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In this study, we investigate the stability of a thin viscoelastic fluid draining down
a uniformly heated slippery inclined plane. A theoretical model is employed consisting
of the Navier-Stokes equations coupled with the conservation equation for energy. We
apply a Navier slip condition at the solid-liquid interface. To obtain the critical conditions
for the onset of instability, we carry out a long-wave linear stability analysis within the
Orr-Sommerfeld framework. Furthermore, we derive a first-order Benney-type evolution
equation for the local film thickness to analyze the effect of long-wave instabilities. The
results reveal that the slippery substrate destabilizes the liquid film flow. We find that the
presence of the viscoelastic parameter and Marangoni number always promotes this desta-
bilizing effect. We use the method of multiple scales to investigate the weakly nonlinear
stability analysis of the flow which shows that there is a range of wave numbers with a
supercritical bifurcation and a range of larger wave numbers with a subcritical bifurcation.
The study interprets that the variation of Marangoni number, slip length and viscoelastic
parameter have substantial effects on different stable or unstable zones. Different instability
zones are also demarcated. Finally, the direct numerical simulations of the full thin-film
model clearly demonstrate the role of the viscoelastic parameter, thermocapillary, and
slip length. A good agreement between the linear stability analysis and the numerical
simulations is found.
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I. INTRODUCTION

In the literature, most studies on stability and dynamics of a thin-film flow down an incline are
based on a Newtonian fluid model. Thin-film flow along an inclined plane with bottom heating has
also been reported in several studies [1–4]. Pearson [5] and Sternling and Scriven [6] investigated
thin-film flow over a heated inclined surface where they identified two thermocapillary instability
modes: a long-wave mode and a short-wave mode. For a thin film flowing along a uniformly
heated planar surface, Goussis and Kelley [7] studied the onset of instability in presence of the
competition between the long-wave hydrodynamic and thermocapillary instabilities. To figure out
the physical mechanism of primary instability, they carried out a detailed energy budget analysis
for a falling liquid film over a uniformly heated substrate. They found two mechanisms associated
with the thermocapillary forces and referred as an S mode (a long-wave instability) and P mode
(a short-wave instability), whereas for isothermal cases, they recognized one hydrodynamic mode
which is called the H mode in low to moderate values of Reynolds number. The H mode and S
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mode emerge in the long-wave regime while the P mode emerges in the shortwave regime. They
concluded that the Marangoni number has a destabilizing nature on the long-wave H mode and S
mode, as well as the short-wave P mode. Kalliadasis et al. [8] first demonstrated the dynamics of
a thin film down a uniformly heated wall far from criticality. Several researchers, like Bankoff [9],
Joo et al. [10], Lopez et al. [11], Trevelyan et al. [12], Ruyer-Quil et al. [13], Scheid et al. [14],
and Trevelyan et al. [15], studied the stability of a viscous film flowing down a uniformly heated
plane. The key finding from these investigations is that thermocapillarity, in general, destabilizes the
flow.

However, in many technological applications, the liquids involved deviate from Newtonian
behavior. The viscoelastic fluid is a subclass of non-Newtonian flows which exhibits features that are
typical of both ideal fluids (viscosity) and solids (elasticity). There are various constitutive models
which speak about the elasticoviscous aspect of viscoelastic fluid such as the Maxwell model,
Jeffreys model, Giesekus model, Phan-Thien-Tanner model, Oldroyd model, etc. To get an overall
knowledge about the different rheological models of non-Newtonian as well as viscoelastic liquids,
we refer to the work of Bird et al. [16]. Among these models, in practical fluid mechanics, the
most frequently used model is Walter’s B′′ model [17]. This is because the constitutive equation of
this model involves only one non-Newtonian parameter. Hence one can easily obtain a deeper
insight into the flow behavior of the viscoelastic fluids. Walter’s B′′ model is an example of
a second-order model which works well where viscoelastic effects are weak. The instability of
waves on a viscoelastic film was studied by Dandapat and Gupta [18]. They observed that, in
the presence of surface tension, the falling film is supercritically stable and an initially growing
monochromatic wave reaches an equilibrium state of finite amplitude. Later, Shaqfeh et al. [19]
investigated the spatial instability of the Oldroyd-B fluid model. They showed that, for a small
Reynolds number, although viscoelastic effects are destabilizing, the growth rate of the resulting
purely elastic waves remained very small. They further concluded that, at moderate Reynolds
numbers, viscoelastic effects were primarily stabilizing. Cheng et al. [20] performed the stability
of a thin viscoelastic film of Walter’s liquid B′′ type down a vertical wall, using a long-wave
perturbation technique. They derived a first-order surface equation in terms of the film thickness
and performed both the linear as well as nonlinear stability analyses. Based on the momentum
integral approach, Andersson and Dahi [21] investigated the flow of a viscoelastic liquid film along
a vertical wall. They showed that the viscoelastic film develops more rapidly than a Newtonian liquid
film towards the downstream asymptotic state. Uma and Usha [22] demonstrated two-dimensional
long and stationary waves of finite-amplitude on a thin viscoelastic fluid flowing down an inclined
plane, where they discussed different bifurcation scenarios. Dandapat and Samanta [23] extended
the work of Cheng et al. [20]. They derived both the first- and second-order Benney-type surface
equations. They observed the destabilizing effect of the viscoelastic parameter. Using the weighted
residual integral method, Amatousse et al. [24] investigated the flow of a thin layer of Walter’s
B′′ viscoelastic fluid flowing down an inclined plane. They showed the destabilizing nature of the
viscoelastic parameter on the flow field. In addition, they discussed the influence of viscoelastic
parameters on the nonlinear development of the traveling waves. Fu et al. [25] studied the stability
of Walter’s B′′ viscoelastic film flowing down an incline in the presence of thermocapillarity. They
showed that both heating and viscoelasticity destabilize the flow. Sharma et al. [26] showed that
the influence of the elasticity on the stability of the inertialess flow is significantly affected by the
geometrical characteristics of the substrate. They concluded that the topography initially exerts a
destabilizing influence as the wavelength of the periodic wall increases whereas the topography
may stabilize the flow for shorter wall wavelengths. In literature, not many experimental works on
the non-Newtonian fluids were reported. As far as our knowledge is concerned, for the flow of a
thin viscoelastic liquid along a heated plane in the presence or absence of the slip, no experimental
work has been performed. However, Allouche et al. [27] conducted an experiment to investigate the
primary instability of a shear-thinning film flowing down an incline. The shear-thinning fluid is a
time-dependent non-Newtonian fluid that does not belong to the same class as the viscoelastic liquid.
However, this provides some ideas about the flow instability and the behavior of the non-Newtonian

064007-2



DYNAMICS AND STABILITY OF WEAKLY VISCOELASTIC …

fluid in a real situation. In their experiment, they used a mixture of carboxymethylcellulose (CMC,
E466) and xanthan gum (E415) as shear-thinning fluids that obeyed the Carreau law. This was
the first experimental study where they demonstrated evidence of the destabilizing effect of the
shear-thinning behavior in comparison with the Newtonian case.

The above-mentioned studies employed the classical no-slip boundary condition at the solid-
liquid interface. Within the framework of the Orr-Sommerfeld analysis, Pascal [28] studied the
stability characteristics of a Newtonian thin-film flow and showed the effect of the porous substrate
on the primary instability. In this study, he considered a thin liquid film flow over an inclined porous
substrate with the Navier-slip boundary condition u = Ls∂zu, where u is the tangential velocity, Ls

is the effective slip length, and ∂zu is the velocity gradient. The Navier-slip boundary condition
states that the velocity at the boundary is proportional to the tangential component of the wall
stress, which is similar to the boundary condition used by Beavers and Joseph [29]. Samanta et al.
[30] first discussed the primary instability for a thin film down a slippery incline. They showed the
dual nature of the slip length, i.e., a stabilizing effect far away from criticality but a destabilizing
effect near criticality. The gravity-driven film flow is influenced by the slip length and several studies
[31–34] have been performed with the slip effects. Ding and Wong [35] investigated the dynamics of
a thin Newtonian liquid film flowing along a heated slippery substrate. They used both the weighted-
residual model and a Benney-type model to discuss the influence of slip length. They found that,
for small slip length, the weighted-residual model is more reasonable than the Benney-type model.
Later, Ellaban et al. [36] studied the stability of a binary liquid film flowing down a uniformly
heated slippery incline. Their main conclusion was that both the bottom slip and thermocapillary
destabilize the flow. Recently, Chattopadhyay et al. [37] investigated the thermocapillary instability
on a Newtonian film flowing along a nonuniformly heated slippery incline, using the classical long-
wave expansion technique. They concluded that the influence of the thermocapillary force amplifies
the destabilizing nature of the slip length. In addition, they discussed the existence of a transcritical
Hopf bifurcation provided the slip length satisfies a certain condition. Very recently, Chattopadhyay
et al. [38] reported a detailed comparative study on the stability of a viscoelastic liquid flowing down
a slippery inclined plane. They considered both the weighted-residual model and a Benney-type
model to discuss the impact of the slip length. They found that the weighted-residual model is more
reasonable than the Benney-type model when the slip length is small. However, both the models are
well accepted when the slip length is moderate.

The study of viscoelastic fluid flow has become important in the last few decades due to its
drag-reduction property [39]. Viscoelastic fluids are widely used to characterize the lubrication
behavior of bearings and gears. Therefore, under various physical flow conditions, the instabilities
of such flows must be explored thoroughly. Pal and Samanta [40] and later Chattopadhyay et al.
[38] studied the influence of the wall slip when a viscoelastic fluid (Walter’s liquid B′′) flows
along a slippery inclined plane. Both of these studies showed the destabilizing effect of the slip
length on the surface mode in the long-wave regime for the viscoelastic liquid. On the other hand,
we know that, for nonisothermal flows, thermocapillarity has a significant impact on interfacial
instability. The studies of interfacial heat transfer and stability of thin liquid films have a variety
of applications in engineering and science. In several industrial equipments, such as falling film
evaporators, condensers, etc., thin liquid films are extensively used because of their small thermal
resistance and large contact area. Apart from these, thin liquid films are also used for the thermal
protection in rocket engines and to cool microelectronic devices. The surface-wave instabilities
are extremely injurious to increase the glossy texture of a product. Therefore it is desirable to
suppress the obstructive factors so that one can develop the exact conditions for homogeneous
growth of the thin liquid for various industrial applications. Sadiq and Usha [41] considered the
flow of a thin layer of viscoelastic fluid (Walter’s liquid B′′) flowing down a nonuniformly heated
inclined plane where they investigated only the linear stability. Sarma and Mondal [42] investigated
the Marangoni instability in a thin layer of viscoelastic fluid (Maxwell viscoelastic model) where
they additionally discussed the experimental possibilities regarding the occurrence of Marangoni
instability in a viscoelastic liquid layer.
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FIG. 1. Schematic representation of thin viscoelastic liquid flow down a heated slippery slope.

However, for a thin viscoelastic film (Walter’s liquid B′′) flowing down a slippery inclined plane,
it remains unknown how the heating affects the stability of the system. Nowadays, viscoelastic
liquids are widely used as the working media in various engineering applications, encompassing
microfluidic systems. For instance, the chemical and nuclear industries, bioengineering, geophysics,
and so on. Walter’s B′′ type finds relevance and importance in chemical technology, medicinal
diagnosis, and petroleum industries. The above mentioned studies [38,40–42] motivate us to pursue
a study on the Marangoni instability in a thin viscoelastic liquid to understand the influence of
the rheological behavior of the liquid on the stability and dynamics of the system. Specifically, we
extend the study of Chattopadhyay et al. [38] by accounting the bottom heating. Both analytical and
numerical methods have been utilized to better understand how the complicated interplay between
heating, strong surface tension, viscoelasticity, and bottom slip affect the stability of the flow.

The contents of this paper are organized as follows. In Sec. II, we formulate the mathematical
problem. In Sec. III, a linear stability analysis is performed for the associated Orr-Sommerfeld
eigenvalue problem. We construct an equation for the free surface using the long-wave expansion
technique in Sec. IV. We then carry out a weakly nonlinear stability analysis of the system in Sec. V.
The numerical simulations of the nonlinear evolution equation are investigated in Sec. VI. We draw
our conclusions in Sec. VII.

II. MATHEMATICAL DESCRIPTION

We consider the gravity-driven two-dimensional laminar flow of an incompressible, thin, weakly
viscoelastic liquid film over a uniformly heated slippery substrate inclined at an angle ϕ with the
horizon. Here we consider the rheological model of the viscoelastic liquid in the layer is the Walter’s
B′′ liquid. A schematic representation of the film flow is shown in Fig. 1. An (x, z) coordinate
is chosen with the x axis pointing along the incline and the z axis pointing into the liquid layer.
The interfacial surface of the wavy thin film may be expressed as z = h(x, t ), where h denotes
the thickness of the film at any instant t . The temperature of the inclined plane is maintained at a
constant value denoted by TW > T∞, where T∞ is the ambient air temperature which is assumed to
remain motionless. The liquid film is assumed to be nonvolatile and the dynamic influence of the
ambient air is also neglected.

The proposed model represents an approximation to the first-order in elasticity and obeys
constitutive equation of state given by Beard and Walters [17] as

τi j = −pδi j + 2μei j − 2γ0
δei j

δt
, (1a)
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where τi j is the stress tensor, p is the isotropic pressure, δi j is the Kronecker delta, γ0 is the
viscoelastic coefficient, ei j = (∂iu j + ∂ jui )/2 is the rate of strain tensor. The corotational derivative
of the rate of strain tensor δei j/δt is defined as

δei j

δt
= ∂t ei j + um∂mei j − ∂mujeim − ∂muiem j, m = x, z. (1b)

For the rest of the study, we assume the velocity components of the viscoelastic liquid as ux = u,
uz = w to adjust with the usual notations. The constitutive equation (1a) recovers the Newtonian
case when we set the viscoelastic coefficient γ0 to zero. As an example of Walter’s liquid B′′, we may
consider a certain mixture of polymethyl methacrylate in pyridine with density 0.98 × 103 kg m−3,
viscosity 0.79 N s m−2 and viscoelastic coefficient γ0 = 0.04 N s2 m−2 [40,43].

The governing equations for the liquid film are obtained from the two-dimensional conservation
of mass, momentum and energy equations which are represented in vector form as

∇ · U = 0, (2)

ρ(Ut + (U · ∇)U) = ρg + ∇ · τ, (3)

Tt + (U · ∇)T = κ∇2T, (4)

where ∇ = (∂x, 0, ∂z ) is the gradient operator, U = (u, 0,w) denotes the velocity vector, ρ is the
density of the liquid, g = (g sin ϕ, 0,−gcos ϕ) is the gravitational acceleration, T is the absolute
temperature of the liquid and κ is the thermal diffusivity. The elements of the Cauchy stress tensor
τ are given in (1a) and (1b).

The boundary conditions at the interface with the slippery substrate (z = 0) are the Navier slip
condition and no-penetration condition, which are as follows:

u = βs∂zu, w = 0, (5)

where βs is the dimensional slip coefficient and βs = 0 leads back to the default no-slip condition.
For instance, Voronov and Papavassiliou [31] experimentally measured the value of slip length for
different slippery substrates and found that the slip length for a polydimethylsiloxane slippery plane
is of about 250 μm. One can find the proper range of slip length for various slippery substrates in
Refs. [31,44].

Finally, since the substrate is maintained at a fixed temperature TW, the thermal boundary
condition at z = 0 is

T = TW. (6)

The boundary conditions at the free surface z = h(x, t ) are the balance of tangential and normal
stresses and kinematic condition along with the Newton’s law of cooling, which are as follows:

n · τ · t = ∇σ · t, (7)

p∞ + n · τ · n = −σ∇ · n, (8)

∂t h + U · ∇(h − z) = 0, (9)

λ∇T · n + α(T − T∞) = 0, (10)

where n and t are the outward-directed unit normal and unit tangent vector at any point on the
interface, respectively, σ is the surface tension, p∞ denotes the atmospheric pressure, λ (>0) is the
thermal conductivity, and α is the heat transfer coefficient.
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It is also assumed that all the fluid properties remain constant throughout the study except the
surface tension σ . The surface tension is assumed to depend linearly on the temperature as [45–47]

σ = σ∞ − σt (T − T∞), (11)

where σ∞ is the surface tension of the liquid at T = T∞ and σt = −dσ/dT (> 0) is the surface
tension constant. However, there are some special cases such as water-alcohol solutions where the
surface tension increases with the increasing value of the temperature [3].

Here we made an assumption that the evaporation is negligible and fluid properties are constant
except for the surface tension. To substantiate this fact we would like to highlight an experimental
example of this fact for aqueous solutions of ethanol, as reported by Khattab et al. [48]. According
to them, for a mixture that is approximately 17% ethanol, at a temperature of 293 K, the viscosity
is μ = 2.62 × 10−3 Pa s, the density is ρ = 9.47 × 102 kg m−3 and the rate of change in surface
tension with temperature can be estimated to be σt ≈ 9 × 10−5 N K−1 m−1. From the data presented
by Khattab et al., Ellaban et al. [36] calculated the temperature difference T = 2.18 × 10−3 K and
also deduced the rates of change in viscosity and density and mentioned that, for the specified
temperature difference, the resulting scaled variations in viscosity and density are of the order
10−5, which is very small to consider the approximation that density and viscosity are temperature
independent.

The elements of the Cauchy stress tensor τ obtained from (1a) and (1b) are presented as

τxx = −p + 2μ∂xu − 2γ0{∂xt u + u∂xxu + w∂xzu − 2(∂xu)2 − ∂zu(∂zu + ∂xw)}, (12a)

τzz = −p + 2μ∂zw − 2γ0{∂ztw + w∂zzw + u∂xzw − 2(∂zw)2 − ∂xw(∂zu + ∂xw)}, (12b)

τxz = τzx = μ(∂zu + ∂xw) − γ0{∂zt u + ∂xtw + u(∂xxw + ∂xzu) + w(∂xzw + ∂zzu)

− 2(∂zu∂zw + ∂xu∂xw)}. (12c)

The governing equations and boundary conditions are made nondimensional and the dimensionless
variables marked by an asterisk in the superscript are defined as

x = Lx∗, (z, h) = H (z∗, h∗), t = (L/V )t∗, u = Vu∗, w = (VH/L)w∗, p = ρV2 p∗,

T = T∞ + T ∗T, (τxx, τzz ) = μ(V/L)(τ ∗
xx, τ

∗
zz ), (τxz, τzx ) = μ(V/H )(τ ∗

xz, τ
∗
zx ), (13)

where the longitudinal length scale L (associated with the characteristic wavelength on the free
surface and of the same order as that of the wavelength) and the mean film thickness H are
adopted as the length scales along the x and z axes, respectively, V = gH2 sin ϕ/3ν the characteristic
velocity, ν = μ/ρ is the kinematic viscosity and T = TW − T∞.

Using the dimensionless variables above, the governing equations and the boundary con-
ditions can be rendered in the following dimensionless form after removing the asterisk as
follows:

(i) Governing equations:

∂xu + ∂zw = 0, (14)

εRe(∂t u + u∂xu + w∂zu) = 3 + (ε2∂xτxx + ∂zτxz ), (15)

ε2Re(∂tw + u∂xw + w∂zw) = −3 cot ϕ + ε(∂xτzx + ∂zτzz ), (16)

εRePr(∂t T + u∂xT + w∂zT ) = ε2∂xxT + ∂zzT . (17)

(ii) Boundary conditions along the slippery inclined plane z = 0:

u = β∂zu, w = 0, (18)

T = 1, (19)

where β = βs/H is the dimensionless slip length.
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(iii) Boundary conditions on the free surface z = h(x, t ):

Gτxz + ε2(τzz − τxx )∂xh = −εMa(∂xT + ∂xh∂zT )F , (20)

p∞ + εRe−1[ε2τxx(∂xh)2 − 2τzx∂xh + τzz]F−2 = ε2(We − MaRe−1T )∂xxhF−3, (21)

w = ∂t h + u∂xh, (22)

∂zT − ε2∂xT ∂xh = −BiFT, (23)

where 0 < ε = H/L (� 1) is the aspect ratio, Re = VH/ν is the Reynolds number, Pr = ν/κ is
the Prandtl number, Ma = σtT/(μV ) is the Marangoni number, We = σ∞/(ρV2H ) is the Weber
number, and Bi = αH/λ is the Biot number. We define G = [1 − ε2(∂xh)2], F = [1 + ε2(∂xh)2]1/2

and p∞ = p∞/(ρV2).
The dimensionless forms of the component of stress tensor are as follows:

τxx = −ε−1Rep + 2∂xu − 2εReγ {∂xt u + u∂xxu + w∂xzu − 2(∂xu)2 − ∂zu(ε−2∂zu + ∂xw)}, (24a)

τzz = −ε−1Rep + 2∂zw − 2εReγ {∂ztw + w∂zzw + u∂xzw − 2(∂zw)2 − ∂xw(∂zu + ε2∂xw)},
(24b)

τxz = τzx = (∂zu + ε2∂xw) − εReγ {∂zt u + ε2∂xtw + u(ε2∂xxw + ∂xzu) + w(ε2∂xzw + ∂zzu)

− 2∂zu∂zw − 2ε2∂xu∂xw}, (24c)

where γ = γ0/(ρH2) is the dimensionless viscoelastic parameter.

III. BASE STATE AND LINEAR STABILITY ANALYSIS

The ε dependency is removed from (14)–(23) through the transformations (∂x, ∂t ) → ε−1(∂x, ∂t )
and w → ε−1w. Consider a flat film solution of (14)–(23) with a constant film thickness h = 1
corresponding to a stationary flow. Setting all derivatives with respect to x and t to zero one easily
obtains the solution of the base equations (14)–(23) as

U (z) = 3

{
(z + β ) − z2

2

}
, W (z) = 0, P (z) = p∞ + 3

Re
cot ϕ(1 − z),

�(z) = 1 − Bi

(1 + Bi)
z. (25)

Equation (25) shows that the base flow velocity is explicitly dependent on the slip length β but
is independent of the viscoelastic parameter γ . We also observe that the base flow temperature is
dependent on the Biot number Bi. Note that the base flow velocity is a parabolic function of z while
the base flow temperature is a linear function of z.

To conduct a linear stability analysis, the perturbed equilibrium solution of the ε independent
rescaled equations are expressed as follows:

h = 1 + η(x, t ), u = U (z) + ũ(x, z, t ), w = w̃(x, z, t ),

p = P (z) + p̃(x, z, t ), T = �(z) + T̃ (x, z, t ), (26)

where the tildes denote the added infinitesimal perturbations.
Let us search the solution of the perturbation equations in the normal-mode form as

(̃u, w̃, p̃, T̃ , η) = (̂u(z), ŵ(z), p̂(z), T̂ (z), η̂) exp [ik(x − ωt )], (27)

where the “hat” quantities represent the amplitudes of the perturbation variables, k represents the
perturbation wave number which is taken to be real and positive, and ω denotes a complex quantity
whose real part gives the phase speed of the perturbation.
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To simplify the analysis, the stream function φ is introduced as follows:

φ = �(z) exp [ik(x − ωt )], (28)

and therefore the components of the velocity perturbation ũ = ∂zφ, w̃ = −∂xφ becomes û =
D�, ŵ = −ik�. Here “D” denotes the differentiation with respect to the z operator. Following
Refs. [36,40], the following Orr-Sommerfeld-type (OS) ordinary differential equations are obtained
over the domain 0 < z < 1 as follows:

(i) Governing equations:

[1 − ikγ Re(U − ω)]D4� − [(1 − 2k2γ )ikRe(U − ω) + 2k2]D2�

+ [k4 + (1 − k2γ )ik3Re(U − ω) − 3ikRe]� = 0, (29)

(D2 − k2)T̂ − ikRePr

[
(U − ω)T̂ + Bi

1 + Bi
�

]
= 0. (30)

(ii) Boundary conditions on z = 0:

D� = βD2�, � = 0, T̂ = 0. (31)

(iii) Boundary conditions at the undeformed film surface z = 1:

[1 − ikγ Re(U − ω)](D2 + k2)� + ikMa

(
T̂ − Bi

1 + Bi
η̂

)
− 3(̂η + ikγ Re�) = 0, (32)

[1 − ikγ Re(U − ω)]D3� − [3k2 − 3ikγ Re + (1 − 3k2γ )ikRe(U − ω)]D�

− ik

[
3 cot ϕ + k2

(
ReWe − Ma

1 + Bi

)]̂
η = 0, (33)

(U − ω )̂η + � = 0, (34)

(D + Bi)T̂ − Bi2

1 + Bi
η̂ = 0. (35)

It is observed in absence of the viscoelastic parameter γ , the above Orr-Sommerfeld type boundary-
value problem (29)–(35) reduces to that obtained by Pascal [36]. The above equations (29)–(35)
form an eigenvalue problem where ω is the eigenvalue. The solution of the eigenvalue problem
(29)–(35) can be obtained in terms of long-wavelength asymptotic analysis as

[�, η̂, T̂ , ω] = [�(0), η(0), T̂ (0), ω(0)] + ik[�(1), η(1), T̂ (1), ω(1)] + O(k2). (36)

Substituting the above expansion (36) into the system of equations (29)–(35) and assuming that the
flow parameters Re, Pr, Ma, k2We, Bi, and γ are of order unity, we obtain a hierarchy of problems
at different orders of k. Given that the first-order term of the phase speed ikω(1) is imaginary, the
term k2ω(1) contributes to the growth rate of the instability. Here we would like to highlight that
the Weber number We appearing in the normal stress boundary condition (33) has a stabilizing
influence and helps to prevent the breakup of the nonlinear wave phenomenon and due to this fact,
in the subsequent discussion, the Weber number We is assumed to be of order O(1/k2).

To find the solutions of the undetermined quantities at different orders of k, without loss of gen-
erality the eigenvalue problem and be normalized and set η̂(0) = 1 and η̂(1) = η̂(2) = 0. Substitution
of (36) into (29)–(35) results in

(i) Leading-order equations:
(a) Governing equations:

D4�(0) = 0, D2T̂ (0) = 0. (37)
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(b) Boundary conditions on z = 0:

D�(0) = βD2�(0), �(0) = 0, T̂ (0) = 0. (38)

(c) Boundary conditions at the undeformed film surface z = 1:

D2�(0) − 3 = 0, D3�(0) = 0, (39)

U − ω(0) + �(0) = 0, (D + Bi)T̂ (0) − Bi2

1 + Bi
= 0. (40)

(ii) Leading-order solutions:

�(0) = 3

2
z2 + 3βz, ω(0) = 3(1 + 2β ), T̂ (0) = Bi2

(1 + Bi)2 z. (41)

Observe that both �(0) and ω(0) is free from γ but affected by β.
(iii) First-order equations:
(a) Governing equations:

D4�(1) − γ Re(U − ω(0) )D4�(0) − Re(U − ω(0) )D2�(0) − 3Re�(0) = 0, (42)

D2T̂ (1) − RePr

[
(U − ω(0) )T̂ (0) + Bi

1 + Bi
�(0)

]
= 0. (43)

(b) Boundary conditions on z = 0:

D�(1) = βD2�(1), �(1) = 0, T̂ (1) = 0. (44)

(c) Boundary conditions at the undeformed film surface z = 1:

D2�(1) − γ Re(U − ω(0) )D2�(0) − 3γ Re�(0) + Ma

(
T̂ (0) − Bi

1 + Bi

)
= 0, (45)

D3�(1)− γ Re(U− ω(0) )D3�(0) − Re(U− ω(0) )D�(0)+ 3γ ReD�(0) − (3 cot ϕ+ k2ReWe) = 0,

(46)

�(1) − ω(1) = 0, (D + Bi)T̂ (1) = 0. (47)

(iv) First-order solutions:

�(1) = 9Re(1 + β )

[
z5

120
− z4

24
− β

6
z3 + (1 + 3β )

6
z2 + β(1 + 3β )

3
z

]

+ [3 cot ϕ + k2ReWe − 9γ Re(1 + β )]

(
z3

6
− z2

2
− βz

)
+ MaBi

2(1 + Bi)2 (z2 + 2βz), (48)

ω(1) = Re(1 + β )

{
6

5
+ 6β + 9β2 + 3γ (1 + 3β )

}
−

(
k2

3
ReWe + cot ϕ

)
(1 + 3β )

+ MaBi

2(1 + Bi)2 (1 + 2β ). (49)

From condition (47) we can see that ω(1) = �(1)(1) and therefore the neutral stability relation is
given by ω(1) = 0. Solving this for Re, we obtain the following expression for the critical Reynolds
number for the surface mode in the limit k → 0 as

Rec = 15

Y

[
cot ϕ(1 + 3β ) − MaBi

2(1 + Bi)2 (1 + 2β )

]
, (50a)
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FIG. 2. Variation of the critical Reynolds number (Rec ) as a function of (a) slip length β (fixed Bi = 1),
(b) Biot number Bi (fixed Ma = 1, β = 0.1) for the surface mode or H-mode when the viscoelastic parameter
γ varies with ϕ = π/4.

where Y = 9(1 + β )[(2 + 10β + 15β2) + 5γ (1 + 3β )]. This is the cutoff value of the Reynolds
number after which the flow becomes linearly unstable. In the absence of γ , β, and Ma, the above
relation reduces to (5/6) cot ϕ which exactly matches to that obtained by Benjamin [49] and Yih
[50]. Furthermore, in an isothermal environment, Rec is similar to the result of Pal and Samanta [40]
in absence of surfactant. The slight dissimilarities appear in the expression of the Rec due to choice
of different scalings by Ref. [40].

In this investigation, we have considered that the liquid layer is thick enough so that inertial
effects are relevant. The appropriate range would extend from tens of micrometers to about 1 mm
[3]. Then, the resulting values for the scaled slip length β would range up to values of order 10−1 and
this matches well with the range of Anjalaiah and Usha [51]. The same order of magnitude for slip
length β applies when the substrate is composed of a porous material. In that case, the dimensioned
slip length will be β = √

P/BJ, where P is the permeability and BJ is the Beavers-Joseph constant.
According to Beavers and Joseph [29], the value of BJ is from 0.1 to 4. According to Nield and Bejan
[52], for common porous materials,

√
P extends from very small numbers to values comparable to

10−2 mm. Setting the mean film thickness H = 2.4 mm with
√
P = 8.58 × 10−2 mm and allowing

the Beavers-Joseph constant to range over the specified values, Sadiq et al. [47] considered the
interval for the scaled slip length β from 0.0089 to 0.3575. The results that are discussed in the
present study correspond to β values from 0 to 0.2.

If we consider the thickness of the mixture H = 10−2 m with density 0.98 × 103 kg m−3 and
viscoelastic coefficient γ0 = 0.04 N s2 m−2, then γ ≈ 0.4. Due to this, we have considered it in the
range γ ∈ [0 − 0.2] [41,53,54].

Figure 2(a) presents the variation of critical Reynolds number Rec with the slip length β for
different viscoelastic parameter γ . We observe that the Rec reduces with the increasing value of β

for a given γ in the presence or absence of thermocapillarity. This demonstrates the destabilizing
effect of β. Furthermore, Rec decreases with increasing γ , and this fact indicates the destabilizing
effect of the viscoelastic parameter γ . Moreover, Rec decreases in the presence of thermocapillarity.
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This shows the destabilizing effect of thermocapillarity. Physically, the Marangoni number measures
the variation in surface tension due to the temperature difference between the surroundings and
the bottom surface, which indicates that the heating causes a variation in surface tension, and this
results in a less stable flow. Since the surface tension increases as temperature decreases, the peaks
of the disturbances will have higher surface tension because they are far from the bottom. Hence,
the liquid is drawn toward the peaks, which causes the disturbances to grow, and therefore flow
becomes unstable. Figure 2(b) shows how varying the Biot number Bi while holding the Marangoni
number Ma and slip length β constant affects the stability of the flow. We observe that there is a
specific value of the Biot number (Bi = 1) at which the flow is most unstable for a given viscoelastic
parameter γ . We observe for a given γ , as the Bi increases from zero to one, the flow is destabilizing
whereas, beyond that value as Bi increases, the critical Reynolds number increases, i.e., the flow
is stabilizing beyond Bi = 1. This agrees with Fig. 2(b) which shows a minimum occurring at
Bi = 1. Hence we can conclude that the Biot number plays a double role; for Bi < 1 it produces
a destabilizing effect but for Bi > 1 it produces stabilization. Physically, the Biot number Bi is
the ratio of heat transfer resistance inside the thin film to the free surface in the contact with the
ambient air. When a constant thermal gradient is applied to the inclined plane which is greater than
the temperature of the ambient air, the very small Biot number physically interprets that the heat
conduction inside the liquid film is much faster than the heat convection away from its free surface.
The case Bi = 0 corresponds to an insulating fluid layer or, in other words, the temperature will
be uniform throughout the layer. On the other hand, the case Bi → ∞ corresponds to an infinite
rate of heat transfer across the interface, that is to say that the temperature of the interface will
remain fixed at the ambient value. When Bi increases from zero, in the liquid layer a temperature
distribution begins to develop. Now if the free surface is not a planar one, then the temperature
along the free surface will be greater in the troughs than at the crests, which creates Marangoni
stresses and hence destabilizes the flow. However, when Bi is large, the temperature along the free
surface will approach the constant ambient medium and hence the thermocapillary force will be
feeble. As a consequence, there exists an optimal value of the Biot number, Bi = 1, for which the
thermocapillarity will be the maximum, and this results in a minimum value for Rec.

Following Goussis and Kelley [7], we introduce the parameters χ , M∗, B, and Ka as

Re = 2

3
χ sin ϕ, Ma = 3M∗

2χ2/3 sin ϕ
, Bi = Bχ1/3, We = 9Ka

2χ5/3 sin2 ϕ
,

where

χ = gH3

2ν2
, M∗ = σtT

ρ

(
2

gν4

)1/3

, M = M∗Bχ1/3

1 + Bχ1/3
, B = α

λ

(
2ν2

g

)1/3

, Ka = σ∞
ρ(4gν4)1/3 .

Note that the new flow parameters are implicitly dependent on the Reynolds number. In terms of
these parameters, as k → 0, the relation (50a) reduces to

(χ sin ϕ)2 = 45

2Y

[
χ cos ϕ(1 + 3β ) − 3

4

Mχ1/3

(1 + Bχ1/3)
(1 + 2β )

]
. (50b)

There are various limits that can be taken from the equation (50b) and comparisons that can be
drawn. For example, the viscoelastic and slip-free limit can be obtained by setting γ = β = 0,
which yields

(χ sin ϕ)2 = 5

4

[
χ cos ϕ − 3

4

Mχ1/3

(1 + Bχ1/3)

]
. (50c)

The expression (50c) exactly recovers the dispersion relation obtained by Goussis and Kelley [7].
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IV. LONG-WAVE APPROXIMATION

In this section, we construct a free-surface evolution equation in terms of the film thickness h. We
consider that Re, Pr, Ma, ε2We, Bi, and γ are of order unity. Since the long-wavelength modes are
the most unstable ones for the film flow, we expand the physical quantities asymptotically in pow-
ers of ε (� 1) as [u,w, p, T ] = [u0,w0, p0, T0] + ε[u1,w1, p1, T1] + O(ε2), where [u0,w0, p0, T0]
and [u1,w1, p1, T1] represent the leading-order and first-order solutions, respectively. Substituting
these expansions in (14)–(23) and collecting the coefficients of like powers of ε, the zeroth- and
first-order equations are obtained and solved systematically. We obtain the leading-order velocity
components, pressure, and temperature as

u0 = 3

(
hz − z2

2
+ βh

)
, (51)

w0 = −3

(
z2

2
+ βz

)
∂xh, (52)

p0 = p∞ − ε2We∂xxh + 3 cot ϕ

Re
(h − z), (53)

T0 = 1 − Biz

1 + Bih
. (54)

We can see from the expression for equation (54) that the temperature at the free surface (i.e.,
at z = h) is T i = 1/(1 + Bih). This indicates that, in the adiabatic limit Bi → 0, the free-surface
temperature T i = 1 and in the case of free-surface equilibrium Bi → ∞, the interfacial temperature
T i = 0.

The solution of the first-order O(ε) stream-wise velocity component is given by

u1 = Re

[{
3 cot ϕ

Re
∂xh − ε2We∂xxxh − 9γ (β + h)∂xh

}(
z2

2
− hz − βh

)

− 3

{
β

2
(z2 − h2) − βh(z + β ) + z3

6
− h2z

2

}(
h2

2
+ βh

)
∂xh

+ 9

{
(β + h)

z4

24
+ (z3 − h3)

βh

6
+ β2hz2

2
− h4z

6
− (β + z)

(
β2h2 + 2

3
βh3

)}
∂xh

]

+ MaBi

(1 + Bih)2 (β + z)∂xh. (55)

Substituting u = u0 + εu1 into the kinematic condition, which is written in the form of mass
conservation as

∂t h + ∂x

∫ h

0
(u0 + εu1)dz = 0, (56)

we obtain the nonlinear evolution equation as

∂t h + A(h)∂xh︸ ︷︷ ︸
(i)

+ε∂x

⎡
⎣B(h)∂xh︸ ︷︷ ︸

(ii)

+ ε2C(h)∂xxxh︸ ︷︷ ︸
(iii)

⎤
⎦ + O(ε2) = 0, (57)
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where

A(h) = 3(h2 + 2βh),

B(h) = [3Reγ (β + h) − cot ϕ](h3 + 3βh2) + Re

(
6

5
h6 + 36

5
βh5 + 15β2h4 + 9β3h3

)

+ MaBi

2(1 + Bih)2 (h2 + 2βh),

C(h) = 1

3
ReWe(h3 + 3βh2).

Note that, by setting γ = 0, we exactly recover the evolution equation derived by Thiele et al. [55]
for the corresponding one-sided model. Note that, their [55] modified Galileo number �, Ma, and
1/Bo∗ (where Bo is the Bond number) is same as our 3Re, MaRe, and ε2ReWe. Here we explain
different terms of the equation (57). Term (i) demonstrates that the surface waves are propagating
downstream on a slippery plane. The first part of term (ii) indicates the influence of the viscoelastic
parameter as well as the hydrostatic effect. The second part of term (ii) elucidates the destabilizing
effects of the mean shear flow. The third part of the term (ii) describes the effect of thermocapillarity.
Finally, the term (iii) expresses the stabilizing effects of the surface tension.

To study the linear stability, the flat film is disturbed with an infinitesimal perturbation. The film
thickness h can be written as

h(x, t ) = 1 + η(x, t ), (58)

where η(x, t ) � 1 is an infinitesimal disturbance from the base solution at an instant t .
Using (58) in (57) with the transformations (x, t ) → ε(x, t ) and retaining the terms up to the

order O(η3) the evolution equation becomes

ηt + Aηx + Bηxx + Cηxxxx + A′ηηx + B′(ηηxx + η2
x

) + C′(ηηxxxx + ηxηxxx ) + 1
2 A′′η2ηx

+ B′′( 1
2η2ηxx + ηη2

x

) + C′′( 1
2η2ηxxxx + ηηxηxxx

) + O(η4) = 0, (59)

where A, B, C and their corresponding derivatives are evaluated at h = 1.
Following a standard approach, we apply a normal-mode analysis and thus the disturbance η is

expressed as

η = � exp [i(kx − ωt )] + c.c., (60)

where � � 1 is the amplitude of the infinitesimal disturbance, k is the wave number, ω = ωr + iωi

is the complex frequency, and c.c. is the complex conjugate of the term preceding it.
Substituting (60) in the linearized part of the equation (59), the dispersion relation is obtained as

D(ω, k) = (Ck2 − B)k2 + i(Ak − ω) = 0. (61)

Equating the real and the imaginary parts of (61) results in

ωr = Ak and ωi = Bk2 − Ck4. (62)

The flow will be linearly stable or unstable if the linear growth rate ωi < 0 or ωi > 0, respectively.
When ωi = 0, the flow is called neutrally stable. The neutral state ωi = 0 divides the (Re, k) plane
into two separate regions, the linear stable region and the linear unstable region. For ωi = 0 the
equation (62) yields

k = 0 and k =
√

B

C
, (63)

which corresponds to two branches of the neutral curves and the flow is unstable between them. The
wave number km with the maximum growth rate is obtained from the condition dωi/dk = 0, which
gives km = kc/

√
2 where kc = √

B/C.
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FIG. 3. The variation of the growth rate ωi as a function of the wave number k for different slip length β

and viscoelastic parameter γ with χ = 5, Ka = 3000, B = 10, M = 20, and ϕ = π/4.

In this paper, we shall not discuss the influence of surface tension, and the Kapitza number is
fixed at Ka = 3000. In addition, we have also fixed the value of B = 10. We choose the values of
other flow parameters as M ∈ [0, 80] and χ ∈ [0, 10].

Figure 3 displays the variation of the growth rate ωi as a function of the wave number k for
different values of the slip length β and viscoelastic parameter γ . We can see that, for a given γ

and β, there always exists a cutoff wave number above which the growth rate of the disturbance
amplitude decreases and below which it increases. We also observe that, for a fixed β, ωi increases
with increasing γ . This depicts the destabilizing nature of the viscoelastic parameter γ . In addition,
we can observe that this destabilizing phenomenon enhances further with an increase in the slip
length.

Figure 4 presents the variation of the growth rate ωi as a function of wave number k for various
values of Marangoni number M. We observe that, for a fixed γ = 0.1, ωi increases with increasing
M for a given slip length β. This confirms the destabilizing nature of the Marangoni number on the
flow field. Furthermore, we can visualize that the growth rate increases more with an increment in
γ (= 0.2). This behavior again confirms the destabilizing role of the viscoelastic parameter γ .

Figure 5 demonstrates the neutral stability curves for the angle of inclination ϕ = π/12. We
choose the other parameter values as γ = 0, B = 10, and Ka = 3000. We can observe only one
instability region above the neutral curve corresponding to the Marangoni number M = 0 for a
given β. Figure 5(a) is plotted for β = 0. We have found only one neutral stability curve generated
by the surface mode or H mode in (k, χ ) plane when M = 0. As soon as M increases, the region of
instability increases. We can see that, for M �= 0, the region of instability increases, and two neutral
stability curves emerge. Between these two curves, one appears in the low-Reynolds-number regime
and is associated with the thermocapillary mode or S mode. The other one is associated with the H
mode and it appears when the Reynolds number exceeds its critical value given in equation (50a).
We can see that the onset of instability induced by the S mode and the onset of stability for the
H mode remain on the χ axis when M = 60. Specifically, when the Reynolds number is very low,
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FIG. 4. The variation of the growth rate ωi as a function of the wave number k for different Marangoni
number M with χ = 5, Ka = 3000, B = 10, and ϕ = π/4.
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respectively.
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FIG. 6. Neutral stability curves for different Marangoni numbers M as a function of the wave number k
with Ka = 3000, B = 10, γ = 0.1, and ϕ = π/12. Here “S” and “U” indicate stable and unstable regions,
respectively.

the S-mode instability appeared by the Marangoni stress emerges in the long-wave regime due to
the infinitesimal perturbation of the temperature at the liquid surface. On the contrary, when the
Reynolds number exceeds its threshold value, the H-mode instability arises due to the perturbation
of the liquid surface in the long-wave regime. However, when χ increases, then the Reynolds
number also increases, and therefore the inertia force increases which gradually dominates over the
Marangoni force. Consequently, the S-mode instability becomes feeble and eventually dies down
with increasing Re. Figure 5(a) further displays that with the increasing value of M, the two neutral
stability curves merge with each other. We can see that, after a certain value of M, these two regions
of instability threshold disappear and a nose-shape structure is found to develop where the tip of the
nose intersects the χ axis at a certain M = M∗. When M > M∗, two neutral stability curves generate
a single onset of stability. The results reveal the destabilizing influence of M. The parameter M, or
equivalently the Marangoni number Ma measures the effect of thermocapillarity. Therefore, as it is
increased, the temperature perturbations cause higher surface tension variation and thus destabilize
the flow. A similar phenomenon of M is also observed in Figs. 5(b)–5(d). Comparing the cases
corresponding to β �= 0 with the no-slip case, we notice that, if the substrate is slippery, the unstable
region increases significantly. On the contrary, in Fig. 6, we consider the case γ �= 0. We choose
γ = 0.1 here. A comparison between Figs. 5 and 6 clearly shows that the unstable region increases
with increasing γ .

Physically, when the slip length increases, the velocity gradient at the bottom of the liquid
layer reduces. Consequently, the friction of the liquid at the bottom diminishes which enhances
the instability. On the other hand, the surface tension decreases with increasing temperature and the
temperature is minimum in the trough and is maximum at the crest due to the difference in height
of a perturbed liquid film surface. Here when the liquid is heated, the surface tension in the elevated
region is larger compared with its neighboring depressed region because the liquid temperature at
the crest of an elevation will be smaller than in the trough of a depression. When the Marangoni
number increases, the temperature difference between the liquid and the ambient air also increases,
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so the surface tension of the liquid decreases. Thus, the instability is reinforced when the substrate
is heated.

V. WEAKLY NONLINEAR THEORY

In this section, we study the small-amplitude waves which develop immediately after the break-
down of the flat film solution η = 0. In the previous section, we investigated the linear stability
analysis from which we obtained that, in the neutral state, all modes are neither stable nor unstable.
The neutral state corresponds to ωi = 0 and the two branches of the neutral curve intersect at the
bifurcation point (Rec, 0). Thus, one expects in the vicinity of the upper branch of the neutral curve,
a thin band of width ξ � 1 (say) of unstable modes around a central one appearing over a time
O(ξ−2) where ωi ≈ O(ξ 2). The main features of the system behavior can be obtained from an
analysis of these modes and the nonlinear evolution of the unstable linear waves are investigated in
the region where ωi ≈ O(ξ 2).

The above expectation, along with the anticipation that the wave packet may travel at a group
velocity of order one, suggests a scale

x1 = ξx, t1 = ξ t, t2 = ξ 2t, . . . (64)

for the multiple-scale analysis in developing a weakly nonlinear theory for the evolution of the
envelope of a wave pattern at finite amplitude. Here, x, t are fast scales, whereas x1, t1, t2 and so
on are slow scales. It is assumed that these variables are mutually independent, so the temporal and
spatial derivatives become

∂t → ∂t + ξ∂t1 + ξ 2∂t2 + · · · and ∂x → ∂x + ξ∂x1 + ξ 2∂x2 + · · · . (65)

Now, the surface deformation will be expressed as

η(x, x1, . . . , t, t1, t2, . . .) = ξη1 + ξ 2η2 + ξ 3η3 + · · · . (66)

Using (64)–(66) in equation (59) gives

(L0 + ξL1 + ξ 2L2 + · · · )(ξη1 + ξ 2η2 + ξ 3η3 + · · · ) = −ξ 2N2 − ξ 3N3 − · · · , (67)

where L0, L1, L2 etc. are the operators and N2, N3 are the nonlinear terms that are given in the
Appendix.

In the lowest order of ξ ,

L0η1 = 0, (68)

which has a solution of the form

η1 = �(x1, t1, t2) exp [i�] + c.c., (69)

where � = kx − ωrt and c.c. denotes the complex conjugate of the term preceding it. It should be
noted here that the solution given in (69) is already obtained in connection with the linear stability
analysis except ω is replaced by ωr . This is because, in the vicinity of the neutral curve ωi ≈ O(ξ 2),
the function exp(ωit ) is slowly varying and may be absorbed in �(x1, t1, t2).

In the second order, the perturbation system yields

L0η2 = −L1η1 − N2. (70)

Inserting (69) in (70) yields

L0η2 = −
[

∂

∂t1
+ H2

∂

∂x1

]
� exp [i�] + Q1�

2 exp [2i�] + c.c., (71)

where H2 = H2r + iH2i = A + 2ik(B − 2k2C) and Q1 = Q1r + iQ1i = 2k2(B′ − C′k2) − iA′k,
which is exactly the same form as obtained by Oron and Gottlieb [56]. The subscripts r and i denote
the real and imaginary parts of the functions, respectively.
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To determine η2, we integrate (71). The uniformly valid solution for η2 by eliminating secular
(unbounded) terms, is obtained from the equation (71) as

η2 = H1�
2 exp [2i�] + c.c., (72)

where H1 = Q1/[4k2(4Ck2 − B)] = H1r + iH1i. The same form is obtained by Mukhopadhyay and
Chattopadhyay [45], Oron and Gottlieb [56], and Chattopadhyay [34,46].

Substituting the solutions η1 and η2 into (67) and using the solvability condition by eliminating
its secular solution, the O(ξ 3) equation related to the complex Ginzburg-Landau equation (CGLE)
is obtained using Mathematica for the perturbation amplitude � as

∂�

∂t2
+ iI ∂�

∂x1
+ J1

∂2�

∂x2
1

− ξ−2ωi� + (J2 + iJ4)|�|2� = 0, (73)

where

I = 2k(B − 2Ck2)ξ−1 < 0, J1 = B − 6Ck2,

J2 = 1

2
(−B′′k2 + C′′k4) + (A′)2k2 − 2(B′k2 − 7C′k4)(B′k2 − C′k4)

16Ck4 − 4Bk2
,

J4 = 1

2
A′′k + A′k(B′k2 − 7C′k4) + 2A′k(B′k2 − C′k4)

16Ck4 − 4Bk2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(74)

Equation (73) and the values of the coefficients I, J1, J2, J4 coincide with the forms obtained by
Oron & Gottlieb [56] and Chattopadhyay [34,46] in the case of the first-order Benney equation. The
weakly nonlinear behavior of the film is investigated using (73). It is important to note that such an
expansion is only valid for wave numbers close to neutral and not near-critical when ξ approaches
zero. The solution of (73) for a filtered wave in which the spatial modulation does not exist and the
diffusion term in (73) becomes zero is obtained by considering

� = a(t2) exp [−ib(t2)t2]. (75)

This leads to a nonlinear ordinary differential equation for “a,” namely,

∂a

∂t2
− ia

∂

∂t2
[b(t2)t2] − aξ−2ωi + (J2 + iJ4)a3 = 0, (76)

where the real and imaginary parts, when separated from the above equation, yields

∂a

∂t2
= [ξ−2ωi − J2a2]a (77a)

and

∂[b(t2)t2]

∂t2
= J4a2. (77b)

Equation (77a) is nothing but the Landau equation. This equation is used to characterize the nonlin-
ear behavior of the traveling film flow. The second term on the right-hand side of equation (77a) is
contributed by system nonlinearities. Equation (77b) is used to modify the wave speed induced by
infinitesimal disturbance of system nonlinearities.

The threshold amplitude of the wave is obtained as

ξa =
√

ωi

J2
, (78)

and the nonlinear wave speed is then derived and given as

Ncr = cr + ci
J4

J2
, where cr = ωr

k
, ci = ωi

k
. (79)

064007-18



DYNAMICS AND STABILITY OF WEAKLY VISCOELASTIC …

FIG. 7. Stability regions of nonlinear waves by weakly nonlinear stability analysis for (a) M = 0, (b) M =
40 with fixed β = 0, γ = 0, Ka = 3000, B = 10, and ϕ = π/4. Zones I, II, III, IV denote the unconditional
stable, subcritical unstable, explosive and supercritical stable regions, respectively.

Here the term J2 is very important because, if J2 becomes zero, then equation (77a) reduces to a
linear partial differential equation (PDE) of the amplitude of the filtered wave. When J2 �= 0 the
nonlinear stability depends on the sign of J2. The sign of Landau coefficient J2 determines the
ultimate behavior of the system. Different zones [37,45,57] indicated in the graphs by I, II, III, and
IV represent the following:

(i) Zone I: Unconditional stable region. In this region ωi < 0 and J2 > 0, i.e., in this zone,
finite-amplitude disturbances are unconditionally stable.

(ii) Zone II: Subcritical unstable region. In this region ωi < 0 and J2 < 0. This zone indicates
that, in the linear stable region, instability can be created by finite-amplitude disturbances.

(iii) Zone III: Explosive region. In this region ωi > 0 and J2 < 0. This zone is always unstable
for both the linear and weakly nonlinear cases.

(iv) Zone IV: Supercritical stable region. In this region ωi > 0 and J2 > 0, i.e., in the linear
unstable region, the disturbance will be supercritical stable.

Figures 7–9 describe the variation of the stable and unstable zones (I–IV) for different val-
ues of the Marangoni number (M = 0, 40), slip length (β = 0, 0.2), and viscoelastic parameter
(γ = 0, 0.2). Figure 7 is plotted for β = 0 and γ = 0. Observing the variation of different zones
of Fig. 7, it is found that the explosive zone (zone III) and supercritical stable zone (zone IV)

FIG. 8. Stability regions of nonlinear waves by weakly nonlinear stability analysis for (a) M = 0, (b) M =
40 with fixed β = 0.2, γ = 0, Ka = 3000, B = 10, and ϕ = π/4. Zones I, II, III, IV denote the unconditional
stable, subcritical unstable, explosive, and supercritical stable regions, respectively.
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FIG. 9. Stability regions of nonlinear waves by weakly nonlinear stability analysis for (a) M = 0, (b) M =
40 with fixed β = 0.2, γ = 0.2, Ka = 3000, B = 10, and ϕ = π/4. Zones I, II, III, IV denote the unconditional
stable, subcritical unstable, explosive, and supercritical stable regions, respectively.

increase with increasing M in the range of the parameters considered. It is also observed that the
band of unstable wave numbers also increases with increasing thermocapillarity. In other words,
the Marangoni number has a destabilizing effect on the flow field. On the other hand, stability
curves χ vs k in presence of the slip length (β = 0.2) are shown in Fig. 8. Comparing Figs. 7 and
8, it is observed that in presence of β, the explosive (zone III) and supercritical stable (zone IV)
regions grow whereas the unconditional stable (zone I) and subcritical unstable (zone II) regions
shrink. That is to say, the slip length β destabilizes the flow. Additionally, we can observe from
Fig. 7(b) that, in the presence of thermocapillarity (M �= 0), the curves corresponding to J2 = 0 and
k = kc intersect once; that is to say that the unconditional stable zone (zone I) is bounded below
but unbounded above in our chosen parametric region. However, Fig. 8(b) shows that, when both
thermocapillarity and slip are present (M �= 0, β �= 0), then the unconditional stable zone (zone I)
becomes a bounded region. In Fig. 9, we investigate the effect of the viscoelastic parameter γ and
for that we choose γ = 0.2. Scrutinizing Figs. 8 and 9, it is very clear that γ promotes the instability.
In addition, we observe that when the capillary force at the free surface increases (Ka increases),
the region of stability increases (figures are not presented here) for all values of β and γ . It is to be
noted that the explosive state is mainly occurring at smaller wave numbers and higher values of χ .

FIG. 10. Threshold amplitude ξa in supercritical stable region for (a) β = 0, (b) β = 0.2 with fixed M = 0,
χ = 4, Ka = 3000, B = 10, and ϕ = π/4.
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FIG. 11. Threshold amplitude ξa in supercritical stable region for (a) β = 0, (b) β = 0.2 with fixed M =
40, χ = 4, Ka = 3000, B = 10, and ϕ = π/4.

Figures 10 and 11 show the variation of the threshold amplitude ξa with wave number k in the
supercritical stable zone for different values of viscoelastic parameter γ . All the figures show that
the threshold amplitude becomes larger with an increase of γ in the absence or presence of β and
this phenomenon enhances more in the presence of M. We can observe that there exists a critical
wave number below which the threshold amplitude increases and above which it decreases. This
phenomenon also confirms the stabilizing effect of odd viscosity. However, for any given μ, as the
slip length increases, the threshold amplitude increases.

Figure 12 demonstrates the nonlinear wave speed of nonlinear waves for different Marangoni
number M in the presence or absence of slip length and viscoelastic parameter. All the figures depict
that for a small range of wave numbers, the wave speed initially increases, reaches a maximum, then
decreases, and finally increases monotonically as a function of wave number. We further note that
Ncr increases with increasing β or γ for a fixed k.

The above weakly nonlinear analysis shows the existence of both a subcritical unstable region
and a supercritical stable region for a film down a uniformly heated slippery inclined plane in the
presence and absence of viscoelasticity. We also observe that there exists a value of ks = kc/2 such
that when ks < k < kc the flow is supercritically stable and the nonlinear equilibration occurs after
the initial instability. The curve k = ks is obtained by equating the denominator of the second term
of J2 (which is 16Ck4 − 4Bk2) to zero. We further notice that the curve k = ks divides the linearly
unstable region into two portions where the nonlinear waves reach an explosive state (zone III) or
attain a finite equilibrium amplitude (zone IV).

VI. NUMERICAL SIMULATIONS

To examine the growth of the film instability for a large time, we perform the numerical
simulation consider of the full nonlinear evolution equation (57). Following Refs. [34,46,47,57,58],
we impose the initial condition on the interface at t = 0,

h(x, 0) = 1 − 0.1 cos

(
2π

L
x

)
. (80)

We consider periodic boundary condition in space over the interval [0, L], where L is the compu-
tational domain. Following Ding and Wong [35] and Chao et al. [59], we approximate the spatial
solution of the equation (57) by the truncated Fourier series as

h(x, t ) =
N/2∑

−N/2+1

ĥn exp

(
in

2π

L
x

)
, (81)
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FIG. 12. Nonlinear wave speed as a function of wave number in supercritical stable region for different
Marangoni number M when (a) β = 0, γ = 0; (b) β = 0.2, γ = 0; (c) β = 0.2, γ = 0.2 with fixed χ = 4,
Ka = 3000, B = 10, and ϕ = π/4.

where ĥn is the Fourier amplitude of the disturbances. We substitute the expressions of h from (81)
in (57) and obtain a system of nonlinear ODEs. We then time-integrate these system of nonlinear
ODEs using the stiff-equation solver of MATLAB®. Chattopadhyay et al. [60] performed a space-time
convergence study from where we conclude that N = 28 and the time step t = 0.01 are sufficient
for our numerical simulations. In particular, we have reproduced the results of Ding and Wong [35]
and Chao et al. [59]. For our subsequent discussion, we choose N = 28, t = 0.01, and the relative
error tolerance as 10−6. We have considered L = 20π and ε = 0.1 for the numerical discussion.

Moreover, following Refs. [35,59], we define an energy norm to measure the energy transfer
from base flow into the disturbances in the following form:

E2 = 1

L

∫ L

0
h2dx. (82)

Figure 13 presents typical curves corresponding to maximum (hmax) and minimum (hmin) film
thickness for a long time in the absence of the slip length β. The top and the bottom panels are
plotted for χ = 2 and χ = 4, respectively. It is found that the hmax and hmin increase with increasing
viscoelastic parameter γ . We see that in the absence of the thermocapillary effect [Fig. 13(a)], hmax

(hmin) increases (decreases) up to a certain value, then monotonically decreases (increases) and
ultimately tends to the basic state for a given γ . In Fig. 13(b), we consider M = 40 to capture the
effect of the thermocapillarity. Comparing Fig. 13(a) with Fig. 13(b), we observe that the presence
of the M increases the oscillatory nature of the time-dependent wave forms when γ �= 0. In addition,
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FIG. 13. Maximum (hmax) and minimum (hmin) amplitude of the film thickness for different viscoelastic
parameters γ with β = 0, Ka = 3000, B = 10, and ϕ = π/4. Here the solid lines ( ) is for γ = 0, dashed
lines ( ) indicate γ = 0.1, and dot-dashed lines ( ) represent γ = 0.2.

we can see that the saturation takes place at an earlier time with increase in M. Figures 13(c) and
13(d) show that, for γ �= 0, the oscillations become more prominent with increase in χ .

Figure 14 displays the maximum (hmax) and minimum (hmin) film thickness of the thin viscoelas-
tic film flowing down the inclined plane with wall slippage. Here we consider slip length β = 0.1
whereas the other parameters are same as Fig. 13. Here also we can see that the hmax (hmin) grows
(decays) slightly from its initial value and then decays (rises) monotonically to an asymptotic limit.
Comparing Figs. 13(a) and 13(b) with Figs. 14(a) and 14(b), it is found that, for χ = 2, the effect
of β is not much significant. However, for χ = 4, the effect of higher slip length is very clear
[Figs. 14(c) and 14(d)].

Figure 15 shows some free-surface configurations at a time instant t = 200 for different vis-
coelastic parameters γ corresponding to Figs. 13 and 14. Here we choose χ = 4 and four different
cases: (a) M = 0, β = 0; (b) M �= 0, β = 0; (c) M = 0, β �= 0, and (d) M �= 0, β �= 0. We observe
that, for increasing γ , the growth rate is not significant in the absence of β and M [Fig. 15(a)].
Furthermore, in Fig. 15(b) we choose M = 40 and β = 0. Here also the growth rate is not very
significant compared with Fig. 15(a). However, in absence of the thermocapillarity, if we take
β = 0.1 [Fig. 15(c)], the growth rate is much more important than in Fig. 15(a). The distortion
of the surface is conspicuous with increase in M when β �= 0 [Fig. 15(d)]. In Figs. 15(a) and 15(b),
it is observed that, in the absence of the slip length β, for a given γ , the amplitude of the wave
diminishes after reaching a maximum and a one-hump solitary-like wave is formed. Furthermore,
in the absence of the thermocapillarity, when β = 0.1, the amplitude of the one hump solitary-like
wave increases eminently [Fig. 15(c)]. Finally, the Fig. 15(d) clearly portrays that the presence of
both β and M amplifies the disturbances more.

Figure 16 describes the influence of the effect of the inertia on the thin-film flow in presence of
the slip length β and Marangoni number M. In Fig. 16(a), we observe that for a given viscoelastic
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FIG. 14. Maximum (hmax) and minimum (hmin) amplitude of the film thickness for different viscoelastic
parameters γ with β = 0.1, Ka = 3000, B = 10. and ϕ = π/4. Here the solid lines ( ) is for γ = 0,
dashed lines ( ) indicate γ = 0.1 and dot-dashed lines ( ) represent γ = 0.2.
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FIG. 15. Free-surface configuration at t = 200 for different viscoelastic parameters γ when Ka = 3000,
χ = 4, B = 10, and ϕ = π/4. Here the solid lines ( ) is for γ = 0, dashed lines ( ) indicate γ =
0.1, and dot-dashed lines ( ) represent γ = 0.2.
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FIG. 16. Maximum amplitude and free-surface profiles of the film thickness for different viscoelastic
parameter γ when β = 0.1, M = 40, Ka = 3000, B = 10, and ϕ = π/4.

parameter γ , the crest of the wave enhances with an increase in Reynolds number. In all these cases,
the disturbance amplitude grows slightly from its initial value and then starts to decay monotonically
up to a certain time. The longtime waveforms are time-dependent modes that oscillate in the
amplitude with an increase in Reynolds number for γ = 0.1, 0.2. We can see that for χ = 2, up to
t < 350 (approximately), the deviation of the hmax profiles is not very significant for an increment
in γ . However, for t > 350, the deviation is clear. On the contrary, the hmax starts to deviate in
a short time t ≈ 100 for a given γ when χ = 4. Figures 16(b) and 16(c) show the free-surface
configurations at t = 400 corresponding to Fig. 16(a). In Fig. 16(b), we observe that for χ = 2, the
small amplitude wave gradually evolves with small humps whereas the interfacial waves possess
higher humps for larger χ . Furthermore, comparing Figs. 16(b) and 16(c), we conclude that the
instability of the thin liquid film is enhanced with increasing γ .

Figure 17 presents the maximum and minimum amplitude of the film thickness for different
values of the slip length β. The left and right panels are plotted in the absence and presence of
the Marangoni number M, respectively. First, we consider the effect of β without thermocapillary
effect and viscoelasticity by setting M = 0, γ = 0 in Fig. 17(a). We observe that a larger slip length
causes a steeper wave with a higher hump. This displays the destabilizing role of β on the flow field.
Further we choose the values of γ as 0.1,0.2 in Figs. 17(c) and 17(e). It is found that the height of
the hump is larger compared with the Newtonian film [Fig. 17(a)]. Furthermore, we note that in
Fig. 17(a), for β = 0.2, the hmax starts to deviate from its basic state when t > 250 (approximately).
When γ = 0.1, this nature of β = 0.2 is observed at t > 50 approx. However, when γ = 0.2, we
can see this phenomenon even for β = 0.1. This clearly indicates the destabilizing behavior of the
viscoelastic parameter γ in absence of the thermocapillarity. A comparison between the left and
right panels shows that when the film is heated (M �= 0), the height of the crest increases with the
increase of the Marangoni number M.
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FIG. 17. Maximum amplitude of the film thickness h for different slip lengths β with χ = 4, Ka = 3000,
B = 10, and ϕ = π/4. Here the solid lines ( ) is for β = 0, dashed lines ( ) indicate β = 0.1, and
dot-dashed lines ( ) represent β = 0.2.
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FIG. 18. Free-surface configuration for different vslip length β when Ka = 3000, χ = 4, B = 10, and
ϕ = π/4.
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FIG. 19. Temporal evolution of the energy norm E2. (a) β = 0, γ = 0; (b) β = 0, γ = 0.2; (c) β = 0.2,
γ = 0.2 when χ = 1, Ka = 3000, B = 10, and ϕ = π/2.

Figure 18 displays the film thickness h when the disturbance waves evolve as a function of
the stream-wise coordinate at two different time instants. The top panel is plotted for t = 100
whereas the bottom panel is plotted for t = 300. In Fig. 18(a), we observe that, in the absence of the
Marangoni number M and viscoelastic parameter γ , the amplitude of the perturbations increases
with increasing slip length β. This reveals the destabilizing mechanism of β. To characterize the
effect of the thermocapillarity on the film instability, we set M = 20, γ = 0.2 in Fig. 18(b). We
note that the instability is enhanced for a given β compared with the Newtonian isothermal case
[Fig. 18(a)]. Figure 18(c) in the bottom panel describes that at time elapses, the amplitude of
the perturbations enhances significantly for β = 0.2 compared with Fig. 18(a). Finally, Fig. 18(d)
illustrates that in presence of both M and γ , the distortion of the surface is more prominent for a
given β.

We explore the temporal evolution of the energy norm E2 in a large timescale in Fig. 19 for
three different Marangoni numbers M. In Fig. 19(a) we study the case when β and γ are both
absent. In this case, we can see that the growth rate of E2 increases with the increase of M. We
find that the value of E2 first increases at an early time (t < 50) and then decreases with time for a
given M. We find that when there is no thermocapillarity, E2 is always a steady-state after t > 500.
For M = 20, the E2 curve slightly increases at t = 1000 (approximately) and after t > 1000 the
system evolves into a saturated steady-state with a constant-energy norm. However, for M = 40,
we observe that for t > 400 (approximately), the value of energy norm E2 significantly increases
and then oscillates with time. Further in Fig. 19(b), we take γ = 0.2 to characterize the effect of
the viscoelastic parameter γ on E2. Comparing Figs. 19(a) with 19(b), we note that the viscoelastic
parameter promotes the energy transfer from the base flow to the disturbance. In this case for M = 0,
we cannot observe any significant change in the E2 curve. When M = 20, we can see that the wave
is oscillating and E2 does not reach a steady state. Furthermore, for M = 40, no steady state is
present, and the energy norm oscillates with time with a relatively large hump than M = 40 in
Fig. 19(a). Figure 19(c) shows the evolution of the energy norm E2 in presence of both β and γ .
In this case when M = 0, the E2 curve becomes steady after t = 500 approximately. However, for
M �= 0, the obtained E2 curves demonstrate that a positive value of the Marangoni number enhances
the instability after a short time.
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FIG. 20. Maximum (hmax) and minimum (hmin) amplitude of the film thickness [with initial profile equa-
tion (83)] for different viscoelastic parameters γ with β = 0, Ka = 3000, B = 10, and ϕ = π/4. Here the solid
lines ( ) is for γ = 0, dashed lines ( ) indicate γ = 0.1, and dot-dashed lines (− · −) represent
γ = 0.2.

To investigate the effect of the smaller-amplitude perturbation, we impose the initial condition
on the interface at t = 0,

h(x, 0) = 1 − 0.01 cos

(
2π

L
x

)
, (83)

where we choose the amplitude of the perturbation as 0.01 instead of 0.1. Figures 20–23 are plotted
with the initial profile, given in equation (83).

Comparing Fig. 13 with Fig. 20, we can see that, when we consider a larger amplitude pertur-
bation, the wave height decreases over a certain time span [see Fig. 13(d)], before the final surface
waves develop, whereas this is not seen [see Fig. 20(d)] for smaller amplitude perturbation, except
the cases when M = 0, χ = 2 [see Fig. 20(a)] and M = 0, χ = 4, γ = 0 [see Fig. 20(c)]. On the
other hand, in presence of the slip length β also we find similar behavior. A comparison between
Figs. 14 and 21 shows that, for larger amplitude, the wave height decreases up to a certain time,
whereas for smaller amplitude the wave height decreases only when M = 0, χ = 2 [see Fig. 21(a)].
Physically, when the perturbation amplitude is large, the nonsymmetrical wave forming quickly
from the harmonic initial condition is dominated by (stabilizing) surface tension, which reduces the
wave amplitude. Furthermore, the comparison of Figs. 16 and 22 with Figs. 17 and 23 also shows
that for larger amplitude perturbation, the wave height initially increases, reaches its maximum, and
then decreases up to a certain time, whereas for smaller amplitude perturbation the wave height
always increases.
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FIG. 21. Maximum (hmax) and minimum (hmin) amplitude of the film thickness [with initial profile equa-
tion (83)] for different viscoelastic parameters γ with β = 0.1, Ka = 3000, B = 10, and ϕ = π/4. Here the
solid lines ( ) is for γ = 0, dashed lines ( ) indicate γ = 0.1, and dot-dashed lines (− · −) represent
γ = 0.2.
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FIG. 22. Maximum amplitude and free-surface profiles of the film thickness [with initial profile equa-
tion (83)] for different viscoelastic parameter γ when β = 0.1, M = 40, Ka = 3000, B = 10, and ϕ = π/4.
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FIG. 23. Maximum amplitude of the film thickness h [with initial profile equation (83)] for different slip
lengths β with χ = 4, Ka = 3000, B = 10, and ϕ = π/4. Here the solid lines ( ) is for β = 0, dashed
lines ( ) indicate β = 0.1, and dot-dashed lines (− · −) represent β = 0.2.

VII. SUMMARY AND CONCLUSIONS

In this paper, we present the linear and nonlinear stability of a thin viscoelastic film flow along
a uniformly heated slippery inclined plane. The model captures the thermocapillary effect and
implements a Navier slip condition at the solid-liquid interface. We linearize the Navier-Stokes
and the energy equations to obtain an eigenvalue problem involving the Orr-Sommerfeld-type
equations. We obtain an expression for the critical Reynolds number for the instability of very
long perturbations. Furthermore, we construct a nonlinear evolution equation in terms of the film
thickness incorporating the effect of the slip length, viscoelasticity, and thermocapillarity. We
introduce the Marangoni number M, slip length β, and viscoelastic parameter γ to characterize
the thermocapillarity, slip length, and viscoelastic effect respectively. Results of linear stability
analysis show that the instability of the flow is promoted by the slip length and the viscoelastic
parameter. When the substrate is heated, the instability is reinforced. Using the method of multiple
scales, weakly nonlinear stability analysis is performed. Based on this analysis, we have identified
the existence of both subcritical unstable and supercritical stable regions. Finally, we numerically
simulate the full thin-film model to demonstrate the role of the slip length, thermocapillarity, and
viscoelastic parameter. Here we would like to mention one point that we have not considered the
effect of fluid evaporation or condensation. Hence the present analysis is valid when the fluid is
nonvolatile as well as when the evaporation or condensation of the liquid films is not taken into
account. Future work will focus on experimental verification of the results presented in this paper
as well as on exploring the dynamics of thin-film flows down the heated substrate in the scope of
flows at moderate Reynolds numbers.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX: EXPRESSIONS OF L0, L1, L2, N2, AND N3
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∂t
+ A

∂

∂x
+ B

∂2

∂x2
+ C

∂4

∂x4
, L1 ≡ ∂
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