
PHYSICAL REVIEW FLUIDS 7, 063502 (2022)

Transition to three-dimensional flow in thermal convection with
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We investigate by direct numerical simulation Rayleigh-Bénard convection in a rotating
rectangular cell with rotation vector and gravity perpendicular to each other. The flow is
two-dimensional near the onset of convection with convection rolls aligned parallel to the
rotation axis of the boundaries. At a sufficiently large Rayleigh number, the flow becomes
unstable to three-dimensional disturbances which changes the scaling of heat transport and
kinetic energy with Rayleigh number. The mechanism leading to the instability is identified
as an elliptical instability. At the transition, the Reynolds and Rossby numbers Re and
Ro based on the kinetic energy of the flow are related by Re ∝ Ro−2 at small Ro with a
geometry-dependent prefactor.
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I. INTRODUCTION

Two experiments were recently built which place a thermal convection cell in a centrifuge.
The boundary near the axis of the centrifuge is cooled while the opposite boundary is heated.
The rotation rate of the centrifuge is fast enough so that the centrifugal acceleration acts as an
effective gravity inside the convection cell and the Earth’s gravitational field becomes negligible.
The experiment by Jiang et al. [1] uses liquids as working fluids and relies on a large rotation rate
to generate large Rayleigh numbers. The intention of the experiment by Menaut et al. [2], however,
is to study compressible convection and uses gas as convecting fluid.

In addition to creating a large effective gravity, the rotation also introduces a Coriolis acceleration
which promotes 2D flow structures in geostrophic balance. The centrifuged convection cells may be
regarded as models of the equatorial regions of the Earth’s core or some deep planetary atmosphere
in which buoyancy drives columnar convection rolls aligned with the rotation axis of the planet.
Strict geostrophic balance requires all terms in the momentum equation apart from the pressure and
Coriolis terms to be negligible. Viscosity becomes important in Ekman layers adjacent to boundaries
perpendicular to the rotation axis so that the flows in the experiments are never exactly 2D. However,
these deviations from 2D tend to zero for the Ekman number tending to zero so that we will associate
the experimental flows in nearly geostrophic equilibrium with 2D flows. An important issue in
connection with both the planetary application and the laboratory experiments is to know under
which circumstances the geostrophic equilibrium holds and under which circumstances it is replaced
by 3D flow. The present paper investigates the stability limit of the geostrophic flow.

It is frequently assumed that geostrophic equilibrium is destroyed as soon as the Rossby number
exceeds some critical value. Nonlinear terms must be responsible if a flow in geostrophic equilib-
rium becomes unstable to 3D flows, and the Rossby number quantifies the ratio of the advection term
in the momentum equation to the Coriolis term. However, it was found that for rotating convection
in a plane layer rotating about an axis perpendicular to the layer, the Rossby number based on the
actual flow velocities does not provide us with a criterion to predict when the flow departs from
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the rotation dominated regime [3,4]. In rotating convection with spanwise rotation, Jiang et al. [1]
also find that the transition away from geostrophic equilibrium is not characterized by a critical
Rossby number independent of other control parameters if the Rossby number is based on the
free-fall velocity. These observations motivate us to find an accurate criterion for the disruption
of geostrophic equilibrium for convection with spanwise rotation.

We will show that the mechanism responsible for the instability of geostrophic flows in convec-
tion with spanwise rotation is an elliptical instability. This type of instability was already shown to
determine the stability of large scale circulations in convection [5] and to limit the size of convection
rolls [6]. In the present application, we have to deal with a rotating frame of reference and we have
to determine more accurately the properties of the elliptical instability to account for the observed
variations of the critical Rossby number at the onset of instability of the geostrophic flow.

The next section describes the mathematical formulation on which the numerical simulations in
the third section are based. The fourth section links the numerical results to the elliptical instability.

II. THE MATHEMATICAL MODEL

We consider in a Cartesian coordinate system x, y, z a rectangular cell of size d along z and size
L along x and y. The cell rotates about the y axis at rate �. A temperature difference �T is applied
to the boundaries perpendicular to z. The cell is filled with a fluid of density ρ, kinematic viscosity
ν, thermal diffusivity κ , thermal expansion coefficient α and the effective gravitational acceleration
in the cell is g. Introducing units of length, time, velocity and temperature as d , d2/κ , κ/d , and
�T and assuming the validity of the Boussinesq approximation, the equation of evolution for the
nondimensional velocity v(r, t ), pressure p(r, t ) and temperature deviation from the static profile
θ (r, t ) read

∂

∂t
v + (v · ∇ )v + 2

Pr

Ek
ŷ × v = −∇p + PrRaθ ẑ + Pr∇2v, (1)

∂

∂t
θ + v · ∇θ − vz = ∇2θ, (2)

∇ · v = 0, (3)

with the control parameters

Pr = ν

κ
, Ra = gα�T d3

κν
, Ek = ν

d2�
(4)

and where hats denote unit vectors. In an experimental cell in a centrifuge, the effective acceleration
g is due to the centrifugal acceleration and varies in space. This variation can be reduced by using a
cell with a small ratio of cell size d over distance to the centrifuge axis. We treat g as a constant in
our calculations to avoid a profusion of control parameters. The computational volume is inspired
by the geometry of the experiment by Menaut et al. [2] and we use d/L = 2 in all simulations. For
consistency, we always select a Prandtl number of 0.7 representative of a gas.

The walls are assumed to be stress free so that flows near the onset of convection do not
contain Ekman layers and are exactly 2D. The boundaries perpendicular to z have fixed temperature,
whereas the other boundaries are treated as heat insulating walls.

The equations of evolution were approximated for their numerical simulation by a method
optimized for graphical processing units solving the equations for a weakly compressible fluid [7,8]
with speed of sound c. The speed of sound was adjusted so that the Mach number |v|/c never
exceeded 0.1 at any time and any point inside the flow, and the ratio of the time it takes sound waves
to travel across the cell and the rotation period was small. The latter criterion requires [8] c2 �
[Pr/(2πEk)]2. For the simulations presented here, c2Ek2 > 0.5 in all cases. The numerical code
implemented a finite difference method with fourth-order centered finite differences for all terms
except the nonlinear advection terms which were discretized by a third-order upwinding scheme.
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The simulations were run on a uniform collocated grid with resolutions of up to 256 × 256 × 512
grid points in 3D and up to 1024 × 2048 grid points in 2D. A third-order Runge-Kutta scheme was
used for time stepping. Some of the 2D simulations were also run with the spectral element method
implemented in NEK5000.

III. THE STABILITY LIMIT OF CONVECTION FLOWS

Global quantities like the total kinetic energy or the heat transport depend differently on control
parameters in 2D and 3D flows. This is the reason why the transition from 2D to 3D is important
in geophysical applications. It is also for this reason that the transition is easily detectable in
experiments which cannot access the full velocity field as conveniently as numerical simulations.

We will consider three global averages extracted from the simulations. The first of these is
the heat transport which is also the most important diagnostic in experiments. The average heat
flux, made dimensionless by dividing it by the heat conducted in the stationary motionless state,
is represented by the Nusselt number Nu as the average over the boundary z = 0 of area A of the
normal derivative of the temperature field. If angular brackets 〈...〉 denote the time average, then Nu
is given by

Nu =
〈

1

A

∫
dx

∫
dy∂zT

∣∣∣∣
z=0

〉
. (5)

The second quantity of interest is the Reynolds number Re based on the total kinetic energy
defined as

Re = 1

Pr

〈
1

V

∫
dx

∫
dy

∫
dz|v|2dV

〉1/2

, (6)

where V is the total volume of the cell. The factor of Pr is necessary because velocity was made
nondimensional with the thermal diffusivity. Finally, the most direct indicator of a transition from
2D to 3D flow is the anisotropy defined as the ratio of the energy in the velocity component parallel
to the rotation axis and the energy in the components perpendicular to the axis of rotation:〈

1
V

∫
dx

∫
dy

∫
dzv2

y dV
〉

〈
1
V

∫
dx

∫
dy

∫
dz

(
v2

x + v2
z

)
dV

〉 . (7)

Figures 1 and 2 show Nu and Re for two types of simulations. The first set of computations
simulates 2D flows with streamlines confined to planes perpendicular to the rotation axis. The
Coriolis term for these flows is conservative and can be absorbed into the pressure gradient so
that these results are independent of Ek. Apart from lateral boundary conditions, these simulations
are identical to older calculations. Wen et al. [9] investigate steady convection in 2D and find Nu
and Re to scale as Nu ∝ Ra1/3 and Re ∝ Ra2/3 at constant lateral size of the convection rolls.
For time-dependent convection, van der Poel et al. [10] find Nu ∝ Ra2/7 and Wang et al. [11]
report similar exponents. The 2D runs in Figs. 1 and 2 ended after some initial transient in a
time-independent state consisting of a single convection roll. Not surprisingly, the best fits to these
results,

Nu = 0.18Ra0.35, Re = 0.09Ra0.67, (8)

yield exponents compatible with Wen et al. [9]. As seen in the compensated plots, the exponents of
Wen et al. [9] are approached at large Ra.

The second set of simulations in Figs. 1 and 2 is fully 3D and hence dependent on Ek. One
expects the dominant Coriolis term at low Ek and Ra to force the flow into a 2D geometry
identical to the geometry enforced by construction in the first set of simulations. In that case,
both sets of simulations must yield the same Nu and Re. As Ra is increased at constant Ek,
the Coriolis term becomes negligible compared with the advection term and all global quantities
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FIG. 1. Nu as a function of Ra for 2D (black dots) and 3D (empty red symbols) simulations for nonrotating
convection (circles), Ek = 10−2 (squares), 7 × 10−3 (diamonds), 3 × 10−3 (triangles up), 10−3 (triangles
down), 4 × 10−4 (plus), 10−4 (x), and 4 × 10−5 (stars). The solid and dashed lines in the left panel indicate
the power laws Nu = 0.18Ra0.35 and Nu = 0.54Ra0.26, respectively, whereas the right panel shows the com-
pensated Nusselt number Nu/Ra1/3.

approach the values they have in the nonrotating case. Pandey et al. [12] for instance report for
3D nonrotating convection with free slip boundaries that Nu ∝ Ra0.27. It is straightforward to
compare our simulations with existing results on nonrotating convection. The situation is different
for simulations which implement periodic lateral boundary conditions and allow a mean flow to
appear which can significantly modify the convection [13].

The expected qualitative behavior is indeed observed in Figs. 1 and 2 which show series of
simulations in which Ra varies at several fixed Ek. At each of the Ek, the results are close to the 2D
simulations at low Ra, whereas at large Ra, they asymptote to the scalings

Nu = 0.54Ra0.26, Re = 0.99Ra0.44 (9)

indicative of 3D convection. A smaller Ek requires a larger Ra to start the transition from 2D to 3D.
The compensated plot for Nu shows a conspicuous overshoot of Nu at the transition for the larger
Ekman numbers. The origin of this behavior was not investigated in detail because it disappears at
small Ek.

FIG. 2. Reynolds number Re (left panel) and compensated Reynolds number Re/Ra2/3 (right panel) as a
function of Ra with the same symbols as in Fig. 1. The solid and dashed lines in the left panel indicate the
power laws Re = 0.09Ra0.67 and Re = 0.99Ra0.44, respectively.
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FIG. 3. The anisotropy Eq. (7) as a function of Ra for Ek = 4 × 10−5.

It is inconvenient to locate the transition from 2D to 3D flows from the above results because the
transition shows as a gradual deviation from a baseline (the 2D results) which is itself contaminated
by numerical error. It is much more reliable to deduce the transition from the anisotropy Eq. (7)
because this quantity is exactly zero for the 2D flows owing to the free slip boundaries. Figure 3
shows as an example the anisotropy as a function of Ra for Ek = 4 × 10−5. The numerically
evaluated anisotropy at small Ra for the supposedly 2D flows is not exactly zero but it is of the
magnitude of round off errors and it is as small as it can be expected to be in a single precision
floating point representation of real numbers. Plots like Fig. 3 allow us to bracket the interval of Ra
in which the transition occurs, the lower limit of the interval being the largest simulated Ra at which
the anisotropy is of the size of round off errors and the upper limit being the smallest Ra at which
the anisotropy is clearly different from zero. These intervals are shown as a function of Ek in Fig. 4.
At large Ek, rotation is irrelevant and the transitional Ra is independent of Ek, whereas for small
Ek, the transition occurs approximately at a Rayleigh number given by 982Ek−0.9.

FIG. 4. The vertical bars indicate intervals of Ra in which the transition from 2D to 3D flows occurs as a
function of Ek. The solid line is given by 982Ek−0.9.

063502-5



K. LÜDEMANN AND A. TILGNER

FIG. 5. Line segments crossing the stability limit of 2D flows in the (Re, Ro) plane (left panel). The
continuous curve results from the stability analysis for an elliptical vortex with β = 0.78 and k‖ = 2π , k⊥ = π .
The right panel shows the same data and the same curve in the (Ek, Ro) plane.

This observation leads to the hypothesis that buoyancy forces are irrelevant for the transition
at low Ek. One can compare the characteristic timescales of the dynamics induced by rotation
and buoyancy. The timescale for rotation, which manifests itself for example in the dispersion
relation of inertial waves, is of course the inverse of the rotation rate 1/�. A characteristic
timescale for buoyancy is the transit time of a parcel of fluid traversing the cell at free-fall velocity,
[d/(gα�T )]1/2. The ratio of both, [gα�T/d]1/2/� = (RaEk2/Pr)1/2, which may also be identified
as a Rossby number [14,15], is equal to 0.82 at Ek = 10−3 and equal to 0.066 at Ek = 10−5 at
the transition. If this ratio is small, then the motion of a fluid parcel changes under the influence
of rotational effects on a timescale on which buoyancy is unable to modify its motion. Buoyancy
therefore becomes irrelevant to the dynamics.

This motivates us to describe the transition with parameters independent of buoyancy. In isother-
mal flows, the transition from flows patterned by the Coriolis force to flows independent of rotation
is usually thought to be governed by the Rossby number Ro defined by Ro = EkRe. The intervals
of Ra in Fig. 4 containing the transition are translated into intervals of Re by simply reading off the
Re for the Ra at the lower end of the interval from the 2D simulations, and by computing a Reynolds
number by extrapolating the Re(Ra) dependence of 2D flows to the Rayleigh number at the upper
end of the intervals. These two Reynolds numbers, together with the two Rossby numbers computed
from Ro = EkRe, form endpoints of line segments in the (Re, Ro) plane which must be crossed by
the stability limit of the 2D flows. These line segments are shown in the (Re, Ro) plane in Fig. 5.
For an alternative point of view, Fig. 5 also shows the stability limit in the (Ek, Ro) plane. One can
see that there is no unique critical Rossby number for the transition. The next section will show that
the stability diagram in the (Re, Ro) plane can be explained by assuming that elliptical instability of
the convection rolls is responsible for the transition.

IV. THE ELLIPTICAL INSTABILITY

A linear stability analysis of a convection roll in its rectangular cell requires a numerical effort
comparable to the simulation of the original convection problem itself. It is more tractable and at the
same time more illuminating to study the linear stability of a simplified flow using an approximate
treatment of the boundaries.

As a simple model of the 2D laminar convection flow, we will consider a flow with elliptical
streamlines of the form [(γ − ε)z, 0, (−γ − ε)x] in a frame of reference rotating at rate � about
the y axis. The constants γ and ε represent in dimensional variables a spatially uniform vorticity
divided by 2 and a rate of strain, respectively. The streamlines of this flow are ellipses in the (x, z)
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plane. The ratio of the large and small major axes of the ellipses is α = √
(1 + β )/(1 − β ) with

the definition β = ε/γ . The calculation in this section parallels earlier work [16–19] except for the
treatment of the boundaries.

We cannot treat the model with the same nondimensional variables as in the previous section be-
cause the thermal diffusivity is absent and there is no inherent length scale. We choose 1/γ as
timescale and express all lengths in terms of d which is arbitrary at present and which we will
later identify with the size of the convection cell along the direction of gravity. Velocities are then
given in multiples of γ d . Switching now to nondimensional variables, the elliptical base flow U is
given by

U = Ar A =
⎛
⎝ 0 0 1 − β

0 0 0
−1 − β 0 0

⎞
⎠. (10)

The full velocity field u is represented as the sum u = U + u′ of the base flow and the perturbation
u′ which has to satisfy

∂

∂t
u′ + (U · ∇ )u′ + (u′ · ∇ )U + (u′ · ∇ )u′ + 2ωŷ × u′ = −∇p′ + η∇2u′, (11)

∇ · u′ = 0, (12)

where p′ is a pressure variable, ω = �/γ is the nondimensional rotation rate of the frame of
reference, and η = ν/(γ d2) quantifies viscous dissipation.

Equation (11) is solved exactly by velocity and pressure fields of the form u′(r, t ) = u0(t )eik(t )·r,
p(r, t ) = p0(t )eik(t )·r provided that the time-dependent amplitude u0(t ) and the wave vector k(t )
obey

d

dt
u0 + Au0 + 2ωu0 − 2

kkT

|k|2 (A + ω)u0 + η|k|2u0 = 0, (13)

d

dt
k + AT k = 0, (14)

with the definition

ω =
⎛
⎝ 0 0 ω

0 0 0
−ω 0 0

⎞
⎠. (15)

It follows directly from Eq. (14) that the y component of k is independent of time and that the vector
k precesses elliptically about the y axis. One can thus assume without loss of generality initial
conditions for k of the form

k(t = 0) = k0

⎛
⎝ 0

cos θ

sin θ

⎞
⎠, (16)

with arbitrary k0 and θ . At later times, the wave vector is determined by Eq. (14) to be

k(t ) = k0

⎛
⎝α sin θ sin(

√
1 − β2t )

cos θ

sin θ cos(
√

1 − β2t )

⎞
⎠. (17)

This expression for k inserted into Eq. (13) leads to a linear ordinary differential equation for u0

with time periodic coefficients. This is a problem which can be reduced to an algebraic eigenvalue
problem following the method detailed in Refs. [16–18] of which we provide a succinct summary
for completeness: In a first step, the viscous term is removed from the equations by introducing a
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new variable ũ0 as

ũ0 = eη
∫ t

0 |k|2dt u0, (18)

which transforms Eq. (13) into

d

dt
ũ0 = Q(t )ũ0, Q(t ) = 2

kkT

|k|2 (A + ω) − (A + 2ω). (19)

The general solution of this equation may be deduced from the Floquet problem

d

dt
M = Q(t )M, M(t = 0) = 1, (20)

the general solution for ũ0 being a linear combination of functions of the form

ũ0(t ) = eσit f i(t ), (21)

where the f i(t ), i = 1, 2, 3 are periodic functions with period 2π/
√

1 − β2 and the σi are given by

σi =
√

1 − β2

2π
ln μi, (22)

where the μi are the three eigenvalues of M at t = 2π/
√

1 − β2. One can show that one of the
eigenvalues equals 1, say μ3 = 1, and the other two eigenvalues obey μ1μ2 = 1. If there are
growing solutions, then one has μ2 < 1 < μ1 and the fastest growing mode has the growth rate

σ1 =
√

1−β2

2π
ln μ1. We now reinstate viscous dissipation with the help of the integral

−η

∫ 2π/
√

1−β2

0
|k|2dt = −ηk2

0

[
1 + 1

2
(α2 − 1) sin2 θ

]
. (23)

The growth rate σ of the fastest growing solution u0 of Eq. (13) is therefore

σ = 1

2π

(√
1 − β2

2π
ln μ1 − 2πηk2

0
1 − β cos2 θ

1 − β

)
. (24)

This equation yields a growth rate for any given ω, η, β and k0 after a numerical time integration of
Eq. (20) up to t = 2π/

√
1 − β2 followed by a numerical evaluation of the eigenvalues of M.

At this stage of the calculation, we make a different use of Eq. (24) than previous papers which
derived this relation. It is now possible to identify control parameters which yield solutions growing
in time and to find for any fixed β and ω the largest η that still allows for growing solutions by
optimizing over k0 and θ . However, to reproduce the results of the time integrations of the previous
section, it is necessary to model the effect of the boundaries. This is done by restricting k0 and θ to
combinations which satisfy

k0 cos θ � k‖, k0 sin θ � k⊥. (25)

The rationale behind this condition is that the normal velocity at the boundaries of the cell must be
zero and that therefore at least half a wavelength must fit into the cell. This condition applied to the
direction along the rotation axis leads to k‖ = 2π . Likewise, the components of k perpendicular to
the axis of rotation, taking into account the factor α in the x component of Eq. (17), must be larger
than π to fit half a wavelength into a cell of the geometry chosen for the direct simulations, so that
k0 must also satisfy k0 sin θ � π which implies k⊥ = π . The conditions Eqs. (25) are not exactly
equivalent to the free slip boundaries of the simulations, but they suffice to represent the geometric
constraints imposed by the finite size of the convection cell as we shall see.
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FIG. 6. Ellipticities of the streamlines of 2D convection flows at the center of the cell deduced from the
eigenvalues 1/a and 1/b of the Jacobian of the velocity field. Ellipticity is defined as the parameter β in
Eq. (10).

We apply the definition Eq. (6) for the Reynolds number to the elliptical flow taking into account
that the scales for the nondimensional velocities are different, compute

4
∫ 1/4

−1/4
dx

∫ 1/4

−1/4
dy

∫ 1/2

−1/2
dz[(1 − β )2z2 + (1 + β )2x2] = 1

12

[
(1 − β )2 + 1

4
(1 + β )2

]
(26)

and conclude that we have to compare a simulation at a certain Re and Ro with a purely elliptical
flow parameterized with η, ω, and β such that

Re = 1

η

√
1

12

[
(1 − β )2 + 1

4
(1 + β )2

]
(27)

and

Ro = 1

ω

√
1

12

[
(1 − β )2 + 1

4
(1 + β )2

]
. (28)

It remains to select a β to completely specify the stability limit. Figure 5 shows the stability
limit in the (Re, Ro) plane for β = 0.78 which is already a reasonable fit to the simulation data
considering all the simplifications introduced into the model of purely elliptical streamlines.

A simple estimate of β in which the major axes of the ellipse are set equal to the length of the
sides of the convection cell yields β = 0.6. While the streamlines of the convection roll espouse the
shape of the cell near the boundaries of the cell, the ellipticity of these streamlines near the center
of the cell is uncertain. We therefore compute the eigenvalues of the Jacobian of the velocity field at
the center of the cell for the 2D flows next to the transition. For exactly elliptical streamlines, these
eigenvalues are the inverse of the semi major axes. One of the three eigenvalues is zero in 2D flows.
If we call the smaller of the remaining eigenvalues 1/a and the last one 1/b, then we can compute
an approximate β as [(a/b)2 − 1]/[(a/b)2 + 1]. This combination is shown in Fig. 6 as a function
of Ro. The value changes abruptly near Ro ≈ 1. The change is relatively small in absolute value and
barely visible in plots of streamlines (see Fig. 7). The 2D flow is of course insensitive to rotation
and the change in the flow pattern is due to the different Rayleigh numbers for the flows close to the
transition. Even though the changes in the surrogate β are small, its systematic variation with Ro
justifies the use of two different β for the model elliptical flow at either large or small Ro.
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FIG. 7. Streamlines of the two-dimensional flows at Ek = 4 × 10−5 and Ra = 8 × 106 corresponding to
Ro = 6.6 × 10−2 (left panel), Ek = 7 × 10−3, and Ra = 105 corresponding to Ro = 1.24 (middle panel) and
Ek = 9 × 10−2 and Ra = 8 × 104 corresponding to Ro = 13.3 (right panel).

In addition to using two different β, there are more refinements that are possible to improve the
stability line in Fig. 5. Visualisations of the velocity field just above onset computed in the previous
section show that the fastest growing mode prefers to fit a full wavelength into the cell in the plane
perpendicular to the rotation axis so that we may set k⊥ = 2π . Furthermore, since the conditions
Eq. (25) reproduce only approximately the effect of free slip boundaries, we may consider k‖ or
k⊥ to be fit parameters. Leaving k⊥ at 2π and slightly adjusting k‖ to 5π/3 leads to Fig. 8. While
these adjustments of course improve the fit, it should be noted that the straightforward choice of
parameters in fig. 5 suffices to reproduce the general appearance of the stability curve and that the
more refined choice only leads to minor modifications, separately at large and small Ro.

The values of [(a/b)2 − 1]/[(a/b)2 + 1] in fig. 6 are maximal around Ro ≈ 1 and it is precisely at
this Ro that the lines drawn in Fig. 8 fail to reproduce well the correct stability limit. The correlation
between the transition from 2D to 3D in the simulated convection flow and the onset of elliptical
instability deduced from [(a/b)2 − 1]/[(a/b)2 + 1] supports the claim that this transition is due to
an elliptical instability of the convection roll.

It is crucial to account for a finite cell size through condition Eq. (25) to reproduce the correct
stability limit. To gain insight into the role of this condition, it is instructive to look at Eqs. (14)
and (13) in a limit in which asymptotically correct solutions can be obtained analytically [18–20],
which is the double limit of β � 1 and ω � 1. To perform the calculation, u0 is expanded in a
series in β as

u0 = [w0(t ) + βw1(t ) + O(β2)]eσ t . (29)

This expansion is inserted into the energy equation derived from Eq. (13) by taking the dot product
of this equation with u0:

1

2

d

dt
u2

0 = −u0(A + 2ω)u0 − η|k|2|u0|2. (30)
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FIG. 8. The stability limit of an elliptical vortex computed for k‖ = 5π/3, k⊥ = 2π and β = 0.8 (solid
line, intended as a fit at small Ro) or β = 0.76 (dashed line, intended as a fit at large Ro) together with the
same numerical data as in Fig. 5 delimiting the stability limit of 2D convection flow.

The problem for β = 0 is solved by

w0 = 1

2
e−ηk2

0 t

⎛
⎝−(1 − cos θ ) sin(�+t + φ) − (1 + cos θ ) sin(�−t + φ)

−2 sin θ sin(�t + φ)
−(1 − cos θ ) cos(�+t + φ) + (1 + cos θ ) cos(�−t + φ)

⎞
⎠, (31)

where φ is an arbitrary phase and �± = � ± 1 with

� = 2(1 + ω) cos θ. (32)

Inserting this expression into the right-hand side of Eq. (30) yields to leading order in β:

σ = β

4
[(1 − cos θ )2 sin[2(�+t + φ)] − (1 + cos θ )2 sin[2(�−t + φ)] − 2(1 − cos2 θ ) sin(2t )]

− ηk2
0 . (33)

The average of σ over long time intervals vanishes unless �+ or �− is zero, in which case the
maximal growth rate is

σ = β

16

(3 + 2ω)2

(1 + ω)2
− ηk2

0 . (34)

This growth rate in turn is maximized by the smallest admissible k2
0 . In an infinitely extended

vortex, k2
0 could be arbitrarily small and viscosity would be irrelevant for the stability of the vortex.

However, k2
0 is limited in the present application by either the boundaries or the finite size of the

convection rolls. If we naively require k2
0 > k2

min, then a positive growth rate is obtained in Eq. (34)
for η < β/(2kmin)2 at large ω, which corresponds to a fixed critical Reynolds number at small
Rossby numbers and which is not at all the behavior observed in the simulations. However, the more
detailed condition Eq. (25) with k‖ = 2π imposes k2

0 � 4π2/ cos2 θ , which because of Eq. (32) and
either �+ or �− being zero leads to k2

0 � 16π2(1 + ω)2. Inserting this expression into Eq. (34) and
setting σ = 0 to find the stability limit, we obtain

β

16

(3 + 2ω)2

(1 + ω)2
= 16π2η(1 + ω)2, (35)
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which in the limit of large ω is equivalent to

1

η
= 64

β
π2ω2. (36)

Translated to Rossby and Reynolds numbers, this relation implies that Re ∝ Ro−2 at the onset of
instability which is close to what is observed in the simulations. Apparently, it is the limited extent
of the convection roll along its axis which is responsible for the right-hand side in Eq. (35) and the
observed variation of the Rossby number at the transition.

One can also deduce from this derivation why the flow can become 3D despite Ro being small. A
small Ro guarantees the advection term to be small compared with the Coriolis term in the Navier-
Stokes equation if both terms are computed for the base flow. The wavenumber introduced by the
instability, k0, behaves for large ω as k0 ∼ 4πω. The magnitude of the second term in Eq. (11),
(U · ∇ )u′, is then proportional to |u′|ω and hence comparable to the Coriolis term in Eq. (11),
2ωŷ × u′. Similarly, the time derivative ∂

∂t u′ is also comparable to the Coriolis term in this case. The
geostrophic balance, which requires that only the pressure gradient be comparable to the Coriolis
term in Eq. (11) and which implies 2D flows, is thus broken because the instability occurs on a
length scale which varies as the inverse of ω.

V. CONCLUSION

This study was triggered by the advent of experiments which use centrifugal acceleration to
create a large effective gravity inside a convection cell. The rotation also favors 2D flow structures.
Global quantities like the heat flux scale differently in 2D and 3D flows so that it becomes important
to know under which conditions the 2D convection is replaced by 3D convection.

A comparison of timescales associated with rotation and buoyancy suggests that buoyancy is
irrelevant to the transition from 2D to 3D flows. However, this transition does not occur at a
specific Rossby number independent of other control parameters. The transition is due to an elliptic
instability of the convection rolls. This confirms that buoyancy is irrelevant to the transition. It also
implies that a finite viscosity is not necessary for the instability since the elliptical instability is
an inertial instability. However, viscosity together with a finite extent of the convection rolls leads
to a Reynolds-number-dependent Rossby number at the transition. In the simulations and in the
experiment by Menaut et al. [2] the convection rolls are confined by sidewalls. However, even in an
annular geometry, the lateral roll size is finite and is for example limited by the critical wave number
near the onset so that the volume of fluid exposed to the basic elliptical flow is restricted. According
to an analytic calculation valid in the limit of small ellipticity and Rossby number, it is at any rate
the size restriction along the roll axis which is essential and which leads to the relation Re ∝ Ro−2

at the transition.
The experiments performed so far do not provide us with enough information about the velocity

field to conclusively test the scenario of the elliptical instability. Note that the Rossby number
in Jiang et al. [1] is based on the computed free-fall velocity and not on an actual measured
velocity. The comparison of simulations and experiments in the (Ra, Ek) plane is not helpful
because it depends on the Re(Ra) relation which is affected by the cylindrical geometry in the
experiment by Jiang et al. [1] and by compressibility in the experiment by Menaut et al. [2].
However, compressibility is not expected to modify the stability criterion in the (Re, Ro) plane
because it was found that the criterion for elliptical instability is independent of compressibility
in spheroidal geometry [21]. Measurements of temperature and pressure fluctuations allow Menaut
et al. [2] to determine which of their flows are 2D. These authors estimate velocity assuming either
a balance between pressure gradient and Coriolis acceleration or between pressure gradient and the
advection term in the momentum equation and find Rossby numbers of 0.01 and 0.1, respectively.
Starting from the Rossby number deduced from the assumption of a geostrophic equilibrium and
Ekman numbers in the range 10−7–10−6 typical of the experiments, one obtains Reynolds numbers
in between 104 and 105, which means that Re < 100Ro−2 is obeyed. The stability limit of the
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numerical simulations at low Rossby numbers is approximately given by Re ≈ 100Ro−2. In as far
as a quantitative comparison is possible, theory and experiment agree on the prevalence of 2D flows
in nearly geostrophic equilibrium in the experiments by Menaut et al. [2].
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