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Unified integral model for the lock-release and cooling-source gravity currents
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A natural and sensible way of modeling the downburst outflow that triggers thun-
derstorms and sandstorms is regarding it as a gravity current sustained by the cooling
source, which may be quite different from the lock-release gravity current. In this paper,
a unified integral model incorporating a continuous velocity transition is proposed for the
lock-release and cooling-source gravity currents. It suggests that the Froude number will
increase by involving the shear layer in the dense fluid, the influence of which almost
vanishes in the lock-release gravity current. The integral model for the cooling-source
gravity current correlates the front characteristics with the thermodynamic and geometric
properties of the cooling source, in good agreement with direct numerical simulations.
Both the integral model and simulations indicate that the shear layer in the dense fluid
could play a dominant role in the cooling-source gravity current. Results also demonstrate
that the dimensionless front velocity and the front depth are governed by the center height
and the longitudinal radius of the cooling source, barely affected by the vertical radius of
the cooling source. The Froude number based on the center height of the cooling source is
found to manifest a minor reliance on the geometric properties of the cooling source.

DOI: 10.1103/PhysRevFluids.7.063801

I. INTRODUCTION

The downburst outflow which gives rise to thunderstorms and convective sandstorms is essen-
tially a gravity current [1–7]. The evaporation of precipitation in the cloud forms a mass of air that
is cooler and heavier than the ambient. The descending fluid hits the earth’s surface and spreads
longitudinally in the ambient, generating a propagating front. The cooling source model [8–13]
has been employed to represent the thermodynamic cooling effect of evaporating precipitation.
Accordingly, the downburst outflow can be regarded as a gravity current generated by the cooling
source, which will be referred to as the cooling-source gravity current. Studies on the cooling-source
gravity current did not provide any appropriate methods to relate the outflow features with the
properties of the cooling source. Oreskovic [14] introduced the scaling approach for a liquid drop
release [15] and claimed that it appears to work well. Unfortunately, a limited number of cases
and the absence of theoretical derivations make it unreliable. Moreover, the driving mechanisms
of gravity currents produced by an elevated negatively buoyant thermal [16–18] and an elevated
cooling source could be quite different. Therefore, no sophisticated theories and scaling methods
have been established for the description of the cooling-source gravity current to the best of the
authors’ knowledge.
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Various aspects of the gravity current have been studied [19], and a systematic overview is
provided by Meiburg et al. [5]. A wide variety of strategies have been adopted, ranging from the
integral models that determine the front velocity without resolving all of the interior features and
the depth-averaged models [20–25] that provide an insight into different stages of the flow to the
depth-resolving simulations [26–30] that explore detailed physics and turbulent structures. This
paper focuses on the integral model, so a brief review of it will be given. The idealized model
relating the front velocity with the front depth and the density difference between the heavier and
lighter fluids was proposed by von Kármán [31], and Benjamin [32] improved it and developed
a model based on mass conservation and momentum balance encompassing the front. Shin et al.
[33] and Ungarish [34,35] resorted to global energy considerations to derive the Froude number
of the lock-release gravity current. Several studies invoked the vorticity-based approach, which
avoids energy-conserving arguments [36,37]. More recently, Ungarish and Hogg [38] presented a
vortex-wake model unifying previous works by introducing a velocity transition layer [39] in the
ambient. It is necessary to distinguish gravity currents created by releasing a finite volume of dense
fluid and a cooling source, and most of these models concentrate on the lock-release flow. Little is
known about the applicability of previous integral models on the cooling-source gravity current.

In this paper, a unified integral model for the lock-release and cooling-source gravity currents
is proposed, and we check its feasibility by conducting direct numerical simulations. The paper is
organized as follows. An integral model that incorporates a continuous velocity transition across the
density interface at the front is developed in Sec. II. The integral model suitable for the lock-release
gravity current is further established in Sec. III. The front features of the cooling-source gravity
current are correlated with the thermodynamic and geometric properties of the cooling source in
Sec. IV. We carry out direct numerical simulations of the cooling-source gravity current and discuss
the applicability of the integral model in Sec. V. The conclusion of the paper is drawn in Sec. VI.

II. INTEGRAL MODEL CONCERNING THE FRONT

We confine the problem that the density difference between the heavier and lighter fluids is
relatively small, justifying the adoption of the Boussinesq approximation [40]. Thus, the budget
equations for the Boussinesq gravity current take the following dimensional form:

∂u j

∂x j
= 0, (1)

∂ui

∂t
+ ∂uiu j

∂x j
= − 1

ρ0

∂ p

∂xi
+ ν

∂2ui

∂x jx j
+ ρg

ρ0
ei

g, (2)

∂ρ

∂t
+ ∂ρu j

∂x j
= αρ

∂2ρ

∂x jx j
+ Sρ, (3)

where ui is the flow velocity, xi is the Cartesian coordinate, ρ is the density, p is the pressure, ei
g

is the unit vector pointing in the direction of gravity, g is the gravitational acceleration, ν is the
kinematic viscosity, and αρ denotes the molecular diffusion coefficient of the density field. ρ0 is
the reference density, set to the density in the ambient for convenience. Sρ is the source term in the
density budget equation.

The integral model will be established for the unsteady flow in the static reference frame as
displayed in Fig. 1. We follow the assumption of the vortex-wake model [38] that the viscous and
rotational effects exist close to the density interface, giving rise to a shear layer along the current-
ambient interface. Taking a vertical integral of the viscous term ν∂2u/∂z2 spanning the entire depth
yields zero, since the bottom and top boundaries are slip. Along the bottom and top walls, the viscous
term ν∂2u/∂z2 is equal to ν∂ω/∂z, which vanishes owing to the assumption that the flow is mostly
irrotational on and near the bottom and top boundaries. The independence of the velocity field on
the longitudinal coordinate at cg and di is used to eliminate the viscous term ν∂2u/∂x2. Hence,
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FIG. 1. A schematic of a two-dimensional gravity current. A gravity current advances in the ambient with
a front velocity of U . The red solid line represents the density interface.

the momentum balance and pressure compatibility in the following derivation will not include the
viscous effect explicitly. At the front of the gravity current, an upper velocity transition layer in
the ambient and a lower velocity transition layer in the dense fluid are considered. The mixing of
density is neglected, leading to a discontinuous density interface. The front is assumed to maintain
a steady propagation along the longitudinal direction.

The longitudinal velocity profile at the front of cg is given by

u =

⎧⎪⎨
⎪⎩

uc, 0 < z < hc − ηl

uc + (ug − uc)φ f
( z−hc+ηl

ηl +ηu

)
, hc − ηl < z < hc + ηu

ug, hc + ηu < z < H,

(4)

where hc is the front depth, ηl is the thickness of the lower velocity transition layer, and ηu is the
thickness of the upper velocity transition layer. φ f is a monotonically increasing function, which
should satisfy φ f (0) = 0 and φ f (1) = 1. The density profile at cg is simply

ρ =
{
ρc, 0 < z < hc

ρ0, hc < z < H .
(5)

First, consider the control volume of cgdi, consisting of two vertical planes and the top and
bottom boundaries of the channel. Continuity implies that∫ g

c
udz = 0. (6)

Then, integrating the density budget equation in the control volume of cgdi indicates that the
increment of the density related to the propagating front is equal to the density flux at the front,
i.e.,

U ]

(∫ g

c
ρdz −

∫ i

d
ρdz

)
=

∫ g

c
ρudz. (7)

We adopt the hydrostatic balance ∂ p/∂z = −ρg to obtain the pressure distribution at cg,

p =
{

pc − ρcgz, 0 < z < hc

pc − ρcghc − ρ0g(z − hc), hc < z < H ,
(8)

and at di:

p = pd − ρ0gz. (9)
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The pressure differences between the bottom and top boundaries are evaluated by

pc − pg = ρ0g(H − hc) + ρcghc, (10)

pd − pi = ρ0gH. (11)

The unsteady Bernoulli equations are applied along cd and gi, respectively, yielding

pi − pg = 1
2ρ0u2

g − ρ0Uug, (12)

pd − pc = 1
2ρcu2

c − ρcUuc. (13)

These pressure differences should satisfy consistency to guarantee that the pressure field is single
valued, resulting in

−(ρc − ρ0)ghc + 1
2ρ0u2

g − 1
2ρcu2

c + ρcUuc − ρ0Uug = 0. (14)

Finally, integrating the longitudinal momentum budget equation in the control volume of cgdi
yields

U
∫ g

c
ρudz −

∫ g

c
(p + ρu2)dz +

∫ i

d
pdz = 0. (15)

Substituting Eqs. (4), (5), (8), (9), and (13) into Eq. (15) leads to the final expression that is very
complicated.

By neglecting the shear layer in the dense fluid and applying the Boussinesq approximation, the
above derivation will be equivalent to the vortex-wake model [38]. The front velocity as a function
of the front depth is not determinate, since an extra variable that is the thickness of the lower velocity
transition layer is involved.

We impose two specific types of φ f , linear and exponential profiles [38], i.e.,

φl
f = z, (16)

φe
f = 1 − e−αz

1 − e−α
, α > 0. (17)

α is set to 3 in the vortex-wake model [38] and we use multiple values 1, 3, and 5 to examine the
effects. An exponential profile represents a sharper velocity transition from the bottom layer to the
top layer compared with a linear profile.

The energy dissipation of the front in present static reference frame can be defined by the
difference between the energy flux entering the control volume of cgdi and the energy increment
related to a steady propagation, i.e.,

Ḋ =
∫ g

c

(
1

2
ρu2 + p + ρgz

)
udz − U

[∫ g

c

(
1

2
ρu2 + ρgz

)
dz −

∫ i

d
ρgzdz

]
, (18)

which is equal to the energy dissipation calculated in the moving reference frame by combining the
longitudinal momentum balance encompassing the front.

The Newton iterative method is implemented to solve Eqs. (6), (7), (14), and (15) numerically
owing to the extreme difficulty of seeking an analytical solution. The Boussinesq approximation
and the scaling method for the gravity current [5] are adopted as well.

The Froude number and the dimensionless energy dissipation as functions of the front depth
for various thicknesses of the lower velocity transition layer are presented in Fig. 2. A decrease in
the Froude number with the growing front depth is distinct. Compared with the vortex-wake model
[38], introducing a lower velocity transition layer contributes to a growth of the Froude number. The
effect of the lower velocity transition layer with a certain thickness is significant and then diminishes
remarkably as the front depth increases. Another direct insight into the influence of the shear layer in
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FIG. 2. The Froude number (a) and the dimensionless energy dissipation (b) as functions of the front depth
for various thicknesses of the lower velocity transition layer: ηl/H = 0 (the vortex-wake model [38], black),
0.1 (red), 0.2 (blue). The velocity profile in the transition layer is assumed to be linear (solid line) and
exponential with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted line).

the dense fluid is shown in Fig. 3, which displays the Froude number and the dimensionless energy
dissipation as functions of the relative thickness of the lower velocity transition layer for various
front depths. In general, the Froude number exhibits a rising tendency with the enhanced shear layer
in the dense fluid. As the lower velocity transition layer nearly occupies the depth of the dense
fluid layer, the Froude number rises drastically for an exponential velocity transition with α = 3, 5.
The increase in the Froude number is accompanied by higher energy dissipation. The vortex-wake
model predicts that the energy dissipation drops to zero as the front depth approaches 1/2, and
involving a lower velocity transition layer results in positive energy dissipation. An exponential
velocity transition produces a larger Froude number and induces more energy dissipation than a
linear velocity transition.

To unify the results with different functions of the velocity transition, we define a mixing
coefficient to assess the effect of the shear layer in the dense fluid, i.e.,

	l =
∫ hc

0
u−uc
ug−uc

dz

hc
. (19)

As shown in Fig. 4(a), the mixing coefficient monotonically grows as the relative thickness of
the lower velocity transition layer increases, influenced by the form of the velocity profile in the

FIG. 3. The Froude number (a) and the dimensionless energy dissipation (b) as functions of the relative
thickness of the lower velocity transition layer for various front depths: hc/H = 0.1 (red), 0.2 (blue). The ve-
locity profile in the transition layer is assumed to be linear (solid line) and exponential with α = 1 (dashed line),
3 (dotted line), 5 (dash-dotted line).
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FIG. 4. (a) The mixing coefficient as a function of the relative thickness of the lower velocity transition
layer. (b) The Froude number as a function of the mixing coefficient. Various front depths are included:
hc/H=0.1 (red), 0.2 (blue). The velocity profile in the transition layer is assumed to be linear (solid line)
and exponential with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted line).

transition layer. As presented in Fig. 4(b), the Froude number as a function of the mixing coefficient
perfectly collapses for all velocity transitions, which demonstrates that the mixing coefficient
provides a very good estimate of the effect of the shear layer in the dense fluid on the Froude
number.

The formulation only contains the common characteristics of a steady advancing front so far and
is irrelevant to the mechanism that the gravity current generates. To close the system of equations,
we should take into consideration the conditions in the source region for the lock-release and
cooling-source gravity currents, respectively.

III. CLOSURE FOR THE LOCK-RELEASE GRAVITY CURRENT

The configuration of the gravity current produced by a partial-depth lock release is displayed in
Fig. 5. In the source region, a left-moving discontinuity propagates back into the lock.

First, the density is conserved in the control volume of aedi, since there is no density source, i.e.,

Ur

(∫ f

b
ρdz −

∫ f ′

b′
ρdz

)
= U

(∫ g

c
ρdz −

∫ i

d
ρdz

)
, (20)

where Ur is the velocity of the left-moving discontinuity at bf.

FIG. 5. A schematic of a partial-depth lock release. A gravity current advances in the ambient with a front
velocity of U , and a left-moving discontinuity propagates back into the lock with a velocity of Ur .
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The hydrostatic balance is justified at ae, and the density in the interior of the gravity current is
assumed to not vary with the longitudinal position, resulting in a pressure distribution

p =
{

pa − ρcgz, 0 < z < D

pa − ρcgD − ρ0g(z − D), D < z < H,
(21)

where D denotes the lock depth. Thus, the pressure difference of ae is simply

pa − pe = ρ0g(H − D) + ρcgD. (22)

The pressure differences along the top and bottom boundaries can be evaluated by applying the
unsteady Bernoulli equations, which leads to

pi − pe = −ρ0(U + Ur )ug, (23)

pd − pa = −ρc(U + Ur )uc. (24)

A single-valued pressure field requires

−(ρc − ρ0)gD − ρ0(U + Ur )ug + ρc(U + Ur )uc = 0. (25)

Finally, integrating the longitudinal momentum budget equation in the control volume of aedi
yields

(U + Ur )
∫ g

c
ρudz −

∫ e

a
pdz +

∫ i

d
pdz = 0. (26)

The closure for the lock-release gravity current has been done, which relates the front fea-
tures with the lock depth [33,36]. Equations (6), (7), (14), (15), (20), (25), and (26) will be
simplified by the Boussinesq approximation and numerically solved with the Newton iterative
method.

By utilizing the relationship between the lock depth and the front depth to eliminate the lock
depth, we are able to obtain the Froude number, the dimensionless energy dissipation of the front,
the relative thickness of the lower velocity transition layer, and the mixing coefficient as functions
of the front depth as shown in Fig. 6. Previous integral models and direct numerical simulations of
lock-release gravity currents are included for comparison. In addition, the thickness of the lower
velocity transition layer as a function of the front depth measured by direct numerical simulations
of Borden and Meiburg [36] is fitted and incorporated in the integral model that only considers
the front and does not include the closure for the lock-release gravity current, denoted by present
model V. Concerning the Froude number as a function of the front depth, our model is in good
agreement with direct numerical simulations of Borden and Meiburg [36]. Our model predicts a
relationship between the Froude number and the front depth, which is very close to previous integral
models and nearly coincides with the vortex-wake model [38], implying that the effect of the shear
layer in the dense fluid vanishes in the lock-release gravity current. The relative thickness of the
lower velocity transition layer is slightly negative, that is, unphysical for an exponential velocity
transition with α = 3, 5, and it is positive and small for a linear velocity transition and an exponential
velocity transition with α = 1. Assuming different forms of the velocity profile barely influences
the Froude number, but it possibly produces unphysical thicknesses of the lower velocity transition
layer. Moreover, obvious differences in the relative thickness of the lower velocity transition layer
are found between our model and direct numerical simulations of Borden and Meiburg [36], and the
inconsistency of the definition may be responsible for this. Additionally, a left-moving discontinuity
is not assured. The left front propagates as a rarefaction wave instead of a discontinuity when
D < H/2 [19]. The experimental data of Rottman and Simpson [23] suggests an even stricter
condition, i.e., a left-moving discontinuity will only appear when D/H is greater than about 0.7.
Hence, this mismatch (expansion wave versus discontinuity) is likely to account for the thickness
of the lower velocity transition layer becoming negative and deviating from the direct numerical
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FIG. 6. The Froude number (a), the dimensionless energy dissipation of the front (b), and the relative
thickness of the lower velocity transition layer (c), and the mixing coefficient (d) as functions of the front depth
for various integral models: Benjamin [32] (red solid line), Borden and Meiburg [36] (blue solid line), Ungarish
and Hogg [38] (cyan line), present model (black line), present model V (goldenrod line). The velocity profile
in the transition layer is assumed to be linear (solid line) and exponential with α = 1 (dashed line), 3 (dotted
line), 5 (dash-dotted line). The symbols are results from direct numerical simulations of Borden and Meiburg
[36].

simulations. Present model V that does not utilize the left-moving discontinuity offers a reasonable
estimate of the Froude number, but obviously higher mixing coefficients are predicted. Nevertheless,
the maximum mixing coefficient predicted by present model V is still below the criterion that the
shear layer in the dense fluid has a distinct impact on the Froude number as shown in Fig. 4(b). The
energy dissipation of the front from our model and the vortex-wake model is visibly lower, compared
with integral models [32,36] that do not include a continuous velocity transition. As the front depth
approaches 1/2, the thickness of the lower velocity transition layer and the energy dissipation of the
front all tend to be zero.

The vortex-wake model and Benjamin’s model concerning the front of a general gravity current
could not determine the front depth. Hence, the model that considers mass, momentum, and energy
of the whole system [33] and the approach based on mass and vorticity of the entire domain [36],
both of which relate the front depth with the lock depth, are presented. The relative front depth and
the Froude number based on the lock depth as functions of the lock depth are displayed in Fig. 7. The
vorticity-based model and our model both predict relative front depths smaller than 1/2, which is
directly given by the integral model containing energy arguments. The Froude number based on the
lock depth from our model lies between that from the energy-based and vorticity-based approaches.
The relative front depths all reach 1/2 as the lock depth approaches 1, implying a full-depth release.
Our model seems to provide a slightly improved prediction of the Froude number based on the lock
depth. The Froude number based on the lock depth and the relative front depth are both merely
affected by the function of the velocity transition.
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FIG. 7. The relative front depth (a) and the Froude number based on the lock depth (b) as functions of the
lock depth for various integral models: Shin et al. [33] (red solid line), Borden and Meiburg [36] (blue solid
line), present model (black line). The velocity profile in the transition layer is assumed to be linear (solid line)
and exponential with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted line). The symbols are results from
direct numerical simulations of Borden and Meiburg [36].

IV. CLOSURE FOR THE COOLING-SOURCE GRAVITY CURRENT

The cooling source model specifies the temporary and spatial cooling rate during the evolution
of a downburst event. Following the definition given by Anderson et al. [8] and Orf et al. [9], the
cooling source function can be written as

q =
{

Q(t ) cos2 πR
2 , R < 1

0, R > 1,
(27)

which is ellipsoidal in shape and uses a cos2 spatial ramp-up. R is the normalized position

R =
√(

x

rx

)2

+
(

z − z0

rz

)2

, (28)

where rx is the longitudinal radius of the cooling source, rz is the vertical radius of the cooling
source, and z0 is the center height of the cooling source. Q(t ) is the temporary cooling rate, which
contains an initial cos2 ramp-up stage, followed by a steady state, and then a cos2 decaying period.
We consider a constant temporary cooling rate in this study to maintain a constant Reynolds number
and to exclude the influence of its variation, i.e.,

Q(t ) = Qm. (29)

The simplification may not be appropriate for a real natural event but makes it easier for us to
concentrate on the essence of the cooling-source gravity current.

The areal integral of the cooling source function can measure the corresponding contribution to
the temperature field, defined by

ξ =
∫∫

Acs

qdxdz, (30)

where Acs denotes the cooling source area. For the specified cooling source function, substituting
Eqs. (27)–(29) into Eq. (30) yields

ξ = Qmrxrz(π/4 − 1/π ), (31)

which is the product of the temporary cooling rate, the longitudinal radius of the cooling source, the
vertical radius of the cooling source, and a constant.
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FIG. 8. A schematic of a cooling-source gravity current. A gravity current advances in the ambient with
a front velocity of U , while the cooling source in the yellow area continuously supplies dense fluids. The red
solid line represents the density interface and the red dashed line represents the longitudinal velocity interface.

The variation of the temperature T is correlated with the variation of the density ρ as

ρ − ρ0

ρ0
= −β(T − T0), (32)

where β is the heat-expansion coefficient of the fluid. T0 is the reference temperature, set to the value
in the ambient for convenience. Thus, the source term in the density budget equation is calculated
by

Sρ = −ρ0βq, (33)

and integrating it in the ellipsoidal cooling source area yields −ρ0βξ , which can evaluate the effect
of the cooling source on the density field.

Figure 8 shows the configuration of a cooling-source gravity current. The viscous dissipation
is assumed to be negligible in the cooling source region. The interfaces of the density and the
longitudinal velocity are separated by the cooling source, based on the observation from direct
numerical simulations in Sec. V. In the cooling source region, the mixing of density is neglected,
and a velocity discontinuity is assumed between the flowing layers.

First, the density profile at ae is

ρ =
{

ρa, 0 < z < hd
a

ρ0, hd
a < z < H,

(34)

where hd
a is the depth of the dense fluid layer. The longitudinal velocity is simply 0 at ae, and the

profile of its derivative with respect to the longitudinal coordinate can be obtained by integrating the
mass budget equation along the vertical direction, i.e.,

u′ =
{

u′
a, 0 < z < hu

a
−(

u′
ahu

a

)
/
(
H − hu

a

)
, hu

a < z < H,
(35)

where hu
a is the height of the longitudinal velocity interface and u′

a is the derivative of the longitudinal
velocity with respect to the longitudinal coordinate at the bottom boundary. An integration of the
mass budget equation in the vertical direction, the boundary conditions, and substitution of Eq. (35)
yields the vertical velocity profile

w =
{−u′

az, 0 < z < hu
a

−u′
ahu

a + (
u′

ahu
a

)(
z − hu

a

)
/
(
H − hu

a

)
, hu

a < z < H,
(36)
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suggesting that the vertical velocity is related to the longitudinal gradient of the longitudinal
velocity.

Since the vertical velocity cannot be ignored, the hydrostatic balance does not hold in the cooling
source region. The vertical momentum budget equation along with the left boundary condition
should be taken into account, i.e.,

1

2

∂ww

∂z
= − 1

ρ0

∂ p

∂z
− ρg

ρ0
. (37)

The vertical integration of Eq. (37) and imposing the bottom boundary condition produce the
pressure distribution

p = pa − 1

2
ρ0w

2 −
∫ z

0
ρgdz′, (38)

and substituting Eqs. (34) and (36) into it results in the final expression that is rather complicated.
The pressure difference of ae is easily computed by taking the upper limit of the integral in Eq. (38)
to be H , yielding

pa = pe + ρ0g
(
H − hd

a

) + ρaghd
a . (39)

Along the bottom and top boundaries, the pressure differences can be evaluated by the application
of the unsteady Bernoulli equations, i.e.,

pi − pe = −ρ0Uug, (40)

pd − pa = −ρcUuc. (41)

These pressure differences together with Eq. (11) should satisfy a single-value pressure field, i.e.,

−(ρa − ρ0)ghd
a + ρcUuc − ρ0Uug = 0. (42)

Integrating the density budget equation in the control volume of aedi yields

U

(∫ g

c
ρdz −

∫ i

d
ρdz

)
= −ρ0βξ, (43)

implying that the cooling source is the density supply of the propagating front. The integration of
the longitudinal momentum budget equation in the control volume of aedi results in

U
∫ g

c
ρudz −

∫ e

a
pdz +

∫ i

d
pdz = 0. (44)

The assumption that the energy dissipation only occurs behind the front is adopted. Hence, the
energy is assumed to be conserved in the control volume of aecg, yielding∫ g

c

(
1

2
ρu2 + p + ρgz

)
udz = −ρ0βξgz0, (45)

which suggests that the net energy flux at the front is equal to the energy contribution of the cooling
source.

We will integrate the budget equations only in the vertical direction at ae to find out more
relations at the left boundary of the cooling source region. The vertical integration of the density
budget equation at ae along with the boundary conditions gives∫ e

a
ρu′dz = −γ ρ0βξ

rx
, (46)
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where

γ =
∫ 1
−1 cos2

(
π
2

√
z2

)
dz∫ 1

0

∫ √
1−x2

−√
1−x2 cos2

(
π
2

√
x2 + z2

)
dzdx

. (47)

Similar relationships can be deduced by integrating the energy budget equation in the vertical
direction and utilizing the boundary conditions, i.e.,∫ e

a
(p + ρgz)u′dz = −γ ρ0βξgz0

rx
. (48)

Integrating the longitudinal momentum budget equation in the vertical direction together with the
boundary conditions yields ∫ e

a
p′dz = 0, (49)

where p′ is the derivative of the pressure with respect to the longitudinal coordinate. Directly
substituting Eq. (38) into Eq. (49) will invoke extra unknowns, so we approximate the derivative
of the pressure with respect to the longitudinal coordinate with an average of the values at the top
and bottom boundaries, i.e., ∫ e

a
p′dz ≈

∫ e

a

1

2
(p′

a + p′
e)dz. (50)

It is easy to find p′
a = 0 and p′

e = 0 that make Eq. (49) intrinsically hold, which does not provide any
useful relations. The pressure Poisson equation can be utilized to consider the pressure compatibility
at ae, written in a two-dimensional form as

∂2 p

∂x2
+ ∂2 p

∂z2
= −ρ0

(
∂2uu

∂x2
+ ∂2ww

∂z2
+ 2

∂2uw

∂xz

)
− ∂ρ

∂z
g. (51)

Integrating Eq. (51) along the vertical direction in conjunction with the boundary conditions yields∫ e

a
(p′′ + 2ρu′2)dz = 0, (52)

where p′′ denotes the second-order derivative of the pressure with respect to the longitudinal
coordinate. Approximating it in a similar way results in∫ e

a
(p′′ + 2ρu′2)dz ≈

∫ e

a

[
1

2
(p′′

a + p′′
e ) + 2ρu′2

]
dz, (53)

where p′′
a and p′′

e are easy to calculate by

p′′
a = −ρau′2

a , p′′
e = −ρ0

(
hu

a

H − hu
a

)2

u′2
a . (54)

Finally, by adopting the Boussinesq approximation and numerically solving Eqs. (6), (7), (14),
(15), (42)–(46), (48), and (53) with the Newton iterative method, the front characteristics are
correlated with the thermodynamic and geometric properties of the cooling source.

The integral model suggests that the front depth could be determined by two geometric properties
of the cooling source that are the center height and longitudinal radius of the cooling source. Thus,
eliminating the geometric properties of the cooling source to obtain the front velocity as a function
of the front depth is impossible. Results from the integral model for the cooling-source gravity
current will be discussed in detail in Sec. V, and the feasibility will be assessed by direct numerical
simulations as well.
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V. DIRECT NUMERICAL SIMULATION OF THE COOLING-SOURCE GRAVITY CURRENT

A. Simulation setup

Direct numerical simulations will directly solve the governing equations nondimensionalized
by the characteristic scales incorporating the properties of the cooling source, avoiding using the
density difference which is not predefined for the cooling-source gravity current. We scale the length
with respect to the channel height H , and a possible choice of the characteristic velocity scale is

Uc = (−βξg)1/3. (55)

The Reynolds number is defined by

Re = UcH

ν
. (56)

We know that the Froude number is calculated by

Fr = U(
ρc−ρ0

ρ0
ghc

)1/2 , (57)

and substituting Eq. (43) and (55) into it yields

U

Uc
= Fr2/3, (58)

which illustrates that the dimensionless front velocity is 2/3 power of the Froude number if the dense
fluids supplied by the cooling source are all used for the evolution of a front. The dimensionless
density is computed from

ρ̃ = (ρ − ρ0)

ρ0(−βξ )2/3g−1/3H−1
, (59)

where the wide tilde denotes the dimensionless quantity (we will not state again in the following).
Finally, the dimensionless governing equations can be written as

∂ ũ j

∂ x̃ j
= 0, (60)

∂ ũi

∂ t̃
+ ∂ ũiũ j

∂ x̃ j
= − ∂ p̃

∂ x̃i
+ 1

Re

∂2ũi

∂ x̃ j x̃ j
+ ρ̃ei

g, (61)

∂ρ̃

∂ t̃
+ ∂ρ̃ũ j

∂ x̃ j
= 1

ReSc

∂2ρ̃

∂ x̃ j x̃ j
− q̃, (62)

where Sc is the Schmidt number that is the ratio of the kinematic viscosity and the molecular
diffusion coefficient of the density field.

A description of the numerical method employed for the integration of the dimensionless
governing equations is specified here. The present code uses a second-order accurate, central
finite difference scheme on a staggered grid for spatial discretization. An explicit low-storage
third-order Runge-Kutta time advancement is employed to evaluate spatial derivatives except the
wall-normal diffusion term which is solved using the Crank-Nicholson technique to guarantee the
computational stability. A fractional step method is adopted for the velocity-pressure decoupling
of incompressible flows, which projects the velocity into a divergence-free space to satisfy the
continuity equation. The pressure Poisson equation is transformed into the cosine series in the
longitudinal direction, resulting in a tridiagonal system that can be solved easily and efficiently.
The code is fully parallelized using the message passing interface communication standard.

A symmetry boundary condition is applied in the longitudinal direction. The top and bottom
boundaries are slip. Homogeneous Neumann conditions for the density are applied at the bottom
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FIG. 9. The instantaneous fields of the density and the longitudinal velocity at various times from direct
numerical simulations. The contour lines of the density evenly distributed between the minimum and maximum
values at t̃ = 0.5 (a), 1 (b), 5 (c), 10 (d). The isoline of the density that is 1/10 of the maximum value (black
line) and the isoline of the zero longitudinal velocity (red line) at t̃ = 5 (e), 10 (f).

and top of the domain. Simulations are started with zero uniform-distributed velocity and density
fields. The computational box is the domain sketched in Fig. 8 with L̃x × L̃z = 16 × 1 for a two-
dimensional simulation. The Schmidt number is set to the unit. We choose a high Reynolds number
of 5000 and employ grid points of mesh as Nx × Nz = 3072 × 192. The time step is limited by the
Courant-Friedrich-Lewy (CFL) condition to prevent the computation from oscillations. The overall
dimensionless computational time is set to 10 to ensure that the flow undergoes a full sequence of
phases and remains unaffected by the right boundary.

B. Results

The geometric parameters of the cooling source are set to rx/H = 0.3, rz/H = 0.45, and z0/H =
0.5. The instantaneous fields of the density and the longitudinal velocity from direct numerical
simulations are presented in Fig. 9. The development of the cooling-source gravity current is clearly
demonstrated. A volume of cold air forms and descends gradually. The heavier fluid collides with
the bottom boundary and propagates longitudinally in the ambient. The isolines are concentrated
at the density interface, indicating a sharp density gradient. The vortex is generated by the Kelvin-
Helmholtz instability at the density interface. As the gravity current moves further, it is visible that
the turbulent structures of the front become more and more complex. In general, the cooling-source
gravity current manifests the essential characteristics of a gravity current [28]. Moreover, in the
cooling source region, the density interface resembling the upper boundary of the cooling source
is at a higher position than the longitudinal velocity interface. The interfaces of the density and the
longitudinal velocity tend to overlap in the area not influenced by the cooling source. The density
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interface is smooth away from the head in the cooling source region, revealing minor turbulent
mixing. At the front of the gravity current, turbulent mixing causes obvious undulations.

To quantitatively investigate the motion of the cooling-source gravity current, it is necessary to
define the front velocity in a convenient way. Inspired by the unambiguous way to define a local
depth of the gravity current [33,41,42], we adopt a new definition as

h̃(x̃, t̃ ) =
∫ 1

0 ρ̃(x̃, z̃, t̃ )dz̃

ρ̃ave(t̃ )
, (63)

where ρ̃ave(t̃ ) is the spatial averaged density in the dense fluid roughly estimated by

ρ̃ave(t̃ ) =
∫∫

Sa
ρ̃(x̃, z̃, t̃ )2dx̃dz̃∫∫

Sa
ρ̃(x̃, z̃, t̃ )dx̃dz̃

, (64)

where Sa denotes the two-dimensional domain that does not include the cooling source region.
The front position is theoretically where the local depth of the gravity current reduces to zero.
Concerning diffusion and numerical noises, a small threshold is chosen, 10−3 in our simulations.
The front velocity is simply the derivative of the front position with respect to time. The front depth
is approximated by averaging the local depth of the gravity current along the longitudinal direction,
i.e.,

h̃c =
∫ x̃n

r̃x
h̃(x̃, t̃ )dx̃

x̃n − r̃x
. (65)

The evolution and self-similar phases of the gravity currents initiated by releasing a volume of
dense fluid have been widely studied in the literature. The lock-release gravity current goes through
a steady propagation in the slumping phase after the acceleration, a decay in the inertial phase, and a
more pronounced deceleration in the viscous phase [30,42]. The transition from the slumping phase
to the inertial phase occurs when the reflected back-propagating wave catches up with the front [42].
The duration of the slumping phase has been found to be between three and ten lock lengths for
an axisymmetric lock-release experiment [43]. The gravity current produced by an elevated thermal
undergoes the initial acceleration phase and reaches the self-similar phase that resembles the inertial
phase of an axisymmetric lock-release gravity current [15–18]. The transition from a thermal that
has impacted on the ground to the self-similar phase of an axisymmetric gravity current is referred
to as the slumping phase or the adjustment phase [17]. The duration of the adjustment phase depends
on whether the vortex has been partially or fully formed in the thermal when impacting the ground
[17].

Box models assuming that the gravity current evolves in the form of an area rectangle can provide
an insight into the self-similar phases and the scaling laws [19–22]. Noting that the dense fluids are
supplied by the cooling source, the box model predicts a steady advancing front under the inertial-
buoyancy balance. By further supposing negligible entrainment, the box model predicts a slightly
decaying propagation under the viscous-buoyancy balance. The details of implementing the box
model are specified in Appendix A. Under the viscous-buoyancy balance, the front velocity scales
as −1/5 power of time [Eq. (A21)], and the front depth scales as 1/5 power of time [Eq. (A22)].
The time evolution of the dimensionless front velocity and the front depth shown in Fig. 10 reveals
the phases of spreading of the cooling-source gravity current. During the acceleration phase (t̃ < 1),
a volume of dense fluid forms and descends, which also spreads along the longitudinal direction.
The flow goes through an adjustment phase (1 < t̃ < 3) after the descending fluid impacts with the
bottom wall and before reaching the self-similar phase. A minor decline in the front velocity and an
obvious decrease in the front depth are observed during the adjustment phase. The behavior of the
adjustment phase is very interesting, but a comprehensive investigation of it is beyond the scope of
this paper. The spreading of the gravity current maintains steady in the inertial phase (3 < t̃ < 6)
and slows down in the viscous phase (t̃ > 6), both in good agreement with the box model.
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FIG. 10. The time evolution of the dimensionless front velocity (a) and the front depth (b) in a logarithmic
scale. The symbols represent results from direct numerical simulations. The dashed lines are the scaling laws
in the inertial phase predicted by the box model interpolated with the data at 3 < t̃ < 6. The dotted lines are
the scaling laws in the viscous phase predicted by the box model interpolated with the data at 6 < t̃ < 10.

The integral model supposing a steady propagation is applicable for the inertial phase of a
cooling-source gravity current. Therefore, we extract and average the front characteristics in the
inertial phase to examine the influence of the geometric properties of the cooling source. For a clear
definition of the inertial phase, the ratio of the inertial force and the viscous force in the dense fluid
is calculated by

f̃I

f̃V
=

∫ x̃n

r̃x

∫ h̃
0

(
∂ ũũ
∂ x̃ + ∂ ũw̃

∂ z̃

)
dz̃dx̃∫ x̃n

r̃x

∫ h̃
0

1
Re

(
∂2ũ
∂ x̃2 + ∂2ũ

∂ z̃2

)
dz̃dx̃

, (66)

which is supposed to be not below 30 in the inertial phase. The criterion is empirical, but results
do not show significant differences if it is within a reasonable range. The front position should be
away from the cooling source to guarantee that the flow has reached a steady state. Owing to the
difficulty of directly determining the lower velocity transition layer in numerical simulations, the
mixing coefficient of the front is calculated by

	l =
∫ x̃n−1

x̃n−2

∫ h̃
0

ũ−ũ0
ũ1−ũ0

dz̃dx̃∫ x̃n−1
x̃n−2

∫ h̃
0 dz̃dx̃

, (67)

where ũ0 denotes the longitudinal velocity at the bottom boundary and ũ1 denotes the longitudinal
velocity at the top boundary. The mixing coefficient is averaged along the longitudinal direction at
the front.

The dimensionless front velocity, the front depth, the relative thickness of the lower veloc-
ity transition layer, and the mixing coefficient of the front as functions of the center height
of the cooling source are presented in Fig. 11. As the center height of the cooling source increases,
the dimensionless front velocity maintains a discernible growth for a small longitudinal radius of the
cooling source and undergoes a slight decline and then a sharp rise for a large longitudinal radius
of the cooling source. The front depth exhibits an increasing trend from zero and a descending
trend back to zero with a growing center height of the cooling source, the peak value of which
seems to be limited by the longitudinal radius of the cooling source. The relative thickness of
the lower velocity transition layer manifests a rising tendency as the center height of the cooling
source grows. To further explain the underlying mechanism, we will utilize the conclusion in
Sec. II that the dimensionless front velocity, which is equal to 2/3 power of the Froude number, is
negatively correlated with the front depth and positively correlated with the relative thickness of the
lower velocity transition layer. Therefore, for a small longitudinal radius of the cooling source, the
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FIG. 11. The dimensionless front velocity [(a), (b)], the front depth [(c), (d)], the relative thickness of the
lower velocity transition layer [(e), (f)], and the mixing coefficient of the front [(g), (h)] as functions of the
center height of the cooling source for various longitudinal radiuses of the cooling source: rx/H = 0.2 [(a),
(c), (e), (g)] and rx/H = 0.6 [(b), (d), (f), (h)]. The lines are predictions from the integral model assuming
linear (solid line) and exponential velocity profiles with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted
line) in the transition layer. The symbols are results from direct numerical simulations: rz/H = 0.2 (circle),
rz/H = 0.3 (cross), rz/H = 0.4 (triangle).
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variation of the front depth is relatively small and the thickened lower velocity transition layer plays
a dominant role, leading to a monotonous growth of the dimensionless front velocity. For a large
longitudinal radius of the cooling source, the influence of the substantially deeper dense fluid layer
firstly overcomes that of the thickening lower velocity transition layer, resulting in a minor decrease
in the dimensionless front velocity, and then the decaying front depth and the enhanced shear layer in
the dense fluid both contribute to a significantly increasing dimensionless front velocity. The mixing
coefficient of the front and the relative thickness of the lower velocity transition layer show similar
trends. What’s more, the mixing coefficient of the front can reach large values, demonstrating that
the shear layer in the dense fluid could play a dominant role.

Figure 12 illustrates the mechanism that the longitudinal radius of the cooling source affects
the dimensionless front velocity. As the longitudinal radius of the cooling source increases, the
substantial decline in the dimensionless front velocity is attributed to the growing front depth and
the diminishing shear layer in the dense fluid. The decreasing trend is more obvious for a higher
center height of the cooling source, since the maximum front depth seems to be confined by the
center height of the cooling source.

As displayed in Figs. 11 and 12, the dimensionless front velocity and the mixing coefficient
are quite insensitive to the form of the velocity profile in the transition layer, which imposes an
effect on the front depth and the relative thickness of the lower velocity transition layer. A linear
velocity transition and an exponential velocity transition with α = 1, 3 produce unphysical relative
thicknesses of the lower velocity transition layer larger than 1, and an exponential velocity transition
with α = 5 is likely to be more reasonable for the cooling-source gravity current, revealing a rapid
velocity transition from the bottom layer to the upper layer.

In the integral model, the vertical radius of the cooling source only incorporated in the areal
integral of the cooling source function Eq. (31) that is used for nondimensionalization will not
influence the dimensionless quantities, and its effect is confirmed to be very limited by direct
numerical simulations. In general, the integral model provides a good prediction for the front
velocity and the front depth. In terms of the mixing coefficient of the front, the integral model
is qualitatively consistent with direct numerical simulations, and the quantitive error is possibly
owing to the uncertainties in determining the interval of the longitudinal coordinate for the averaging
procedure.

Obviously, the effect of the shear layer in the dense fluid, which is negligible in the lock-release
gravity current, could be predominant in the cooling-source gravity current. Previous integral
models not involving the shear layer in the dense fluid are incapable of forecasting this important
characteristic of the cooling-source gravity current. A straightforward way of proving this is that
almost the same front depth could correspond to quite different dimensionless front velocities as
shown in Figs. 11(a) and 11(c), which is contradictory to the implication of previous integral models
that the Froude number is entirely governed by the front depth. Figures 11 and 12 demonstrate that
a small longitudinal radius and a large center height of the cooling source contribute to a high
mixing coefficient. Hence, we infer that compared with instantaneously releasing a volume of dense
fluid, an elevated cooling source that persistently supplies dense fluids probably brings about more
mixing, resulting in a larger Froude number.

Oreskovic [14] invoked the Lundgren scaling approach [15] and found that it works well for
the downburst outflow. They found that the time histories of the front positions normalized by the
Lundgren scaling approach collapse for various geometric parameters of the cooling source. Here,
we will examine the dependence of the front velocity normalized by the Lundgren scaling approach
on the geometric properties of the cooling source. The data normalized by the Lundgren scaling
approach for the full extent of the gravity currents is presented in Appendix B.

Oreskovic [14] defined the characteristic scales for an axisymmetric cooling source, and we will
consider a two-dimensional case in a similar way. The characteristic length scale is defined by the
equivalent radius of the cooling source, i.e.,

r0 = (rxrz )
1
2 . (68)
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FIG. 12. The dimensionless front velocity [(a), (b)], the front depth [(c), (d)], the relative thickness of
the lower velocity transition layer [(e), (f)], and the mixing coefficient of the front [(g), (h)] as functions of
the longitudinal radius of the cooling source for various center heights of the cooling source: z0/H = 0.4
[(a), (c), (e), (g)] and z0/H = 0.7 [(b), (d), (f), (h)]. The lines are predictions from the integral model assuming
linear (solid line) and exponential velocity profiles with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted
line) in the transition layer. The symbols are results from direct numerical simulations: rz/H = 0.2 (circle),
rz/H = 0.3 (cross), rz/H = 0.4 (triangle).
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FIG. 13. The front velocity normalized by the Lundgren scaling approach [15] as a function of the center
height of the cooling source for various longitudinal radiuses of the cooling source: rx/H = 0.2 (a) and rx/H =
0.6 (b). The symbols are results from direct numerical simulations: rz/H = 0.2 (circle), rz/H = 0.3 (cross),
rz/H = 0.4 (triangle).

The corresponding characteristic timescale is

t0 =
(

r0ρcse

g(ρcs − ρcse)

) 1
2

, (69)

where ρcs is the average density in the elliptic cooling source region, and ρcse is the mean density of
the environment not included in the elliptic cooling source region. The characteristic velocity scale
is then computed from

U0 = r0

t0
=

(
(ρcs − ρcse)

ρcse
g(rxrz )

1
2

) 1
2

. (70)

Thus, the dimensionless front velocity is calculated by

U

U0
= U( (ρcs−ρcse )

ρcse
g(rxrz )

1
2
) 1

2

, (71)

and substituting Eq. (43) into it results in

U

U0
=

(
U

(−βξg)
1
3

) 3
2
(

hc

H

) 1
2
(

rx

H

rz

H

)− 1
4
(

ρc − ρ0

ρcs − ρcse

) 1
2
(

ρcse

ρ0

) 1
2

, (72)

which gives a transformation to the front velocity normalized by the Lundgren scaling approach.
Applying the Boussinesq approximation yields

U

U0
=

(
U

(−βξg)
1
3

) 3
2
(

hc

H

) 1
2
(

rx

H

rz

H

)− 1
4
(

ρ̃c

ρ̃cs − ρ̃cse

) 1
2

, (73)

where the ratio ρ̃c/(ρ̃cs − ρ̃cse) can be directly computed from direct numerical simulations. As
presented in Figs. 13 and 14, it is obvious that the front velocity normalized by the Lundgren
scaling approach still exhibits an obvious reliance on the geometric properties of the cooling source.
The rough conclusion of Oreskovic [14] is probably caused by a very narrow varying range of the
geometric parameters and some coincidences, which is confirmed in Appendix B. Basically, there is
no underlying mechanism, which can ensure that the scaling method for the gravity current produced
by an elevated thermal is applicable for the cooling-source gravity current.

To explore the existence of a scaling approach that yields a dimensionless front velocity rarely
relying on the geometric properties of the cooling source, we carefully examine the dimensionless
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FIG. 14. The front velocity normalized by the Lundgren scaling approach [15] as a function of the
longitudinal radius of the cooling source for various center heights of the cooling source: z0/H = 0.4 (a) and
z0/H = 0.7 (b). The symbols are results from direct numerical simulations: rz/H = 0.2 (circle), rz/H = 0.3
(cross), rz/H = 0.4 (triangle).

results of our scaling method. A possible choice of the characteristic velocity scale is

U ∗
c = Uc

(
z0

hc

) 1
3

=
(

−βξg
z0

hc

) 1
3

. (74)

The corresponding dimensionless front velocity is given by

U

U ∗
c

= U(−βξgz0
hc

) 1
3

, (75)

and substituting Eq. (43) into it results in

U

U ∗
c

=
⎛
⎝ U(

ρc−ρ0

ρ0
gz0

) 1
2

⎞
⎠

2
3

, (76)

revealing an alternative choice of the characteristic velocity, i.e.,

U ∗∗
c =

(
ρc − ρ0

ρ0
gz0

) 1
2

. (77)

Thus, the corresponding dimensionless front velocity is the Froude number based on the center
height of the cooling source, i.e.,

U

U ∗∗
c

= U(
ρc−ρ0

ρ0
gz0

) 1
2

, (78)

and the transformation is

U

U ∗∗
c

=
(

U

(−βξg)
1
3

) 3
2
(

hc

H

) 1
2
(

z0

H

)− 1
2

. (79)

The Froude number based on the center height of the cooling source as a function of the center
height and longitudinal radius of the cooling source is shown in Figs. 15 and 16. The Froude
number based on the center height of the cooling source almost maintains around unity and slightly
relies on the geometric properties of the cooling source, indicating that the characteristic velocity
given by Eq. (77) offers a good estimate of the front velocity for the cooling-source gravity current.
The Froude number based on the center height of the cooling source demonstrates a discernible
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FIG. 15. The Froude number based on the center height of the cooling source as a function of the center
height of the cooling source for various longitudinal radiuses of the cooling source: rx/H = 0.2 (a) and rx/H =
0.6 (b). The lines are predictions from the integral model assuming linear (solid line) and exponential velocity
profiles with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted line) in the transition layer. The symbols are
results from direct numerical simulations: rz/H = 0.2 (circle), rz/H = 0.3 (cross), rz/H = 0.4 (triangle).

dependence on the function of the velocity transition, and the most satisfactory agreement with the
direct numerical simulations is found to be using the exponential profile with α = 5.

Moreover, we will discuss the H → ∞ limit, representing the gravity current propagating in
an ambient fluid of infinite depth. H → ∞ yields z0/H → 0 and rx/H → 0, and the remaining
nondimensional geometric parameter is z0/rx. As presented in Fig. 17, the Froude number based on
the center height of the cooling source seems to be entirely independent of the ratio of the center
height and the longitudinal radius of the cooling source.

VI. CONCLUSIONS

In this paper, a unified integral model, incorporating a continuous velocity transition across the
density interface, has been developed for the lock-release and cooling-source gravity currents. The
general part of the integral model only concerning the front suggests that the Froude number is
determined by the front depth and the relative thickness of the lower velocity transition layer.
Introducing the shear layer in the dense fluid gives rise to a larger Froude number, and a mixing

FIG. 16. The Froude number based on the center height of the cooling source as a function of the
longitudinal radius of the cooling source for various center heights of the cooling source: z0/H = 0.4 (a) and
z0/H = 0.7 (b). The lines are predictions from the integral model assuming linear (solid line) and exponential
velocity profiles with α = 1 (dashed line), 3 (dotted line), 5 (dash-dotted line) in the transition layer. The
symbols are results from direct numerical simulations: rz/H = 0.2 (circle), rz/H = 0.3 (cross), rz/H = 0.4
(triangle).
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FIG. 17. The Froude number based on the center height of the cooling source as a function of the ratio of
the center height and longitudinal radius of the cooling source as H → ∞. The lines are predictions from the
integral model assuming linear (solid line) and exponential velocity profiles with α = 1 (dashed line), 3 (dotted
line), 5 (dash-dotted line) in the transition layer.

coefficient is defined to assess this effect, unifying results with different velocity transitions. For
the lock-release gravity current, the Froude number as a function of the front depth predicted by
the integral model almost coincides with that from the vortex-wake model [38] that only includes
the velocity transition in the ambient, revealing that the effect of the shear layer in the dense
fluid is negligible. The front features are also related with the lock depth, and a slightly improved
prediction is provided by the integral model. The integral model for the cooling-source gravity
current correlates the front characteristics with the thermodynamic and geometric properties of the
cooling source.

Direct numerical simulations of the cooling-source gravity current have been performed to assess
the applicability of the integral model. The interfacial vortex induced by the Kelvin-Helmholtz
instability is clearly seen in the instantaneous fields, and the cooling-source gravity current manifests
the common features of a gravity current. The phases of spreading have been well captured. A
volume of heavier fluid forms and descends, colliding with the bottom boundary to generate a
front longitudinally evolving in the ambient. After an adjustment, the advancing front tends to be
stable during the inertial phase and decelerates gradually as the viscous force becomes dominant.
During the self-similar phases, the fitted scaling laws are in good agreement with the prediction
from the box model. The integral model has been confirmed to offer a good estimate of the
dimensionless front velocity and the front depth during the inertial phase. It is revealed by the
theory and simulations that the center height and the longitudinal radius of the cooling source jointly
determine the dimensionless front velocity and the front depth, both of which are quite insensitive
to the vertical radius of the cooling source. Results also indicate that previous integral models
ignoring the lower velocity transition layer are not able to capture the important characteristic of
the cooling-source gravity current that the shear layer in the dense fluid could be predominant. The
front velocity normalized by the Lundgren scaling approach exhibits a strong dependence on the
geometric properties of the cooling source. Furthermore, we have found that the Froude number
based on the center height of the cooling source rarely depends on the geometric properties of the
cooling source.

The integral model for the cooling-source gravity current only allows the energy dissipation
at the front of the gravity current, and the energy conservation still remains in the formulation.
Therefore, efforts could be made to eliminate energy arguments by future research. The density
interface is assumed to be infinitely thin owing to the numerical complexity of involving the mixing
of density, the effect of which has been investigated in the lock-release gravity current [36,44]
and the internal bores [45], and measured in a continuous gravity current [46]. Nevertheless,
determining the thickness of the mixing layer in the integral model is quite challenging. What’s
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more, the box model also ignores the entrainment of ambient fluid during the self-similar phases
of the cooling-source gravity current, which needs to be considered by future studies. Shallow
water models supposing that the longitudinal length scale is substantially larger than the depth and
allowing longitudinal variations in the interior of the gravity current [23–25] can be introduced to
explore the cooling-source gravity current in future. The two-layer shallow-water model has been
successfully employed to study the sustained gravity currents [47]. Based on the investigation in
this paper, the shear layer should be taken into account in establishing a shallow-water theory for
the cooling-source gravity current. In addition, correlating the inflow boundary condition of the
shallow-water equations with the thermodynamic and geometric properties of the cooling source is
crucial, since the hydrostatic balance is not justified in the cooling source region.

Bond and Johari [48], Lai et al. [49], and Kruger [17] established models for the initial stages
of releasing an elevated thermal, which can be split into three phases: the draining phase, the
development phase, and the self-similar thermal phase. Kruger [17] has found that the transition
from a thermal to an axisymmetric gravity current, i.e., the adjustment phase, depends on the phase
of the thermal at the time of impact, affected by the geometry of the thermal. After impacting the
ground, the front velocity and the depth of the gravity current both increase in the case of a thermal
in the draining phase or development phase, and a small decrease in the depth of the gravity current
and a slight change in the front velocity have been observed in the case of the self-similar thermal.
A better understanding of the acceleration phase and the adjustment phase of the cooling-source
gravity current is required, since it may be different from the gravity current generated by an elevated
thermal.
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APPENDIX A: THE BOX MODEL FOR THE COOLING-SOURCE GRAVITY CURRENT

The box model will be employed to predict a sequence of self-similar phases and the scaling
laws for the cooling-source gravity current. The implication of the box model is that the gravity
current evolves as an area rectangle with changing volume in time [19–22]. Thus, the propagation
is assumed to be with time t at some power, i.e.,

hnxn = VtωV , (A1)

where xn is the front position and hn is the depth of the gravity current. ωV is a dimensionless
non-negative constant and V is a positive constant, the dimension of which is m2s−ωV . We suppose
a similar behavior of the front position as

xn = X tωX , (A2)

the derivative of which with respect to time is

U = ωXX tωX −1, (A3)

where U denotes the front velocity. The dimension of the positive constant X is ms−ωX , and ωX is
a dimensionless constant. Substituting Eq. (A2) into Eq. (A1) yields

hn = V
X tωV−ωX . (A4)

Concerning that the density is supplied by the cooling source results in

(ρn − ρ0)hnxn = −ρ0βξ t, (A5)
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where ρn is the density within the gravity current. Substituting Eq. (A1) into Eq. (A5) yields

(ρn − ρ0) = −ρ0βξ

V t1−ωV . (A6)

The total buoyancy force fB, the total inertial force fI , and the total viscous fV force within the
gravity current can be calculated, and substituting Eqs. (A2)–(A4) and (A6) into them yields

fB = 1

2
(ρn − ρ0)h2

ng = −ρ0βξgV
2X 2

tωV−2ωX +1, (A7)

fI = 1

2
ρ0U

2hn = ρ0VXωX
2

2
tωV+ωX −2, (A8)

fV = 1

2

ρ0νUxn

hn
= ρ0νX 3ωX

2V t−ωV+3ωX −1. (A9)

The propagation of an inertial gravity current is governed by the jump condition at the nose, i.e.,

U = Fr

(
(ρn − ρ0)ghn

ρ0

)1/2

, (A10)

and substitution of Eq. (A3), (A4), and (A6) into it yields

X = Fr2/3(−βξg)1/3, (A11)

ωX = 1. (A12)

Therefore, we find a steady-state advancing front under the inertial-buoyancy balance, i.e.,

xn = Fr2/3(−βξg)1/3t, (A13)

U = Fr2/3(−βξg)1/3. (A14)

Under the inertial-buoyancy balance, the front velocity undergoes a slight decline of −1/3 and −1/2
power of time for the two-dimensional and axisymmetric lock-release gravity currents, respectively,
which has been comprehensively understood in previous studies [42]. The product of the density
difference and the depth of the gravity current should satisfy

(ρn − ρ0)hn = ρ0(−βξ )2/3

Fr2/3g1/3
, (A15)

and neglecting the entrainment gives a constant mass filling rate, i.e., ωV = 1, which yields

(ρn − ρ0) = −ρ0βξ

V , (A16)

hn = V
Fr2/3(−βξg)1/3 . (A17)

The viscous-buoyancy balance implies that the inertial force is negligible, and the buoyancy force
is counteracted by the viscous force. Hence, equating Eqs. (A7) and (A9) yields

X 5

V2
= − βξg

νωX
, (A18)

5ωX − 2ωV − 2 = 0. (A19)
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TABLE I. A summary of the geometric parameters of the cooling source studied by Oreskovic [14] and the
corresponding nondimensional parameters.

Case H z0 rx rz z0/H rx/H rz/H

Oreskovic1 4000m 2000m 1200m 1800m 0.5 0.3 0.45
Oreskovic2 4000m 1333m 800m 1200m 0.33325 0.2 0.3
Oreskovic3 4000m 1666m 1000m 1500m 0.4165 0.25 0.375

Assuming that the entrainment is negligible leads to a slightly decaying propagation

xn =
(

4

5

)−1/5

V2/5

(−βξg

ν

)1/5

t4/5, (A20)

U =
(

4

5

)3/5

V2/5

(−βξg

ν

)1/5

t−1/5, (A21)

hn =
(

4

5

)1/5

V3/5

(
ν

−βξg

)1/5

t1/5. (A22)

The descending front velocity of the cooling-source gravity current is with −1/5 power of time
under the viscous-buoyancy balance, which of the two-dimensional and axisymmetric lock-release
gravity currents are with −4/5 and −7/8 power of time, respectively [42]. In addition, the ratio of
the inertial force and the viscous force is evaluated by

fI

fV
=

(
4

5

)7/5 V6/5

ν

(
ν

−βξg

)2/5

t−3/5, (A23)

revealing that the influence of the viscous force compared with the inertial force becomes more and
more predominant.

APPENDIX B: THE TIME HISTORIES OF THE FRONT POSITIONS NORMALIZED
BY DIFFERENT SCALING APPROACHES

Oreskovic [14] adopted the Lundgren scaling approach [15] to normalize the time histories of the
front positions, which seem to collapse well for the downburst outflows. Table I displays a summary
of the geometric parameters of the cooling source studied by Oreskovic [14] and the corresponding
nondimensional parameters that are key for our study are also presented.

We do not directly compare our two-dimensional direct simulation results with Oreskovic [14],
since they considered an axisymmetric gravity current. Instead, we will examine the normalized
time histories of the front positions to see whether they can collapse. Figure 18 shows the time
evolution of the front positions normalized by the Lundgren scaling approach for the geometric
parameters of the cooling source summarized in Table I. The data collapse reasonably well, with a
very slight deviation, which is consistent with Oreskovic [14].

To further testify the applicability of the Lundgren scaling method, a wide range of geometric
parameters of the cooling source are investigated, presented in Fig. 19. The time histories between
simulations with various center heights and vertical radiuses of the cooling source show obvious
offsets, and the deviation is relatively small for the same center height of the cooling source. The
similarity solution for the axisymmetric gravity current produced by an elevated thermal [16,17,50]
unifies the Lundgren scaling approach. We will try to figure out why the Lundgren scaling approach
is not applicable for the cooling-source gravity current through deriving the similarity solution for
the two-dimensional gravity current generated by an elevated thermal. The buoyancy is assumed to
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FIG. 18. The time evolution of the front positions normalized by the Lundgren scaling approach for the
geometric parameters of the cooling source studied by Oreskovic [14]: Oreskovic1 (red), Oreskovic2 (blue),
Oreskovic3 (cyan).

be conserved, i.e.,

g′V = g′
0V0, (B1)

where g′ is the reduced gravity, and V is the volume of the gravity current. The subscript 0 denotes
the initial values. The box model assumes that the gravity current evolves as an area rectangle,
yielding

V = xnhn. (B2)

FIG. 19. The time evolution of the front positions normalized by the Lundgren scaling approach for various
geometric parameters of the cooling source. (a) rx = 0.2, (b) rx = 0.6, (c) z0 = 0.4, (d) z0 = 0.7. In (a) and (b),
z0 = 0.2 (red), z0 = 0.4 (blue), z0 = 0.6 (cyan), z0 = 0.8 (goldenrod). In (c) and (d), rx = 0.2 (red), rx = 0.4
(blue), rx = 0.6 (cyan), rx = 0.8 (goldenrod). In (a)–(d), rz = 0.2 (circle), rz = 0.3 (square), rz = 0.4 (triangle).
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FIG. 20. The time evolution of the front positions normalized by the scaling approach for various geometric
parameters of the cooling source. (a) rx = 0.2, (b) rx = 0.6, (c) z0 = 0.4, (d) z0 = 0.7. In (a) and (b), z0 = 0.2
(red), z0 = 0.4 (blue), z0 = 0.6 (cyan), z0 = 0.8 (goldenrod). In (c) and (d), rx = 0.2 (red), rx = 0.4 (blue),
rx = 0.6 (cyan), rx = 0.8 (goldenrod). In (a)–(d), rz = 0.2 (circle), rz = 0.3 (square), rz = 0.4 (triangle).

For an inertial gravity current, the jump condition at the nose is applied, i.e.,

U = Fr(g′hn)1/2
. (B3)

Substituting Eqs. (B2) and (B3) into Eq. (B1) yields

U = FrB0
1/2x−1/2

n , (B4)

where B0 = g′
0V0. Noting that U = dxn/dt and integrating Eq. (B4) with respect to time result in

xn
3/2 − ximp

3/2 = 3
2 FrB0

1/2(t − timp), (B5)

where ximp is the front position at the impact, and timp is the time at the impact. For xn � ximp, the
front position at the impact becomes negligible, yielding

xn = (
3
2 FrB0

1/2
)2/3

(t − timp)2/3, (B6)

and dividing it by the equivalent radius r0 leads to

xn

r0
=

(
3

2
Fr

)2/3( t − timp

r0
3/2B0

−1/2

)2/3

. (B7)

For a half elliptic thermal, Eq. (B7) can be written as

xn

r0
=

(
3

2
Fr

)2/3(
π

2

)1/3( (t − timp)g′
0

1/2

r0
1/2

)2/3

. (B8)
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It is assumed that the Froude number of the lock-release gravity current is constant in the range of
1–1.2 by Huq [50] and 1.4 by Rooney [16] and Kruger [17], which has also been investigated by
the integral model in Sec. III. Hence, for the gravity currents produced by an elevated thermal with
various geometries, the time histories of the front positions can collapse theoretically. However, we
have found that the Froude number shows a strong dependence on the geometric parameters of the
elevated cooling source in Sec. V. Moreover, when applying the Lundgren scaling approach to the
cooling-source gravity current, the reduced gravity is taken as

g′
0 = (ρcs − ρcse)

ρcse
g, (B9)

where ρcs is the temporary density in the elliptic cooling source and ρcse is the temporary density
of the environment not included in the elliptic cooling source. We note that g′

0 represents the initial
reduced gravity in the derivation of the similarity solution. Thus, there is a mismatch between the
physical interpretation of g′

0 in deducing the similarity solution and applying it to the gravity current
produced by an elevated cooling source. Fundamentally, there is no underlying mechanism, which
can guarantee that the scaling method for the gravity current produced by an elevated thermal is
applicable for the cooling-source gravity current.

In Sec. V, the dependence of the Froude number based on the center height of the cooling source
on the geometric parameters of the cooling source has been found to be relatively minor, so a
different scaling method could be proposed. The characteristic length scale can be the center height
of the cooling source, and the characteristic velocity scale is defined by Eq. (77). Figure 20 displays
the time evolution of the front positions normalized by this scaling method. The data matches
reasonably well with slight offsets between simulations with various center heights and vertical
radiuses of the cooling source. For the same vertical height of the cooling source, the data perfectly
collapse.
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