
PHYSICAL REVIEW FLUIDS 7, 063601 (2022)

Particle segregation using crystal-like structure of capsules
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In a wall-bounded shear flow, deformable particles form a crystal-like structure [Phys.
Rev. Lett. 120, 268102 (2018)]. To expand the applicability of microfluidic devices to
particle sorting, we performed a lattice Boltzmann simulation. In this study, the crystal
structure of capsules can be utilized to segregate capsules of different sizes. We add small
capsules into a system where large capsules form a crystal structure, and find that the
movement of the small capsules changes significantly with size ratio Ra. When the sizes
of the small capsules were comparable to those of the large capsules (Ra ∼ 1), the small
capsules are trapped in the crystal structure. In addition, they composed the crystal with
the large capsules and traveled in a diffusive manner. However, when Ra ∼ 0.6 or lower,
the small capsules were depleted from the crystal layer due to the low lift velocity, and they
continuously traveled in an advective manner. Furthermore, we found that the stiffness of
the small capsules had only a slight influence on this phenomenon. The results suggest
that the crystal structure of capsules can be used to trap capsules of comparable sizes or to
exclude capsules of smaller sizes. The findings of this study can serve as practical basis for
microfluidic applications for segregating and sorting different types of soft particles.

DOI: 10.1103/PhysRevFluids.7.063601

I. INTRODUCTION

Segregating different types of cells is one of the fundamental tasks for microfluidic devices [1].
In previous studies, the segregation of different particles or cells was achieved in microfluidic
devices using inertial migration [2–4], dean flow [5,6], and magnetic fields [7,8]. These technologies
have been widely used in the biomedical fields to collect rare cells from the blood, such as leukocytes
[9,10], platelets [11,12], and circulating tumor cells [9,13–15]. In this study, we developed an
alternative approach for particle segregation based on the crystal-like structure of deformable
particles.

Shen et al. [16] recently revealed that red blood cells, or other deformable particles, such as
capsules and vesicles, form crystal-like self-organized patterns in a wall-bounded shear flow. The
patterns significantly change with the volume fraction of the cells; with an increase in volume
fraction, the cell formation transforms from a chainlike structure [17,18] to a crystal-like structure,
and finally to a disordered state. Due to the effect of two parallel plates [19,20], the cells first migrate
towards the channel center and remain at the midplane of the channel. Because of the quadrupolar
flow field generated by each cell [16,18], the cells attempt to align in the flow direction, while
exhibiting cell-cell repulsion in the vorticity direction. They gradually form a chain or crystal-like
structure, depending on the volume fraction of the cells. Moreover, a discussion was presented on
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FIG. 1. Two types of capsules, type A (gray) and type B (blue), are suspended in a fluid between two
parallel plates, where Ra = 0.6.

the mechanism underlying the equilibrium particle-particle distances in the self-organized patterns.
By considering the interplay of the background shear and the hydrodynamic interaction between
two particles, a theory for the equilibrium distance of the particles was proposed.

In a previous study [16], the mechanism of the emergent dynamics of the crystal structure of
deformable particles in a wall-bounded shear flow was clarified. When small particles are added to
the crystal structure, their behaviors may vary depending on their size.

In this study, we hypothesize that this crystal structure can be utilized to segregate two different
types of capsules. To segregate two capsule types (type A and type B) under shear flow, it is essential
to realize a significant difference in the advected distance. If type-A capsules could be made to
stay approximately near the initial position, whereas type-B capsules are continuously advected
downstream and washed away from the channel, the system can be utilized to segregate deformable
particles of different properties. We tested this hypothesis using a lattice Boltzmann simulation of
capsules in a wall-bounded shear flow. We first analyzed the interaction between two capsules of
different sizes using the theory proposed by Shen et al. [16]. We then examined the behavior of the
small capsules in a wall-bounded shear flow and present a discussion of the effect of the stiffness of
the small capsules on this problem.

II. PROBLEM STATEMENT AND METHODS

Figure 1 presents a schematic of this study. Two types of spherical capsules were considered,
namely, types A and B, suspended in a fluid between two parallel plates with width H . Both types
of capsules were neutrally buoyant, and their inner fluids exhibited the same viscosity as the outer
fluid. Type-A and type-B capsules had radii aA and aB and surface shear elastic moduli GA and GB

[21]. The domain size was L × L × H = 20aA × 20aA × 3aA, and a shear flow with shear rate γ̇

was applied to the domain under periodic boundary conditions in the x and y directions.
A constitutive law proposed by Skalak et al. [22] was used to model the membrane of capsules.

In particular, the strain energy function is expressed as follows:

wA,B = GA,B

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (1)

where C = 100 is the area dilation constant, I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2, and λ1 and λ2 are prin-

cipal extension ratios. Membrane mechanics are expressed by the following equilibrium equation:

∫
S

û · q dS =
∫

S
ε̂ : T dS, (2)

where T denotes the Cauchy stress tensor, q denotes the load on the membrane, û denotes the virtual
displacement, and ε̂ denotes the virtual strain. The capsule membrane was discretized into 5120
triangular meshes, and the finite element method (FEM) was used to solve membrane mechanics
[23]. Moreover, the bending resistance was considered [24].
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The fluid mechanics were solved using the lattice Boltzmann method (LBM) [25]:

fi(x + ci�t, t + �t ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq

i (x, t )
]

+
(

1 − 1

2τ

)
ωi

(
ci − u

c2
s

+ ci · u
c4

s

)
· F(x, t ), (3)

where fi is the density distribution function for the direction i, ci is the discrete direction vector,
�t is the time interval, τ is the relaxation time, f eq

i is the equilibrium distribution function, ωi is
the weight coefficient, u is the fluid velocity, cs is the speed of sound, and F is the force term.
The incompressible Navier-Stokes equation is recovered from Eq. (3) using the Chapman-Enskog
expansion [26]. The FEM and LBM are coupled using the immersed boundary method [27]. The
force F(x) at the fluid node x is calculated as follows:

F(x, t ) =
∑

D(x − X )F(X , t ), (4)

where X is the position of the membrane node, and D(x) is the smoothed delta function. Similarly,
the velocity at the membrane node u(X ) is interpolated from the surrounding fluid node as follows:

u(X , t ) =
∑

D(x − X )u(x, t ). (5)

A volume constraint [28] was applied to each capsule to maintain a nearly constant inner volume
in this study.

We fixed the Reynolds number of the type-A capsule at ReA = ργ̇ a2
A/μ = 0.1 and the capillary

number at CaA = μγ̇ aA/GA = 0.1, where μ is the fluid viscosity, and ρ is the fluid density. The
volume fraction and area fraction of type-A capsules φ = 4πa3

ANA/(3L2H ) and φ2D = πa2
ANA/L2

were set to 0.14 and 0.32, respectively, where NA = 41 is the number of type-A capsules. To
characterize the capsule size and deformability, we defined the size ratio Ra = aB/aA and the
capillary number ratio RCa = μγ̇ aB/GB

μγ̇ aA/GA
= aBGA/aAGB [21].

A grid size of �x = aA/16 was utilized (the effect of the grid size is checked in Appendix A),
and graphics processing unit (GPU) parallelization (NVIDIA Tesla A100) was used to accelerate the
computation. The proposed method was validated by conducting various test problems, including
the deformation of spherical cells and healthy red blood cells (RBCs) in shear flow and the thickness
of the cell-depleted peripheral layer in channel flow [29]. In previous studies, we successfully
applied this method to the simulation of margination and adhesion of leukocytes, circulating tumor
cells, and malaria-infected RBCs [30–32].

III. RESULTS AND DISCUSSION

A. Theory: Interaction between large and small capsules

When two identical capsules have an intercapsule distance 
x and 2
z [Fig. 2(a)], there is a stable
fixed point due to the hydrodynamic interaction between capsules, as demonstrated by Shen et al.
[16]. To better understand the influence of the capsule size on the equilibrium process, we can extend
their theory to the problem addressed in this study.

Consider two capsules (types A and B) located alongside each other as shown in Fig. 2(a), where
aB � aA. In this subsection, we assume that the capsules are in the same y plane, and focus only on
the two-dimensional velocity of the type-B capsule, i.e., uB = (uB

x , uB
z ). The x-directional velocity

uB
x consists of two velocities: the velocity due to the hydrodynamic interaction between the type-A

and -B capsules uQ
x and the background shear flow uSSF

x . Due to the quadrupole flow field generated
by the type-A capsule, the type-B capsule undergoes an x-directional flow as follows:

uQ
x ∼ �AH

μ
3
x

∼ − γ̇ a3
AH


3
x

, (6)
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(a)

(b) (c)

FIG. 2. (a) A schematic showing two capsules reaching a stable distance due to the hydrodynamic effects.
Dashed line denotes the channel center. (b) Trajectory of distance between two capsules (relative position of
the capsules) (
x , 
z) for (b) Ra = 1.0 and (c) Ra = 0.4. Note that Eqs. (7) and (10) with prefactors C1 = 0.08,
C2 = 15.0, C3 = 1.5 (Ca = 0.1) and conditions RCa = 1.0 and H/aA = 3.0 are utilized.

where �A ∼ −γ̇ μa3
A is a variable with the same dimension as the stresslet, and the superscript Q

represents the hydrodynamic interaction. Given that the background shear flow transports the type-B
capsule with velocity uSSF

x = γ̇ 
z, the net x-directional velocity of type B is as follows:

uB
x

γ̇ aA
= uQ

x + uSSF
x

γ̇ aA
= −C1

(
aA


x

)3

· H

aA
+ 
z

aA
, (7)

where C1 is a numerical prefactor of order 1 [16]. The z-directional velocity uB
z consists of two

velocities: the velocity of the wall-induced migration ulift
z , and that of the hydrodynamic interaction

uQ
z . The velocity of the wall-induced migration [19] scales with

ulift
z ∼ �B
z

μH3
∼ −γ̇ 
z

(
aB

H

)3

, (8)

where �B ∼ −γ̇ μa3
B, whereas that of the hydrodynamic interaction is expressed as follows:

uQ
z ∼ − �A

μH2

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)
, (9)
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where b1 ∼ 2.25, b2 ∼ 4.21 and b3 ∼ 2.49 [16]. The net z-directional velocity of type B is expressed
as follows:

uB
z

γ̇ aA
= ulift

z + uQ
z

γ̇ aA
=

(
aA

H

)3
[
−C3R3

a


z

aA
+ C2

H

aA

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)]
, (10)

where C2 and C3 ∼ 1 are the numerical prefactors. The previous study [16] obtained the fixed point
as uB

x = uB
z = 0.

Figure 2(b) presents the capsule trajectory for various intercapsule distances (
x, 
z). The two
capsules were assumed to be identical (Ra = 1, RCa = 1), and prefactors C1 = 0.08, C2 = 15.0 and
C3 = 1.5 were considered, which were estimated by fitting the velocity curve of a simulation of
two capsules approaching the stable distance (Ca = 0.1). Under these conditions, the capsules were
situated at a stable fixed point around (
x/aA, 
z/aA) = (5.5, 0.0), as predicted in a previous study
[16]. The capsules reached the stable fixed point from a wide range of initial positions. Moreover,
they were then maintained at the same height (
z ∼ 0) and formed a crystal with the other capsules.

When the size of the type-B capsule decreases to Ra = 0.4, the capsule trajectory changed
significantly, as shown in Fig. 2(c). Note that only parameter Ra in Eq. (10) was changed. Although
prefactors C1, C2, and C3 depend on Ra (in addition to Ca and RCa), this dependency was ignored for
simplicity. Compared with the case of Ra = 1 [Fig. 2(b)], the type-B capsule has a narrower range of
initial positions to reach the stable point, and the capsules are likely to be carried away by shear flow
from a wide range of initial positions. This difference can be attributed to the lift velocity, which
is significantly dependent on the capsule size ulift ∝ (a/H )−3. When the capsule size decreased,
the lift velocity from the image system decreased rapidly, and the capsule required a longer time
to focus on the center plane, where z/H ∼ 0. Due to the increase in the focusing time, the type-B
capsule has a narrow range of initial positions to reach the stable capsule-capsule distance, and it is
likely to be carried by the flow in the x direction. The stability analysis (Appendix C) also suggests
that the stability of the fixed point decreases as Ra decreases.

In summary, the two capsules stabilized at a distance when their sizes were highly similar. When
a capsule is small compared to another capsule, it has a narrow range of initial positions to stabilize
due to the low lift velocity. This simple toy model suggests that it is difficult for small capsules to
migrate to the center plane in a wall-bounded shear flow. Therefore it cannot form a crystal-like
structure with large capsules.

B. Simulation: Small capsules in the crystal structure

Subsequently, we studied the behavior of small capsules in a wall-bounded shear flow based on
numerical simulations. We confirmed that type-A capsules form a crystal structure as reported in
a previous study [16]. In the steady state, all the capsules were located near the midplane of the
channel (z/aA = 0), with the condition that the capsules were subject to lift velocity [7,8,16,19],
detailed in the previous section. The following values were used for all the simulations in this study:
H/aA = 3.0, L/aA = 20.0, φ = 0.14, φ2D = 0.32, and CaA = 0.1.

We then added type-B capsules to this system and examined seven cases of Ra in the range
0.4–1.0, with RCa fixed at 1.0. Figure 3 reveals that the movement of type-B capsules changed
significantly for Ra (see Movies 1 and 2 in the Supplemental Material [33]). When the size of
the type-B capsules was comparable to that of type-A capsules (Ra = 1.0), the type-B capsules
formed a crystal-like pattern with the type-A capsules [Fig. 3(a)]. This is because type-B capsules
were identical to the type-A capsules under those conditions (RCa = 1.0 and Ra = 1.0). When the
type-B capsules were smaller than the type-A capsules (Ra = 0.4 [Fig. 3(b)]), type-B capsules were
depleted from the crystal and did not remain in the same plane as the type-A capsules (z/aA ∼ 0).
Instead of forming a crystal-like pattern with type-A capsules, the type-B capsules continuously
traveled between or outside the crystal in an advective manner.

To characterize the capsule motions, the mean square displacements (MSDs) were calculated, as
shown in Fig. 4. Regardless of Ra, the MSD of the type-A capsules was nearly constant [Fig. 4(b)]
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(a) (b)

FIG. 3. Snapshots showing the type-B capsule movements through crystal-like pattern of type-A capsules
for (a) Ra = 1.0 and (b) Ra = 0.4. The four type-B capsules and their trajectories are shown in blue, while
type-A capsules are shown in gray. Top figures are views of the xy plane, while bottom figures are the xz plane
(side view). RCa = 1.0 and CaA = 0.1.

(b) (c)

(a)

FIG. 4. (a) Mean square displacements (MSDs) of type-A (red line) and -B (blue lines) capsules for
different Ra and RCa = 1.0. The red line shows the average MSD of type-A capsules, while each blue line
shows MSD of each type-B capsule. Dashed lines show the scaling α = 1 (diffusive), while dotted lines show
the scaling α = 2 (advective). (b) Mean square displacement at dimensionless time γ̇ �t = 1000 of type-A (red
squares) and type-B (blue circles) capsules. Dashed line shows the average value of type B. (c) Scaling of the
MSD curves for type-A (red squares) and type-B (blue circles) capsules. Note that the MSDs are normalized
by a2

A
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(a) (b)

(c)

FIG. 5. (a, b) Mean square displacements (MSDs) at dimensionless time γ̇ �t = 1000 of the type-A (red
square) and type-B (blue circle) capsules for (a) RCa = 0.1 and (b) RCa = 10. Dashed lines show the average
value of the type-B capsules. Note that the MSDs are normalized by a2

A. (c) Phase diagram of trapping
phenomenon: trapping (circles), segregation (squares), and transition (triangles).

and scaled with ∝ t [Figs. 4(a) and 4(c)], thus suggesting the diffusive motion. The scaling factor α

in Fig. 4(c) is obtained by fitting the MSD curves (time window: γ̇ �t = 101 − 102) with a power-
law curve, i.e., MSD = Dtα , where D is the other fitting parameter. Although the crystals of the
type-A capsules were more stable with less movement than the type-B capsules, they exhibited
diffusive motion, as they changed network topology and remodeled time by time due to the disorders
generated by the type-B capsules (see Movie 2 [33]). In contrast, the MSD of the type-B capsules
was dependent on Ra. When Ra = 1.0 [Fig. 3(a)], the MSD of the type-B capsules was similar
to that of the type-A capsules, and both types exhibited diffusive motion, where MSD ∝ t . When
Ra decreased, the MSD of the type-B capsules increased [Figs. 4(a) and 4(b)], and the difference
between the MSDs of the type-A and -B capsules reached several orders of magnitude. The motion
of the type-B capsules shifted from the diffusive motion α ∼ 1 to the advective and superdiffusive
motions α ∼ 1.5–2.0 for Ra = 0.4. These results suggest that the capsule crystals can be utilized
to segregate capsules of different sizes. In particular, the capsules of comparable sizes are trapped
by the crystal structures, whereas smaller capsules are excluded and continuously travel outside the
crystal.

Furthermore, the crystal formation of type-A capsules is essential for effective segregation. As
shown in Appendix B, there was no drastic MSD difference if the channel width was large (H/aA =
8) as the type-A capsules did not form the crystals.

C. Effect of the stiffness of small capsules

We investigated the influence of the stiffness of small capsules (RCa) on the segregation phe-
nomenon. Figures 5(a) and 5(b) present the MSD for RCa = 10−1 (type-B capsules were stiffer than
type-A capsules by a factor of 10) and RCa = 10 (type-A capsules were stiffer than type-B capsules
by a factor of 10), respectively. Although the relative capillary numbers differed by two orders of
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magnitude, the fundamental MSD characteristics were the same: diffusive motion for Ra = 1.0, and
advective motion for Ra = 0.4.

Finally, we summarized the segregation phenomenon using the phase diagram shown in Fig. 5(c).
The phase diagram reveals that the stiffness of small capsules has only a slight influence, and the size
ratio Ra is the main factor determining whether different types of capsules are segregated. This is
because, as hypothesized from the theoretical framework, the lift velocity is significantly dependent
on the capsule size ulift ∝ (a/H )−3.

IV. CONCLUSION

This study reports that the crystal structure of deformable particles can be utilized for particle
segregation. As previously reported [16], a group of deformable particles forms a crystal-like
structure when subject to a wall-bounded shear flow. In this study, we added several small capsules
to a system in which large capsules formed the crystal structure. We observed that the movement of
small capsules significantly changed with respect to their radii Ra. In particular, the small capsules
exhibited various behaviors from diffusive to superdiffusive motions. Small capsules were trapped
in the crystal structure when their radii were nearly the same as the large capsules (Ra ∼ 1). In
particular, they composed the crystal with the large capsules and traveled diffusively. When the
size difference was significant (Ra � 0.6), small capsules were depleted from the crystal layer and
continuously traveled outside the crystal layer in an advective manner. Moreover, based on the
theory, we revealed that the small capsules were depleted from the crystal structure for Ra � 0.6
due to their low lift velocities. Due to the rapid decrease in the lift velocity with a decrease in the
capsule size, the small capsules are likely to be carried away with the background shear instead
of realizing stable capsule-capsule interparticle distances. The large capsules rarely move from
the initial position. In contrast, the small capsules are continuously advected and washed away
downstream. There would be a drastic difference in MSDs, and our system can be utilized to
segregate deformable particles of different sizes. Moreover, the stiffness of the small capsules had a
slight influence on this phenomenon.

The findings of the study suggest that the crystal structure of large capsules can be utilized to
trap capsules of comparable sizes or exclude small capsules. Although the simulation in this study
is limited to capsules with no viscosity ratio, the current strategy is still applicable to capsules
with viscosity contrast as biological cells, since the viscosity ratio would only modify the migration
velocity [34] and the nature remains the same. This segregation phenomenon is practical for particle
sorting applications in microfluidic devices, e.g., extracting rare cells such as platelets smaller than
erythrocytes.
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APPENDIX A: VALIDATION: GRID SIZE

To verify whether the grid size used in the main text (�x = aA/16) is sufficiently small, we
performed simulations with a smaller grid size �x = aA/24 and compare the MSDs in Fig. 6. The
simulations with two resolutions both have ∼104 differences in MSDs for two capsule types, and
there are no qualitative differences in the capsule motions.

063601-8



PARTICLE SEGREGATION USING CRYSTAL-LIKE …

100
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104
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Δx = aA/16 Δx = aA/24

M
SD

FIG. 6. Mean squared displacements at γ̇ �t = 1000 of two capsule types (red: type-A capsules, blue:
type-B capsules) for two grid sizes �x = aA/16 and aA/24. The simulation conditions are RCa = 1.0 and Ra =
0.4. Note that the MSDs are normalized by a2

A.

APPENDIX B: EFFECT OF CHANNEL WIDTH

Figure 7 compares the MSDs of two capsule types under different channel widths, H/aA = 3
and 8. For narrow channel [H/aA = 3; Figs. 7(a) and 7(c)], type-A capsules have a sharp peak at the
channel center, whereas type-B capsules locate in a broader range. As explained in the main text,
type-A capsules locate at the channel center most of the time and form the crystal structure in this
condition. For the wide channel [H/aA = 8; Figs. 7(b) and 7(d)], the distribution of type-A capsules
again occupies the central region of the channel; this has been reported in a previous study of the
bimodal capsule suspensions [35]. The distribution of the two capsule types colocalizes in a wider
range compared to the narrow channel.

This difference in the distributions leads to a contrast in the traveled distance as shown in
Fig. 7(e): there is a slight difference in MSD between the two capsule types for the wide channel,
whereas the difference is on the order of MSD = 103–104 for the narrow channel. From this
analysis, it can be concluded that the narrow channel is suitable for realizing the significant MSD
difference between the two capsule types.

APPENDIX C: STABILITY ANALYSIS

We extend the discussion in Sec. III A without assuming that the two capsules locate at an equal
distance from the channel center. Let the position of capsules A and B be (xA, zA) and (xB, zB),
respectively (xA < xB). The x-directional velocities of capsules due to the quadrupole flow field
generated by the other capsule are given as follows:

uA,Q
x ∼ −�BH

μ
3
x

∼ γ̇ a3
BH


3
x

, (C1)

uB,Q
x ∼ �AH

μ
3
x

∼ − γ̇ a3
AH


3
x

, (C2)

where 
x = |xB − xA| is the x distance of capsules, H is the height of the channel, and �A = −μγ̇ a3
A

and �B = −μγ̇ a3
B are variables that have the same dimension as the stresslet. The contributions of

the background shear flow are given as follows:

uA,SSF
x = γ̇ zA, (C3)

uB,SSF
x = γ̇ zB. (C4)
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(e)

FIG. 7. (a, c) Probability density functions (a) and corresponding snapshot (c) of the two capsule types
under H/aA = 3. (b, d) Probability density functions (b) and corresponding snapshot (d) of the two capsule
types under H/aA = 8. (e) Mean squared displacements at dimensionless time γ̇ �t = 1000 of the two capsule
types (red: type-A capsules, blue: type-B capsules) under different channel widths, H/aA = 3 and H/aA = 8.
Note that the MSDs are normalized by a2

A. The simulation conditions are RCa = 1.0 and Ra = 0.4. The number
of capsules is the same for the two channel widths.
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The net x-directional velocities are then written as

uA
x

γ̇ aA
= uA,Q

x + uA,SSF
x

γ̇ aA
= CA

1 R3
a

(
aA


x

)3 H

aA
+ zA

aA
, (C5)

uB
x

γ̇ aA
= uB,Q

x + uB,SSF
x

γ̇ aA
= −CB

1

(
aA


x

)3 H

aA
+ zB

aA
, (C6)

where Ra = aB/aA is the size ratio, and CA
1 and CB

1 are the numerical prefactors of O(1). The relative
x velocity of capsule B against capsule A is

U AB
x

γ̇ aA
= uB

x − uA
x

γ̇ aA
= − H

aA

(
aA


x

)3(
CA

1 R3
a + CB

1

) + zB − zA

aA
. (C7)

The wall-induced lift velocities are given as [19]

uA,lift
z ∼ �AzA

μH3
∼ − γ̇ a3

AzA

H3
, (C8)

uB,lift
z ∼ �BzB

μH3
∼ − γ̇ a3

BzB

H3
, (C9)

and the z-directional velocities due to the hydrodynamic quadrupolar interactions are given as
follows:

uA,Q
z ∼ �B

μH2

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)
, (C10)

uB,Q
z ∼ − �A

μH2

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)
, (C11)

where b1 ∼ 2.25, b2 ∼ 4.21, and b3 ∼ 2.49 [16]. The net z-directional velocities are written as

uA
z

γ̇ aA
= uA,Q

z + uA,lift
z

γ̇ aA
=

(
aA

H

)3
[
−CA

3
zA

aA
− CA

2 R3
a

H

aA

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)]
,

(C12)

uB
z

γ̇ aA
= uB,Q

z + uB,lift
z

γ̇ aA
=

(
aA

H

)3
[
−CB

3 R3
a

zB

aA
+ CB

2
H

aA

√

x

H
exp

(
−b2
x

H

)
cos

(
b1
x

H
− b3

)]
.

(C13)

Equations (C7), (C12), and (C13) have a stable fixed point: (U AB
x , uA

z , uB
z ) = (0, 0, 0) at

(
0
x/aA, z0

A/aA, z0
B/aA) ∼ (5.5, 0, 0) when H/aA = 3.0.

Here we consider a small perturbation (δx, δzA, δzB) around the stable fixed point. Using the
Taylor series expansion (

aA


0
x + δx

)3

=
(

aA


0
x

)3

− 3

(
aA


0
x

)4
δx

aA
+ O(δx2), (C14)

√

0

x + δx

H
=

√

0

x

H
+ 1

2

√
a2

A


0
xH

δx

aA
+ O(δx2), (C15)

exp

[
−b2

(

0

x + δx
)

H

]
= exp

(
−b2


0
x

H

)
− b2aA

H
exp

(
−b3


0
x

H

)
δx

aA
+ O(δx2), (C16)

cos

[
b1

(

0

x + δx
)

H
− b3

]
= cos

(
b1


0
x

H
− b3

)
− b1aA

H
sin

(
b1


0
x

H
− b3

)
δx

aA
+ O(δx2), (C17)
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and neglecting the second-order term, we obtain the following linearized equations:

δU AB
x

γ̇ aA
= − H

aA

[
aA(


0
x + δx

)]3(
CA

1 R3
a + CB

1

) +
(
z0

B + δzB
) − (

z0
A + δzA

)
aA

∼ 3
H

aA

(
aA


0
x

)4
δx

aA

(
CA

1 R3
a + CB

1

) + δzB − δzA

aA
, (C18)

δuA
z

γ̇ aA
=

(
aA

H

)3
⎧⎨
⎩−CA

3

(
z0

A + δzA
)

aA
− CA

2 R3
a

H
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√(

0

x + δx
)

H

× exp

[
−b2

(

0

x + δx
)

H

]
cos

[
b1

(

0

x + δx
)

H
− b3

]}

∼ −CA
3

(
aA

H

)3
δzA

aA
− CA

2 R3
a

(
aA

H

)2
[
−

√

0

x

H
exp

(
−b2


0
x

H

)
b1aA

H
sin

(
b1


0
x

H
− b3

)

−
√


0
x

H

b2aA

H
exp

(
−b2


0
x

H

)
cos

(
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0
x

H
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)

+ 1

2

√
a2

A


0
xH

exp

(
−b2


0
x

H

)
cos

(
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0
x

H
− b3

)]
δx
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, (C19)

δuB
z

γ̇ aA
=

(
aA

H

)3
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3 R3
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(
z0

B + δzB
)
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+ CB

2
H
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√(

0

x + δx
)

H
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[
−b2

(

0

x + δx
)
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]
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(
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∼ −CB
3
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−

√
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(
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0
x

H

)
b1aA

H
sin

(
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0
x
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−
√


0
x

H

b2aA

H
exp

(
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0
x
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(
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0
x

H
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+ 1

2

√
a2
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0
xH

exp

(
−b2


0
x

H

)
cos

(
b1


0
x

H
− b3

)]
δx

aA
, (C20)

Equations (C18), (C19), and (C20) can be written in matrix form as follows:⎛
⎝δU AB

x /γ̇ aA

δuA
z /γ̇ aA

δuB
z /γ̇ aA

⎞
⎠ = M

⎛
⎝ δx/aA

δzA/aA

δzB/aA

⎞
⎠, (C21)

and the components of the coefficient matrix M are

M11 = 3
H

aA

(
aA


0
x

)4{
CA

1 R3
a + CB

1

}
,

M12 = −1,

M13 = 1,

M21 = −CA
2

(aA

H

)2
R3

aS,
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FIG. 8. Maximal value of real part of the eigenvalues of M with prefactors CA
1 = CB

1 = 0.08, CA
2 = CB

2 =
15, CA

3 = CB
3 = 1.5, and H/aA = 3.0 are utilized.

M22 = −CA
3

(aA

H

)3
,

M23 = 0,

M31 = CB
2

(aA

H

)2
S,

M32 = 0,

M33 = −CB
3

(aA

H

)3
R3

a, (C22)

S = −
√


0
x

H
exp

(
−b2


0
x

H

)
b1aA

H
sin

(
b1


0
x

H
− b3

)

−
√


0
x

H

b2aA

H
exp

(
−b2


0
x

H

)
cos

(
b1


0
x

H
− b3

)

+1

2

√
a2

A


0
xH

exp

(
−b2


0
x

H

)
cos

(
b1


0
x

H
− b3

)
. (C23)

The matrix M has three eigenvalues λ1, λ2, λ3. The real parts of {λ1,2,3} characterize the stability
of this system. The system is stable if all real parts of {λ1,2,3} are negative. Figure 8 shows
the maximal value of the real part of {λ1,2,3} as a function of Ra with H/aA = 3.0. Note that
the numerical prefactors are estimated as CA

1 = CB
1 = 0.08, CA

2 = CB
2 = 15, CA

3 = CB
3 = 1.5 by

fitting the capsule trajectories of a 3D simulation under Ca = 0.1 and Ra = 1. The stability of
the two-capsule system decreases with a decrease of Ra and becomes unstable (eigenvalues have
positive real parts) around Ra ∼ 0.45. The criteria may differ in the many-capsule system; small
capsules may find it more difficult to reach (or stay at) the stable point due to the complex interaction
between capsules.
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