

A. Slip boundary scheme

As early as 1823, Navier [19] proposed the linear slip boundary condition hypothesis, which
assumes that the slip velocity is proportional to the local shear rate,

us = Ls
∂ux

∂y
|wall, (7)

where us is the slip velocity on the boundary, Ls is the slip length and ux is the tangential velocity
of the fluid along the boundary surface. Figures 1(a) and 1(b) show the shear flow with a no–slip
boundary and a slip boundary. When a channel flow has a slip upper boundary and a no–slip lower
boundary, the velocity distribution of the flow field is shown in Fig. 1(c). In this paper, we adopt the
scheme of the Fig. 1(c) to simulate the migration of particles.

In numerical simulations, boundary slip is usually implemented through boundary conditions.
Especially, a kind of kinetic boundary conditions has been developed in LBM to simulate boundary
slip phenomena effectively. Succi [46] proposed a combination of the bounce–back and specular
reflection condition to capture slip velocity on the solid wall, which is denoted as the bounce–back
specular reflection method or BSR method. Guo et al. [47] analyzed numerical error and discrete
effect on the bounce–back and specular–reflection boundary condition and the Maxwellian bound-
ary condition, and found that both schemes are virtually equivalent in principle. Chai et al. [48]
proposed a new combination of bounce–back and full diffusive boundary conditions to investigate
the incompressible gaseous flow in a microchannel with surface roughness. In this paper, we adopt
the hybrid boundary condition proposed by Succi, which is simple, efficient, and has been widely
applied.

As shown in Fig. 2, the distribution functions of f2, f5, f6 for the grid need to be obtained
according to the boundary conditions, others can be obtained according to the migration step. The
hybrid boundary condition proposed by Succi combines the bounce–back (the blue lines) with the
specular reflection (the red lines) based on the proportionality factor r. For the BSR method, the
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FIG. 2. Schematic diagram of the bounce–back specular reflection boundary condition. The boundary is
located at the middle of the two rows of lattices, and the distribution functions to be solved are composed of
the bounce–back and the specular reflection in a proportional factor r. The blue lines represent bounce–back
and the red lines represent specular reflection.

unknown distribution functions are given by⎧⎨
⎩

f2 = f ′
4

f5 = r f ′
7 + (1 − r) f ′

8 + 2rρωic5 · uω/2c2
s

f6 = r f ′
8 + (1 − r) f ′

7 + 2rρωic6 · uω/2c2
s

, (8)

where f ′
i is the distribution function of the node in the i direction after the collision, uω is the

velocity of the wall, r represents the proportion of bounce–back reflections in the interactions with
the wall and 1 − r represents the proportion of specular reflections. Therefore, r = 1 corresponds
to pure bounce–back reflection and r = 0 to pure specular reflection.

B. Slip length of Poiseuille flow

For the incompressible Newtonian fluid with constant viscosity, two–dimensional steady
Poiseuille flow is carried out in the x direction between two infinite plates. If the continuity
assumption is satisfied and the z direction is unlimited width, the Navier-Stokes equation in the
Cartesian coordinate system can be simplified as

d2ux

dy2
= 1

μ

d p

dx
, (9)

where μ is the viscosity of the fluid and p is the pressure.
As shown in Fig. 1(c), the lower boundary is no-slip ux|y=0 = 0, whereas the upper boundary

has the slip velocity ux|y=H = us. Substituting the two boundary conditions into Eq. (13) gives the
velocity distribution in the vertical direction

ux(y) = y

H
us + 1

2μ

d p

dx
(y2 − Hy), (10)

where y ∈ (0, H ). The analytical solution of Poiseuille flow with flow field width H + Ls is

ux(y) = 1

2μ

d p

dx
(y2 − Hy − Lsy). (11)
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FIG. 3. (a) The effect of boundary slip on velocity distribution of the channel flow at different rebound
proportional coefficients r. (b) The slip lengths of the simulations with a series of rebound proportional
coefficients are in agreement with the analytical solutions.

Based on Eq. (10) and the analytical solution Eq. (11), we can obtain the relationship between
the slip length Ls and the slip velocity us:

Ls = −2μus

H

(
d p

dx

)−1

. (12)

Then, according to the definition of velocity ρuj = c( f j
1 − f j

3 + f j
5 − f j

6 + f j
8 − f j

7 ) + δt
2 ρa and

the stream law of particle distribution function, the relation formula of the flow velocity in the x
direction between the adjacent mesh uH and uH−1 can be obtained [47]:

uH−1 = 1 − 2τ + 2r(τ − 2)

1 − 2τ + 2r(τ − 1)
uH + 6(2τ − 1) + r(8τ 2 − 20τ + 11)

(2τ − 1)[1 − 2τ + 2r(τ − 1)]
a, (13)

where a is the external force. Considering the linear velocity distribution of the flow field, the
external force a is 0. Eq. (13) can be simplified as

uH−1 = 1 − 2τ + 2r(τ − 2)

1 − 2τ + 2r(τ − 1)
uH . (14)

Substituting Eq. (10) and Eq. (12) into Eq. (14), we get the function of the slip length Ls, which
is related to the rebound coefficient r.

Ls = (H − 1)[1 − 2τ + 2r(τ − 1)]

(1 − 2τ ) + 2r(H − τ + 1)
. (15)

C. Numerical verifications

In the above section, we introduced the slip boundary scheme and derived the relationship among
the slip length, the slip velocity, and the rebound coefficient. In this subsection, the effectiveness
of the BSR boundary condition in a horizontal channel is verified by the numerical experiment.
The width H of the channel is 20 µm. The fluid density is 1 g/cm3 and the kinematic viscosity
coefficient is υ = 1 × 10−6 m2/s. BSR boundary condition is applied at the upper boundary of the
channel wall and the half-way bounce-back boundary condition is applied at the lower boundary. As
shown in Fig. 3(a), the different velocity distribution of the flow field can be obtained by changing
the coefficient r in the slip boundary condition. When r = 1, the slip boundary condition is equal
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FIG. 4. The particle equilibrium positions in the channel with the width H and a unilateral slip length Ls

agree very well with those in the channel widened to H + Ls without a slip boundary.

to the half-way bounce-back boundary condition, so the velocity of the flow field is symmetric. As
the coefficient r gradually decreases, the maximum velocity position of the flow field will gradually
move toward the upper boundary, which is just like broadening the boundary of the flow field upward
and the widened length is the slip length. The maximum velocity position of the flow field will only
be infinitely close to the upper boundary but cannot exceed it. Also, the velocity of the flow field
will become faster.

Then, to verify the correctness of the slip length formula in the previous section, the simulations
with different rebound proportional coefficients are performed and the results are shown in Fig. 3(b).
The solid line is the slip length simulated by changing the coefficient r of the BSR boundary
condition. In this simulation, the slip length can reach 18 µm when the coefficient r is 1 × 10−4.
Similar slip lengths have been reported in studies [49,50]. The results are consistent with that
derived by the analytical solution and indicate the proposed slip length formula is correct. This
also confirms that it is feasible to adjust the slip length by using different rebound proportional
coefficients.

To investigate the effect of boundary slip on the equilibrium position of the particle, a circular
particle with a diameter of 4 lattice units, is added into the Poiseuille flow with slip boundary
condition. Setting the boundary condition of the flow field, two cases are considered. The first one
uses the slip boundary condition and sets different slip lengths Ls on the upper boundary, and the
half-way bounce condition is applied on the lower boundary. In the second case, the half-way bounce
condition is applied in the upper and lower boundaries, and the channel is widened to H + Ls. As
shown in Fig. 4, the black line is the simulation of the first case, and the red is the result of the
second case. The results show that the boundary slip causes the maximum velocity point of the
flow field to move upward, so that the equilibrium position of the particles moves upward. The final
equilibrium positions of circular particles are basically consistent. When the slip length is less than
6 µm, the equilibrium positions of the two cases fit perfectly. As the slip length grows from 8 to 16
µm, the difference in the equilibrium positions between the two cases is about 5%. When the slip
length is large enough, the equilibrium position of the particle in the first case is relatively close to
the upper wall. The main role of the wall is to slow down particles and keep them away from the
wall, so the effect of the wall will be more obvious when the particle is nearer to the wall. Thus, the
difference decreases again after the slip length exceeds 16 µm.
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FIG. 5. Schematic diagram of active control of particle positions in inertial microfluidics. With the increas-
ing slip length of the upper boundary, namely Ls3 > Ls2 > Ls1 = 0, the particles can migrate to the different
equilibrium positions in the vertical direction.

IV. ACTIVE CONTROL OF VERTICAL PARTICLE POSITIONS

From the above results, it can be found that the velocity distribution of the flow field can be
changed by employing the slip boundary condition on the boundary of the Poiseuille flow. The
change of velocity distribution in the flow field will affect the migration and the equilibrium position
of the particle. According to Eq. (15), we can arbitrarily change the slip length by changing the
coefficient r of the slip boundary condition to control the equilibrium position of the particle. In
this way, we present a scheme to actively control the particle position in inertial microfluidics. The
motion of particles can be controlled without the external force or the channel with special geometry.

Figure 5 depicts the scheme to actively control of particle equilibrium positions by using the slip
boundary condition at the upper boundary in Poiseuille flow. Our simulations are carried out in a
two–dimensional rectangular domain 1000 × 100 (lattice units). The corresponding macroscopic
width of the channel is 20 µm. The fluid density is 1 × 103 kg/m3 and the kinematic viscosity
coefficient is υ = 1 × 10−6m2/s, the density of particles is equal to the fluid. Reynolds number
(Re) is a dimensionless number to characterize fluid flow and is expressed as Re = HU/υ, where
U is the mean fluid velocity in Poiseuille flow without a particle. The pressure boundary condition
is applied at the inlet and outlet of the channel. To demonstrate the effect of active control, three
kinds of particles with different shapes are applied in the following simulations. In the beginning,
the particles migrate in the microchannel without the boundary slip and reach to their equilibrium
positions. At 0.5 ms, some slip lengths are applied to the upper boundary of the microchannel,
and the particles shift to new equilibrium positions quickly. Finally, they are pushed into different
branches.

A. Circular particle

At first, we investigate to manipulate the circular particle, and the diameters are 4 and 6 µm.
The migration trajectories, horizontal velocity, and period time of the circular particles when the
slip length is 0, 2, 6, 10, 14, and 18 µm are shown in Fig. 8. The Reynolds number of Poiseuille
flow is 24 when the slip length is 0 µm. The migration trajectories of the circular particle with
the a diameter of 6 µm are shown in Fig. 6(a). The straight black line is the migration trajectory
when the upper channel is no-slip, namely the classical Segré-Silberberg effect. The process from
placing the particles to reaching the equilibrium position in the first half of the channel is omitted.
With the increase of the slip length, the velocity distribution of the flow field will change. The
circular particles will gradually migrate upward and reach to the equilibrium position.

Figure 6(b) shows the vertical equilibrium positions and rotating periods of circular particles
changing with slip lengths. When the slip length increase from 0 to 18 µm, the equilibrium positions
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FIG. 6. The migrations and equilibriums of circular particles in the channel flows with various unilateral
slip lengths. (a) The migration trajectories and (b) the vertical equilibrium positions and the rotating periods of
the circular particles, where d is the diameter of the circular particle.

of the circular particles increase linearly and gradually move toward the upper boundary. On the
contrary, the rotation time becomes shorter. The maximum period time of the circular particle is
only 0.096 ms. However, when the slip length is 10–14 µm, the period time of the circular particle
becomes basically the same. It is obvious that the larger particle, the longer the rotating period time
is. The size of the particle has little influence on the vertical equilibrium position.

B. Elliptical particle

Then, the manipulations of two kinds of elliptical particles are simulated. The long axis of the
elliptical particle is fixed at 6 µm, while the short axes are 2 and 3 µm. As shown in Fig. 7(a), due to
the noncircular geometry of elliptical particles and the parabolic velocity distribution in the channel,
the motions of the elliptical particles are accompanied by complex rotation and oscillations. Similar
to circular particles, elliptical particles will reach different equilibrium positions with different slip
lengths. Here, the equilibrium position is defined as the average position in a rotation period after
the particle is in equilibrium.

The vertical equilibrium positions and the rotating periods changing with the slip length of
elliptical particles are shown in Fig. 7(b). The influence of slip length on the vertical equilibrium

FIG. 7. The migrations and equilibriums of elliptical particles in the channel flows with various unilateral
slip lengths. (a) The migration trajectories and (b) the vertical equilibrium positions and the rotating periods of
the elliptical particles, where a and b are the long axis and short axis of the elliptical particle.
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FIG. 8. The migration trajectory and angular orientation of the elliptical particle with slip lengths of
(a) 8 µm, (b) 4 µm, (c) 0 µm, and (d) the vertical velocities of the elliptical particles with slip lengths of
0 (red line), 4 (black line), and 8 µm (blue line).

positions and period time of elliptical particles is similar to that of circular particles. The influence of
the size and aspect ratio of particles on equilibrium positions is not distinct. However, it is very clear
that the particle with the larger aspect ratio has a shorter rotation period and rotates faster. Because
of the noncircular geometry, the area of thrust surface of the elliptical particle is uneven in the flow
field. So, the same hydraulic force pushes the flatter elliptical particle to rotate more slowly. This is
consistent with the observations in the related study [29]. The period times of the elliptical particle
with different slip lengths are all greater than 0.096 ms and the maximum reaches 0.188 ms. The
similar rotational periods of ellipsoid particles were reported in the experiments and simulations by
Masaeli et al. [51]. Obviously, the rotations of elliptical are slower than circular particles, bacause
their noncircular geometries result in more resistance in the rotational process.

Figures 8(a)–8(c) depict the trajectories and angular orientation of the elliptical particle with
the slip length of 8, 4, and 0 µm, together with the orientations of the elliptical particle in various
typical positions. Here, the clockwise is defined as the positive direction to investigate the rotation
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FIG. 9. The migrations and equilibriums of rectangular particles in the channel flows with various unilateral
slip lengths. (a) The migration trajectories and (b) the vertical equilibrium positions and the rotating periods of
the rectangular particles, where a and b are the length and width of the rectangle.

of the particle. The steering angles are 0, 1/3π , 2/3π , π , 4/3π , 5/3π , and 2π , respectively. The
migration trajectory of the elliptical particle is like a saddle. The saddle shape can be considered
as the combined action of the hydrodynamic force, the wall effect and the periodic oscillation. In
steady state, the lateral migration amplitude of elliptic particles inside a rotation period is 0.16
µm at Ls = 0 µm. As the slip length increases to 8 µm, the lateral migration amplitude increases
to 0.24 µm. It indicates that the lateral migration amplitude of elliptic particles inside a rotation
period increases significantly with the increase of the slip length. When the slip length is 0 µm,
the fluctuation amplitude of the elliptical particle has a small wave peak during the steering angle
0.25–0.75π in the half rotation period. However, the small wave peak gradually disappears as the
slip length increases from 0 to 8 µm. So, the oscillation trajectories of the particles will also change
accordingly with the increase of the slip length.

Figure 8(d) shows vertical velocities of the elliptical particle with different slip lengths. The
patterns of the vertical velocities of ellipses with different slip lengths are similar within a single
period. It suggests that the elliptical particles with the same aspect ratio have similar migration
trajectories at different slip lengths. When the period is 0.25–0.5π and 1.25–1.75π , the vertical
velocity gradually changes from negative to positive. However, the vertical velocity remains neg-
ative in this interval when the slip length is greater than 0 µm, because the boundary slip causes
the velocity of the flow field and the rotation speed of the particle to increase so that the particle
completes a quarter of the cycle before the vertical velocity becomes positive. This confirms that the
small wave peak disappears as the slip length increases gradually in Figs. 8(a) and 8(b). Observing
the vertical velocities of the particle in the fluctuating process, it can be found that the elliptical
particle migrates with a large cross–stream velocity in the vertical direction if the slip length is large
enough. These indicate that the oscillation amplitude of the elliptical particle with a long slip length
is also more obvious than the shorter one.

C. Rectangular particle

Next, the motions of rectangular particles with the size of 6 × 3 µm and 6 × 2 µm at different slip
lengths are numerically investigated. Figure 9(a) shows that the trajectories have similar oscillation
amplitudes as the elliptical particle. The migration trajectories of the rectangle ones are quite similar
to the classical Segré-Silberberg effect, although their unsymmetrical geometries cause additional
fluctuations and nonuniform rotation in the process of migration. Similarly, the rectangular particle
will reach different equilibrium positions with different slip lengths.
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FIG. 10. The migration trajectory and angular orientation of the rectangular particle with slip lengths of
(a) 18 µm, (b) 6 µm, (c) 0 µm, and (d) the vertical velocities of the rectangular particles with slip lengths of
0 (red line), 6 (black line), and 18 µm (blue line).

Figure 9(b) shows that with the increase of the slip length, the vertical equilibrium positions also
gradually move toward the upper channel wall. This is in agreement with the previous studies on the
lateral migrations of circular or elliptical particles. Both the elliptical and rectangular particles have
the noncircular geometry, the relation between the rotation period and aspect ratio of the rectangular
particle is the same as that of the ellipse.

Figure 10 shows the steering angle, vertical trajectory, and vertical velocities of the rectangular
particles with slip lengths of 0, 6, and 18 µm, together with the orientations of the rectangular
particle in various typical positions. With the increase of the slip length, the oscillation of the
rectangular particle gradually changes from three wave peaks to one. When the slip length is
0 µm and the steering angle is 0–0.27π in half a rotation period, the alternating force caused
by the rotation of the rectangular particles acts as a sinking force to make the particles move
downward. However, the alternating force becomes an ascending force when the steering angle is
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FIG. 11. Active control of the particulate equilibrium positions by continuously adjusting the boundary
slip in real time. The red, green, and blue line represents the circular, elliptical, and rectangular particle,
respectively. Ls is the real-time slip length of the upper boundary.

0.27–0.54π . In the same way, while the steering angle is 0.54–0.82π and 0.82–1π , the alternating
force makes the particle go through the ups and downs again. In the angular range of 0.27–0.82π

and 1.27–1.82π , the oscillation of the particle can be seen clearly without the slip length. When the
slip length is 6 µm, the small wave peak is not obvious. When the slip length increases to 18 µm, the
small wave peak disappears completely. These prove that the oscillation of the rectangular particle
changes with the increase of the slip length.

The vertical velocities of the rectangular particle with different slip lengths are shown in
Fig. 10(d). Ignoring the differences in rotation periods, the patterns of vetical velocities are different
within a single period. It suggests that the rectangular particles have different vertical motions at
different slip lengths. When the steering angle is 0.27–0.82π or 1.27–1.82π , the negative vertical
velocity first increases to positive and then decreases to negative when the slip length is 0 µm. The
oscillation of rectangular particle is obvious during this period if the slip length is small. However,
the boundary slip causes the acceleration of the velocity of the flow field and results in the shortening
of the particle rotation period. The negative vertical velocity cannot increase to positive with the
increase of the slip length in this angular range, resulting in insignificant particle fluctuation.

D. Active control in real time

Finally, the active controls of vertical particle positions in real time are illustrated by successive
adjustments of the slip length of the upper boundary. Three shapes of particles are simulated. The
diameter of the circular particle is 4 µm, the long and short axes of the ellipse particle are 6 and 3
µm, and the length and width of the rectangle particle are 6 and 2 µm, respectively. Figure 11 draws
the real-time trajectories of these particles. The green and blue lines represent the average positions
of the two kinds particles in each rotation period. With the increase of the slip length from 0 to
18 µm, the vertical positions of the particles are immediately shifted toward the upper boundary.
The particles will eventually migrate to different equilibrium positions, and the rectangular particle
results in the largest oscillations and is the closest to the upper boundary. Because of the noncircular
geometry of the elliptical and rectangular particles, their motions are accompanied by uneven
rotation and regular oscillations, as shown by the grey lines in Fig. 11. It is clear that after the
slip length is changed, all the particles can reach to the new equilibrium positions in only 1 μs.
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FIG. 12. The normalized equilibrium positions of particles in the channel widened by the relevant slip
length. The red, green, and blue lines represent the circular, elliptical, and rectangular particles, respectively.

In Figs. 6(b), 7(b), and 9(b), we found that the rotating periods of particles did not decrease
linearly with the increase of the slip length. Considering the parabolic velocity distribution of
Poiseuille flow, there are significant differences in velocity among stream layers. Figure 12 shows
that with the increase of the slip length, the particles’ normalized equilibrium positions gradually
move from 0.3 to 0.35. The normalized equilibrium position is the dimensionless equilibrium
position of the particle in the channel widened by the relevant slip length. That is, with the increase
of the Reynolds number, the normalized equilibrium position gradually moves upwards. When the
slip length is less than 40 µm, the normalized equilibrium position is maintained at about 0.3. The
particle is close to the wall, and the difference in the velocity between the upper and lower stream
layers around the particle is large. Thus, the rotation period of particles reduces in this interval.
When the slip length increases from 8 to 14 µm, the normalized equilibrium position increase to
0.35. The particle gradually moves away from the wall, and the difference in velocity between the
upper and lower stream layer around the particle decreases. This causes the rotation period of the
particle becomes longer. So, it is clearly shown in Figs. 6(b), 7(b), and 9(b) that the rotation periods
of three particles increase gradually when the slip length increases from 8 to 14 µm.

V. CONCLUSION

In this paper, we utilize the boundary slip effect to regulate the velocity distribution of fluid in the
microchannel and present a scheme to actively control the particle position in inertial microfluidics.
A series of numerical simulations of different shape particles migrating laterally in Poiseuille
flow with BSR slip boundary condition are performed by the lattice Boltzmann method with
single relaxation time. The hydrodynamic force is evaluated by the Galilean-invariant momentum
exchange method. The flow field of a microchannel with a unilateral slip boundary is equivalent to
that of the microchannel widened by the relevant slip length, and the particle equilibrium positions
in the two microchannels are consistent consequently. The effectivity and feasibility of the model are
verified by three kinds of particles, namely circular, elliptical, and rectangular. In addition, because
the elliptical and rectangular particles have noncircular geometry, their motions are accompanied by
uneven rotation and regular vibration. The flow field and the particle motion are affected by the slip
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boundary conditions. When the slip boundary condition is used, the change of velocity distribution
of the flow field results in accelerating the speed of particles’ rotation and shortening the rotation
period. It can be found that the fluctuation amplitude of the noncircular particles will increase as
the slip length gradually increases. Under the slip boundary condition, some original fluctuations
caused by the rotation of the particles will also disappear.

With a greater simulation of the boundary slip at 2D steady Poiseuille flow to the active control
of the particulate equilibrium positions, we will be able to extend this scheme to 3D situations,
and the section shape of the microchannel will be investigated in detail. Ultimately, in practical
applications, we would like to be able to prepare surfaces on which the interfacial flow can be
altered, perhaps by varying the shear rate of the liquid or by tuning other parameters of the surface,
such as surface charge. Electrowetting could be an effective way to adjust the boundary slip. Many
studies reported that electrowetting could change the surface wettability, namely the contact angle,
and the wettability tuned from hydrophilic to hydrophobic influences the boundary slip strongly
[45,52–54]. The engineering of such surfaces will be of great interest in a number of applications
and a range of technologies to promote the active manipulation of particles in microfluidics and
realize more accurate and flexible focusing, separating, and transport.
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APPENDIX A: MOVING BOUNDARY CONDITIONS

The LBM has also been effectively applied to simulations of particulate suspensions in fluids. The
curved boundaries of the particles are usually approximated by a zigzag staircase thus bounce-back
boundary condition can be directly applied. Filippova and Hanel [55] proposed a curve boundary
condition in 1998. Their method constructed a fictitious equilibrium distribution function for
nonfluid nodes, so as to find the missing distribution function for fluid nodes on the boundary.
Mei et al. [56] developed a second-order accurate treatment of the boundary condition for a curved
boundary, which is an improvement of a scheme of Filippova and Hanel. Despite the success of
these methods in the curved boundaries, there is no rigorous theory on the treatment of moving
boundaries. Lallemand and Luo [57,58] proposed the quadratic interpolation method to treat the
curved boundary and the moving particular boundary. Here, their method is adopted to treat the
moving boundary of particles in the fluid.

A schematic diagram of the curved fluid-solid boundary condition is shown in Fig. 13. The
parameter q defines the fraction in the fluid region of a grid spacing intersected by the boundary.
The node xs is the boundary node and xw is the intersection point on the fluid-solid link. To avoid
extrapolations, the scheme is divided into two parts according to the value of q. After collision and
advection, the interpolation formulas are described as{

fī(x1, t ) = q(1 + 2q) f̃i(x1, t ) + (1 − 4q2) f̃i(x2, t ) − q(1 − 2q) f̃i(x3, t ) + 3ωi(ei · uw ) q � 1/2

fī(x1, t ) = 1
q(1+2q) f̃i(x1, t ) + 2q−1

q fī(x2, t ) − 2q−1
2q+1 fī(x3, t ) + 3ωi

q(2q+1) (ei · uw ) q > 1/2
,

(A1)

where f̃i(x, t ) is the distribution function streamed from x in the i direction. x2 and x3 are two
points adjacent to x1 along the i direction for interpolation, uw represents the velocity of the moving
boundary at the point of the intersection xw, and ωi takes 2/9 for i = 1, 2, 3, 4 and 1/18 for
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FIG. 13. Schematic diagram of curved fluid-solid boundary condition. (a) q � 1/2 and (b) q > 1/2, where
q = (x1 − xw )/(x1 − xs ).

i = 5, 6, 7, 8 [59]. When q � 1/2, the interpolation calculation is performed before flow and
rebound. When q > 1/2, interpolation calculation is performed after flow and rebound.

APPENDIX B: HYDRODYNAMIC FORCE EVALUATION

The hydrodynamic force in the lattice Boltzmann method can be efficiently evaluated by using
a momentum exchange method. Ladd et al. [60] proposed the original momentum exchange
method, which lays the particle boundary discretely and approximately at the middle of the link
between a solid node and a fluid node, namely a fluid-solid link. A momentum item based on
the boundary velocity was added to the distribution functions which were bounced back from the
particle boundary, and the momentum-exchange occurred during the streaming step. Aidun et al.
[61] improved Ladd’s model by directly representing the solid particle without fluid inside. The
momenta of the covered and uncovered nodes were involved in the force evaluation for moving solid
particles. However, their effect was not investigated in detail. A common drawback in Ladd’s and
Aidun’s method is that the boundary geometry, which is located at the middle of fluid-solid links,
is zigzag. Mei et al. [62] introduced the curved boundary conditions in the momentum–exchange
method so that the particulate geometry could be accurately represented on the grid level.

As shown in Fig. 14, a moving boundary is located between a fluid node x f and a boundary node
xs. The boundary has a vector velocity v at the point of intersection w. Wen et al. [33,34] introduced
the relative velocity into the interfacial momentum transfer to compute the hydrodynamic force and

FIG. 14. Schematic diagram to illustrate a moving boundary crossing a fluid-solid link at the point of
intersection w. x f and xs denote the adjacent fluid and boundary nodes. The boundary has a velocity v at the
point w.
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FIG. 15. Trajectories and orientations of elliptical cylinder sedimentations with the parameters α = 0.5
and β = 0.25. X and Y are the positions normalized to the pipe width and length, respectively.

proposed a Galilean invariant momentum (GME) exchange equation:

F(xs) = (ei − v) fi(x f , t ) − (eī − v) fī(xs, t ). (B1)

Especially, the algorithm meets full Galilean invariance and is independent of boundary geome-
tries. The total hydrodynamic force and torque are calculated by

F =
∑

F(xw ) (B2)

and

T =
∑

(xw − R) × F(xw ), (B3)

where F and T are the summation of force and torque on each xw, and R is the mass center of the
solid particle. GME is simple, efficient in computation, and clearly expressed physically. Previous
studies have shown that GME can greatly improve the computational accuracy and robustness of
moving boundaries in the dynamic fluid [33].

APPENDIX C: VALIDATION OF THE NUMERICAL METHOD

To verify the numerical method, the simulations of 2D ellipse sedimentation in a vertical channel
and 3D particle migration in Poiseuille flow were performed.

In the simulations of ellipse sedimentation, an inclined elliptical particle is released on the
centerline of the channel. Since the mass density of the ellipse is slightly greater than that of the
fluid, the particle descends, rotates and translates under the gravitational force and the hydrodynamic
force. The major and minor axes of the ellipse are a and b, and the width of the channel is L. The
aspect ratio and blockage ratio are defined by α = b/a and β = a/L, respectively. The fluid density
is 1 mg/mm3, while the density of the elliptical particle is 1.1 mg/mm3.

In the first case, the width of the channel takes 120 lattice units, and the corresponding macro-
scopic width is 4 mm. The aspect ratio is α = 0.5 and the blockage ratio is β = 0.25. The particle
is released at the middle of the channel with an initial angle of θ = π/4 to the horizontal axis. The
trajectories and the angle of obliquity of an elliptical cylinder sedimentation are shown in Fig. 15.
The particle moves to the left and rotates clockwise till a negative angle of obliquity. Eventually, the
particle settles on the centerline of the channel and takes a horizontal posture. The second case has a
sizable blockage ratio β = 13/22 and the width of the channel is 132 lattice units. The aspect ratio
remains the same as in the first case. Figure 16 shows the trajectories and orientations of an elliptical
cylinder sedimentation when the elliptical particle is released at the middle of the channel in the
horizontal direction with the initial angle θ = π/3. The equilibrium state of the elliptical particle
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FIG. 16. Trajectories and orientations of elliptical cylinder sedimentations with the parameters α = 0.5
and β = 13/22. X and Y are the positions normalized to the pipe width and length, respectively.

deviates from the centerline of the channel and keeps a nonzero angle of obliquity. The present
simulations are in excellent agreement with the results from the finite element method [63,64].

The numerical method is further verified by comparing with the experiment, in which Kar-
nis et al. studied the migrations of a neutrally buoyant sphere in Poiseuille flow, namely the
Segré-Silberberg effect. The radii of the tube and the sphere are R = 0.2 cm and r = 0.061 cm,
respectively. The density of the fluid and sphere is 1.05 g/cm3. The corresponding radius of
the sphere is 9.5 lattice units and Reynold number is 0.198. The pressure boundary condition is
applied at the inlet and outlet of the channel. The particles are released at Y = 0.21 and Y = 0.68,
respectively, where Y is the dimensionless radial position r∗/R, and r∗ is the distance to the
centerline of the tube. The migration trajectories of spheres are shown in Fig. 17. The numerical
results are in excellent agreement with those of the experiments [65].

FIG. 17. Migration trajectories of a neutrally buoyant sphere in Poiseuille flow. Y is the dimensionless
radial position of the tube.
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