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Based on the conservative phase field model developed by Lowengrub and Truskinovsky
[Proc. R. Soc. London A 454, 2617 (1998)] for almost incompressible liquid binary
mixtures, we propose an extended scheme for studying immiscible/miscible liquids. Below
a critical temperature Tc, the liquids are immiscible with separating interfaces. Above Tc,
the interfacial effects vanish, and the liquids become perfectly miscible. The free-energy
density of the system depends not only on the phase field variable φ (which describes
the system composition), but also on the reduced temperature r = (Tc − T )/Tc which
measures the distance to the critical point described by Tc. The free energy suffers transfor-
mations through Tc in a way to permit a two-phase system in the subcritical (immiscible)
regime and a monophase in the supercritical (miscible) regime. Numerical simulations in
two spatial dimensions have been performed for isothermal problems (with r as control
parameter) as well as for nonisothermal problems with the energy equation describing
the temperature distribution. These simulations reveal the behavior of liquid mixtures
and droplet coalescence placed in temperature gradients with temperatures continuously
varying from T < Tc to T > Tc, problems that could be of large interest in phase transitions
in micro- and nanofluidics.

DOI: 10.1103/PhysRevFluids.7.064005

I. INTRODUCTION

In the past decades, there has been a growing demand for supercritical fluids in industrial
applications as alternative ecofriendly refrigerants, cold energy storage of liquefied natural gas
[1], superconducting magnet cooling [2], chemical extraction/separation processes/polymerization
[3–5], and space applications [6–8]. Whereas experimental studies are limited due to complex
conditions during their realization, numerical modeling proves to be a useful tool in understanding
the fundamental flows and transport characteristics.

We propose and investigate numerically a phase field model able to describe the passage in
the limit of a continuous approach of the critical point—from a two-phase subcritical state to a
monophasic supercritical state and vice versa. This behavior appears both in a liquid-vapor system
and in an immiscible/miscible liquid-liquid system. The last case is the subject of our paper. Suitable
binary liquid pairs are considered with the interfacial tension depending on temperature: below
a critical temperature Tc, we have a liquid-liquid immiscible state (two-phase states). Above the
critical temperature, the interfacial tension disappears, and the two liquid pairs become perfectly
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miscible (monophasic state). Around the critical temperature, the thermodynamic and transport
properties are modeled as universal power laws on the reduced temperature r = (Tc − T )/Tc [9].
The parameter r represents the measure of the distance to the critical point.

One of the major challenges lying in numerical phase field modeling is the vanishing (appear-
ance) of an interface as one continuously moves from subcritical (supercritical) to supercritical
(subcritical) states. The phase field approach delivers a continuum thermodynamical model able
to treat multiphase problems. An auxiliary variable φ—the phase field—is added to the usual set
of state variables in order to provide an explicit indication of the system composition. φ can be
simply a number or can depict a physical property of the system, such as the density, mass, or
volume fraction. This parameter takes different values for different phases and exhibits a rapid
but smooth variation in the interfacial region. The free energy of the system is an integral of two
contributions, one being a function only of the phase field variable φ (describing the homogeneous
bulk phases) and the other—the “gradient energy”—a term proportional to the square of the local
gradient ∇φ (describing the nonhomogeneous interfacial region) [10–14]. Being free of interface
conditions, phase field models are very attractive and effective to describe spatially and temporally
varying interfaces with complicated geometries. They achieved considerable success in modeling
solidification phenomena [15,16], dendritic growths [17,18], static and dynamic contact angles
[19–21], controlled drop motion under vibrations [22], drop behavior on noisy surfaces [23], or
bubble manipulation by alternating current electrowetting [24].

The investigation in the present paper is based on a conservative phase field model for almost
incompressible binary mixtures. The Cahn-Hilliard equation serves as the evolution equation for
the phase field variable φ [12]. The free-energy density used in this paper depends not only on
φ, but also on the reduced temperature r. This fact allows to treat phase transition problems,
namely, to permit a continuous change by temperature from a biphasic subcritical system to a
monophasic supercritical system and vice versa. Section I presents the theoretical background.
Section II shows numerical results in two spatial dimensions for liquid mixtures and coalescing
droplets near the critical point. Here, two problems will be analyzed: isothermal problems with the
reduced temperature r acting as a control parameter and nonisothermal problems with r varying
from point to point in the evolving system. In the last case, the energy equation (describing the
temperature field) will be included. We gather our conclusions in Sec. III.

II. THEORETICAL FRAMEWORK

Considering the phase field parameter φ proportional to the mass fraction ψ (φ = 2ψ − 1), the
set of governing equations for an immiscible-miscible binary liquid problem reads [12,25]

ρ
d�v
dt

= −∇p − ∇ · (Kρ∇φ ⊗ ∇φ) − ∇(Kρ)(∇φ)2

2
+ ∇ · (η∇�v), (1)

∂ρ

∂t
= −∇ · (ρ�v), (2)

dφ

dt
= 1

ρ
∇ · (Mo∇μ), (3)

ρc
dT

dt
= ∇ · (κ∇T ), (4)

where p represents the pressure field, �v is the mass-averaged velocity (barycentric velocity), η is the
dynamic viscosity, c is the specific-heat capacity, and κ is the thermal conductivity (assumed to be
constant). The system contains no volumetric heat sources, and the fluids are almost incompressible.
The phase field φ in the bulk is assumed to be +1 for liquid 1 (having the density ρ1), −1 for liquid
2 (having the density ρ2), and 0 for the supercritical (mixed) state. ρ(x, z, t ) denotes the density,
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FIG. 1. Transformations of the free-energy density through the critical state (at rT = 0). Immiscible state
for rT > 0 with two local minima at φ = −1 (liquid 1) and φ = 1 (liquid 2) and miscible state for rT < 0
described by the phase field φ = 0.

related to the phase field,

1

ρ
= 1 + φ

2ρ1
+ 1 − φ

2ρ2
. (5)

μ(x, z, t ) is the chemical potential of the multicomponent system,

μ = ρ
∂ f

∂φ
− ∇ · (Kρ∇φ), (6)

K is the gradient energy coefficient, and Mo is a mobility parameter. f represents the bulk free–
energy density (per unit mass),

f (φ, T ) = r0

(
−1

2
rT φ2 + 1

4
|rT |φ4

)
, (7)

with rT as a monotonic function of the reduced temperature r and |rT | as the absolute value of rT .
r0 is a constant. The free-energy density suffers a transformation through the critical state at rT = 0
(Fig. 1). For rT > 0, the free-energy (7) describes biphasic states corresponding to an immiscible
liquid-liquid problem. In this range, f has the shape of a double-well potential with two local
minima at φ = −1 for liquid 1 and φ = +1 for liquid 2. Below the critical threshold rT < 0, the
two liquids become perfectly miscible (binary mixture). For the monophasic supercritical (mixed)
states, f takes the shape of a parabola with the opening to the top and the vertex at φ = 0.

For subcritical states, far below the critical point (T � Tc), r (and rT ) has the value 1 and the
gradient energy coefficient K is a constant. The two constants r0 and K are related to the surface
tension coefficient σ and the interface thickness d: σ ∝ √

Kr0, d ∝ √
K/r0 [26]. Above the critical

point the interface disappears, i.e. the surface tension has to vanish. To include the vanishing of
the interface at the critical temperature Tc, we will choose for the gradient energy coefficient
a temperature dependence of the form K ∝ r and rT appearing in the free-energy potential (7):
rT ∝ r3.

For supercritical states, r becomes negative, and we assume K = 0. In this way the surface
tension coefficient σ ∝ √

Kr0rT acts only for subcritical states with a dependence of the form
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FIG. 2. Divergence of the liquid-liquid interfacial thickness near the critical point.

σ ∝ r2 and becomes zero at the critical point. With this choice as expected, the interfacial thickness
d ∝ √

K/(r0rT ) ∝ 1/r asymptotically diverges at the critical point (see Fig. 2) [9].
The phase field equation [Cahn-Hilliard equation, (3)] can be easily derived from the mass

balance equation of one of the components of the binary mixture,

∂ (ρφ)

∂t
+ ∇ · (ρφ�v) = ∇ · �jd , (8)

where �jd represents the diffusional flux. After some mathematical manipulations, the above equa-
tion writes

ρ

(
∂φ

∂t
+ �v · ∇φ

)
+ φ

(
∂ρ

∂t
+ ∇ · (ρ�v)

)
= ∇ · �jd . (9)

According to the continuity equation (2), the second bracket in (9) is zero. The diffusive flux is
attributed to the gradient of the chemical potential μ which exists near the interface region for a
smooth transition of the phase field φ from one phase to another. Thus, with �jd = Mo∇μ, Eq. (9)
results in the Cahn-Hilliard equation with advection (3). For supercritical states, the gradient energy
coefficient K is 0, transforming the Cahn-Hilliard equation (3) into a diffusion equation describing
the mixing of two miscible components.

III. NUMERICAL RESULTS

We scale the variables by using d , d2/ν, ν/d , ρ1, ρ1ν
2/d2, ν/r0, and Tc as units for the

length, time, velocity, density, pressure, mobility, and temperature, where ν = η/ρ1 is the kine-
matic viscosity of the liquid 1. Tc is, for example, for the pair of liquids 1 cSt silicon oil
(ρ = 880 kg/m3) and FC-72 perfluorohexane (ρ = 1580 kg/m3) 42 ◦C [27]. We use in this paper
ρ1 = 800, ρ2 = 1600 kg/m3, ν = 10−6 m2/s (for both liquids), K = K0r, K0ρ1 = 1.6 × 10−10 N,
r0ρ1 = 1.6 × 102 N/m2. It follows for the thickness of the diffuse interface d = √

K0/r0 = 10−6 m
and the surface tension coefficient σ = ρ1

√
K0r0 = 0.16 mN/m. The scaled time is 10−6 s.

After scaling the following nondimensional parameters appear: Ca = ν2/K0− the capillary
number, Pr = ηc/κ the Prandtl number, and M̃o = Mo r0/ν is the scaled mobility. For the numerical
results presented in this paper, Ca = 5, Pr = 5, and M̃o = 1.
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FIG. 3. Mixing and diffusion in the supercritical state: (a) t = 0.1; (b) t = 0.5; (c) t = 10; (d) t = 40. In a
late state of evolution ρ/ρ1 = 1.333 (φ = 0). The contour lines follow the isolines having ρ/ρ1 = 1.333. The
scaled time is 10−6 s, the box size is 400 × 200, and the scaled length is 10−6 m.

As the numerical method a centered finite-difference method (second-order approximation) is
applied on Eqs. (1), (3), and (4) under periodic boundary conditions in the horizontal (x) and vertical
(z) directions [28,29]. For each iteration step, the density field ρ follows the changes of the phase
field φ, according to relation (5). For all presented figures the meshes are 400 × 200 points (with
the distance between two mesh points 
x = 
z = 1) except for Fig. 4 which has a resolution of
200 × 200 (
x = 
z = 1) and Fig. 8 which has a resolution of 104 × 52 (
x = 
z = 0.4). For
time integration we use an Euler method. The time step is restricted at 
t < 
x2 due to numerical
instability given by the explicit terms and accuracy. In our runs, we fix 
t = 0.01, assuring in this
way a numerical stability of the codes.

From the relations (3) and (5), we easily get

− 1

ρ2

dρ

dt
= ρ2 − ρ1

2ρ1ρ2

dφ

dt
= ρ2 − ρ1

2ρ1ρ2

1

ρ
∇ · (Mo∇μ) = ρ2 − ρ1

2ρ1ρ2

1

ρ
∇ · �jd .

Combining the above relation with the continuity equation (2), it follows:

∇ · �v = − 1

ρ

dρ

dt
= ρ2 − ρ1

2ρ1ρ2
∇ · (Mo∇μ) = G(μ). (10)

The relation (10) shows that the velocity field is not solenoidal because of the existent diffusional
flux �jd = Mo∇μ 	= 0.

In order to get a conservative system, the discretized momentum equation for “i” component
(with i = x, z) is solved in two steps [30,31],

v∗
i − vi(t )


t
= −(�v · ∇ )vi + ∂�i j

∂x j
, (11)

vi(t + 
t ) − v∗
i


t
= − 1

ρ

∂ p

∂xi
, (12)

where �v∗ is the “viscous” component of the velocity field and �i j is the generalized viscous stress
tensor including the Korteweg stress components from (1).

Using (10), we enforce the continuity equation at each time step,

∇ · �v|t+
t = G(μ)|t+
t . (13)
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t=0.1 t=0.1 t=0.1

t=10 t=10 t=10

t=130 t=130 t=130

t=230 t=230 t=230
)c()b()a(

FIG. 4. Time series (at same moments) for phase separation: (a) far away from the critical point r = 1 and
closer to critical point (b) r = 0.1, and (c) r = 0.001, respectively. From the top to the bottom the moment
of times are correspondingly: t = 0.1, t = 10, t = 130, and t = 230. Approaching the critical point, the
coarsening becomes slower and weaker (the capillary effects almost disappear). The scaled time is 10−6 s,
the box size is 200 × 200, and the scaled length is 10−6 m.
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(a)

(b)

(c)

FIG. 5. Drop formation from its initial square shape due to capillary forces at the liquid-liquid interfaces far
below the subcritical threshold r = 1. The formed drop has a density ρ/ρ1 = 1 and is surrounded by a liquid
with ρ/ρ1 = 2. The snapshots correspond to the moments: (a) t = 0.8; (b) t = 45; (c) t = 110, respectively.
The initial square is of size 40 × 40. The interface is abrupt and is not a solution of the problem. After
relaxation, the interface becomes diffuse, and this is a solution of the problem. In panel (c), the formed circle
has a radius of 42.4. The scaled time is 10−6 s, the box size is 400 × 200, and the scaled length is 10−6 m.

Applying the divergence in (12), one obtains

1


t
[∇ · �v(t + 
t ) − ∇ · �v∗] = −∇ ·

(∇p

ρ

)
. (14)

From (13) and (14) we find now the generalized Poisson equation for the pressure field,

∇ ·
(∇p

ρ

)
= 1


t
[∇ · �v∗ − G(μ)]. (15)
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(a)

(b)

(c)

FIG. 6. Coalescence of twin drops of radius 42.4 far from subcritical threshold (r = 1). The bridging film
grows in time in transversal direction until the minimum between the connecting droplets disappears: (a) t =
0.5; (b) t = 100; (c) t = 200. The scaled time is 10−6 s, the box size is 400 × 200, and the scaled length is
10−6 m.

Equation (15) is solved using an iterative method,

p(n+1) = p(n) +
[
∇ ·

(∇p

ρ
− �v∗


t

)
+ G(μ)


t

]
λ,

with λ as a chosen parameter (relaxation factor). The iteration loop is performed until the correction,∑
i, j

∣∣p(n+1)
i, j − p(n)

i, j

∣∣

drops below a desired accuracy ε (with i and “ j” denoting the discretization indices in the x and z
directions). For the parameters indicated in this paper, less than 25 iterations for each time step are
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FIG. 7. Time evolution of the bridge film in the transversal direction during the coalescence process for
two reduced temperatures r. The connecting neck between the interacting drops increases linearly with t1/2,
according to Aarts et al. [34]. The green dashed-dot and red dashed lines are the linear interpolations of the
points from the numerical experiment crossing the origin.

enough to reach the final solution. That means 2 to 3 h for one complete simulation run, working on
a single core unit equipped with a 3.6 GHz Intel CoreTM i7-4790 processor. The corrected pressure
field p is now used to calculate the velocity field �v∗ at the next time moment in Eq. (1).

A. Isothermal case

We analyze the behavior of a liquid mixture at constant temperature. As an initial condition,
we consider in each case the phase field variable φ as a uniformly random-distribution ranging
between −0.01 and 0.01. At t = 0 the liquid mixture is at rest. The density field distributions are
investigated for two situations: the behavior of the liquid mixture in the supercritical regime for
r = −1 (Fig. 3) and in the subcritical regime for, respectively, r = 1; 0.1; 0.001 (Fig. 4). In the
supercritical regime, the surface tension is not acting. The phase field equation (3) turns into a
diffusion equation describing the mixing of two miscible components. Therefore, in this case one
assists to diffusion and mixing. To assure a good contrast in all our density field plots, for each
snapshot the colors are rescaled from the actual minima (blue) to the actual maxima (red). Our color
scale is explicitly shown in Fig. 17. In Fig. 3(d), the red color designates ρ/ρ1 = 1.334, and the blue
color designates ρ/ρ1 = 1.332. So, after t = 40, even in Fig. 3(d) due to high contrast scaling we
can distinguish different colors. In fact, we have an almost completely mixed composition described
by the phase field φ ≈ 0, having the density ρ/ρ1 ≈ 1.333.

The achieving of the complete mixing of the two components with the mixture density ρ/ρ1 ≈
1.333 represents the validation of our numerical simulations for the supercritical regime.

In the subcritical regime, we plot density field snapshots at the same moments for different r
reduced temperatures. Phase separation and coarsening phenomena occur with stronger separation
rates far below the critical point. Approaching the critical point (r → 0), the coarsening becomes
slower and weaker because the capillary effects almost disappear. Instead for r = 1 in Fig. 4—
these phenomena look very strong at t = 230 where the phase fields are ranging already from −1
(ρ/ρ1 = 2, red zones) to +1 (ρ/ρ1 = 1, blue zones). In contrast to Fig. 4(a), Fig. 4(c) reveals for
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(a)

(b)

(c)

(d)
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 / 
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case (a)
case (b)
case (c)

FIG. 8. Phase separation in temperature gradient for strong thermal diffusion in the system: (a) t = 0.5;
(b) t = 460; (c) t = 2860. The corresponding temperature fields Tm (averaged in the vertical direction) are
plotted in panel (d). The scaled time is 10−6 s and the scaled length 10−6 m.

r = 0.001 very little changes in the density field distribution for t = 230 comparing with the initial
moment.
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(c)

(a)
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FIG. 9. Phase separation in temperature gradient for lower thermal diffusion in the system: (a) t = 1500;
(b) t = 10000; (c) t = 25000. See the movie in the Supplemental Material [35] for the time evolution of the
phase separation process. The corresponding temperature fields Tm (averaged in the vertical direction) are
plotted in panel (d). The scaled time is 10−6 s and the scaled length 10−6 m.

For the validation of our numerical simulation in the subcritical regime, we consider two known
configurations [32,33]. We examine the coalescence of two identical free drops in the immiscible
subcritical regime (r = 1). First, we get the circle drop starting from a square shape [33]. With the
time, the initial structure from Fig. 5(a) will be rounded by capillary forces, obtaining a perfectly
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FIG. 10. Phase field distribution in horizontal direction at 3/4 of the z length in Fig. 9(a).

spherical droplet with φ = +1, ρ/ρ1 = 1 in the surrounding liquid with φ = −1, ρ/ρ1 = 2 [see
Fig. 5(c)]. As a second numerical validation experiment, we take two drops approaching each
other until their contact lines become close enough to initiate the coalescence process [32]. That
means the system favors the merging of the drops to reduce the total surface area and in this way
minimize the free energy, forming in a late state of evolution a single rounded liquid droplet. The
viscous forces slow the coalescence process down. The fusion process consists of two stages: A
growth of the meniscus bridge connecting the two drops (see the snapshots displayed in Fig. 6)
followed by a rearrangement of the combined droplet shape from an elliptical to a circular shape.
The second stage is not shown in the present paper. We investigate the time dependence of the
growth of the width of the connecting neck between the drops in early-time evolution until the
minimum between the coalescing droplets disappears. The width of the bridging meniscus dm is
taken from two-dimensional phase field plots, following the location of the interface given by the
contour line φ = 0. The increase in the connecting neck between the coalescing droplets shows a
t1/2 dependence, specific for the low viscosity regime, a very good agreement with the power-law
behavior reported by Aarts et al. [34]. The droplet radius R corresponds to a reference moment t0
(t0 = 4.5) during the coalescence process. The linear dependencies (with t1/2) have been plotted
for different reduced temperatures r (green dashed-dot and red dashed lines Fig. 7). As one can
see in Fig. 7, the slope is higher for the case far below the critical point (r = 1) because the
contribution of capillary forces is stronger, and, therefore, the coalescence process becomes faster.
Also, quantitatively, we achieve a very good agreement with the Aarts’s theory [34] regarding the
hydrodynamics of droplet coalescence. So, the slope ratio corresponding to the two linear functions
plotted in Fig. 7 is ≈1.9. On the other side, from the relation (2) in Ref. [34], the same ratio is given
by (σ1/σ2)1/4, where σ1 and σ2 are, respectively, the surface tension coefficients for the two cases.
That means in our model in terms of reduced temperatures (r1/r2)1/2, namely, (1/0.3)1/2 ≈ 1.83.

B. Nonisothermal case

We consider now a liquid mixture (with φ uniformly random–distributed ranging between −0.01
and 0.01) placed in a temperature gradient. Laterally the temperature is kept constant T/Tc = 2. At
the initial moment t = 0, the system is at rest and the temperature field presents a linear variation
with the minimum T = 0 in the middle of x length (x = 200). In this way, we have simultaneously
in the system both subcritical (T < Tc, r > 0) and supercritical regimes (T � Tc, r � 0) with r
continuously varying from r = 1 to r = −1. Figures 8 and 9 display two-dimensional density
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FIG. 11. Phase field distribution in the horizontal direction at 3/4 of the z length in Fig. 9(b).

distributions and corresponding temperature fields (averaged in vertical direction) for two different
sizes of the box: 0.041 × 0.02 mm2 and 0.4 × 0.2 mm2, respectively. Because the thermal diffusion
time is proportional to the square of the box length, large systems have large thermal diffusion times
and vice versa. Stronger capillarities (higher r parameters, r > 0) enhance the phase separation. In
regions with temperatures T > Tc (r < 0), the capillarity effects vanish. In subcritical regimes, two
processes are in competition: phase separation/coarsening (stronger in the zones with higher r) and
thermal diffusion (see Figs. 8 and 9). In Fig. 8 (for small system with small thermal diffusion time),
in the central regions phase separation starts with phase fields of order 10−2. The phase field reaches
0.4 in Fig. 8(b) and decreases afterwards one order of magnitude from t = 460 to t = 2860 [see
Fig. 8(c)]. This is due strong thermal diffusion which leads to a rapid increase of the temperatures
above Tc [see Fig. 8(d)]. For T > Tc (r < 0), diffusion and mixing occur in the entire system. Instead

FIG. 12. Phase field and scaled pressure distribution at 3/4 of the z length in the horizontal direction in
Fig. 9(c).
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(a)

(b)

(c)

FIG. 13. Coalescing drops in temperature gradient at: (a) t = 100; (b) t = 4900; (c) t = 900 000. We start
from two twin droplets of radius 42.4. Here the end state is a bigger droplet of radius 59.6. We note that both
initial and final states are solutions of the problem and, thus, their ratio 59.6/42.4 is very close to

√
2, which

proves a very good mass conservation in the system. The scaled time is 10−6 s, the box size is 400 × 200, and
the scaled length is 10−6 m.

for lower thermal diffusion in the system, Fig. 9 shows strong phase separations, phase fields varying
from −1 and +1 and the densities ρ/ρ1, correspondingly, from 2 and 1. Rounded droplets are
observed in the middle regions and later on strong coarsening phenomena occur (see also Figs. 10
and 11, presenting the horizontal phase field distributions for the snapshots depicted in Figs. 9(a)
and 9(b) at 3/4 of the z length). From all the situations presented in this paper, the pressure forces
play an essential role in the case shown in Fig. 9 where the created pressure force in the system stops
the expansion of the separation front in the lateral direction (Fig. 12). In the regions with T > Tc,
mixing phenomena is observed, finally the temperature rises in the entire system over Tc, and we get
an almost completely mixed liquid (supercritical state). The full dynamics of the situations depicted
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FIG. 14. Center-to-center phase field profiles at two different moments of times during the coalescence
process: t = 100 (dashed line) and t = 4900 (red straight line). The scaled time is 10−6 s, and the scaled length
is 10−6 m.

in Fig. 9 can be followed through a movie available as the Supplemental Material [35]. From this
movie one can easily see the role of the pressure force in the lateral expansion of the separation front.

Next, we analyze the coalescence of twin drops in a temperature gradient with initial temper-
atures at t = 0 varying linearly from subcritical (T = 0 on lateral sides) to supercritical regimes
(T/Tc = 1.125 in the middle of x length at x = 200). The two coalescing droplets having ρ/ρ1 = 1
are inserted in the liquid volume with ρ/ρ1 = 2 at T/Tc = 1.125. We follow the coalescence
process, respectively, two-dimensional density distribution, center-to-center phase field profiles, and
temperature distributions slightly above the coalescing drops at 3/4 of the z length (Figs. 13–15).

0 100 200 300 400
0

0.5

1

T
 /

 T
c

FIG. 15. Temperature profiles for the situations plotted in Fig. 14 slightly above the interacting area at 3/4
of the z length. The scaled time is 10−6 s, and the scaled length is 10−6 m.
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FIG. 16. Phase field and scaled pressure distribution in horizontal direction at midline plane of the z axis
in Fig. 13(b).

One sees that the middle regions are in the supercritical regime, the capillary forces become zero [no
rounded lines in the middle area can be observed in Fig. 13(a)]. Furthermore, characteristic for the
supercritical regime, mixing of the two components is occurring. Due to temperature diffusion,
the temperature decreases in the interaction area of the two drops and increases on the lateral
sides (Fig. 15). When the temperature in the interaction area becomes lower than Tc, the system
reaches again the immiscible subcritical regime, and the surface tension gains its significance
back. The two components start to separate again and the droplets approach each other (Fig. 14)
followed by coalescence [Fig. 13(c)]. Comparing with Fig. 6, the phenomena shown in Fig. 13
reveal a delayed coalescence similar to the phenomena described in earlier papers [36,37], observed
during the coalescence of sessile drops from different but perfectly miscible liquids. For the droplet

S1 S2

FIG. 17. Density field and barycentric velocity field in the frame of reference of the right-hand-side droplet
shown in Fig. 13(b).
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coalescence, the velocities are much smaller (two orders of magnitude smaller) as in the situations
illustrated in Fig. 10, making also the role of pressure forces less important for this case. Plotting the
pressure field for Fig. 13(b), one remarks the increase in pressure under the droplet cape (Laplace
pressure) (Fig. 16), shown also in Fig. 7 in Ref. [38] using the thermodynamic pressure term
proposed by Jacqmin in Ref. [20]. Quantitatively, the pressure peak of 0.08 N/m2 from Fig. 16
is in a very agreement with the Laplace pressure 
pL = σ r2/R, where R represents the droplet
radius (R = 20 × 10−6 m, r = 0.1).

Figure 17 presents the (barycentric) velocity field in the frame of reference of the right-hand-side
droplet shown in Fig. 13(b). One sees the component separation under the influence of Marangoni
effects given by the tangential components of the Korteweg stress created by temperature gradients
inside the system. Inside the square S1 in Fig. 17 one has an almost mixed fluid. The surface tension
is very low, and one can observe that the velocity field is almost perpendicular to the constant density
level lines. On the other side of the same drop (in S2) the capillary forces are much stronger. The
Marangoni forces are important and the velocity field becomes more tangential to the density level
surface.

IV. CONCLUSIONS

The main gain of our paper is to propose a phase field model for immiscible/miscible fluids
which permits the description of the continuous path from the two-phase to the monophasic
state and vice versa. This is a paper examining coexisting immiscible and miscible states in the
same nonisothermal system. Numerical simulations in two spatial dimensions based on this model
are able to present the phenomena occurring in a liquid mixture on both sides of the critical point:
phase separation/coarsening in the subcritical regime versus diffusion/mixing in the supercritical
regime. Droplet coalescence in temperature gradients has also been investigated. We made pre-
dictions about droplet shapes and droplet behavior at the boundary between sub- and supercritical
domains, a problem that could be of large interest for phase transitions in micro- and nanofluidics.
The situations illustrated in Fig. 13 pave the way for more studies dealing with controlled drop
motion near the immiscible/miscible critical point. The method presented in this paper can be
straightforwardly extended to three spatial dimensions what we plan to do in the future.
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