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Wake bifurcations behind two circular disks in tandem arrangement
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The wake bifurcations behind two circular disks in tandem arrangement are investigated
through numerical simulations. The separation distance between the disks, S/d , is chosen
at 1, 2, 4, and 6, and the Reynolds number, Re, lies in the range of 100 � Re � 500.
The wake dynamics are examined in terms of the flow structures as well as drag and
lift coefficient characteristics. Seven main wake regimes are observed in the considered
(Re, S/d) space: steady state (SS), Zig-zig (Zz) mode, standing wave mode, periodic
state with reflectional symmetry breaking (RSB), periodic state with double-helical (DH)
structures shedding, periodic state with double-hairpin-loop (DHL) shedding, and weakly
chaotic state. Among these bifurcations, the DH and DHL wake modes are reported in
the tandem disk wakes, which are not observed in a single disk wake. Compared with
the single disk wake, the first bifurcation leading to the SS mode is always delayed in
tandem configuration, which is especially evident for the case of S/d = 1. For the second
bifurcation leading to an unsteady state, some differences lie in the wake mode for different
tandem configurations. The second bifurcation leads to the Zz wake mode for the cases
S/d = 1, 2, and 4, and the RSB mode for S/d = 6. In the scenario of S/d = 1, the
bifurcations are similar to those of a thick disk, suggesting that a shorter separation distance
in this configuration has equivalent effects as increasing the thickness in the case of a single
disk. In the scenario of S/d = 2, the bifurcations are complex and quite different from
those in a single disk wake, indicating that the interaction between two disks in tandem
arrangement is stronger when the trailing disk is located close to the end of the recirculation
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region of the leading one. In the scenario of S/d = 6, the bifurcations resemble those of a
single disk wake, except for an observed DHL wake mode. In addition, the variations of
the vortex shedding frequency for the unsteady states are investigated and presented.

DOI: 10.1103/PhysRevFluids.7.064102

I. INTRODUCTION

The wake transition scenarios behind a three-dimensional bluff body (e.g., sphere and disk)
have been extensively investigated. Researchers found that the wake behind a sphere and/or disk
experiences complicated transition scenarios from steady state (SS) to chaotic state with increasing
Reynolds number (see, e.g., Ern et al. [1]).

The investigations of wake bifurcations behind a sphere started with the global stability analysis
of Natarajan and Acrivos [2], and were succeeded by the direct numerical simulation (DNS) of
Ghidersa and Dusek [3], Johnson and Patel [4], Tomboulides and Orszag [5], Thompson et al.
[6], Ormieres and Provansal [7], and Tiwari et al. [8]. It is noted that the detailed experiments of
Ormieres and Provansal [7] yielded a consistent scenario of the first steps of the transition. The
wake behind a sphere first bifurcates from a steady axisymmetric state (AS) to a steady asymmetric
state at the critical Reynolds number, Rec1 ≈ 210. This bifurcation leads to a SS which is a steady
double-thread wake with planar symmetry. The wake first becomes unsteady with vortex shedding
at the critical Reynolds number, Rec2 ≈ 270, through a Hopf bifurcation. This bifurcation leads to a
periodic state called the reflectional-symmetry-preserving (RSP) mode by Fabre et al. [9]. The wake
structure in the wake mode consists of hairpin vortex loops leading the axial velocity to oscillate at
the same frequency as the drag coefficient and a nonzero mean lift coefficient. The wake becomes
fully three dimensional at the critical Reynolds number, Rec3 ≈ 420. The vortex shedding location
changes irregularly along the azimuthal direction, resulting in the breaking of planar symmetry [10].

For the wake behind a circular disk, although the first step of bifurcation is similar to that of
the sphere wake, the following steps of the transition show obvious differences [9]. The wake of a
circular disk is dependent on both Reynolds number and aspect ratio, which is defined as χ = d/w,
where d and w are the diameter and the thickness of the disk, respectively. The first bifurcation
is similar to that of the sphere wake, thus leading to a SS with a planar symmetry. Natarajan and
Acrivos [2] found that for the first bifurcation of a flat disk the critical Reynolds number is in the
range of 115 and 117. Shenoy and Kleinstreuer [11] further reported that the second bifurcation
can lead to a three-dimensional wake with hairpin vortex periodically shedding for a thin disk with
aspect ratio close to 10. However, different from the sphere wake, the planar symmetry is broken in
the resulting wake, leading to a reflectional-symmetry-breaking (RSB) mode. For the flat disk, the
critical Reynolds number for the second bifurcation is in the range 121–125.6, and for a thin disk
with aspect ratio χ = 10 the critical Reynolds number is 155. Fernandes et al. [12] numerically
investigated the first two bifurcations of the disk wake and reported that the aspect ratio is related
to the critical Reynolds numbers by functions of Rec1 ≈ 116.5(1 + χ−1) and Rec2 ≈ 125.6(1 +
χ−1). A third bifurcation leads to a periodic state with the planar symmetry recovering and the
lift coefficient oscillates about a zero mean value. This wake mode is referred to as the standing
wave (SW) mode by Fabre et al. [9] or unsteady state with planar symmetry and zero-mean lift by
Shenoy and Kleinstreuer [11]. Unlike the RSP mode, the SW mode illustrates a different symmetric
plane and a zero-mean lift. The critical Reynolds number is found at Rec3 ≈ 140 for a flat disk, and
Rec3 ≈ 172 for a thin disk. Moreover, a regular shedding of hairpin vortices with planar symmetry
but nonzero mean lift is then observed for the wake behind a thick disk (χ = 3) by Auguste et al.
[13] and a disk with a modest thickness (χ = 5) by Yang et al. [14], and this wake regime is named
as the Zig-zig (Zz) mode, which is similar to the RSP mode in a sphere wake. The fifth bifurcation
leading to a periodic three-dimensional state with irregular rotation of the separation region is found
at Rec5 ≈ 280 for a thin disk (χ = 10). It should be pointed out that the occurrence order of the
characteristic wake regimes above is generally consistent in literature, except for a particular thick
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case (χ = 3). For example, the Zz wake mode is reported as the second bifurcation instead of the
RSB mode for the thick disk wake [13]. Most recently, by using the numerical approach, Chrust
et al. [15] focused on the oblate spheroids and flat cylinders in the range of Re ∈ [100, 300] and
conducted extensive parametric studies. A detailed flow regime map for a single spheroid and/or
disk wake in the considered (Re, χ ) space has been provided. For more information on the detailed
wake bifurcations behind a single disk at low Reynolds numbers, one can refer to a recent review
of Ern et al. [1]. As a matter of completeness, we noted the contribution from Gao et al. [16], who
considered the flow over an inclined disk. They also observed similar wake bifurcations.

While our understanding of the wake bifurcations behind a single three-dimensional bluff body is
nearly established, the bifurcations in the wake behind two adjacent bluff bodies in proximity have
not been comprehensively investigated, and the physical mechanism underneath the phenomena is
far from being understood. Furthermore, the wakes of multiple bodies are quite different and show
higher-level complexity when compared with those of a single bluff body, which is partially because
of the interactions among wakes behind the multiple bodies. As a benchmark case of multiple
bodies, the flow over two three-dimensional bodies in tandem arrangement is the topic of the paper,
which is widely encountered in both natural environments and engineering applications, e.g., flow
around repetitive elements in structures of buildings, smoke ducts, or other civil objects [17].

The flow over two spheres positioned in tandem has been investigated by several scholars. It is
reported that the wake behind two spheres in tandem is strongly dependent on the Reynolds number
and the separation distance (S) between them. For Re = 50–130, a stagnant flow develops at S/d =
0–2 since the separating shear layer from the leading sphere reattaches to the trailing one [18–20].
The drag on the trailing sphere is greatly reduced compared to the case of a single sphere, while the
drag of the leading one is almost unchanged. When S/d > 2, the reattachment disappears, and the
drag on the trailing sphere increases and recovers to that on a single sphere as the separation distance
increases. For Re = 300, three flow regimes are captured [21–24], namely, steady axisymmetric
wake behind each sphere when S/d � 0.7, planar symmetric wake with vortex shedding behind
each sphere when S/d � 1.3, and steady planar symmetric wake when 0.7 < S/d < 1.3.

Compared to the sphere, the investigations on the wake behind two circular disks in tandem
arrangement are even further limited. The configuration of the tandem disks has been used as flow
controller [25] and non-pre-mixed flame holder [26] in combustors. By investigating the interactions
between the two disks falling in tandem in a fluid at rest, with Re ranging from 80 to 300, Brosse and
Ern [27,28] found that the recirculation length and drag for each disk are closely associated with
the separation distance between disks. Differently, investigations on the interactions of two fixed
tandem disks are usually conducted at higher Reynolds numbers. Morel and Bohn [29] studied a
special case where two tandem disks have unequal diameters, and they found that the sizes of the
disks and the separation distance between them have great effects on the drag reductions. Brosse
and Ern [28] also performed DNS of the flow over two fixed circular disks in tandem configuration,
and provided a good estimation of the motion of the objects for gaps larger than five diameters.
More recently, Liu et al. [30] investigated the wake behind two circular disks in tandem at low to
moderate Reynolds numbers: four flow regimes similar to those of a single disk wake have been
identified, and the effect of the separation distance on the wake and drag experienced by each disk
has been studied. However, it should be noted that the leading disk has a central hole in this paper,
and the wake behind two solid circular disks (i.e., no holes) could present totally different forms.

It can be found that the wake transitions behind two three-dimensional bodies in tandem
arrangement are apparently incomplete. Some questions may arise: what are the wake transition
scenarios in the tandem case? Do those wake modes observed in the corresponding single bluff
wake exist in the tandem case? If so, what about the critical Reynolds numbers? Are there any new
wake bifurcations for the tandem configuration? How does the separation distance affect the wake
transition scenarios? In order to answer these questions and fill the gap in the literature, a detailed
investigation of the wake transitions behind two circular disks with equal diameters and thickness
in tandem arrangement is performed in the present paper. The separation distance, S/d , is chosen at
1, 2, 4, and 6, and the Reynolds number lies in the range of 100 � Re � 500. The flow regimes are
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FIG. 1. The sketch of the flow configuration. Here, x, r, and θ represent the streamwise, radial, and
azimuthal direction, respectively. d is the diameter of each disk, and w is the disk thickness. U0 represents
the free-stream velocity. Cartesian coordinates x, y, and z are also defined to present the results conveniently.

then identified based on the flow structures, characteristics of drag and lift coefficients, etc. We will
suggest a comprehensive wake regime map for the flow over two circular disks in tandem in terms
of the separation distance and Reynolds number.

The paper is organized as follows. In Sec. II, we specify the flow problem and briefly describe the
numerical procedures. In Sec. III, the wake transition scenarios behind two circular disks in tandem
are presented and analyzed. A comparison between the wakes behind tandem disks and a single disk
is provided in Sec. IV. Finally, concluding remarks are summarized in Sec. V.

II. FLOW PROBLEM AND NUMERICAL PROCEDURE

In the present paper, large-eddy simulations (LES) of the flow over two fixed circular disks
normal to the free stream in tandem arrangement, as sketched in Fig. 1, are performed. The
nondimensional filtered continuity and momentum equations for incompressible flow are

∂ ũi

∂xi
= 0, (1)

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − ∂ p̃

∂xi
+ 1

Re

∂2ũi

∂x2
j

− ∂τi j

∂x j
. (2)

Here, τi j = ũiu j − ũiũ j is the subgrid-scale (SGS) stress which is modeled by the dynamic
Smagorinsky model [31], while ∗̃ indicates the spatial filtering. The Reynolds number based on the
circular disk diameter, d , and the free-stream velocity, U0, ranges from 100 to 500. The aspect ratio
χ = d/w = 5, where w is the thickness of the disk, is selected, and the separation distance between
the two disks, S/d = 1, 2, 4, and 6, is considered. Equations (1) and (2) are, respectively, made
nondimensional using d,U0, d/U0, and ρU 2

0 as characteristic length, velocity, time, and pressure.
The applied code is originally developed for simulating incompressible turbulent flows of

practical relevance by LES. Owing to the high demands of LES with respect to spatial and temporal
accuracies, the method is also well suited for the accurate computation of time-dependent laminar
or transitional flows [32]. The code has been widely used in simulating the flow over a single
disk and tandem disks [14,30,33,34]. One can refer to Yang et al. [14] for details and validation
of the numerical code, and here only its main features are briefly recalled. The nondimensional
space-filtered incompressible Navier-Stokes equations are solved on a staggered grid in a cylindrical
coordinate. The diffusive terms are discretized based on a second-order central difference, the
convective terms are discretized with a conservative second-order central difference [35], and the
time derivatives are discretized using a second-order semi-implicit scheme. The pressure-velocity
coupling is solved using the SIMPLE algorithm. It is noted that the SGS model does have little
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FIG. 2. (a) The view of the grid in the x-r plane for the case of S/d = 2 as an example. (b) The view of the
grid structures near the disks.

influence, which could be estimated by the ratio of SGS viscosity to molecular viscosity, for
simulating the laminar or transitional flows at the low to moderate Re considered here.

The computational domain is defined as −10d � x � 15d + S, 0d � r � 10d , 0 � θ � 2π , and
the leading disk is located at 10d from the inlet, as shown in Fig. 1. The radial and upstream extents
of the computational domain are determined by considering the rate at which perturbations decay
away from the disk. The origin of the coordinate system is placed at the center of the downstream
surface of the leading disk with the x axis, which is the disk symmetry axis, in the free-stream
direction. A Cartesian coordinate system (x, y, z) is also defined in Fig. 1 to illustrate the results
more conveniently. For the boundary conditions, a nonslip boundary is imposed at the disk surface, a
uniform velocity is imposed at the inflow, and a convective boundary condition is imposed (∂ui/∂t +
c∂ui/∂n = 0) at the outflow and radial outer boundary. Here c is the convection velocity which is
evaluated at each time step to equal the maximum outflow velocity over the outflow boundary.

The three-dimensional mesh is generated by rotating a two-dimensional Cartesian mesh about
the disk axis. The mesh is refined close to the disk to properly resolve the primary features in
the shear layer and near wake (see Fig. 2 for the case of S/d = 2 as an example). The grid
resolution and domain size are determined by performing the grid independence study and domain
size sensitivity analysis. For two typical conditions of S/d = 1 and Re = 300, and S/d = 6 and
Re = 160, four sets of grids (see Table I) are tested for each condition. It can be found that the

TABLE I. Grid independence study control parameters, including the mesh quality, the x extent of the
domain Lx/d , the grid resolution Nx × Nr × Nθ , the amplitude of lift coefficient fluctuation Al , recirculation
length behind the trailing disk Lr/d , and the nondimensional vortex shedding frequency St .

Al

Mesh Lx/d Nx × Nr × Nθ Leading disk Trailing disk Lr/d St

(a) S/d = 1 at Re = 300

Coarse 26 128 × 64 × 36 0.0252 0.0016 1.54 0.122
Standard 26 368 × 128 × 72 0.0039 0.0003 1.22 0.145
Fine 26 440 × 160 × 90 0.0036 0.0003 1.23 0.145
Fine long domain 50 480 × 128 × 72 0.0035 0.0003 1.25 0.145

(b) S/d = 6 at Re = 160

Coarse 31 180 × 64 × 36 0.0567 0.0659 1.28 0.132
Standard 31 480 × 128 × 72 0.0337 0.0149 0.93 0.114
Fine 31 548 × 160 × 90 0.0341 0.0144 0.95 0.114
Fine long domain 50 624 × 128 × 72 0.0349 0.0138 0.97 0.114
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FIG. 3. The SS wake mode at Re = 210: (a) wake structures characterized by isosurfaces of streamwise
vorticity and (b) contours of streamwise velocity in the x-y plane with in-plane streamlines.

differences in the amplitudes of lift coefficient fluctuation of each disk, recirculation length behind
the trailing disk, and nondimensional vortex shedding frequency between the standard and fine
grid can be negligible. Also, note that the effect of doubling the downstream length barely affects
the results. Thus, the standard grid with a normal downstream length of about 15d + S has been
selected in the present paper. The grid resolutions employed are 368(Nx ) × 128(Nr ) × 72(Nθ ),
400(Nx ) × 128(Nr ) × 72(Nθ ), 432(Nx ) × 128(Nr ) × 72(Nθ ), and 480(Nx ) × 128(Nr ) × 72(Nθ ) for
the cases of S/d = 1, 2, 4, and 6, respectively. The Reynolds number is generally scrutinized with
increments of �Re = 5. However, when a new wake regime is observed, other simulations will be
performed with a refined increment of �Re = 1 in the range from the neighboring lower Re to the
present Re, to determine the critical Reynolds number for each wake regime. The time step for all
the cases in this paper is fixed at 0.002d/U0 to ensure the Courant-Friedrichs-Lewy number is less
than 0.5. Typical runs consist of 65 536 time steps (corresponding to a nondimensional time tU0/d
about 131) to achieve convergence and then another 65 536 time steps will be run to output the
time sequence of drag and lift coefficients, which will be used to perform the frequency spectra
analysis.

III. RESULTS AND DISCUSSION

A. Bifurcations when the separation distance S/d = 1

When the separation distance between the two disks is short, i.e., S/d = 1, the bifurcations are
similar to those for a single disk wake. The first bifurcation leading to a steady state with planar
symmetry is captured at Rec1 = 210. Figure 3(a) shows the wake structures characterized by the
isosurfaces of streamwise vorticity. A double-thread wake, i.e., a pair of steady counter-rotating
streamwise vortex structures, is captured. Figure 3(b) illustrates the contours of streamwise velocity
in the x-y plane with in-plane streamlines. It clearly shows that the trailing disk is located within
the recirculation bubble of the leading one, resulting in squeezing of the recirculation region of the
leading disk. Since the wake is the steady state with planar symmetry, the time histories of the lift
components Cy and Cz of the leading and trailing disk all illustrate horizontal straight lines, as plotted
in Figs. 4(a) and 4(b). In a single disk wake, this wake mode has been called the SS mode by Auguste
et al. [13]. Even though sharing many similarities, the critical Reynolds number of Rec1 = 210 is
much higher than that in a single disk wake (i.e., Rec1 = 120 in Yang et al. [14]), which suggests
the first bifurcation is much delayed when the two disks are placed closely in tandem.

At Rec2 = 285, periodic vortex shedding occurs but the wake still remains planar symmetric, as
shown in Figs. 5(a) and 5(b). Figure 5(b) depicts the wake structures characterized by the isosurface
of the Q criterion [36], illustrating the periodic shedding of hairpin vortices. The lift coefficient
components of both disks are oscillating about a nonzero value, as shown in Figs. 4(c) and 4(d). It is
noted that the amplitudes of the lift coefficient components of both disks stay constant, and Cy and
Cz for each disk vary synchronously. Therefore, the phase diagrams of the lift components of both
disks illustrate straight paths located within the symmetry plane of the wake, as shown in Figs. 5(c)
and 5(d). This wake mode was also observed in a single disk wake, and referred to as the unsteady
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FIG. 4. The time evolutions of lift coefficients for S/d = 1 at (a), (b) Re = 210, (c), (d) Re = 300, (e), (f)
Re = 440, and (g), (h) Re = 460. (a), (c), (e), (g) Leading disk. (b), (d), (f), (h) Trailing disk.

state with planar symmetry and nonzero mean lift by Shenoy and Kleinstreuer [11] or the Zz mode
by Auguste et al. [13]. It is different from the usually observed second bifurcation in a single disk
wake, in which a RSB mode is captured [11,14]. However, Auguste et al. [13] also observed the Zz
mode as the second bifurcation for the wake behind a thick disk with an aspect ratio χ = 3.

FIG. 5. The Zz wake mode at Re = 300 and S/d = 1: (a) wake structures characterized by isosurfaces of
streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cy-Cz diagram of
the leading disk, and (d) the Cy-Cz diagram of the trailing disk.
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FIG. 6. The SW wake mode at Re = 440 and S/d = 1: (a) wake structures characterized by isosurfaces of
streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cd -Cy diagram of
the leading disk, and (d) the Cd -Cy diagram of the trailing disk.

When Re increases to Rec3 = 440, the planar symmetry of the wake is still preserved as shown
in Figs. 6(a) and 6(b). However, unlike those in the Zz mode, the lift coefficient components of each
disk oscillate around a mean-zero value with constant amplitudes as shown in Figs. 4(e) and 4(f).
The phase diagram Cd -Cy shows a perfect butterfly shape, as shown in Figs. 6(c) and 6(d). This
mode has been called the unsteady state with planar symmetry and zero-mean lift by Shenoy and
Kleinstreuer [11], or the SW mode by Fabre et al. [9] in a single disk wake. It is worth pointing
out that the occurrence order of wake modes for Zz and SW modes is opposite to that in the
corresponding single disk wake (see Yang et al. [14]). However, the same occurrence order for
the Zz and SW modes has been previously observed in the wake of a thick disk [13]. It indicates
that the configuration of two circular disks placed very closely in tandem arrangement is similar to
the effect of increasing the thickness of a single disk.

When Re increases further to Rec4 = 460, the wake loses its planar symmetry and becomes fully
three dimensional with some small-scale structures appearing, as shown in Figs. 7(a) and 7(b). The
amplitudes of the lift coefficient components of both disks are no longer constants but vary with
time, as shown in Figs. 4(g) and 4(h). The phase diagrams of Cy-Cz for both disks show complex
shapes, indicating the wake state is no longer regular, as shown in Figs. 7(c) and 7(d). Therefore,
this wake state is referred to as the weakly chaotic (WC) state. The weakly chaotic wake mode was
also witnessed by previous work on the corresponding single disk wake (Re � 265) [14].

Overall, the bifurcation scenarios in the wake behind two circular disks placed closely in tandem
are similar to those in a single thick disk wake, and the only difference lies in the fact that the RSB
wake mode in the single disk wake is not captured.

B. Bifurcations when the separation distance S/d = 2

When the separation distance increases to S/d = 2, the first bifurcation breaks the axisymmetry
and further results in a steady state with planar symmetry, as shown in Fig. 8(a), with Rec1 = 130 in
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FIG. 7. The WC wake mode at Re = 460 and S/d = 1: (a) wake structures characterized by isosurfaces of
streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cy-Cz diagram of
the leading disk, and (d) the Cy-Cz diagram of the trailing disk.

this case. But it should be noted that this state shows some differences from the SS wake mode, e.g.,
the wake of the leading disk is translated to the SS mode structure while the wake of the trailing disk
remains axisymmetric. This is the reason why this wake mode is referred to as the SS-AS mode.
This can be further evidenced by the time histories of the lift coefficient components of each disk, as
shown in Figs. 9(a) and 9(b). The lift coefficient components of the trailing disk are all zero values,
indicating the axisymmetry of the wake behind the trailing disk. Figure 8(b) shows the contours of
streamwise velocity in the x-y plane with in-plane streamlines, indicating that the trailing disk is
located close to the end of the recirculation bubble of the leading one.

At Rec2 = 140, periodic vortex shedding occurred, while the wake remains planar symmetric.
Figure 10(a) visualizes the wake structures in the form of isosurfaces of streamwise vorticity. Further
inspections reveal that, even though it is very similar to Zz mode structure, the very near wake of the
trailing disk is still the steady state. This can also be witnessed by the wake structure characterized
by the Q criterion shown in Fig. 10(b). Here, no hairpin vortex loop has been observed in the very

FIG. 8. The SS-AS wake mode at Re = 130 and S/d = 2: (a) wake structures characterized by isosurfaces
of streamwise vorticity and (b) contours of streamwise velocity in the x-y plane with in-plane streamlines.
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FIG. 9. The time evolutions of lift coefficients for S/d = 2 at (a), (b) Re = 130, (c), (d) Re = 140, (e), (f)
Re = 160, (g), (h) Re = 170, (i), (j) Re = 200, and (k), (l) Re = 260. (a), (c), (e), (g), (i), (k) Leading disk.
(b), (d), (f), (h), (j), (l) Trailing disk.

FIG. 10. The Zz-like wake mode at Re = 140 and S/d = 2: (a) wake structures characterized by isosur-
faces of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cy-Cz

diagram of the leading disk, and (d) the Cy-Cz diagram of the trailing disk.
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FIG. 11. The DH wake mode at Re = 160 and S/d = 2: (a) wake structures characterized by isosurfaces
of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cy-Cz diagram
of the leading disk, and (d) the Cy-Cz diagram of the trailing disk.

near wake behind the trailing disk, which is because the trailing disk was placed just downstream of
the recirculation region of the leading disk. Notably, the incoming flow velocity for the trailing disk
is much lower than that of the leading disk. It is interesting to find that the time evolutions of the lift
coefficient component Cy of both disks stay constant at very low values, as shown in Figs. 9(c) and
9(d), while the time evolutions of the lift coefficient component Cz of both disks vary periodically
with constant amplitudes. The Cy-Cz diagrams of both the leading and trailing disks indicate that
the lift forces are oscillating about a nonzero mean value along a vertical line within the symmetric
plane, the xz plane, as shown in Figs. 10(c) and 10(d). This wake mode is referred to as the Zz-like
mode to discriminate from the Zz mode. It is noted that the Zz mode is also captured at Rec3 = 150,
which is observed but not shown here for brevity.

As the Reynolds number further increases to Rec4 = 160, another wake mode is detected, where
an interesting double-helical (DH) structure is presented [see Figs. 11(a) and 11(b)]. The time
histories of the lift coefficient components of both disks vary periodically but with amplitudes
slightly changed, as shown in Figs. 9(e) and 9(f). It is noted that the phase difference between
Cy and Cz of each disk also slightly changes with time. Figure 11(c) and 11(d) further show the
phase diagram of lift components Cy-Cz of the leading and/or trailing disk, revealing an attractor
with a complicated structure like a wool ball.

To further explore the DH wake mode, a time sequence of wake structure characterized by the
isosurface of the Q criterion in one vortex shedding period is plotted in Fig. 12. At t = t0, the
helical structures marked with “A” and “B” begin to shed from the end of the trailing disk, as shown
in Fig. 12(a). As the time proceeds, it can be seen that the azimuthal locations of the shedding
of helical structures “A” and “B” rotate in an anticlockwise direction. It is notable that the radial
distance of the shedding location of the helical structure marked with “A” from the trailing disk is
much longer than that of the helical structure marked with “B.” Therefore, in the DH wake mode, a
larger helical structure is twisted with an inner helical structure with much less amplitude.
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FIG. 12. A time sequence of wake structure characterized by the Q criterion for the DH wake mode at
Re = 160 and S/d = 2 in one vortex-shedding period: (a) t = t0, (b) t = t0 + T/6, (c) t = t0 + 1T/3, (d) t =
t0 + T/2, (e) t = t0 + 2T/3, and (f) t = t0 + 5T/6.

At Rec5 = 170, the double-helical structures no longer exist and a planar symmetry recovers, as
shown in Figs. 13(a) and 13(b). Different from the second bifurcation mode, the lift coefficient
components Cy and Cz of both disks vary periodically around a zero-mean value, as shown in
Figs. 9(g) and 9(h). It is noted that the phase differences between Cy and Cz of both disks are nearly

FIG. 13. The SW wake mode at Re = 170 and S/d = 2: (a) wake structures characterized by isosurfaces
of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cd -Cy diagram
of the leading disk, and (d) the Cd -Cy diagram of the trailing disk.
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FIG. 14. The RSB-like wake mode at Re = 200 and S/d = 2: (a) wake structures characterized by isosur-
faces of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cy-Cz

diagram of the leading disk, and (d) the Cy-Cz diagram of the trailing disk.

the same and vary little with time. Here, the phase diagrams of Cd -Cy for each disk are presented to
illustrate a perfect butterfly shape [see Figs. 13(c) and 13(d)], which has been previously reported in
the SW mode of a single disk wake [13,37], indicating that the wake now becomes the SW mode.

When the Reynolds number further increases to Rec6 = 200, the planar symmetry of the wake
is broken in the very near wake behind each disk while the wake keeps “average” planar symmetry
further downstream, as shown in Figs. 14(a) and 14(b). The time evolutions of the lift coefficient
components Cy and Cz of each disk vary synchronously but with a very low nonzero mean value,
as shown in Figs. 9(i) and 9(j). Through careful inspection, one can note that the amplitudes of the
lift coefficient components change very slightly with time. Therefore, the phase diagram of the lift
coefficient components Cy-Cz of the leading and/or trailing disk reveals a periodic motion with a
slow pulsation superimposed, as shown in Figs. 14(a) and 14(b). This wake is referred to as the
RSB-like wake mode, since the wake is mainly characterized by the breaking of planar symmetry.

When the Reynolds number increases to Rec7 = 260, the wake presents fully three-dimensional
features, and a weakly chaotic state is observed. The time histories of the lift coefficient components
Cy and Cz of both disks vary irregularly with amplitudes and phase differences changed with time,
as shown in Figs. 9(k) and 9(l). The wake structures become fully three dimensional (not shown
here for brevity).

Overall, for the configuration where the trailing disk is located close to the end of the recirculation
of the leading one, the interactions between them are very strong. Meanwhile, the bifurcation
scenarios become more complex and quite different from those in a single disk wake.

C. Bifurcations when the separation distance S/d = 4

When the separation distance increases further to S/d = 4, the first bifurcation is observed at
Rec1 = 140. Similar to the configuration of S/d = 2, the wake of the leading disk breaks the
axisymmetry while the wake of the trailing disk keeps the axisymmetry at the first bifurcation,
as shown in Fig. 15(a). This can also be confirmed by the time evolutions of the lift coefficient
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FIG. 15. The SS-AS wake mode at Re = 140 and S/d = 4: (a) wake structures characterized by isosurfaces
of streamwise vorticity and (b) contours of streamwise velocity in the x-y plane with in-plane streamlines.

components Cy and Cz of the leading and trailing disk, as shown in Figs. 16(a) and 16(b). It can be
found that the lift coefficient component Cy of the leading disk stays constant at a nonzero value,
while both the lift components Cy and Cz for the trailing disk are at zero values. In this configuration,
the trailing disk is located in the downstream of the recirculation region of the leading disk which
is witnessed by Fig. 15(b), and it is noted that the momentum of the trailing disk facing is not
recovered and still much lower than the free stream.

At Rec2 = 145, the second bifurcation leading to the Zz mode is captured. When the Reynolds
number increases to Rec3 = 160, the Zz mode changes to the SW mode (figures for these two cases
are not shown for brevity).

With Reynolds number further increased, i.e., at Rec4 = 220, a wake mode is observed. Even
though the planar symmetry is still preserved with vortex shedding periodically [Fig. 17(a)], the
wake structures, which can be visualized by the isosurface of the Q criterion [see Fig. 17(b)], are
obviously different from those at Zz and/or SW modes. Further observation discovers a new wake
mode in which each hairpin vortex structure consists of two loops in the downstream wake of the
trailing disk. And thus this observed wake mode is called the double-hairpin-loop (DHL) mode. The
time histories of the lift coefficient components Cy and Cz of the leading disk oscillate synchronously
around a mean-zero value in perfect sinusoidal form, as shown in Fig. 16(c). However, the lift

FIG. 16. The time evolutions of lift coefficients for S/d = 4 at (a), (b) Re = 140 and (c), (d) Re = 220.
(a), (c) Leading disk. (b), (d) Trailing disk.
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FIG. 17. The DHL wake mode at Re = 220 and S/d = 4: (a) wake structures characterized by isosurfaces
of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cd -Cy diagram
of the leading disk, and (d) the Cd -Cy diagram of the trailing disk.

coefficient components Cy and Cz of the trailing disk no longer oscillate in perfect sinusoidal form
due to the formation of double-hairpin loops in the wake behind the trailing disk, as shown in
Fig. 16(d). It is noted that the Cy and Cz of the trailing disk also vary around a mean-zero value,
indicating the planar symmetry of the wake. The phase diagrams of Cd -Cy of both leading and
trailing disks illustrate butterflylike shapes, indicating the drag coefficient varies twice as much as
the lift coefficient in one period, as shown in Figs. 17(c) and 17(d).

To explore the physical mechanisms of the DHL wake mode, a time sequence of wake structures
characterized by the isosurface of the Q criterion in a vortex shedding period is depicted in Fig. 18.
At t = t0, a single vortex loop marked with “A” shedding from the leading disk reaches the trailing
disk, as shown in Fig. 18(a). Then, this vortex loop interacts with the shear layer developed from the
trailing disk as shown in Fig. 18(b). Meanwhile, a vortex loop marked with “B” shedding from the
trailing disk begins to form at t = t0 + T/3 as shown in Fig. 18(c). While the time further proceeds,
the hairpin loops “A” and “B” interact with each other and are further convected downstream, as
shown in Figs. 18(d) and 18(e). Finally, a double-hairpin-loop structure is formed, and it is noted
that another new hairpin loop shedding from the leading disk is convected to reach the trailing disk,
as shown in Fig. 18(f). Therefore, the DHL wake structure is generated due to the strong interaction
of the hairpin loops shedding from the leading and trailing disks. It should be recalled that the
double-hairpin loops are shedding from diametrically opposite orientations, and the description
of the generation of only one double-hairpin loop is given here. The WC mode occurs when the
Reynolds number increases to Rec5 = 300 (also not shown for brevity).

D. Bifurcations when the separation distance S/d = 6

For the configuration of two disks in tandem with separation distance S/d = 6, the interactions
between the wakes of the leading and trailing disks are expected to be weaker. At Rec1 = 140, both
wakes behind the leading and trailing disks are changed to the SS mode, as shown in Fig. 19(a).
For this configuration, as the trailing disk is located at the downstream wake of the leading one,
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FIG. 18. A time sequence of wake structure characterized by the Q criterion for the DHL wake mode at
Re = 220 and S/d = 4 in one vortex-shedding period: (a) t = t0, (b) t = t0 + T/6, (c) t = t0 + 1T/3, (d) t =
t0 + T/2, (e) t = t0 + 2T/3, and (f) t = t0 + 5T/6.

the momentum of the trailing disk facing is still less than the incoming free-stream flow (i.e., the
momentum of the leading disk facing), even though the momentum has been partially recovered, as
shown in Fig. 19(b). As expected, the time evolutions of the lift coefficient components of both disks
illustrate constant lines, and the values of Cy of both disks are nonzero, as shown in Figs. 20(a) and
20(b). To distinguish the difference from the SS mode for a single disk wake, this mode is referred
to as the SS-SS mode. The predicted critical Reynolds number Rec1 = 140 is a little higher than
that for a single disk wake (i.e., Rec1 = 120 in Yang et al. [14]).

At Rec2 = 146, a Hopf bifurcation leading to breaking of the planar symmetry with vortex
shedding periodically is captured. The wake structures of both leading and trailing disks are very
similar to the RSB mode detected in a single disk wake, as shown in Figs. 21(a) and 21(b). The
time evolutions of the lift coefficient components Cy and Cz of each disk vary periodically with a
low nonzero mean value, as shown in Figs. 20(c) and 20(d). Similar to the RSB mode captured for
Re = 200 and S/d = 2, one can note that the amplitudes of the lift coefficient components change
very slightly with time through careful inspection. This can also be seen from the phase diagrams
of the Cy-Cz of both disks shown in Figs. 21(c) and 21(d), which illustrate nonclosed loops. In a
similar manner, we call this wake regime the RSB-RSB mode to be distinguished from the single
disk case.

When Reynolds number increases to Rec3 = 160, the planar symmetry recovers for wake struc-
tures behind both the leading and trailing disks, as shown in Figs. 22(a) and 22(b). Similar to the SW
mode for S/d = 2 shown in Figs. 9(g) and 9(h), the time histories of the lift coefficient components

FIG. 19. The SS-SS wake mode at Re = 140 and S/d = 6: (a) wake structures characterized by isosurfaces
of streamwise vorticity and (b) contours of streamwise velocity in the x-y plane with in-plane streamlines.
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FIG. 20. The time evolutions of lift coefficients for S/d = 6 at (a), (b) Re = 140, (c), (d) Re = 150, (e), (f)
Re = 160, and (g), (h) Re = 220. (a), (c), (e), (g) Leading disk. (b), (d), (f), (h) Trailing disk.

Cy and Cz of both disks vary periodically around zero-mean values with constant amplitudes as
shown in Figs. 20(e) and 20(f). And the phase diagrams of the drag-lift components Cd -Cy of both
leading and trailing disk illustrate butterfly shapes, as shown in Figs. 22(c) and 22(d). Therefore,
this mode is referred to as the SW-SW mode to be distinguished from the SW mode in a single disk
wake.

The fourth bifurcation observed in the case of S/d = 4, i.e., the DHL wake mode, is also captured
when the Reynolds number increases to Rec4 = 220. Similar to the DHL mode shown in Figs. 16(c)

FIG. 21. The RSB-RSB wake mode at Re = 150 and S/d = 6: (a) wake structures characterized by
isosurfaces of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the
Cy-Cz diagram of the leading disk, and (d) the Cy-Cz diagram of the trailing disk.
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FIG. 22. The SW-SW wake mode at Re = 160 and S/d = 6: (a) wake structures characterized by isosur-
faces of streamwise vorticity, (b) wake structures depicted by the isosurface of the Q criterion, (c) the Cd -Cy

diagram of the leading disk, and (d) the Cd -Cy diagram of the trailing disk.

and 16(d), the time histories of the lift coefficient components of both disks vary around mean-zero
values, but the lift coefficient components of the trailing disk no longer vary in perfect sinusoidal
forms, as shown in Figs. 20(g) and 20(h). The wake structures are not shown here for brevity. When
the Reynolds number further increases to Rec5 = 300, the wake becomes fully three dimensional
and changes to the WC mode.

Overall, for the configuration of two disks in tandem arrangement with a large separation
distance, the wake bifurcations behind each disk are very similar to those in a single disk due to
the weak interactions between the wakes of the leading and trailing disks. But it should be pointed
out that even in the case of S/d = 6 the interactions between the wakes behind the leading and
trailing disks do not vanish.

E. Frequency analysis

In this subsection, we further examine the wake regimes and bifurcations in terms of frequency
components from spectra obtained by computing the fast Fourier transform of the time histories
of the drag and lift coefficients of each disk. Note that the same logarithmic scale is used for all
frequency spectra aiming at establishing a quantitative comparison.

For the separation distance of S/d = 1, there are only three unsteady states observed. For the
Zz mode at Re = 300, the frequency spectra of the lift coefficients of the leading and trailing
disks illustrate dominant peaks at St = f d/U0 = 0.145 (where St is the Strouhal number and f
is the frequency) and the spectra of drag coefficients of both disks also illustrate dominant peaks
at the second harmonics, i.e., 2St , as shown in Figs. 23(a) and 23(b). This characteristic frequency
is associated with the vortex shedding of hairpin vortex structures. As shown in Figs. 23(c) and
23(d), for the SW mode at Re = 440, the frequency spectra of the lift coefficients for both disks
also illustrate dominant peaks at about St = 0.145, while the spectra of the drag coefficient of
both disks capture dominant peaks at about 2St , which is consistent with the phase diagram of
Cd -Cy, i.e., the Cd varies two times in one period of Cy, as shown in Figs. 6(c) and 6(d). When
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FIG. 23. Frequency spectra of drag and lift coefficients for S/d = 1 at (a), (b) Re = 300, (c), (d) Re = 440,
and (e), (f) Re = 460. (a), (c), (e) Leading disk. (b), (d), (f) Trailing disk. Solid lines represent drag coefficients
and dashed lines represent lift coefficients. The same amplitude logarithmic scale ranging from 0.01 to 500 is
used for all the frequency spectra.

Re increases to 460, the wake becomes weakly chaotic. The frequency spectra of the drag and lift
coefficients of both disks illustrate a dominant peak at about St = 0.145, and also a second harmonic
frequency as shown in Figs. 23(e) and 23(f). But it is noted that the frequency spectra of the drag
coefficients of both disks become more complex with broader peaks at 2St , indicating richer wake
dynamics.

For the separation distance of S/d = 2, the wake bifurcations become more complex and there
are five unsteady states observed. For the Zz-like mode at Re = 140, the frequency spectra of the
drag coefficient Cd and lift coefficient component Cz for the leading and trailing disk are presented in
Figs. 24(a) and 24(b). The frequency spectra of Cd for both disks illustrate dominant peaks at St =
0.107, while the spectra of Cz illustrate dominant peaks at St = 0.107 and some higher harmonics,
indicating the difference from the Zz mode. As shown in Figs. 24(c) and 24(d), for the DHL mode
at Re = 160, the frequency spectra of lift coefficients of both disks illustrate dominant peaks at
St = 0.107, while the spectra of the drag coefficients of both disks illustrate dominant peaks at
St = 0.107 and its harmonics, i.e., 2St , 3St , and 4St , which are related to the periodic shedding
of the double-helical structures. For the SW mode at Re = 170, similar to the same wake mode
when S/d = 1 shown in Figs. 23(c) and 23(d), the frequency spectra of lift coefficients of both
disks illustrate dominant peaks at St = 0.107, while the spectra of drag coefficients of both disks
illustrate dominant peaks at 2St and even higher harmonics, as shown in Figs. 24(e) and 24(f).
However, compared to the spectra in the SW mode for S/d = 1, the spectra of the drag coefficients
of both disks illustrate broader peaks, indicating richer dynamics at S/d = 2. For the RSB-like
mode at Re = 200, the frequency spectra become a little more complex, as shown in Figs. 24(g)
and 24(h). The spectra of the lift coefficients of both leading and trailing disks illustrate sharp peaks
at about St = 0.107 with a little higher magnitude, while the frequency spectra of drag coefficients
of both disks capture dominant peaks at about 2St . It is noted that the frequency spectra of the
drag and lift coefficients of both disks illustrate broader peaks at 2St and other higher harmonics
with low magnitudes, indicating richer wake dynamics. And one can also note a small bump at a
relatively low frequency of about 1/3 of the vortex shedding frequency in the spectra of the drag
coefficients of each disk. For the weakly chaotic state at Re = 260, the frequency spectra of drag
and lift coefficients of both disks become much more complex as shown in Figs. 24(i) and 24(j).
The frequency spectra of lift coefficients of both disks illustrate small peaks at St = 0.122 rather
than dominant peaks at lower Re, and the spectra of drag coefficients illustrate much broader peaks
at 2St and other higher harmonics, indicating the weakly chaotic state.
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FIG. 24. Frequency spectra of drag and lift coefficients for S/d = 2 at (a), (b) Re = 140, (c), (d) Re = 160,
(e), (f) Re = 170, (g), (h) Re = 200, and (i), (j) Re = 260. (a), (c), (e), (g), (i) Leading disk. (b), (d), (f), (h),
(j) Trailing disk. Solid lines represent drag coefficients and dashed lines represent lift coefficients. The same
amplitude logarithmic scale ranging from 0.01 to 500 is used for all the frequency spectra.

When the separation distance increases to S/d = 4, there are four unsteady states captured. For
the Zz mode at Re = 145, the frequency spectra of the lift coefficients of each disk illustrate a sharp
peak at St = 0.107, and harmonics with lower magnitudes especially for the trailing disk, as shown
in Figs. 25(a) and 25(b). Compared with the Zz mode at S/d = 1, the spectra of the drag coefficients
illustrate a small peak at St = 0.107 but a broader peak with a high magnitude at 2St , indicating
the wake interactions between the two disks. When the wake changes from Zz mode to SW mode
at Re = 160, the frequency spectra of the force coefficients are similar to the SW mode at S/d = 1,
i.e., the spectra of lift coefficients of each disk illustrate a dominant peak at St = 0.114 while the
spectra of drag coefficients of each disk illustrate a broader peak at 2St and some higher harmonic
frequencies, as shown in Figs. 25(c) and 25(d). For the DHL mode at Re = 220, the frequency
spectra are similar to those in the SW mode, the spectra of lift coefficients of each disk illustrate
a dominant peak at St = 0.122, but the peak is much sharper than that in the SW mode, as shown
in Figs. 25(e) and 25(f). The spectra of drag coefficients of each disk also capture a broader peak
at 2St . For the weakly chaotic state at Re = 300, the frequency spectra also become more complex
but a dominant frequency at St = 0.130 can be captured, as shown in Figs. 25(g) and 25(h).

For the separation distance of S/d = 6, there are also four unsteady states observed. For the RSB-
RSB mode at Re = 150, the frequency spectra of drag and lift coefficients of both disks illustrate
dominant peaks at St = 0.107, as shown in Figs. 26(a) and 26(b). Compared with the RSB-like
mode for S/d = 2, the frequency spectra in the RSB-RSB mode here are more regular. For the SW-
SW, DHL, and WC modes, one can note that the frequency spectra of the drag and lift coefficients
of both disks are generally very similar to the spectra of those corresponding modes for S/d =
4, as shown in Figs. 26(c)–26(h), and even the values of the vortex shedding frequencies are the
same. Since the wake interactions decrease when the separation distance increases to S/d = 6, the
dominant peaks become sharper than those for S/d = 4.
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FIG. 25. Frequency spectra of drag and lift coefficients for S/d = 4 at (a), (b) Re = 145, (c), (d) Re =
160, (e), (f) Re = 220, and (g), (h) Re = 300. (a), (c), (e), (g), (i) Leading disk. (b), (d), (f), (h), (j) Trailing
disk. Solid lines represent drag coefficients and dashed lines represent lift coefficients. The same amplitude
logarithmic scale ranging from 0.01 to 500 is used for all the frequency spectra.

Figure 27 shows the nondimensional vortex shedding frequency obtained from extensive un-
steady states. For S/d = 1, the Strouhal number remains constant in this range of Re, and reaches
the maximum value at about 0.145. For S/d = 2, the Strouhal number remains nearly constant at
about 0.107 and then increases to 0.122 in the weakly chaotic state. For S/d = 4, the variations

FIG. 26. Frequency spectra of drag and lift coefficients for S/d = 6 at (a), (b) Re = 150, (c), (d) Re =
160, (e), (f) Re = 220, and (g), (h) Re = 300. (a), (c), (e), (g), (i) Leading disk. (b), (d), (f), (h), (j) Trailing
disk. Solid lines represent drag coefficients and dashed lines represent lift coefficients. The same amplitude
logarithmic scale ranging from 0.01 to 500 is used for all the frequency spectra.
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FIG. 27. The nondimensional vortex shedding frequency as a function of Reynolds number at different
separation distances. The data for a single disk wake by Auguste et al. [13], Shenoy and Kleinstreuer [11], and
Yang et al. [14] are also included for comparisons

of the Strouhal number are complex and can be divided into five stages. It starts at about 0.107,
increases to 0.114 in the SW mode, becomes 0.122 in the DHL mode, and finally increases to 0.130
in the WC mode. As for the case with S/d = 6, it is interesting to find that the Strouhal number
varies nearly the same as that for S/d = 4, confirming weaker interactions when the separation
distance increases to 6. For comparisons, the data from a single disk wake are further included in
Fig. 27. For the single disk with χ = 5 and 10, the Strouhal number also remains nearly constant
at about 0.109, which is slightly higher than the lowest value of the Strouhal number in the tandem
disk wake. And then, the Strouhal number increases to 0.134 at higher Re, which compares well
with the value of 0.137 obtained in the tandem disk wake for S/d = 4 and 6. It is worth noting that
the variation of the Strouhal number in a thick disk wake is nearly the same as that in the tandem
disk wake with S/d = 1. This further indicates that the wake behind two disks closely in tandem is
very similar to a single thick disk wake.

F. Flow decomposition

At this point, a deeper analysis of the wake structures using the flow decomposition technique
is employed in order to gain further insight into the spatial structures related to each dominant
frequency for two wake regimes. Here, a spatial-temporal proper orthogonal decomposition (POD),
i.e., the spectral POD (SPOD) [38,39] technique, is used to extract the dominant modes linked to
different frequencies. Compared with the traditional (space-only) POD, the SPOD mode describes
a structure that evolves coherently both in space and time. For more details on the SPOD, one can
refer to Towne et al. [38].

For the DH mode at Re = 160 and S/d = 2, the snapshots of the streamwise vorticity field
taken at the cross plane of x/d = 0.5 are used to perform the SPOD analysis. Here, 2048 snapshots
have been used as the input data. Each snapshot has 73 × 73 polar grids the maximum radius of
which is Rmax/d = 2.45. Note that the streamwise vorticity snapshots are selected with constant
time separation �t = 0.038 d/U0. These temporal parameters could allow us to resolve frequencies
between Stmin = 0.0257 and Stmax = 13.2.

Figure 28 shows the SPOD energy spectra for the DH mode. It can be found that the SPOD energy
spectra for all three modes illustrate dominant peaks at St = 0.107 and its harmonics. The dominant
frequency St = 0.107 is associated with the vortex shedding of the double helical vortex structures,
the value of which is equal to that captured in the frequency spectra of drag or lift coefficients shown
in Figs. 24(c) and 24(d). It is noted that harmonics have also been observed in the frequency spectra
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FIG. 28. SPOD energy spectra for the DH mode at Re = 160 and S/d = 2. The blue, orange, and yellow
lines represent the modes 1, 2, and 3, respectively.

of the drag or lift coefficients. The SPOD mode 1 as indicated by the blue line in Fig. 28 accounts
for 97.30% of the total energy, while the SPOD modes 2 and 3 indicated by the orange and yellow
lines only capture 2.57 and 0.13% of the total energy, respectively. It indicates the SPOD mode 1
dominates the wake structures. Furthermore, the SPOD mode 1 at St = 0.107 captures the highest
energy, which is about 73.22% of the total energy. It indicates that the SPOD mode 1 at St = 0.107
represents the dominant wake structures. It is noted that the SPOD modes 1 at St = 0.107 and its
harmonics 2St and 3St account for 91.87% of the total energy. And these three SPOD eigenfunctions
will then be inspected to understand the wake structures in the DH wake regime.

Figure 29 presents the spatial-temporal SPOD modes (eigenfunctions) 1 at St = 0.107 and
its harmonics 2St and 3St . An instantaneous snapshot is also given for comparison, as shown
in Fig. 29(a). Due to the double-helical structures observed shown in Fig. 11(a), the streamwise
vorticity snapshot illustrates a similar yin-yang shape. The most energetic mode, i.e., SPOD mode
1 at St = 0.107, corresponds to a m1 symmetry and resembles the yin-yang mode, as shown
in Fig. 29(b). Since this SPOD mode accounts for 73.22% of the total energy, it resembles the
instantaneous snapshot. The second energetic mode, i.e., SPOD mode 1 at 2St = 0.214, illustrates
a quadrupole of vorticity compatible with a m = 2 symmetry, as shown in Fig. 29(c). Figure 29(d)
shows the SPOD mode 1 at 3St = 0.321, illustrating a sextupole of vorticity. These three SPOD
modes mainly govern the flow dynamics in the DH wake regime. We note that the double-helical
wake structure has been previously observed in the wake behind a rotating sphere (e.g., Lorite-Diez
and Jimenez-Gonzalez [40]). In their work, the same yin-yang mode has also been observed
corresponding to a m1 symmetry using the HODMD (High order dynamic mode decomposition)
decomposition technique. Moreover, the quadrupole of vorticity with a m = 2 symmetry has also
been captured (see Fig. 7 in [40]).

For the DHL mode at Re = 220 and S/d = 4, the appearance of double-hairpin loops in the
downstream wake behind the trailing disk is the main flow feature for this wake regime. And thus
the snapshots of the streamwise vorticity field taken at the cross plane of x/d = 4.5 are used to
perform the SPOD analysis. Here, the number of snapshots and the grid resolution for each snapshot
are all the same as the DH case. The streamwise vorticity snapshots are equispaced in time with
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FIG. 29. (a) The instantaneous snapshot of the contours of streamwise vorticity, and the dominant SPOD
modes at (b) St = 0.107, (c) 2St = 0.214, and (d) 3St = 0.321, for Re = 160 and S/d = 2.

�t = 0.032 d/U0. These temporal parameters allow resolving frequencies between Stmin = 0.0305
and Stmax = 15.6.

Figure 30 shows the SPOD energy spectra for the DHL mode. Different from the spectra in the
DH mode, only SPOD energy spectra for mode 1 illustrate dominant peaks at St = 0.122 and its
harmonics. The dominant frequency St = 0.122 is associated with the vortex shedding of the hairpin
vortex structures, the value of which is equal to that captured in the frequency spectra of drag or lift
coefficients shown in Figs. 25(e) and 25(f). It is noted that many harmonics have also been observed
in the frequency spectra of the drag or lift coefficients. SPOD mode 1 as indicated by the blue line
in Fig. 30 accounts for 99.86% of the total energy. It indicates that the SPOD mode 1 predominates
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FIG. 30. SPOD energy spectra for the DHL mode at Re = 220 and S/d = 4. The blue, orange, and yellow
lines represent the modes 1, 2, and 3, respectively.
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FIG. 31. (a) The instantaneous snapshot of the contours of streamwise vorticity, and the dominant SPOD
modes at (b) St = 0.122, (c) 2St = 0.244, and (d) 3St = 0.366, for Re = 220 and S/d = 4.

the wake dynamics. Similarly, the SPOD mode 1 at St = 0.122 captures the highest energy, which
is about 74.66% of the total energy. It indicates that the SPOD mode 1 at St = 0.122 represents the
dominant wake structures. It is also noted that the SPOD modes 1 at St = 0.122 and its harmonics
2St and 3St account for 92.00% of the total energy.

Figure 31 shows the spatial-temporal SPOD modes (eigenfunctions) 1 at St = 0.122 and its har-
monics 2St and 3St . An instantaneous snapshot is also given for comparison, as shown in Fig. 31(a).
Due to the double-helical structures observed shown in Fig. 17(a), the streamwise vorticity snapshot
illustrates planar symmetry with three pairs of vortices. The most energetic mode, i.e., SPOD mode
1 at St = 0.122, also illustrates the planar symmetry and resembles the instantaneous snapshot. The
second energetic mode, i.e., SPOD mode 1 at 2St = 0.244, also illustrates a quadrupole of vorticity
compatible with a m = 2 symmetry, as shown in Fig. 31(c). Figure 31(d) shows the SPOD mode 1 at
3St = 0.366, illustrating a more complex structure resulting from the higher harmonic frequency.

IV. COMPARISON BETWEEN THE WAKES OF TANDEM DISKS AND A SINGLE DISK

As demonstrated above, the wake regime behind two circular disks in tandem arrangement is
strongly dependent on the separation distance between them as well as the Reynolds number.
In the present considered parametric space, seven main wake bifurcations are observed, namely,
SS, periodic state with planar symmetry but nonzero mean lift or Zz mode, periodic state with
planar symmetry and zero-mean lift or SW mode, periodic state with RSB, periodic state with DH
structures shedding, periodic state with DHL shedding, and WC state. In the steady state, three
subregimes have been further identified, i.e., SS-AS mode, SS mode, and SS-SS mode. For the RSB
mode, three subregimes have been identified, i.e., RSB-like mode, RSB mode, and RSB-RSB mode.
Similarly, two subregimes have been identified for the SW mode, i.e., SW mode and SW-SW mode.
Figure 32 presents the wake regime map in the considered (Re, S/d) space. To compare with the
wake transition scenarios behind a single disk, the corresponding wake regimes in the single disk
wake from our previous work [14] are also included.

It can be found that the first bifurcation leading to the SS mode is always delayed in tandem
configuration, especially for the case of S/d = 1. As for the second bifurcation leading to the
unsteady state, the differences lie in the wake mode for different tandem configurations. When
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FIG. 32. Wake regimes behind tandem disks in the (Re, S/d) map. For the sake of comparison, the
numerical results for a single disk wake from Yang et al. [14] (gray filled symbols) are also included. The
different wake regimes are denoted as � SS (steady state),

�
Zz (Zig-zig mode), ◦ SW (standing wave

mode), � RSB (periodic state with reflectional symmetry breaking), + DH (periodic state with double-helical
structures shedding), × DHL (periodic state with double-hairpin-loop shedding), and � WC (weakly chaotic
state). Three typical unsteady regular wake structures depicted by the isosurface of the Q criterion are also
illustrated.

S/d = 1, 2, and 4, the second bifurcation leads to the Zz wake mode, while it leads to the RSB mode
in the case of S/d = 6 and the single disk wake. Through careful comparisons with the bifurcation
scenarios in the corresponding single disk wake, one can find that the bifurcation scenarios for
S/d = 6 are very similar to those of a single disk wake, except a DHL wake mode is observed in the
tandem configuration. Among all the cases considered, the bifurcation scenarios for S/d = 2 are the
most complex and quite different from those in a single disk wake. This indicates that the interaction
between two disks in tandem arrangement is much stronger when the trailing disk is located at the
near end of the recirculation region of the leading one. Also, it is noted that the RSB mode is only
observed in the cases of S/d = 2 and 6, which is associated with the very limited conditions for the
occurrence of the RSB wake mode.

Furthermore, the ratios of critical Reynolds numbers in the wake of tandem disks to those in
a single disk wake for the first two bifurcations are plotted in Fig. 33. Both the wakes of tandem

FIG. 33. The ratios of critical Reynolds numbers for the first two bifurcations in the wake of tandem disks
to those in a single disk wake. � represents the ratio of the first critical Reynolds number leading to the SS
wake mode, while � represents the ratio of the second critical Reynolds number leading to an unsteady state
with vortex periodically shedding. A horizontal dashed line represents the value of 1.
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disks and a single disk are steady and axisymmetric at low enough Reynolds numbers. Beyond
a first critical Reynolds number, Rec1, the axial symmetry is broken and the wake changes to a
steady state with planar symmetry (SS mode). Beyond a second critical Reynolds number Rec2 the
wake becomes unsteady with vortex shedding, although this bifurcation could lead to different wake
modes. As shown in Fig. 33, it also clearly shows that the critical Reynolds numbers of both the first
two bifurcations are much delayed in the wake behind tandem disks with the separation distance
S/d = 1. As the separation distance increases from 1 to 2, the ratio decreases rapidly close to 1. For
the cases of S/d = 4 and 6, the ratio varies little. It is worth noting that the critical Reynolds number
for the first bifurcation is always higher than that in a single disk wake and will vary slowly towards
1 when the separation distance is long enough, while the critical Reynolds number for the second
bifurcation is a little lower than that in a single disk wake except for the case of S/d = 1, indicating
the wake will become unsteady earlier in the wakes behind tandem disks except for the situation of
a very short separation distance between two disks.

V. CONCLUSION

The wake bifurcation scenarios behind two circular disks in the tandem arrangement are care-
fully explored through a series of well-designed numerical simulations. It is found that the wake
bifurcations have a strong dependence on the separation distance between the two disks as well as
the Reynolds number. In the present (Re, S/d ) space, seven main wake regimes are identified based
on the flow topography and characteristics of the force coefficients: SS, periodic state with planar
symmetry but nonzero mean lift or Zz mode, periodic state with planar symmetry and zero-mean
lift or SW mode, periodic state with RSB, periodic state with DH structures shedding, periodic
state with DHL shedding, and WC state. Compared with the single disk wake, the first bifurcation
leading to the SS mode is always delayed especially in the case of S/d = 1. As for the second
bifurcation leading to an unsteady state, different wake bifurcations are observed for different
tandem configurations. When S/d = 1, 2, and 4, the second bifurcation leads to the Zz wake mode,
while it leads to the RSB mode for the case of S/d = 6 and the single disk wake. Through careful
comparisons with the bifurcation scenarios in the corresponding single disk wake, it is found that
the bifurcation scenarios for S/d = 1 are similar to those of a thick disk, suggesting that the circular
disks, when placed very closely in tandem, are similar to the situation of increasing the thickness of
a single disk. The bifurcation scenarios for S/d = 2 are the most complex and quite different from
those in a single disk wake, indicating that the stronger interactions between two disks in tandem
arrangement appear when the trailing disk is located close to the near end of the recirculation region
of the leading one. The bifurcation scenarios for S/d = 6 are very similar to those of the single
corresponding disk wake, except a DHL wake mode is observed in tandem due to the interactions
between the vortex loops shed, respectively, from the leading and trailing disk. In addition, the RSB
mode is only observed in the cases of S/d = 2 and 6, which is associated with the very limited
conditions for the occurrence of the RSB wake mode.
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