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Physical impact of a surfactant on the nonlinear oscillations of a microbubble
considering a dynamic surface tension and subject to an external acoustic field
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The dynamics of microbubbles under the action of external acoustic forces has become
particularly important in several applications. In this work, we are particularly interested in
studying the transport of surfactant molecules to the surface of an oscillating microbubble,
considering the impact that the dynamic surface tension and temporal evolution of the
radius of the microbubble has when an acoustic pressure as a driving force is used
to promote the nonlinear oscillations. The resulting governing equations to predict the
radius of the microbubble and the evolution of the surfactant at the surface are written
in dimensionless form. For these equations, we identify two fundamental dimensionless
parameters: the Gibbs elasticity E , and the cohesive (or repulsive) parameter K . Using the
physical domain 0 � E � 10 and −13.2 � K � 13.2, and considering that the diffusive
Péclet number is large, as occurs in some applications, the surfactant concentration equa-
tion is solvable by using a similarity transformation, whereas the Rayleigh-Plesset-type
equation that includes the influence of the previous parameters E and K is solved by the
fourth-order Runge-Kutta method. When the numerical predictions are compared with the
well-known cases E = K = 0, strong deviations reveal that the oscillation mechanisms can
be significantly altered.

DOI: 10.1103/PhysRevFluids.7.063603

I. INTRODUCTION

As is well known, the bubble dynamics is governed by the Rayleigh-Plesset equation (RP), a
second-order nonlinear ordinary differential equation describing the response of a spherical bubble
to a time-varying far-field pressure and originally developed by Lord Rayleigh in 1917, who studied
the collapse of vapor cavities (free bubbles) to emulate the erosion of ship propellers [1,2] and
modified by Plesset and other researchers in later work to account for the compressibility of the
medium and other phenomena [3].

In contrast with a pure liquid, where the behavior of the microbubble is characterized by its initial
size and properties of the surrounding liquid, in many applications, the presence of substances like
surfactants, incorporated deliberately or that are founded in natural form, can easily adsorb at the in-
terface forming a thin coating that affects the dynamic response and stability of the bubble by greatly
reducing surface tension [4,5]. A surfactant molecule consists, in general, of a hydrophobic and a
hydrophilic portion; because of this, surfactants tend to accumulate preferentially at the gas-liquid
interfaces or to form new structures called micelles, when the critical micellar concentration (CMC)
is reached [6]. There are two basic mechanisms by which the surfactant can come to the interface:
using diffusive transport and considering the adsorption or kinetic transport in the neighborhood of
the surface. The two of them compete to reach the equilibrium value for the surface concentration

*jorge_naude@hotmail.com

2469-990X/2022/7(6)/063603(15) 063603-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7110-8359
https://orcid.org/0000-0003-3576-4345
https://orcid.org/0000-0001-7510-3598
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.063603&domain=pdf&date_stamp=2022-06-27
https://doi.org/10.1103/PhysRevFluids.7.063603


C. YEPEZ, J. NAUDE, AND F. MÉNDEZ

[7]. These extended models for which the influence of the surfactants is indispensable to understand
the dynamics of the microbubble can be utilized to deduce other mechanisms that are present in
the dynamic study of the nonlinear oscillations of the microbubbles [8–11]. On the other hand, in
some industrial applications, the use of microbubbles with diameters between 1 and 100 μm serves
to reach high gas dissolution rates or increase the adsorption performance. For these reasons, we
consider it necessary to incorporate those physical-chemical aspects of the surfactants that can alter
the different scenarios of the microbubble dynamics.

Considering the previous comments, the dynamics of encapsulated bubbles can be better under-
stood if the presence of the surfactant is taken into account [2,12,13]. Along this line, Marmottant
and co-workers included the transport of surfactant from the bulk phase to the interface and
introduced a linear viscoelastic model with radius-dependent “ad hoc” effective surface tension
[14]. Some recent studies have focused on replacing the ad hoc surface tension law in their model
with a precise definition to avoid nonphysical transitions from one regime to the other. Most of the
models mentioned do not take into account the effect of changes in the concentration of coating
molecules adsorbed onto the bubble surface. Therefore, it is important to take this into account
because experiments have shown that surfactant concentration has a considerable influence on some
properties of the microbubble, particularly the surface tension [4,10,15].

Along this line of investigation, O’Brien et al. [16] and Fyrillas and Szeri [6] dealt with the
problem of surfactant transport and gas diffusion from and to the bubble. The latter used a complex
splitting technique with a large Péclet number and concluded that the radius has a little variation
with surfactant surface concentration; however, they did not relate the RP equation with the transport
problem [6]. O’Brien, in turn, modified Marmottant’s model establishing the surface tension as a
function of surface concentration and studied the effect of change in the bubble size distribution and
coating properties using a pulse train on a bubble suspension. Their numerical analysis consisted in
solving the wave equation coupled to a Rayleigh-Plesset equation in an iteration process in time and
space for each bubble distribution in addition to solving a diffusion equation for gas and surfactant
[16].

In this work, considering the previous comments, we study the influence that the surfactant
surface concentration has on the radius of the microbubble, through a change in surface tension
coupling the RP equation with the convection-diffusion equation for the surfactant transport together
with proper boundary conditions. We identify that the diffusive Péclet number is large; therefore,
the surfactant concentration equation can be decoupled from the Rayleigh-Plesset-type equation
and solved in a closed form by using a similarity transformation. In addition, the model used to
characterize the dynamic surface tension permits us to introduce two dimensionless parameters, E
and K, which are directly related to the behavior of the interface. The above permits us to identify
a boundary layer problem, in such a manner that we can introduce a proper change of coordinate to
account for this, which immobilizes the interface and reduces the problem to an ordinary differential
equation which is sufficient to predict the surfactant concentration.

II. PHYSICAL FORMULATION AND GOVERNING EQUATIONS

The problem consists of a single spherical microbubble with an initial radius of the order of
micrometers, which is oscillating under the action of an external acoustic pressure field as can be
seen in Fig. 1(a). In addition, the microbubble is filled with gas and immersed in an unbounded
Newtonian incompressible fluid (for other media see Ref. [17]). The Newtonian fluid is used
because the bubble radius and surfactant molecule size are small; then the non-Newtonian effects of
biological fluids such as blood do not act on this scale [4].

To simplify the problem some assumptions must be made: The motion always remains spheri-
cally symmetric; the shell material is Newtonian; the interface is a zero-thickness model [13], which
conforms to a monolayer encapsulating the bubble; and the bulk concentration is under the critical
micellar concentration (CMC)—this latter to avoid the formation of new structures which could
affect the studied problem.
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FIG. 1. (a) Schematic sketch of an encapsulated bubble with surfactant molecules under an acoustic
excitation, with the initial and boundary conditions. (b) Close-up of the wall of the encapsulation, composed of
a monolayer of surfactant molecules and considering a zero thickness because of the difference of magnitude
between the radius of the bubble and the molecule size.

A. Governing equations

The Rayleigh-Plesset equation is used to model the change in the bubble radius under the pres-
ence of a prescribed ultrasound field, characterized by the angular frequency ω and the amplitude
of the excitation pressure pA. The basic form of this equation for an encapsulated Newtonian shell
is [2]

ρL

(
RR̈ + 3

2
Ṙ2

)
+ p0 + pA cos ωt − pG0

(R0

R

)3γ

+ 4μLṘ

R
+ 4Ṙks

R2
+ 2σ (t )

R
= 0, (1)

where R is the instantaneous radius of the spherical bubble, Ṙ and R̈ are the first- and second-order
time derivatives of the bubble radius, ρL is the density of the surrounding liquid, μL is the liquid
viscosity, p0 is the ambient pressure, and ks is the shell surface viscosity—a relevant parameter for
encapsulated bubbles since it is the only way to characterize the wall material within this equation.
pG0 is the initial gas pressure and γ is the polytropic exponent, assuming the gas obeys a polytropic
law.

The surface tension σ is considered as a dynamic quantity or variable because the area of the
surface of the microbubble is changing due to the continuous oscillations of the microbubble. Well-
established correlations for the dynamic surface tension as a function of the surfactant concentration
can be found elsewhere (see Refs. [18,19]). Therefore, in this form and according to Frumkin’s
equation of state the surface tension is represented by

σ (t ) = σ (0) + RGT �∞

[
ln

(
1 − �

�∞

)
+ K

2

(
�

�∞

)2]
, (2)

where RG is the universal gas constant, T is the temperature, and �∞ is the maximum surface
concentration attainable by the surface of the microbubble depending on the dissolved chemical
species. K represents a parameter that measures the interaction between adjacent molecules; for
K < 0 the molecules acquire a repulsive behavior, while for K > 0, the molecules present a cohesive
behavior. For the case of K = 0, we recover the Langmuir model [19]. This parameter can be
described in term of the energy for desorption [7], according to K = ∂Edes

∂�
(� = 0).

On the other hand, the surfactant transport problem requires a transport equation for the bulk
and in the case of a spherical bubble undergoing radial oscillations this is the convection-diffusion
equation [6,20], which is given as

∂C

∂t
+ R2Ṙ

r2

∂C

∂r
= D

(
∂2C

∂r2
+ 2

r

∂C

∂r

)
, (3)
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where C is the bulk concentration defined as the mass per unit volume and D is the molecular
diffusivity of the surfactant.

The initial and far-field boundary conditions as r → ∞ on the scale on the bubble radius are

R(t = 0) = R0, Ṙ(t = 0) = 0, C(r, t = 0) = C∞, �(t = 0) = �0, and

C(r → ∞, t ) = C∞. (4)

The previous conditions are referred to as an initial bubble radius different from zero and a resting
interface: a constant value for the surfactant concentration in equilibrium with its surrounding
environment at time zero and far away from the bubble interface; and finally an initial surfactant
surface concentration value whose will be explained further in the Results section.

The boundary condition at the interface (r = R) for the bulk concentration C is expressed as a
relation for nonequilibrium partitioning of a soluble surfactant between interface and bulk [6]:

d�(t )

dt
+ 2

Ṙ(t )

R(t )
�(t ) = D

∂C

∂r
[r = R(t ), t], (5)

where � is a surface-excess concentration residing on the interface, defined as the mass of surfactant
per unit area (see Refs. [19,20]). In this manner, Eq. (5) represents the boundary condition that
reflects the physical importance of the changes of the area of the microbubble being directly related
with the diffusive mechanism from the surface of the microbubble to the surrounded liquid, and
this surface activity is controlled by the adsorption and desorption mechanisms at the surface of the
microbubble. Therefore, we can write Eq. (5) (according to the Frumkin model) as

d�(t )

dt
+ 2

Ṙ(t )

R(t )
�(t ) = β�∞C[r = R(t ), t]

[
1 − �

�∞

]
− α exp

[
−K

�

�∞

]
�. (6)

The right-hand term is a kinetic expression where β and α represent the constants of adsorption
and desorption, respectively; this term must be equal to the diffusion expression in Eq. (5) to reach
equilibrium, in such a manner that the surfactant material can reach the interface. When adsorption-
desorption kinetics is instantaneous, the surfactant concentration remains in equilibrium with �(t )
and the transport is only controlled by a diffusive regime, while if diffusion is rapid compared with
the sorption kinetics, transport is called kinetically, or adsorption/desorption controlled [7].

B. Nondimensional governing equations

The system of Eqs. (1)–(6) may be nondimensionalized choosing the following natural scales.
The characteristic timescale is related to the angular frequency ω through the relationship 1

ω
; as

length scale, we take the initial bubble radius R0, the surface concentration is nondimensionalized
using the maximum surface concentration �∞, and the bulk concentration by the initial value C∞,
i.e.,

τ = tω, a = R

R0
, η = r

R0
, ψ s = �

�∞
, ψ = C

C∞
. (7)

Using the above dimensionless variables, the dimensionless governing equations given previ-
ously can be written as

aä + 3

2
ȧ2 + β0 + βA cos τ − βG

a3γ
+ 4

1

Re

ȧ

a
+ 4δ

ȧ

a2
+ We

a

{
1 + E

[
ln (1 − ψ s) + K

2
(ψ s)2

]}
= 0,

(8)

where Re is the Reynolds number, δ represents the dimensionless shell viscosity, We is the Weber
number, and finally E is the elasticity number or Gibbs elasticity and provides a measure of the
sensitivity of surface tension to surface concentration.
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The last term of the right-hand side of Eq. (8) is called the surface pressure [6] and for the
Frumkin isotherm it has the following form:

π∗ = E

[
ln (1 − ψ s) + K

2
(ψ s)2

]
. (9)

We use this form because it is easy to see how surface tension is decreased with the presence of
surfactant molecules on the interface and the relevance that the elasticity parameter E has.

On the other hand, the equation for the surfactant concentration can be written in dimensionless
form as

∂ψ

∂τ
+ a2ȧ

η2

∂ψ

∂η
= 1

Pe

(
∂2ψ

∂η2
+ 2

η

∂ψ

∂η

)
, (10)

while from Eq. (5) we have

dψ s

dτ
+ 2ȧ

a
ψ s = J

1

Pe

∂ψ

∂η

∣∣∣∣
η=a

, (11)

and the temporal evolution of the surfactant concentration in terms of the kinetics parameters can
be written in dimensionless form as follows:

dψ s

dτ
+ 2ȧ

a
ψ s = β∗ψ |η=a(1 − ψ s) − α∗ψ s exp [−Kψ s]

= α∗{Pψ |η=a(1 − ψ s) − ψ s exp [−Kψ s]}. (12)

In the set of Eqs. (8)–(12) appear the following dimensionless parameters:

βG = PG0

ρl R0
2ω2

, βA = PA

ρlR0
2ω2

, β0 = P0

ρlR0
2ω2

, δ = ks

ρlR0
3ω

,

Pe = R0
2ω

D
, Re = ρlR0

2ω

μl
, We = 2σ0

ρl R0
3ω2

, E = RGT �∞
σ0

,

α∗ = α

ω
, β∗ = βC∞

ω
, J = C∞R0

�∞
, P = βC∞

α
. (13)

Due to the multiparametric nature of the resulting governing equations, here we are particularly
interested in the asymptotic analysis of the governing equations dictated by the assumed values of
some characteristic parameters. For instance, the Péclet number denoted by Pe, in practical cases,
can assume large values because R0 is of the order of 1 μm, ω is of the order of 1 × 107 Hz, and D
is of the order of 1 × 10−10 m2 s−1 as can be seen in Table I. Therefore, in this case, Pe is larger than
the unit, and a concentration boundary layer of the surfactant is developed in the external region
next to the surface of the microbubble. In the following lines, we take advantage of this fact. On the
other hand, J represents a dimensionless adsorption depth that measures the distance over which
surfactant molecules must diffuse to supply the interface [7] and P is simply the ratio between
adsorption and desorption coefficients. Finally, the rest of the boundary and initial conditions in
dimensionless form can be written as

a(τ = 0) = 1, ȧ(τ = 0) = 0, ψ (η, τ = 0) = 1,

ψ s(τ = 0) = ψ s(0), and ψ (η → ∞, τ ) = 1. (14)
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TABLE I. Geometric and physical properties together with the values of the dimensionless parameters used
in the present work and taken from Ref. [18].

Parameter Value Units Dimensionless parameter Value

R0 1.00 ×10–6 m γ 1.4
ω = 2π f 1.88 ×107 Hz Re 18.85
PA 4.00 ×105 Pa βA 1.126
P0 101.3 ×103 Pa β0 0.285
PG0 2.45 ×105 Pa BG 0.689
ρl 1000 kg m–3 E 0.1897
μl 1.00 ×10–3 Pa s J 1.13 ×10–3

σ0 0.072 N m–1 We 0.405
D 4.00 ×10–10 m2 s–1 Pe 4.7 ×104

Ks 8.00 ×10–8 N s m–1 δ 4.244
B 5.6 m3 mol–1 s–1 β∗ 1.78 ×10–9

A 1.29 ×10–5 S−1 α∗ 6.83 ×10–13

�∞ 5.3 ×10–6 mol m–2 ψ s
eq 0.99

C∞ 0.006 mol m–3 P 2608.7

III. ASYMPTOTIC LIMIT Pe � 1

In this section, we use the similarity method [21] under the limit Pe � 1. The problem is
characterized by a large Péclet number as was previously commented on in the last section.
Physically, the rate at which the molecules of surfactant are populating the interface is limited by the
slow transport, via the diffusive mechanism, which is presented between the liquid and the interface.
This last mechanism is controlled by the adsorption and desorption capacities according to Eqs. (11)
and (12) [6].

From a mathematical point of view with the aid of singular perturbation techniques [22], the limit
of Pe � 1 represents a singular problem for Eq. (10), because in this case, the derivatives of higher
order are multiplied by a small parameter; hence the problem must be treated at large but finite Pe.
Therefore, in this limit a concentration boundary layer for the surfactant in a region near the surface
of the microbubble can be studied with the aid of the following stretching variable:

ζ = η − a(τ )

ε2
, (15)

where ε = Pe− 1
2 is the thickness of the boundary layer in terms of Péclet number. Substituting the

stretching variable in Eq. (10) we have

∂ψ

∂τ
− 1

ε2

∂a

∂τ

∂ψ

∂ζ
+ a2

(a + ε2ζ )2

∂a

∂τ

1

ε2

∂ψ

∂ζ
= 1

Pe(a + ε2ζ )2

1

ε4

∂

∂ζ

[
(a + ε2ζ )

2 ∂ψ

∂ζ

]
, (16)

where the following term can be identified and rewritten as

η2 = (a + ε2ζ )2 = a2

(
1 + ε2ζ

a

)2

, (17)

and taking into account that ε2ζ

a � 1; because of the large value of the Péclet number, then

a2(1 + ε2ζ

a )2 ≈ a2, and Eq. (16) is simplified, resulting in

ε2 ∂ψ

∂τ
= ∂2ψ

∂ζ 2
. (18)
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In this manner, the curvature terms are negligible, and the diffusion mechanism is decoupled
from the oscillations of the microbubble. Now, introducing the similarity variable ξ = εζ

2
√

τ
, we can

transform Eq. (18) which represents converting a partial differential equation into a simple ordinary
differential equation, which can be written as follows:

d2ψ

dξ 2
= −2ξ

dψ

dξ
. (19)

Integrating once,

dψ

dξ
= C1 exp(−ξ 2), (20)

Integrating again we have

ψ = C1

∫ ∞

0
exp(−ξ 2)dξ + C2 = C1

√
π

2
erf(ξ ) + C2. (21)

In the above expression, the symbol erf (ξ ) represents the error function. To evaluate the constants
of integration, it is necessary to consider the limit far away from the interface (η → ∞, ζ →
∞, ξ → ∞) from Eq. (14), and knowing that limξ→∞ erf (ξ ) = 1, we have

1 = C1

√
π

2
+ C2. (22)

When using the initial condition (τ = 0), it collapses in the same limit for ξ → ∞, so it remains
for us to use the expression for the boundary condition (ξ = 0), with which we have

ψ (0) = C2, C1 = 2√
π

[1 − ψ (0)], (23)

and substituting these constants in Eq. (21) the final form for the bulk concentration is obtained:

ψ = [1 − ψ (0)]erf (ξ ) + ψ (0). (24)

With the aid of the above equation, we can easily obtain the derivative:

dψ

dξ
= 2√

π
[1 − ψ (0)] exp(−ξ 2). (25)

Then this derivative can be directly replaced in Eq. (11), obtaining that

dψ s

dτ
+ 2ȧ

a
ψ s = Jε√

πτ
[1 − ψ (0)], τ > 0. (26)

From the last expression, ψ (0) can be obtained and substituted in Eq. (12) instead of ψ |η=a,
obtaining a differential equation for ψ s as the only dependent variable:

dψ s

dτ
+ 2ȧ

a
ψ s = β∗(1 − ψ s) − α∗ψ s exp [−Kψ s]

1 + β∗(1 − ψ s)
√

πτ

Jε

. (27)

Equation (27), together with the RP equation [Eq. (8)] and the rest of the boundary and initial
conditions [Eq. (14)] constitutes a coupled system of ordinary differential equations for the radius
and the surface concentration.

IV. RESULTS

Through Eqs. (8), (14), and (27) the radius and the surface concentration can be obtained,
whereas the surface pressure term is acquired from Eq. (9). The system of Eqs. (8) and (27) can be
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FIG. 2. The distribution of the dimensionless bulk surfactant concentration ψ and its derivative dψ

dξ
as a

function of the dimensionless coordinate ξ , for five different values of the parameter ψ (0), according to Eqs.
(24) and (25).

easily solved with the aid of the fourth-order Runge-Kutta method if the following transformations
are used:

R1 = a, R2 = dR1

dτ
. (28)

The condition for the surfactant surface concentration can be supposed zero [ψ s(0) = 0] if the
microbubble is generated at the beginning of the phenomenon, or with an equilibrium value, which
can be obtained if the bubble has reached this condition at a previous time [7]. Surface concentration
in equilibrium can be easily obtained if the left-hand side of Eq. (12) is equal to zero, using K = 0
as in the Langmuir model and supposing that ψ = 1 (far away from the bulk concentration), and
given the high value of P we have [7]

ψ s
eq = P

(P + 1)
≈ 0.9. (29)

Simulation parameters used in the present work are given in Table I. The liquid is taken as water
at 310 K, while the values for β, α, D, C∞, and �∞ are taken from [18] corresponding to a nonionic
alkyl polyglycol ether surfactant, C12E8. The initial radius and pressure values are commonly found
in ultrasound cavitation literature. Although mentioned before, we use the value ψ s(0) = 0.5 for
the set of figures presented here. This is because it is quite far away from the critical value ψ s = 1
and shows a good amplitude range for the variables, unlike the value ψ s = 0.

Figure 2 shows the behavior of ψ and dψ

dξ
as function of the dimensionless coordinate ξ for

five different values of the dimensionless parameter ψ (0). For this figure, the bulk concentration
ψ (ξ ) has a boundary layer behavior that ψ (0) → 0 always. Otherwise, the previous tendency
disappears. On the other hand, the derivative of the bulk concentration dψ

dξ
, that physically represents

the existence of strong gradients, offers a trivial solution when ψ (0) → 0, because in this last case,
the concentration field is uniform for all values of the dimensionless coordinate ξ .

In Fig. 3, we show a comparison between the present model and Marmottant’s model [14]. Here
we see how the compressibility does not affect the radius of the bubble because the values of the
parameters lead to a low Mach number (M = 0.012), a term present in the reference. And even
when the base of each model is different (the parameter that leads to dynamic surface tension is
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FIG. 3. Comparison between the model developed in this work and the Marmottant model [14]. Di-
mensionless radius a as a function of the dimensionless time τ for β0 = 0.321, βA = 1.1257, Re = 17.322,
We = 0.468, and δ = 0.88.

the so-called shell elasticity χ [N m−1], for Marmottant, and the elasticity parameter E , for this
work), the agreement between the two curves is good, and a direct comparison study between the
parameters would be necessary.

In Fig. 4, we show the dimensionless radius a as a function of the dimensionless time τ for three
different values of the parameter ψ s(0) (= 0.2, 0.5, and 0.7). The general behavior is oscillating
around an equilibrium radius a, different from the initial value a0 = 1; this can be estimated as the
mean value after some cycles and is lower as ψ s(0) increases, keeping the amplitude. On the other
hand, for the variables ψ s and π∗, the amplitude is increased as seen in Figs. 5 and 6, respectively.
ψ s oscillates around the initial value of this distribution, while surface pressure π∗ has similar
behavior, given the direct dependence on surface concentration.

FIG. 4. Dimensionless radius a as a function of the dimensionless time τ for three different values of the
initial surface concentration, ψ s(0), βA = 1.1257, E = 0.19, K = 13.2, and δ = 4.244.
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FIG. 5. Dimensionless surface concentration ψ s as a function of the dimensionless time τ for four different
values of the initial surface concentration, ψ s(0), βA = 1.1257, E = 0.19, K = 13.2, and δ = 4.244.

In Figs. 7 and 8, the dimensionless radius and the surface pressure are plotted as functions
of the elasticity parameter E , respectively. With a higher value of E , the radius amplitude a is
lower. Conversely ψ s and π∗ have a higher value and the amplitude increases. E = 5 seems to
be a critical value for which the oscillations disappear for the used scale of the radius. However,
making a close-up about a ∼ 0.708, we can appreciate a weak oscillation around this value as
shown in Fig. 7(b). Similar comments can be made for Fig. 8. For the case E = 10, the oscillations
disappear completely, and a cavitation regime is established under these circumstances. For the
surface concentration, the oscillation occurs under the critical limit ψ s = 1. When E > 5 a value
ψ s � 1 is reached and the solution fails; physically it is impossible for the microbubble surface to
hold this number of molecules, and mathematically the model cannot calculate data beyond these
values. It should be noted that the value used in this work for the elasticity parameter is E < 1, so

FIG. 6. Dimensionless surface pressure π∗ as a function of the dimensionless time τ for four different
values of the initial surface concentration, ψ s(0), βA = 1.1257, E = 0.19, K = 13.2, and δ = 4.244.
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FIG. 7. (a) Dimensionless radius a versus the dimensionless time τ for five different values of the elasticity
parameter E : ψ s(0) = 0.5, βA = 1.1257, K = 13.2, and δ = 4.244. (b) Close-up, showing the oscillation for
E = 5 around the bubble radius a ≈ 0.708.

the other values are only used to see the general behavior of the variables with their variation; these
include the extreme values E = 0, 5, 10.

In the next group of figures, we choose both positive and negative values for the molecular
interaction parameter K to see the general behavior of the dependent variables, remembering the
value depends on the surfactant specie. With K > 0, the radius has a negative displacement, reaching
lower values, while surface pressure has a positive displacement, as seen in Figs. 9 and 10. On the
other hand, with K negative the radius reaches higher levels, while with ψ s the opposite happens.
The amplitude range seems to be quite similar for all the cases, so the interaction between adjacent
molecules only generates a displacement on the curves for the radius and the surface concentration
and a slight increase on surface pressure amplitude as the magnitude of K increases.

FIG. 8. Dimensionless surface pressure π∗ versus the dimensionless time τ for five different values of the
elasticity parameter E ; ψ s(0) = 0.5, βA = 1.1257, K = 13.2, and δ = 4.244.
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FIG. 9. Dimensionless radius a as a function of the dimensionless time τ for three different values of the
molecular interaction parameter K : ψ s(0) = 0.5, βA = 1.1257, E = 0.19, and δ = 4.244.

Figure 11 shows the trend of the mean value for the radius of the microbubble (amean) and the
surface concentration (ψ s

mean) with the relevant parameters shown above. We choose the “mean”
values since they work as good indicators of the behavior of the variables when the oscillation
becomes periodic. In Fig. 11 (lower), a linear behavior is seen for amean and ψ s

mean, decreasing the
value for the radius and increasing the mean values for the surface concentration as K increases. In
Fig. 11 (upper), amean tends to decrease and reach an asymptotic value with E higher, while ψ s

mean
tends to grow with an asymptotic limit of ψ s

mean ≈ 1 for E .

V. CONCLUSIONS

The surfactant surface concentration is an important aspect in dealing with microbubbles
in biological fluids; as noted, the natural or deliberated presence can be beneficial if one can

FIG. 10. Dimensionless surface concentration ψ s as a function of the dimensionless time τ for three dif-
ferent values of the molecular interaction parameter K : ψ s(0) = 0.5, βA = 1.1257, E = 0.19, and δ = 4.244.
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FIG. 11. Mean values of the dimensionless radius amean and the surface concentration ψ s
mean as functions

of (upper) the elasticity parameter E , and (lower) the molecular interaction parameter K , for ψ s(0) = 0.5. The
values of the rest of the parameters are indicated in each graphic.

understand and anticipate the behavior of the bubble. Parameters such as the driving force, the
elasticity number, and dimensionless shell viscosity have great relevance in the bubble radius
evolution and subsequently in surface concentration value through the change in surface tension
that surfactant molecules generate. Therefore, there exists a strong relationship between the radius
of the bubble and the surface concentration that must be considered and can be appreciated through
the Results section, in which the radius oscillations and the surface concentration profiles are
affected by each other. Our model, in contrast with others, includes such relationship, and a
second equation for surfactant transport is necessary, which affects the traditional RP equation
through the elasticity parameter and the molecular interaction parameter, strongly dependent on
the chemical species, such as hydrodynamics, thermodynamics, and chemical properties of the
phenomena.

The ultrasound amplitude and frequency are the parameters in which one has freedom of choice
once the chemical species and fluid are set. Knowing the influence of these parameters may bring a
better understanding of the phenomena and their application in areas such as medicine or new areas
of interest.

The similarity method allows obtaining fast results when the Péclet number is high and there is a
boundary layer, useful in this case given the characteristic values for the initial radius, the ultrasound
frequency, and diffusion coefficient found in the acoustic dynamics of microbubbles. Eliminating
the convection-diffusion equation through an appropriate coordinate shift gives an easier solving
process that only involves the RP equation and the surface concentration evolution equation—a
system that is solvable through a fourth-order Runge-Kutta method and without iterations like in
other works.

The model obtained can be useful for other kinds of analyses such as multiple scales or even
considering a non-Newtonian shell material, adding the proper stress-deformation relationship,
because, at this point, we are dealing only with a first-order differential equation system.

For future work, it is possible to add surface concentration as a function of time and space,
which can lead to movement of the molecules on the surface and Marangoni effects because of
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the concentration gradient. Another area is the use of other types of driving pressure, for example,
a pulse train or a Gaussian pulse, which would change the dynamic of the bubble and bring a
panorama about the use of microbubbles as contrast agents.
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