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Triple line destabilization: Tuning film thickness through meniscus curvature
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For partially wetting fluids, previous results suggest that the thickness and the dewetting
velocity of gravity-driven films are uniquely determined by the triple line dynamics. In
contrast, when flushing aqueous liquids through polymer tubes, our measurements show
that the dewetting velocity and thickness can be selected. The control parameter is pressure,
i.e., the macroscopic curvature of the meniscus. Our results demonstrate directly the
major role played by the macroscopic geometry in the stability of a dynamic meniscus
as predicted by Eggers, [Phys. Rev. Lett. 93, 094502 (2004)].
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I. INTRODUCTION

When a solid substrate is immersed in a liquid bath, capillary forces distort the liquid/air interface
close to the solid and a static meniscus is established. The characteristic length which emerges from
the competition between capillary and hydrostatic pressures is the capillary length lc = (γ /ρg)1/2

where γ is liquid surface tension, ρ the density, and g the acceleration of gravity. For a wetting
liquid, pulling the substrate out of the bath entrains a film. As a result of the competition between
capillary forces and viscous dissipation, film thickness h varies as hLLD ∼ lcCa2/3 as predicted by
Landau, Levich, and Derjaguin (LLD) [1,2]. The control parameter is the capillary number Ca =
ηv/γ , which compares viscous dissipation to capillary pressure gradients, where η is the liquid
viscosity and v the pull-out velocity. This law has been verified experimentally for capillary numbers
Ca < 0.01 [3].

For partially wetting liquids, with nonzero static contact angle [Fig. 1(a)], the dynamics is
noticeably more complex. When the substrate is pulled out of the liquid bath, hydrodynamic
dissipation appears in the triple line region. At the macroscopic scale, the dynamic meniscus
adopts an elongated shape, and its contact angle decreases with velocity [Fig. 1(b)] [4–6]. Above
a critical velocity vc, a dynamic meniscus with a steady state triple line is no longer stable and
a liquid film is entrained [Fig. 1(c)]. This destabilization of the dynamic meniscus, also called
the dynamic wetting transition, occurs at a critical capillary number Ca∗, which depends on the
equilibrium contact angle and is typically of the order of 10−3 to 10−2 [7–9]. The concept of an
intrinsic maximum dewetting velocity for the triple line has often been invoked to explain the
transition from dynamic meniscus to film [7,10]. However, a more recent theoretical investigation
of triple line dynamics based on lubrication theory proposed a different picture: beyond a critical
velocity, the dynamic meniscus profile can no longer be matched to the static meniscus curva-
ture [11,12]. The critical velocity depends not only on the triple line dynamics but also on the
macroscopic geometry. This prediction has to date not been validated experimentally to our best
knowledge.
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FIG. 1. Dynamic wetting transition for a partially wetting fluid in a tube, with gravity. At rest (a), the
contact angle is finite. With velocity (b), the dynamic meniscus elongates and the contact angle decreases. At
a critical velocity (c), the dynamic meniscus is no longer stable and a liquid film emerges. At its top (d), such
a film terminates by a triple line dewetting at velocity vd .

Despite these complexities, film thicknesses for partially wetting liquids are expected to follow a
very simple relation. Dewetting with velocity vd feeds the film at the top contact line [Fig. 1(d)], and
the flux hvd must match gravity driven drainage, with flux ρgh3/(3η), resulting in a steady-state,
homogeneous film with thickness

h = lc
√

3Cad , (1)

a result first predicted by Derjaguin [2]. However, Hocking [13] and Snoeijer [8] have shown that
within the lubrication approximation, given the triple line constitutive relation θ = θ (Cad ) [4,14–
16], there is only one permitted value of triple line velocity vd (or capillary number Cad ). As a
result, for a partially wetting fluid, when a film forms, its thickness h is unique and independent
of the pull-out velocity v. This simple but somewhat nonintuitive theoretical prediction has been
confirmed numerically [17] and experimentally by dip coating silicone oils on fluorinated flat plates
[18,19] (with viscosities in the Pa s range and Ca∗ � 0.01). However, the details of the forced
wetting transition and how the dynamic triple line evolves into the film deposition regime remain
unclear [8].

Here we investigate film thickness selection for dewetting liquids with much lower viscosities,
namely, aqueous solutions on hydrophobic surfaces. To easily exceed the cm s−1 threshold velocity
required for dynamic wetting, we drive aqueous bridges inside vertical polymeric tubes by appli-
cation of pressure in a cylindrical geometry. To better understand the detailed morphology of the
deposited films and how it evolves with time, we have developed an original experimental method.
The resulting snapshots of deposited films reveal uniform thicknesses, but in contrast to previous
results, we find that we can select the thickness of the steady-state films. We show that the film
thickness and the triple line dynamics are still strongly interconnected, but that they can both be
selected through the macroscopic curvature of the meniscus at the dynamic wetting transition.
Thus, this thickness selection mechanism directly evidences the coupling between macroscopic
meniscus geometry and meniscus stability advocated by Eggers [12]. Conversely, it also points to
more complex mechanisms for adjusting triple line dynamics to different film thicknesses at high
capillary numbers.

II. EXPERIMENTS

Fast dewetting experiments were performed in vertical tubes with 1.5 m length and 6.4 mm inner
diameter. The tube material was plasticized polyvinylchloride (Tygon, Saint-Gobain). A 2 ml bridge
of liquid was introduced at the top of the tube. Subsequently, pressurized nitrogen was allowed at
the top so that the liquid bridge, which was initially at rest, reached a stationary velocity within a
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FIG. 2. Receding contact angles as a function of velocity for different glycerol/water solutions at low
velocities. The dashed line is a Cox-Voinov law. Despite some scatter, the evolution is faster than predicted
by purely viscous dissipative models. Around Ca = 3 × 10−4 there is a rather sharp transition towards the
dynamic wetting regime where a thin liquid film is deposited.

transient time negligible compared to the total measurement duration. For low-velocity experiments,
a similar setup, smaller in size, was also used. This allowed us to index match the outside of the
tube in a containing cell with parallel faces for better optical observations. Steady-state velocities
ranged between 10−6 and 1 m s−1 for overpressures of the order of tens of Pa.

We used solutions of glycerol in water with mass fractions ranging from 0 to 75wt%. Viscosity
increased from 0.94 to 30 mPa s, and surface tension decreased from 70.3 to 59.0 mN m−1 with
glycerol addition. With these combinations of surface tensions and viscosities, the capillary length
was nearly constant, varying from 2.66 mm to 2.25 mm, close to the tube radius R = 3.2 mm, while
the characteristic velocities of the liquids, defined as vl = γ /η, ranged from 2 to 75 m s−1.

Quantitative absorption imaging provided snapshots of film thickness profiles over a 40 cm field
of view along the tube. To that end, 4.9 × 10−4 mol L−1 New Coccine, a red dye, was added to
the liquids. This dye was selected so that viscosity, surface tension, and interfacial tension were
not affected, and no adsorption or absorption of the dye was detected after prolonged contact with
the tubes. A white LED screen provided backlight illumination, and green-filtered images (10 nm
bandwidth, 508 nm central wavelength for maximum absorption) were collected with a camera.
Absorbance was calibrated against precision rectangular cells with 10 to 800 μm thickness. Images
were captured at frame rates between 5 and 1000 Hz. Intensity from the vertical middle section was
converted into film thickness h by the Beer-Lambert law h = −1/(2εc) ln (I/I0) where I is the
transmitted light intensity, I0 is the intensity transmitted through a non absorbing water film, ε =
44945 ± 40 L mol−1 cm−1 is the measured extinction coefficient and c is the dye concentration. This
method provided instantaneous profiles of film thickness with a 5 μm accuracy. It improves over
most tube experiments reported in the literature, where homogeneous and constant film thicknesses
are assumed and evaluated as averages based on mass conservation [20,21]. A few experiments
were carried out at a lower dye concentration so that an image of the full meniscus shape could be
recorded to evaluate the variation of its curvature.

III. RESULTS

The macroscopic receding contact angles θ of the dynamic meniscus were measured at low
velocities (Fig. 2). For all the fluids we observe an initial decrease of the receding contact angle
followed, despite some significant scatter in the data, by a more or less extensive plateau-like
behavior with a dynamic contact angle approximately equal to 40◦. This plateau is followed by an
abrupt decrease and θ tends to zero for Ca� � 3 × 10−4. The data are compared to the Cox-Voinov
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FIG. 3. (a) Schematics of liquid meniscus and matching film in the dynamic wetting regime; (b) a series
of 20 snapshots taken at time interval 0.2 s while the liquid bridge (dark) is flushed down the tube (light gray)
(Ca = 1.9 × 10−3). The liquid is a 20%wt glycerol solution in water. The medium gray level is the liquid
film, and the space and time variations of the film thickness can be measured after calibration of the optical
absorption. (c) Space-time plot showing film thickness (h = 132 μm); inset: three successive thickness profiles
at 0.5 s time increment, shown in the reference frame of the bridge. There is a small velocity difference between
the film dewetting velocity vd at the top and the bridge velocity v at the bottom of the film, which is seen to
extend slowly at constant thickness.

prediction for a receding triple line

θ3 − θe
3 � 9Ca ln

(
lc
a

)
, (2)

where θe is the equilibrium contact angle and lc and a are the upper and lower cutoff lengths, with
ln(lc/a) � 15. Setting θe = 40◦ in Eq. (2), the plateau is fitted to the Cox-Voinov law (dashed line),
which is found to overestimate Ca� since forced wetting is predicted to occur for Ca� � 3 × 10−3,
one order of magnitude larger than measured. Note that there is an intermediate velocity range
between Ca ∼ 2 × 10−4 and Ca∗ (Fig. 2, dashed area) where 20 cm long tube segments are too short
to establish a steady-state regime with confidence, because the characteristic times of the transients
become increasingly large). In fact, using the long tubes, for all the liquids tested, forced wetting is
observed above Ca∗ ∼ 4 × 10−4 and a liquid film forms almost instantaneously [Fig. 3(b)]. Space-
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FIG. 4. (a) Dewetting velocity Cad as a function of meniscus velocity Ca showing a nearly proportional
regime in the range Ca∗ to Ca∗∗, followed by saturation; (b) normalized film thickness as a function of dewetting
velocity and the prediction of Eq. (1) (solid line); (c) film thickness profiles for different Ca between 9.6 × 10−4

and 2.3 × 10−3 plotted in the reference frame of the triple line (note the dimple at the junction between film and
meniscus, and the rim near the triple line). (a, b) Glycerol:water from 0 to 75%wt from light to dark; (c) 20%wt
glycerol:water solution. For Ca∗ < Ca < Ca∗∗, the film is directly connected to the meniscus: in this regime
we find that the film thickness can be selected through the meniscus velocity, in contrast to literature results
[17–19].

time plots of film profiles are built from image series [Fig. 3(c)]. The dark area corresponds to the
liquid bridge, the orange area marks the presence of the liquid film, and the white area is the bare
tube. Three thickness profiles at different times are also plotted in Fig. 3(c) (inset). For series of
snapshots, the rear meniscus velocity v and the contact line velocity vd could be measured precisely
[Figs. 3(a) and 3(c)].

We observe that the film profiles exhibit a nearly uniform thickness, and that this thickness stays
constant over time [Figs. 3(b) and 3(c)]. Important additional features are what appears to be a
shallow rim at the top and a dimple at the junction with the meniscus [Fig. 4(c)]. The dewetting
velocity vd at the triple line is slightly smaller than the meniscus velocity v so that the film slowly
grows in length at constant thickness. These results clearly show that the flows at both ends of the
film are steady state [Fig. 3(a)], but as anticipated by Hocking [13], the capillary number at the
triple line Cad is slightly smaller than the capillary number of the meniscus Ca. Figure 4(a) shows
that for Ca > Ca∗, and for various liquids and forcing conditions, Ca and Cad are related by a
slightly sublinear relation until a second threshold denoted Ca∗∗ is reached. This upper limit will be
explained in more detail in the discussion. The measured film thickness h, normalized by capillary
length lc, is plotted as a function of Cad in Fig. 4(b) over the same range.

The remarkable result, which contrasts with other observations in the literature [18], is that the
film thickness varies significantly, over one order of magnitude. The Derjaguin relation between Cad
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FIG. 5. Space-time plot of film thickness profile in a sudden deceleration experiment. From steady state,
pressure is abruptly reduced to near-threshold value: the bridge slows down precipitously (from Ca = 2.6 ×
10−3 to 3.8 × 10−4), but the film thickness and dewetting velocity remain unaffected until the film almost
disappears. This experiment directly demonstrates how once formed, the film is effectively decoupled from the
meniscus. The liquid is pure water.

and h [Eq. (1)] is plotted in Fig. 4(b) with no adjustable parameter, and the agreement is excellent.
The LLD relation was tested against the data: h/lc does not follow a Ca2/3 law. This result suggests
that the steady-state film thickness is controlled by dewetting at the top of the film, as expected
from [13,18], and not by the dynamic meniscus at the bottom, as it would be in the LLD regime.
This decoupling between film and meniscus was further tested through more elaborate experiments.
After dynamic film formation at a given Ca > Ca∗ (Fig. 5, zone A), we swiftly decrease pressure.
The bridge slows down precipitously (zone B) and finds a new steady-state velocity (zone C). We
observe no concomitant variation of film thickness h or dewetting velocity vd until the film, which
now recedes much faster than the meniscus, has shrunk to a new equilibrium. Such transients clearly
demonstrate the capacity of the film-meniscus junction to accommodate a set film thickness at
different velocities, so that vd is independent of v. We conclude that triple line velocity and meniscus
velocity are decoupled, since once the triple line velocity has been set, it is retained afterwards, also
setting the film thickness.

However, we also find that we can select the velocity and thickness, in contrast to previous results
[13,18]. Therefore, this selection mechanism can only operate at film birth, i.e., upon destabilization
of the dynamic meniscus. To better understand this process, we now numerically investigate the
stability of dynamic menisci in tubes, i.e., we explore the nature of steady-state solutions as a
function of both velocity and applied pressure, as well as the conditions under which solutions
with triple lines exist.

IV. MODEL

We calculate steady-state profiles h(z) for an axisymmetric, dynamic meniscus moving down a
vertical tube in the presence of gravity, with the geometry shown in Fig. 1(b). The notable difference
between a plate and a tube is that for the tube the applied pressure �P sets the macroscopic meniscus
curvature κ0 = �P/γ . Thus pressure enters the calculations as the curvature boundary condition on
the symmetry axis. As will be shown in detail below, depending on pressure, three types of solution
may appear, which are shown in Fig. 6. The end point of the profile may lie at the inner surface of
the tube (h = 0), in which case we have a dynamic meniscus with triple line. Another possible case
is a profile which does not touch the tube surface but curves back into the liquid, thus forming a
Bretherton-type bubble [22]. Finally, at the boundary between these two cases, we find a limit case
where the liquid surface ends up parallel to the tube wall at large positive z values, i.e., a liquid film.
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FIG. 6. Steady-state solutions to Eq. (3) with zero flux (i.e., CTE = 0) for Ca = 0.001 and R/lc = 1 for
various pressure values spanning the dynamic wetting transition. For pressures below the critical pressure �Pc,
the meniscus solutions meet the tube surface with a dynamic triple line. At �Pc, the meniscus solution ends
into a thin film with zero total flux. For �P > �Pc the solutions are bubbles which are not relevant for our
system.

More precisely, within the standard model, using the lubrication approximation [11,23], in the
meniscus frame, the profile obeys

h3

3η
(γ ∂zκ + ρg) − vh = CTE, (3)

where surface curvature is given by

κ = − ∂2
zzh

(1 + (∂zh)2)3/2 + 1

(R − h)
√

1 + (∂zh)2
(4)

In Eq. (4) the second term characterizes the axisymmetric geometry and is, e.g., responsible for the
plateau instability of liquid columns.

The constant CTE in Eq. (3) is set by the incoming flux: because we model a steady-state triple
line [Fig. 1(b)], the total flux is zero and CTE = 0. To handle the triple line singularity, we introduce
a small slip length λ which is taken equal to 10−4lc unless otherwise noted.

Note also that Eq. (3) is a third-order differential equation. We shoot from the bottom of the
meniscus, at z = 0 on the symmetry axis. The boundary conditions are initial thickness (h = R),
slope (h′−1 = 0), and curvature (given by �P). If the solution meets the tube [h(z) = 0 for some
positive z], then there is a triple line. If not, the solution is a bubble. Note that in this numerical
scheme, the microscopic contact angle θ0 is not yet a boundary condition: it is a result of the cal-
culation and a function of the parameters �P, Ca, and R. We can of course prescribe a microscopic
contact angle, e.g., with a specific constitutive relation specifying the microscopic contact angle as
a function of velocity, for a given liquid/surface couple. As will be shown below (Sec. IV B), with
this condition we determine the pressure �P which has to be applied to obtain a meniscus with
steady-state velocity Ca.
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A. Numerical results

We have computed meniscus profiles for different velocities and pressures for a tube radius R =
lc, close to our experimental conditions. All spatial dimensions are normalized by lc including film
thickness h, vertical coordinate z, and tube radius R, which plays the role of a Bond number since
Bo = (R/lc)2. The pressure �P is normalized by γ /lc and thus equal to the normalized curvature.
The normalized forms of Eqs. (3) and (4) can be found in Appendix A.

For Ca = 10−3, several profiles are plotted in Fig. 6 for increasing �P. At low pressures, the
curvatures are small and the profiles meet the tube wall thereby forming a dynamic triple line with
a microscopic contact angle defined by tan θ0 = h′ where h = 0. This microscopic contact angle
decreases with increasing pressure (curvature). Because of the low value of the capillary number,
the dynamic effects near the triple line are very limited. In particular, variations of the slip length
do not elicit a significant impact on the profile except for finer details in the immediate vicinity of
the triple line (not shown). For higher values of �P, however, the curvature becomes large enough
that the profile no longer meets the surface, and we find the bubble solutions of the Bretherton type
[22], which are not relevant here. The limit between these two cases, where the dynamic meniscus
is matched to a flat (steady state, zero flux) film solution, is obtained for a well-defined critical
pressure �Pc which we now investigate in more detail.

We have computed this critical pressure for different values of velocity Ca, along with the
corresponding liquid film profiles h(z) [Fig. 7(a)]. The film thickness increases as the velocity
increases, and the oscillatory nature of the solution becomes more and more apparent. The relation
between film thickness h and Ca is plotted in Fig. 7(b) (left-hand axis): it obeys Eq. (1) with
no adjustable parameter. This is no surprise since by definition of the triple line, we impose a
zero flux condition as the film forms. With this and a flat film, Eq. (3) simplifies to Eq. (1).
The relation between critical pressure �Pc and Ca is plotted in Fig. 7(b) (right-hand axis). We
find a definite variation of the critical pressure with velocity, although it remains moderate in
the range Ca < Ca∗∗ = 2 × 10−3, which is of primary interest in our experiments. In particular,
�Pc converges to a finite value �Pc0 as the velocity goes to zero. These results evidence how the
mechanism for film thickness selection is related to macroscopic curvature and pressure.

In the experiments, this impact of pressure can also be observed directly on the images. Some
snapshots were taken with a lower dye concentration: the film thickness can no longer be measured,
but the full meniscus profile is now visible. Five profiles for different velocities ranging from Ca∗ to
slightly above Ca∗∗ are shown in Fig. 8(a) along with numerical solutions of Eq. (3) (dashed lines).
Despite slight asymmetries due to some distortion in the lighting pattern, for the three intermediate
velocities, we find that the observed meniscus shapes are consistent with the numerical predictions.
The agreement between predicted and observed meniscus shapes is not as good when the film has
not developed (e.g., lowest velocity shown), or when Ca∗∗ has been exceeded. In this case, which
is the highest velocity shown, the meniscus snapshot is no longer axisymmetric. Neither situation is
accounted for in the model.

B. Building up a phase diagram

Intriguingly, the model seems to predict that arbitrarily thin films can be obtained: this would
simply require a pressure just exceeding the threshold [Fig. 7(b)]. In the experiments, in contrast,
there is a lower bound to the film thickness, and this limit is directly related to Ca∗, the velocity of
the dynamic wetting transition (Fig. 2). To clarify the role of this threshold, we now consider the
stability of the dynamic meniscus, keeping in mind its dynamical properties as reflected in Fig. 2.

Taking a constant radius R, we map out the space (Ca, �P) of the solutions to Eq. (3). To explore
this family of solutions, we first plot the microscopic contact angle θ0 for static solutions (Ca = 0)
[Fig. 9(a), blue line]. With increasing macroscopic meniscus curvature κ0, the microscopic contact
angle θ0 decreases from 90◦ at �P = 0 to 0◦ at �P = �Pc0. If Ca is nonzero, the triple line becomes
dynamic, viscous bending sets in [Fig. 9(a), inset], and for the same �P the microscopic contact
angle is now larger than the static microscopic contact angle. However, the difference between
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FIG. 7. (a) Steady-state solutions with a zero flux film for R/lc = 1 and different values of Ca. Each
velocity elicits a different value of the critical pressure �Pc. The film thickness increases with velocity, while
the oscillatory nature of the solution becomes more and more apparent; (b) critical pressures and corresponding
film thicknesses for different meniscus velocities Ca. The predictions of Eq. (1) between film thickness and
Ca match the numerical results. The weak dependence of the critical pressure on Ca, especially in the Ca
range of interest for our experimental system (Ca < 2 × 10−3), shows that minute increases in pressure result
in significant thickness variations.

microscopic contact angle at finite velocity and static microscopic contact angle is rather small for
our typically low values of Ca. It is barely noticeable for Ca = 1 × 10−4 (Fig. 9, light blue line)
but becomes clearer at Ca = 1 × 10−3 (purple line). Much more significant bending would appear
for 10 to 100 times larger Ca. To connect with the macroscopic scale problem, we also define
the apparent contact angle θap, which is given by the slope of the liquid profile taken where the
dynamic triple line matches the quasistatic meniscus, i.e., h′ = tan θap at the inflexion point, where
the slope h′ is minimum [Fig. 9(a), inset]. With this definition, θap is a good approximation to the
experimentally measured contact angle, at the macroscopic scale such as shown in Fig. 2.

To understand our experimental results, we must now consider the specific dynamic behavior of
the triple line and the constitutive relation between microscopic contact angle and triple line velocity.
In many cases, θ0 is taken as a constant, resulting in a Cox-Voinov-type relation. Experimentally, we
have found a more complex evolution of θ0(Ca) (Fig. 2), which attests to the limited contribution
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FIG. 8. Series of snapshots of dewetting films for a 30% glycerol mixture at different meniscus capillary
numbers between 1.8 × 10−4 and 3.9 × 10−3 showing (a) the meniscus region; the dashed red lines are the
predictions from the hydrodynamic model (Fig. 7) for each Ca. We find good agreement with the observed
curvatures except at the lowest velocity where the film has not formed completely. At Ca = 3.9 × 10−3, the
meniscus is no longer perfectly axisymmetric due to other dynamic effects. (b) The triple line region of the
film (not captured at the highest velocity), showing some undulations.

of viscous dissipation at low Ca, due to low viscosity. Other dissipative mechanisms dominate in
the present case, which remain elusive. However, as a result, one can neglect the small difference
between θ0 and θapp, and the dependence shown in Fig. 2 would be a good approximation to the
constitutive relation. Whatever the dissipative mechanisms, their effect can be represented by a
constitutive relation θ0(Ca).

Finally, the (Ca, �P) phase diagram (Fig. 10) appears as follows. We find the Bretherton type
bubble at high pressures. This state is bounded at low pressures by the �Pc(Ca) line [cf. Fig. 7(b)]
which indicates the conditions under which a film forms. Below this boundary, we find the solutions
with a dynamic meniscus and a triple line. Because for these solutions each point in the (Ca,
�P) phase diagram corresponds to a given contact angle, which can be calculated, specifying a
constitutive relation restricts the family of solutions to a curve in this part of the phase diagram.
We have schematically shown three such �P(Ca) curves (dashed lines in Fig. 10). Starting from
zero velocity, where the static contact angle is obtained at a finite pressure (this is capillary rise),
the meniscus state follows the �P(Ca) curve as velocity increases. For a more hydrophilic surface
(curve a), the microscopic contact angle is smaller, so less viscous bending (and so a lower velocity)
is required to reach equilibrium at the same pressure: the curve is shifted to the left. Conversely, for
a more hydrophobic surface, the path shifts to the right (curve c). The precise path of course depends
upon the details of θ0(Ca), but the phenomenology and the physics remain the same whatever the
details of the dissipation mechanisms.
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FIG. 9. (a) Calculated microscopic contact angle θ0 and apparent contact angle θapp (left-hand ordinate
axis) as a function of pressure, for R = 1.2lc and different capillary numbers, with a slip length λ/lc=1 10−4.
The very moderate impact of dynamic effects show that in this velocity range, the solution is dominated
by the pressure effect. Moreover, the contact angles drop abruptly to zero as pressure increases, which
determines the critical pressure �Pc for the dynamic wetting transition. For Ca = 0, the critical pressure is
�Pc0 = 1.3458 . . . . Also shown (right-hand ordinate axis) is the film thickness as a function of critical pressure
for �P > �Pc0. Each value of thickness is associated with a different substrate velocity Ca, following Eq. (1)
[see also Fig. 7(b)]. (b) Meniscus profiles as a function of Ca for �P > �Pc0. The solution at 0 < Ca < Ca∗

is bubble-like and not relevant for our boundary conditions. For Ca = Ca∗, a thin film solution is found. For
Ca > Ca∗, we have a meniscus with a dynamic triple line. As Ca increases, the microscopic contact angle
increases, i.e., the solution is valid for a more and more hydrophobic material.

Nota that the �Pc(Ca) line, which marks the appearance of the thin film, does not depend upon
the constitutive relation of the triple line since the liquid surface does not meet the solid. However,
the dynamic meniscus becomes unstable, and a spreading thin film appears when, for a given liquid
surface couple, the �P(Ca) curve meets the �Pc(Ca) line. This will occur at the finite velocity
Ca∗ and result in the corresponding finite film thickness. Thus, in the pressure range �Pc0 < �P <

�Pc(Ca∗), the dynamic meniscus solution is stable. The corresponding range of film thickness is
inaccessible. As a further example, a series of solutions calculated at fixed pressure slightly above
�Pc0 for different values of Ca is shown in Fig. 9(b). The static solution Ca = 0 is bubble-like and
not relevant for our boundary conditions. A finite velocity is required with enough viscous bending
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FIG. 10. The solutions to Eq. (3) are shown in a pressure �P vs velocity Ca phase diagram. The high-
pressure bubble solutions are not allowed in our experiments due to the boundary conditions. The thin film
solutions [Fig. 7(b)] form the �Pc(Ca) boundary (solid line). The thick dashed line (b) schematizes the family
of solutions for a dynamic meniscus with a given liquid/surface couple. This line hits the �Pc(Ca) line at some
finite velocity Ca∗, which also determines the minimum film thickness obtainable through Eq. (1). Applying
a pressure �P > �Pc(Ca∗) will destabilize the meniscus into a thicker film. The dashed line (a) [resp. (c)] is
for a more [resp. less] hydrophilic liquid/surface couple. The more hydrophilic the surface, the lower Ca∗ and
the smaller the minimum film thickness. The series of profiles in Fig. 6 are taken along the vertical thin dashed
line. The series of profiles in Fig. 9 are taken along the horizontal thin dashed line.

to meet the surface. In fact, at the threshold velocity Ca∗, a zero flux film forms. For Ca > Ca∗, the
dynamic meniscus has a triple line.

Thus, although the relation between pressure and film thickness does not depend upon the
liquid/surface properties, the threshold value Ca∗ does [13,24]. In the experiments, preliminary tests
were carried out with the same liquids and in tubes identical in geometry but made of polydimethyl-
siloxane (PDMS). The results demonstrate a similar phenomenology but with Ca∗ = 3.4 × 10−4, a
tenfold increase which is easily rationalised by the more hydrophobic nature of PDMS (θe = 80◦).
However, because these tubes are not optically clear, more advanced evaluations could not be carried
out.

V. DISCUSSION

We have given a detailed account of the impact of pressure on the stability of the dynamic
meniscus in a tube. At low pressures, the meniscus curvature is low enough and a suitable velocity
can be found to ensure that local contact angle dynamics and equilibrium equations are obeyed
simultaneously. For larger pressures, Ca > Ca∗ and the triple line is unstable so that when pressure is
applied, a thin film forms almost instantaneously. Its thickness depends upon the meniscus curvature
as shown in Fig. 7(b). Pressure is a control parameter from which film thickness can be adjusted
(Fig. 4). A significant range of steady-state film thicknesses can be selected, in contrast to previous
results [8,13] where a unique film thickness was selected, dependent on the uniquely valued Ca at
the forced wetting transition. The lowest accessible thickness (and thus the critical capillary number
Ca∗) depends upon the liquid surface properties.

Once formed, the film adopts a given thickness, but it can adapt to a range of meniscus velocities,
as shown in Fig. 5. Indeed, within the lubrication approximation, Wilson and Jones [25] have
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shown how, due to the gravity driven downward flow, the film matches to the meniscus through
two oscillatory solutions with one phase-like free parameter. With this additional variable, different
meniscus velocities can be accommodated by the same film thickness. Interestingly, the oscillatory
nature of the predicted profiles is directly reflected in the dimple we observe at the junction between
film and meniscus [Fig. 4(c)]. In contrast, in the Landau-Levich solution, there is no gravity-driven
flow, and there is a single solution of exponential type. In fact, in our case, when the velocity is too
large, the downward, gravity driven flux becomes too small and the steady-state solution switches
to a Landau-Levich, single-exponential, type. This transition marks the upper limit to the regime of
interest here and the threshold velocity is the upper bound Ca∗∗ mentioned earlier.

We now turn to the relation between the film and its own triple line, at the top. Because the
steady-state differential equation is of third order, while there are two oscillatory solutions at the
bottom, there is a single exponential-like solution at the top to match the film to the triple line. It is
this structure of the solution which explains why, given the local dynamics of dewetting θ0(Ca), the
drainage of a film fed by a dewetting front at its top leads to a unique thickness value and unique
receding triple line velocity, as discussed earlier [8,13].

Surprisingly, in our case, we find that the triple line at the top of the film can accommodate a
range of dewetting velocities which are actually selected by the applied pressure as the film emerges
from the unstable meniscus. We do not have a definite explanation for this observation, but we can
point out a few features of the triple line of the film which do not belong to the standard description
[8,13]. First, we observe a (rather flat) steady-state rim which does not belong to the standard model.
Also, the triple line is usually not straight but has an undulating profile and may even sometimes
exhibit angular features [Fig. 8(b)]. Modulations of the shape of the triple line and especially such
angular features are indeed known to regulate dewetting speeds above the entrainment threshold
[10,26,27] while line front modulations accelerate the relaxation dynamics [28]. Therefore, although
the exact mechanism is not clear, we suspect that such additional dynamic phenomena connected to
modulation of the contact line profile which stabilize the film thickness.

VI. CONCLUSION

In conclusion, we have investigated the dynamic wetting transition for partially wetting liquids
inside tubes. With this geometry, we can reach relatively high velocities and thus use low-viscosity
fluids. In addition, using absorption imaging, we can accurately follow the thin film geometry and
dynamics at high speed. Our observations of the dynamic wetting transition and the geometrical
and dynamic characteristics of the liquid film mostly conform to standard models. However, in
place of the unique film solution predicted and reported in the literature, we find that we can
select the film thickness within a well-identified range. The selection operates immediately upon
destabilization of the dynamic meniscus. It is mediated by the pressure-induced meniscus curvature,
thus providing a direct experimental demonstration of the effect of macroscopic geometry on the
stability of a dynamic meniscus. The critical capillary number Ca∗ above which a film forms (and
thus the lowest accessible thickness) depends upon the liquid/surface properties. The film thickness
is directly related to the velocity of the dewetting triple line at the top of the film as expected
from the Derjaguin relation. However, the very fact that the film thickness is not unique but can
be tuned over almost a decade, does not conform to the standard model. This observation implies
a more complex dynamics for the triple line which may arise from its undulating morphology at
the macroscopic scale, a feature which stands at variance with the standard assumption of a straight
front. This high-velocity dynamics of the triple line certainly deserves further studies.
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FIG. 11. (a) Critical pressures and corresponding film thicknesses for different meniscus velocities Ca [cf.
Fig. 7(b), impact of the tube radius (Bond number); (b) critical pressure at zero velocity as a function of tube
radius.

APPENDIX A: NORMALIZED EQUATIONS

All spatial dimensions are normalized by lc = (γ /ρg)1/2 including film thickness h = lch̃,
vertical coordinate z = lcz̃, and tube radii R. Pressures �P are normalized by γ /lc and thus equal to
normalized curvatures κ̃ = lcκ . Then Eqs. (3) and (4) become

h̃3

3
(∂z̃κ̃ + 1) − Ca h̃ = CTE (A1)

and

κ̃ = − ∂2
z̃z̃ h̃

[1 + (∂z̃ h̃)2]3/2
+ 1

(
√

Bo − h̃)
√

1 + (∂z̃ h̃)2
(A2)

with Ca = ηv/γ and Bo = (R/lc)2.
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APPENDIX B: IMPACT OF TUBE RADIUS

To better understand the role of gravity, the dynamic meniscus calculations were performed
for different tube radii [Fig. 11(a)]. The film thickness is independent of the tube radius, as
expected from Eq. (1), but as the tube radius increases, the critical pressure �Pc decreases and
the pressure variations become weaker. The variations of the critical pressure at zero velocity �Pc0

with tube radius is shown in Fig. 11(b). For R < lc, �Pc0 � γ /(2R), which is the Laplace pressure.
Owing to gravity, �Pc0 drops faster towards 0 when R > lc. At larger radii, the flat plate limit is
recovered where solutions are pressure independent because they are dominated by the intrinsic,
gravity-driven, curvature of the profile near the tube surface.

[1] L. D. Landau and B. V. Levich, Dragging of a liquid by a moving plate, Acta Physicochim. USSR 17, 42
(1942).

[2] B. V. Derjaguin, Thickness of liquid layer adhering to walls of vessels on their emptying, Acta
Physicochim. USSR 20, 349 (1943).

[3] K. J. Ruschak, Coating flows, Annu. Rev. Fluid Mech. 17, 65 (1985).
[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81,

739 (2009).
[5] J. H. Snoeijer and B. Andreotti, Moving contact lines: Scales, regimes, and dynamical transitions, Annu.

Rev. Fluid Mech. 45, 269 (2013).
[6] E. Rio and F. Boulogne, Withdrawing a solid from a bath: How much liquid is coated?, Adv. Colloid

Interface Sci. 247, 100 (2017).
[7] J. G. Petrov and R. V. Sedev, On the existence of a maximum speed of wetting, Colloids Surf. 13, 313

(1985).
[8] J. H. Snoeijer, G. Delon, M. Fermigier, and B. Andreotti, Avoided Critical Behavior in Dynamically

Forced Wetting, Phys. Rev. Lett. 96, 174504 (2006).
[9] B. Zhao, A. A. Pahlavan, L. Cueto-Felgueroso, and R. Juanes, Forced Wetting Transition and Bubble

Pinch-Off in a Capillary Tube, Phys. Rev. Lett. 120, 084501 (2018).
[10] T. D. Blake and K. J. Ruschak, A maximum speed of wetting, Nature (London) 282, 489 (1979).
[11] O. V. Voinov, Wetting: inverse dynamic problem and equations for microscopic parameters, J. Colloid

Interface Sci. 226, 5 (2000).
[12] J. Eggers, Hydrodynamic Theory of Forced Dewetting, Phys. Rev. Lett. 93, 094502 (2004).
[13] L. M. Hocking, Meniscus draw-up and draining, Eur. J. Appl. Math. 12, 195 (2001).
[14] T. D. Blake and J. M. Haynes, Kinetics of liquid/liquid displacement, J. Colloid Interface Sci. 30, 421

(1969).
[15] O. V. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11, 714 (1977).
[16] R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid

Mech. 168, 169 (1986).
[17] P. Gao, L. Li, J. Feng, H. Ding, and X. Lu, Film deposition and transition on a partially wetting plate in

dip coating, J. Fluid Mech. 791, 358 (2016).
[18] J. H. Snoeijer, J. Ziegler, B. Andreotti, M. Fermigier, and J. Eggers, Thick Films of Viscous Fluid Coating

a Plate Withdrawn from a Liquid Reservoir, Phys. Rev. Lett. 100, 244502 (2008).
[19] G. Delon, M. Fermigier, J. H. Snoeijer, and B. Andreotti, Relaxation of a dewetting contact line. Part 2.

Experiments, J. Fluid Mech. 604, 55 (2008).
[20] P. Aussillous and D. Quéré, Quick deposition of a fluid on the wall of a tube, Phys. Fluids 12, 2367 (2000).
[21] G. Callegari, A. Calvo, and J.-P. Hulin, Dewetting processes in a cylindrical geometry, Eur. Phys. J. E 16,

283 (2005).
[22] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10, 166 (1961).
[23] J. Eggers, Toward a description of contact line motion at higher capillary numbers, Phys. Fluids 16, 3491

(2004).

064002-15

https://doi.org/10.1146/annurev.fl.17.010185.000433
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1016/j.cis.2017.01.006
https://doi.org/10.1016/0166-6622(85)80030-5
https://doi.org/10.1103/PhysRevLett.96.174504
https://doi.org/10.1103/PhysRevLett.120.084501
https://doi.org/10.1038/282489a0
https://doi.org/10.1006/jcis.2000.6726
https://doi.org/10.1103/PhysRevLett.93.094502
https://doi.org/10.1017/S0956792501004247
https://doi.org/10.1016/0021-9797(69)90411-1
https://doi.org/10.1007/BF01012963
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/jfm.2016.64
https://doi.org/10.1103/PhysRevLett.100.244502
https://doi.org/10.1017/S0022112008000979
https://doi.org/10.1063/1.1289396
https://doi.org/10.1140/epje/i2004-10082-4
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1063/1.1776071


P. HAYOUN et al.

[24] J. Eggers, Contact line motion for partially wetting fluids, Phys. Rev. E 72, 061605 (2005).
[25] S. D. R. Wilson and A. F. Jones, The entry of a falling film into a pool and the air-entrainment problem,

J. Fluid Mech. 128, 219 (1983).
[26] T. Podgorski, J.-M. Flesselles, and L. Limat, Corners, Cusps, and Pearls in Running Drops, Phys. Rev.

Lett. 87, 036102 (2001).
[27] J. H. Snoeijer, N. Le Grand-Piteira, L. Limat, H. A. Stone, and J. Eggers, Cornered drops and rivulets,

Phys. Fluids 19, 042104 (2007).
[28] J. H. Snoeijer, B. Andreotti, G. Delon, and M. Fermigier, Relaxation of a dewetting contact line. Part 1.

A full-scale hydrodynamic calculation, J. Fluid Mech. 579, 63 (2007).

064002-16

https://doi.org/10.1103/PhysRevE.72.061605
https://doi.org/10.1017/S0022112083000452
https://doi.org/10.1103/PhysRevLett.87.036102
https://doi.org/10.1063/1.2722767
https://doi.org/10.1017/S0022112007005216

