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A numerical model within the framework of the linear potential flow theory is developed
to study interactions between water waves and perforated elastic disks. The boundary
element method for hydrodynamic loads and modal function expansion for structural
deformation are closely coupled, and disks are either simply supported or clamped at
their edges. To model the flow past a perforated surface, a quadratic pressure drop model
of practical validity is adopted. The established numerical model is applied to perform
a multiparameter study to investigate the effects of wave amplitude, flexural rigidity,
edge conditions, and open-area ratio on the hydrodynamic responses. It is found that
the nondimensional hydrodynamic responses, including: wave exciting force, hydroelastic
deflection, and wave energy absorption, are increased with the increasing the incident
wave amplitude due to the nonlinear nature of the quadratic pressure discharge model.
With increasing the flexural rigidity or rendering stronger constraints at the edge, the
perforated elastic disk experiences an increase in the wave exciting force but a reduction in
hydroelastic deflection, whereas they have negligible effects on the wave power absorption.
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I. INTRODUCTION

The study of interactions between water waves and impermeable/perforated rigid/flexible plates
of small thickness is a fundamental problem, and, thus, has received considerable attention because
of applications in motion reduction of a spar platform [1,2], wave energy harnessing [3–6], wave
absorber in wave flumes [7–9], and wave dissipation by submerged breakwaters [10–12], etc. In
potential flow modelings, a perforated plate is usually regarded as a homogeneous surface, through
which the flow is subject to a pressure drop condition. The pressure drop across a perforated surface
can be either linearly or quadratically dependent on the normal velocity [13].

Due to its simple nature, a linear pressure drop condition based on the Darcy’s law [14,15] has
been widely applied to model the damping effect of the flow past a perforated plate [3–6,9,16–18].
As pointed out by Taylor [19], however, the Darcy’s law based linear pressure drop condition only
applies to very tiny openings or fine-grained porous medium. Therefore, it is questionable to tackle a
perforated surface with relatively large openings where the flow separation becomes consequential,
using the linear pressure discharge condition. Instead, studies suggest that the pressure drop across
a perforated surface is relevant to the square of normal velocity component [20–23], according
to the drag force term of the Morison equation. Moreover, experimental measurements [24–26]
provide strong evidence that the hydrodynamic coefficients of perforated plates are dependent
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on the wave steepness or the motion amplitude, and this issue cannot be represented by a linear
pressure drop model. Therefore, sufficient evidence in the fields of coastal and ocean engineering
as reviewed in Refs. [13,20] demonstrates the quadratic pressure discharge model is of practical
validity. When the quadratic pressure discharge condition is imposed, another remarkable feature is
that the hydrodynamic coefficients due to wave radiation are no longer symmetric [23].

When plate-shaped structures are used for submerged breakwaters and wave energy conversion,
elastic deformation is non-negligible due to small thickness of plates [4,5,8,11]. Unlike the conven-
tional nearly rigid marine structures in which the hydrodynamic loads can be precalculated, there
exhibits a strong dependency between hydrodynamic forces and elastic deformation of the structure.
Therefore, the hydrodynamic loads must be determined together with the elastic deformations [27],
which means a fully coupled model is required.

In the present paper, water wave interactions with perforated elastic disks are considered via
coupling the boundary element method for hydrodynamic loads and modal function expansion for
structural deformation of the disk. Compared to the previous study [6] on water wave interactions
with perforated disks, two extensions have been made, including: (1) hydroelasticity of disks
is considered; (2) a more practical quadratic pressure drop model is used instead of the linear
one. To deal with the first issue, the structural deflection of each disk is expanded into modal
functions in which eigenvalues are determined by the edge boundary conditions, and then the modal
function expansions for structural responses are fully coupled with the boundary element method
for hydrodynamic loads. As for the second issue, the nonlinear nature of the quadratic pressure
discharge condition gives rise to a nonlinear equation system, which will be solved by means of an
iteration procedure.

The layout of the paper is as follows. Basic equations and assumptions are presented in Sec. II.
In Sec. III, a numerical model coupling hydrodynamic loads and structural responses is established,
and both linear and quadratic pressure drop models are considered. The method to determine
hydrodynamic forces and wave power absorption is elucidated in Sec. IV. The verification of the
developed numerical method is conducted in Sec. V via comparing the numerical solutions with
the existing benchmark results documented in the literature. Section VI sets forth a multiparameter
study to investigate the influence of physical parameters on wave forces, wave energy harnessing,
and hydroelastic responses. Finally, concluding remarks and future perspectives are presented in
Sec. VII.

II. BASIC EQUATIONS

A three-dimensional Cartesian system of coordinates Oxyz is defined with the Oxy plane coin-
ciding with the undisturbed free surface and Oz axis orienting positively upward as illustrated in
Fig. 1. Perforated elastic plates are submerged beneath a free surface under incident wave water
actions. It is assumed that the fluid is inviscid and incompressible, and the flow is irrotational and
time harmonic. Therefore, there exists a velocity potential �(x, t ) satisfying the Laplace equation
∇2� = 0 in a fluid domain of infinite lateral extent and water depth h with x ≡ (x, y, z). In a steady
state of time-harmonic flows, the velocity potential �(x, t ), velocity potential jump across the plate
�(x, t ) = �+(x, t ) − �−(x, t ), and the elastic deformation of plates Z (x, t ) are written as

�(x, t ) = Re[φ(x)e−iωt ], �(x, t ) = Re[ψ (x)e−iωt ], and Z (x, t ) = Re[η(x)e−iωt ], (1)

where ω denotes the angular frequency of oscillation, and t is time.
For the wave scattering problem, the velocity potential in the fluid domain can be decomposed

into an incident wave potential φI(x), and a scattering potential φS(x), i.e., φ(x) = φI(x) + φS(x).
Here, the incident wave potential φI(x) is written as [28]

φI(x) = − igA

ω

cosh[k0(z + h)]

cosh k0h
eik0(x cos β+y sin β ), (2)
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FIG. 1. Sketch of a submerged disk under wave actions and definition of coordinates.

where β is the wave incidence angle as shown in Fig. 1, A is the wave amplitude, g is the acceleration
due to gravity, and k0 is the wave-number subjected to the dispersion relation ω2 = gk0 tanh(k0h).

On the perforated elastic disk, the dynamic and kinematic conditions are satisfied. The dynamic
condition is written as [5]

g

(
χ∇̄4 − ω2

g
γ

)
η + iωψ = 0, (3)

where ∇̄ represents the gradient with respect to variables on the disk’s plane, χ = D/(ρg) and
γ = ρDH/ρ denote the flexural rigidity and the mass per unit area, respectively, in which D is the
flexural rigidity, ρ and ρD represent the water density and the density of the disk, respectively, and
H is the thickness of the disk.

The kinematic condition is associated with the pressure jump across the plate, and both linear
and quadratic pressure discharge conditions are considered herein. For the linear pressure drop
condition, the kinematic body boundary condition is [3–5]

∂φ(x)

∂n
= −iωη(x) − iσ (x)ψ (x) = ∂φS(x)

∂n
+ ∂φI(x)

∂n
, with σ (x) = k0b(x)

2π
, (4)

where n is the vector normal to the plate and defined positive upward, and b(x) denotes the
nondimensional linear perforation coefficient in the range b ∈ [0,∞) with b = 0 and b = ∞
corresponding to impermeable and transparent scenarios, respectively.

When the quadratic pressure drop condition [20],

P+(x, t ) − P−(x, t ) = −ρ

2

1 − τ

μτ 2

∣∣∣∣∂�(x, t )

∂n
− ∂Z (x, t )

∂t

∣∣∣∣
[
∂�(x, t )

∂n
− ∂Z (x, t )

∂t

]
(5)

is adopted, the application of the linearization method of equivalent work [29] gives rise to the
kinematic body boundary condition for the quadratic pressure-velocity relation,

ψ (x) = 4i

3πω

1 − τ

μτ 2

[
∂φI(x)

∂n
+ ∂φS(x)

∂n
+ iωη(x)

]∥∥∥∥∂φI(x)

∂n
+ ∂φS(x)

∂n
+ iωη(x)

∥∥∥∥, (6)

where μ is the pressure loss coefficient ranging from 0.5 to 1.0, τ the open area ratio ranging from
0 to 1 with τ = 0 and τ = 1 corresponding to impermeable and transparent scenarios, respectively,
and ‖ · ‖ the module of a complex number.
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III. NUMERICAL MODEL

The Laplace equation will be solved by a boundary element method. Following Refs. [30,31],
a disk of vanishing thickness is represented by a dipole distribution, and the scattering potential is
then expressed as

φS(x) = − 1

4π

∫∫
S
ψ (x0)

∂G(x, x0)

∂nx0

dS, (7)

where x0 ≡ (x0, y0, z0) and x ≡ (x, y, z) stand for the singularity point and flow-field point, respec-
tively, S denotes the disk surface, and G(x, x0) is the free-surface Green’s function in a finite water
depth h given by [32]

G(x, x0) = − 1√
R2 + (z − z0)2

− 1√
R2 + (z + z0 + 2h)2

− 2
∫ ∞

0

(κ + K ) cosh κ (z + h) cosh κ (z0 + h)

κ sinh κh − K cosh κh
e−κhJ0(κR )dκ, (8)

where K = ω2/g denotes the wave-number in deep water, R =
√

(x − x0)2 + (y − y0)2 is the
horizontal distance between the singularity point and flow-field point, and J0(u) is zeroth-order
Bessel function of the first kind [33]. The Green’s function G(x, x0) given by Eq. (8) satisfies the
Laplace equation, linear free-surface boundary condition, seabed condition, and radiation condition
in the far field.

To determine the distribution of velocity potential jump ψ (x0), the body boundary condition is
enforced on the plate, and we obtain a hypersingular integral equation [6],

− 1

4π

∫∫
S
ψ (x0)

∂2G(x, x0)

∂nx∂nx0

dS = ∂φS(x)

∂n
. (9)

In the numerical implementation, the disk is discretized into panels with constant strength. Capabili-
ties of numerically solving hypersingular integral equations for wave effects on perforated structures
have been demonstrated in Refs. [6,34].

To account for the hydroelastic deflection, the edge conditions are required. In the present paper,
both clamped edge and simply supported edge conditions are considered. For the clamped edge, the
vanishing of deflection and its radial derivative at the edge is imposed

η(r, θ ) = 0,
∂η(r, θ )

∂r
= 0 at r = R, (10)

where R is the radius of the disk, and polar coordinates r and θ are defined as the distance to the
center of the disk and the polar angle, respectively. For the simply supported edge, the deflection
and bending moment at the edge are null,

η(r, θ ) = 0,
∂2η(r, θ )

∂r2
+ ν

R2

∂2η(r, θ )

∂θ2
+ ν

R

∂η(r, θ )

∂r
= 0 at r = R, (11)

where ν denotes Poisson’s ratio. Then, we expand the deformation of a circular plate into a Fourier-
Bessel series,

η(r, θ ) =
∞∑

k=−∞

∞∑
l=0

[
ak,l Jk

(
μk,l

r

R

)
+ bk,l Ik

(
μk,l

r

R

)]
eikθ , (12)

where μk,l denote the eigenvalues determined by edge conditions in Eq. (10) for clamped edge
or Eq. (11) for simply supported edge, and Ik (u) is the kth-order modified Bessel function of the
first kind [33]. For the clamped edge and simply supported edge conditions considered here, the
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deflection at the edge is null, and Eq. (12) becomes

η(r, θ ) =
∞∑

k=−∞

∞∑
l=0

ak,l Fk,l (r)eikθ , (13)

where the radial base function is written as

Fk,l (r) = Jk

(
μk,l

r

R

)
− Jk (μk,l )

Ik (μk,l )
Ik

(
μk,l

r

R

)
. (14)

A. Linear pressure drop condition

Numerical implementation of the linear pressure drop condition is now considered. By applying
the linear pressure drop condition in Eq. (4), the boundary integral equation is written as

iσ (x)ψ (x) − 1

4π

∫∫
S
ψ (x0)

∂2G(x, x0)

∂nx∂nx0

dS + iω
∞∑

k=−∞

∞∑
l=0

ak,l Fk,l (r)eikθ = −n · ∇φI(x). (15)

The dynamic boundary condition on the disk given by Eq. (3) is enforced in a Galerkin manner
via multiplying a test function,

gm,n(r, θ ) = Fm,n(r)e−imθ , (16)

and integrating the test function over the plate area giving rise to

iω
∫∫

S
ψ (x)gm,n(r, θ )dS + g

∞∑
k=−∞

∞∑
l=0

ak,l

(
χ

μ4
k,l

R4
− ω2

g
γ

)
Imn,kl = 0, (17)

where Imn,kl is defined as

Imn,kl = 2πδm,k

∫ R

0
rFm,n(r)Fk,l (r)dr. (18)

A combination of the hypersingular integral equation (15) and dynamic condition Eq. (17) gives
rise to a linear equation system with unknowns ψ and ak,l , which can be solved numerically. It is
noted that Eqs. (15) and (17) are interconnected, and hydrodynamic forces and body’s deformation
influence each other. Therefore, the hydrodynamic loads and structural deflection are closely
coupled.

B. Quadratic pressure drop condition

As a sequel to Sec. III A, the numerical implementation for the quadratic pressure discharge
condition is now considered. Substituting the quadratic pressure drop condition in Eq. (6) into the
hypersingular integral equation (9) yields

C(x)ψ (x) − 1

4π

∫∫
S
ψ (x0)

∂2G(x, x0)

∂nx∂nx0

dS + iω
∞∑

k=−∞

∞∑
l=0

ak,l Fk,l (r)eikθ = −n · ∇φI(x). (19)

where C(x) is defined as

C(x) = 3π iωμτ 2

4(1 − τ )

∥∥∥∥∥
∂φI(x)

∂n
+ ∂φS(x)

∂n
+ iω

∞∑
k=−∞

∞∑
l=0

ak,l Fk,l (r)eikθ

∥∥∥∥∥
−1

. (20)

The dynamic condition is the same as Eq. (17). When the quadratic pressure drop condition is
implemented, the hypersingular integral equation becomes nonlinear because the coefficient C(x) is
dependent on the scattering potential φS(x) and coefficients of Fourier-Bessel series ak,l . Therefore,
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FIG. 2. Flow chart of the iteration procedure for solving a nonlinear equation system composed of Eqs. (19)
and (17).

an iteration procedure is required to solve the nonlinear equation system as in Ref. [23], and the
flow chart is illustrated in Fig. 2.

IV. HYDRODYNAMIC FORCES AND ENERGY ABSORPTION

Given the velocity jump across the disk ψ determined by the procedure elucidated in Sec. III,
the wave exciting force on the disk can be obtained

F = −iωρ

∫∫
S
ψ (x)n dS. (21)

Due to the fact that perforated plates can be used as a wave power take-off device, the wave
energy absorption is now considered. According to Linton and McIver [35], the dissipated energy
is defined as

Ediss = −ρ

∫∫
S

∂�(x, t )

∂t

[
∂�(x, t )

∂n
− ∂Z (x, t )

∂t

]
dS, (22)

where the overline denotes the time average. Then, the time-averaged wave power absorbed by the
disk is written as

Ediss = −ρω

2

∫∫
S

Re

{
− iψ (x)

[
∂φ∗(x)

∂n
+ iωη∗(x)

]}
dS, (23)

where the asterisk denotes complex conjugate.
For the linear pressure drop condition given by Eq. (4), the corresponding energy absorption by

a perforated plate is

EL
diss = ρω

2

∫∫
S
σ (x)‖ψ (x)‖2dS, (24)

which is consistent with the formulation in Refs. [3–5].
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When the quadratic pressure drop condition is adopted, the representation of the energy absorp-
tion is

EQ
diss = 3πρω2

8

μτ 2

1 − τ

∫∫
S
‖ψ (x)‖2

∥∥∥∥∂φ(x)

∂n
+ iωη(x)

∥∥∥∥
−1

dS. (25)

Given the incident wave energy per unit width [28],

Ein = ρgA2

2

ω

2k0

(
1 + 2k0h

sinh 2k0h

)
, (26)

the nondimensional absorbed wave energy is written as

κL,Q = k0EL,Q
diss /Ein, (27)

where superscripts “L” and “Q” correspond to linear and quadratic pressure drop conditions,
respectively.

V. VERIFICATION OF THE NUMERICAL MODEL

For verification purposes, hydrodynamic performances of perforated elastic disks subjected to
the linear pressure drop condition and a perforated rigid disk under a quadratic pressure drop
condition are considered. Comparison will be made with the results documented in the literature.
In the subsequent numerical examples, each disk is discretized into 4633 quadrilateral panels,
and the Fourier-Bessel expansions in Eq. (13) are truncated by k ∈ [−40, 40] and l ∈ [0, 20]. The
convergence test has been conducted to confirm the convergence of the present setup.

A. Wave power absorption by a perforated elastic disk

Wave power harnessed by a perforated elastic disk subjected to the linear pressure discharge
condition given by Eq. (4) is first considered. Figure 3 depicts the frequency responses of the nondi-
mensional wave energy absorption κL defined in Eq. (27) at R/h = 2.0, d/h = 0.2, χ/h4 = 0.01,
γ /h = 0.01, σh = 1.0, and ν = 0.3, where d denotes the submergence of the disk. Both simply
supported and clamped edge conditions are considered as in subplots (a) and (b), respectively.
Comparison is made with the results determined by the eigenfunction matching method by Zheng
et al. [4], and the agreement is satisfactory as expected.

B. Hydroelastic deflection of two side-by-side disks

Then, we consider the hydroelastic deformations of two identical perforated elastic disks in a
side-by-side configuration at k0h = π/2, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01, σh =
1.0, and ν = 0.3. Figure 4 illustrates the modulus of normalized hydroelastic deflections of the
perforated elastic disks ‖η‖/A, which are simply supported, and are subjected to the linear pressure
drop condition. The center-to-center distance between the disks is l/h = 5.0, and the wave incidence
angle is β = 45◦. The results determined by the present numerical model and the analytical solutions
by Zheng et al. [4] are presented in subplots (a) and (b), respectively. There is visibly perfect
agreement with the analytical solution, which demonstrates that the present numerical model is
able to tackle the perforated elastic disks subjected to linear pressure discharge condition well.

C. A perforated rigid disk in heaving motion

As a sequel to the verification associated with the linear pressure drop condition, cases relevant
to the quadratic pressure-velocity condition are now considered. Here, we are concerned with the
added mass and damping by a perforated rigid disk undergoing time-harmonic heaving motion
underneath a free surface as in Ref. [36], and the quadratic pressure-velocity condition given by
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FIG. 3. Nondimensional wave power absorption κL as a function of normalized wave number k0h at R/h =
2.0, d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01, σh = 1.0, and ν = 0.3. Comparison is made with the analytical
solutions by Zheng et al. [4].

Eq. (6) is used. For the wave radiation problem by a heaving rigid disk, the quadratic pressure
discharge condition becomes

ψ (x) = 4i

3πω

1 − τ

μτ 2

[
∂φ(x)

∂n
− ωa

]∥∥∥∥∂φ(x)

∂n
− ωa

∥∥∥∥, (28)

where a is the amplitude of the heaving motion. By substituting Eq. (28) into the hypersingular
integral equation (9), we can obtain the velocity potential jump ψ due to the heaving motion via
solving a nonlinear equation system. Then, the added mass and damping due to heaving motion are
determined

A33 = − ρ

ωa
Re

∫∫
S
ψ (x)dS, and B33 = Re

[
iρ

a

∫∫
S
ψ (x)dS

]
. (29)
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FIG. 4. Modulus of normalized hydroelastic deflections of two perforated elastic disks ‖η‖/A in a side-
by-side configuration subjected to a linear pressure discharge condition under a simply supported condition at
k0h = π/2, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01, σh = 1.0, ν = 0.3, and β = 45◦. The present
numerical results as in subplot (a) are compared with the analytical solutions by Zheng et al. [4] displayed in
subplot (b).

Figure 5 depicts the nondimensional added mass and damping coefficients by a heaving disk at
an oscillatory period T = 1.2 s varying with the porous Keulegan-Carpenter number defined as

KC = 1 − τ

2μτ 2

a

R
. (30)

Using the same case as presented by Molin et al. [36], the normalized radius of the disk is R/h = 0.6,
and the submergence is d/h = 0.5. The pressure discharge coefficient is μ = 0.5, and the open-area
ratio is τ = 0.2. The heaving added mass and damping are nondimensionalized with respect to ρR3,
and ωρR3, respectively. Both added mass and damping are dependent on the motion amplitude
due to the nonlinearity in the pressure discharge condition. Comparison is made with the analytical
solutions by Molin et al. [36], and generally good agreement has been obtained. This provides strong
evidence that the present model is capable of dealing with the quadratic pressure drop condition as
well.

VI. NUMERICAL RESULTS AND DISCUSSIONS

Due to the fact that the hydrodynamic characteristics of perforated elastic disks subjected to the
linear pressure discharge condition have been extensively studied in the existing literature [3–6],
they will not be elucidated here. The focus is then placed on perforated elastic disks subjected to the
quadratic pressure discharge condition in this section, and a multiparameter analysis will be made
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FIG. 5. Nondimensional added mass a33 and damping b33 of a heaving perforated rigid disk subjected
to the quadratic pressure discharge condition versus the porous KC number at μ = 0.5, τ = 0.2, R/h = 0.6,
d/h = 0.5, and T = 1.2 s. Comparison is made with the analytical solutions by Molin [20].

to investigate the hydrodynamic responses, including: wave exciting force, hydroelastic deflection,
and wave energy extraction.

A. Effect of incident wave amplitude

Figure 6 depicts the frequency responses of vertical wave exciting forces Fz and extracted wave
energy κQ by a horizontal perforated flexible disk for different incident wave amplitudes, including:
A/h = 0.01 and A/h = 0.02, at R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01, τ = 0.2, μ =
0.5, and ν = 0.3. The wave exciting forces are normalized with respect to πρgR2A, and both simply
supported edge and clamped edge conditions are considered. Due to the nonlinear characteristics of
the quadratic pressure discharge condition, both wave exciting force and wave power absorption,
shown in subplots (a) and (b), are dependent on the wave amplitude, and, thus, exhibit nonlinear
correlations. Specifically, the higher the wave amplitude is, the larger wave exciting force and
harnessed wave energy are. Moreover, the disk subjected to the clamped edge condition experiences
larger wave forces than that to the simply supported edge condition due to the stronger constraints
at the clamped edge, especially in the range of long waves (k0h < 3.0). However, the wave power
absorbed by disks under two edge conditions are comparable except a frequency range k0h < 3.0
where a disk subjected to the clamped edge harnesses slightly higher wave energy than that to
the simply supported edge. At A/h = 0.01, the nondimensional wave energy absorption reaches
a maximum at k0h ≈ 6.3, whereas the nondimensional wave number for maximum absorption at
A/h = 0.02 shifts to k0h ≈ 7.0. Therefore, the frequency, at which the maximum wave power is
absorbed, is dependent on the incident wave amplitude as well. It should be noted that, with the
increasing the wave steepness, the nonlinearity of water waves becomes increasingly important,
and, therefore, a high-order model would be desired to cope with this scenario.

B. Effect of flexural rigidity

The influence of the flexural rigidity, including: χ/h4 = 0.01, χ/h4 = 0.02, and χ/h4 = 0.04,
on the frequency responses of wave exciting forces Fz and absorbed wave energy κQ is presented
in Fig. 7 at an incident wave amplitude A/h = 0.02, and other physical parameters are the same as
in Fig. 6. With the increasing flexural rigidity, the disk experiences a larger wave exciting force as
in subplot (a). However, in the computed range of wave frequencies, especially for k0h > 3.0 as in
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FIG. 6. Normalized wave exciting force ‖Fz‖/(πρgR2A) and wave energy absorption κQ versus nondimen-
sional wave-number k0h for different wave amplitudes at R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01,
τ = 0.2, μ = 0.5, and ν = 0.3.

subplot (a), the influence of the flexural rigidity on the wave power absorption is inconsequential
because the extracted wave energy for different flexural rigidity parameters is comparable.

C. Effect of open-area ratio

Figure 8 exhibits the contour plot of nondimensional wave energy absorption κQ by a perforated
flexible disk with the edge simply supported varying with the nondimensional wave-number k0h
and open-area ratio τ at R/h = 2.0, d/h = 0.2, γ /h = 0.01, μ = 0.5, and ν = 0.3. The results
for incident wave amplitudes A/h = 0.01 and A/h = 0.02 are displayed in subplots (a) and (b),
respectively. When τ = 0 and 1, which correspond to impermeable and transparent scenarios,
respectively, no wave energy is harnessed as expected. In the range of τ ∈ (0, 1), one can obtain
an optimal open-area ratio τ = 0.08 at which the largest wave power is extracted. When τ = 0.08,
the nondimensional wave energy absorption κQ can reach 25.20 and 26.26 for A/h = 0.01 and
A/h = 0.02, respectively, at k0h ≈ 8.4.
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FIG. 7. Normalized wave exciting force ‖Fz‖/(πρgR2A) and wave energy absorption κQ versus nondi-
mensional wave-number k0h for different flexural rigidity coefficients at R/h = 2.0, d/h = 0.2, A/h = 0.02,
γ /h = 0.01, τ = 0.2, μ = 0.5, and ν = 0.3.

The wave exciting force acting on the disk is displayed in Fig. 9. The parameters are the same
as in Fig. 8. When τ is approaching zero, the disk becomes impermeable, and there is a peak in
the wave exciting force at k0h ≈ 0.7 for both A/h = 0.01 and A/h = 0.02. Moreover, the peak
value for A/h = 0.02 is higher than that for A/h = 0.01. With increasing the open-area ratio τ , the
wave exciting force drops dramatically. Therefore, perforating a disk can appreciably reduce the
wave force experienced. This feature has been made use of in the installation of subsea modules to
mitigate the environmental loads [20].

D. Comparison with the disk subjected to the linear pressure discharge condition

To investigate the maximum wave energy absorption for different pressure drop conditions,
the comparison with the results for the linear pressure drop condition is now made. Figure 10
exhibits the contour plots of nondimensional wave energy absorption κL by a perforated flexible
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FIG. 8. Contour plot of nondimensional wave energy absorption κQ by a perforated elastic disk with the
edge simply supported varying with nondimensional wave-number k0h and open-area ratio τ at R/h = 2.0,
d/h = 0.2, γ /h = 0.01, μ = 0.5, and ν = 0.3.

disk subjected to the linear pressure discharge condition. For brevity, the vertical axis is scaled with
respect to b/(1 + b) ranging from 0 to 1. The maximum wave energy absorbed associated with the
linear pressure drop condition is κL = 26.28, which is comparable with the results for the quadratic
pressure drop model in Fig. 8. The maximum wave energy occurs at k0h = 8.5 and b/(1 + b) = 0.8
corresponding to b = 4. To look into the connection with the quadratic model, an empirical formula
for linear perforation coefficient given in Ref. [37] is introduced

b = (17.8/ε + 143.2)τ 2

1 + 1.06τ
, (31)
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FIG. 9. Contour plot of normalized wave exciting force ‖Fz‖/(πρgR2A) acting on a perforated elastic disk
with the edge simply supported varying with nondimensional wave-number k0h and open-area ratio τ at R/h =
2.0, d/h = 0.2, γ /h = 0.01, μ = 0.5, and ν = 0.3.

where ε = k0A denotes the incident wave slope. For a small wave slope ε = 0.03, b = 4 corresponds
to an open-area ratio τ = 0.077 which is close to the value 0.08 for the quadratic pressure drop
model. At a large wave slope ε = 0.3, however, b = 4 corresponds to τ = 0.15 which appreciably
deviates from 0.08. Therefore, the incident wave frequency and open-area ratio at which the
maximum wave power is harnessed determined by the linear pressure model are almost consistent
with ones by the quadratic pressure drop condition at a small wave slope, but inconsistency is
witnessed when the wave slope is large. Moreover, the fact that the maximum value of wave power
captured is dependent on the wave amplitude cannot be represented by the linear pressure discharge
model.
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FIG. 10. Contour plot of nondimensional wave energy absorption κL by a perforated elastic disk subjected
to the linear pressure discharge condition with the edge simply supported varying with nondimensional wave-
number k0h and perforation coefficient b/(1 + b) at R/h = 2.0, d/h = 0.2, γ /h = 0.01, and ν = 0.3.

E. Effect of inclination angle

In the preceding analysis, the disk is horizontally placed. Here we consider scenarios of an
inclined disk. The disk is rotated with respect to an axis parallel to Oy axis, and the inclination
angle is defined positive when the upwave side is upward slanting. Figure 11 depicts the wave
energy extraction from perforated elastic disks with the edge simply supported at R/h = 2.0,
d/h = 0.2, A/h = 0.02, χ/h4 = 0.01, γ /h = 0.01, τ = 0.08, μ = 0.5, and ν = 0.3. The incident
wave heading angle is β = 0◦, which is in line with positive Ox axis. Besides the horizontal
deployment, two slanting deployments for inclination angles α = ±3◦ are also considered. In the
range k0h < 7, the wave wave power extraction for three deployments is commensurate. In the short

0 5 10 15
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40

κ
Q

α = 0◦

α = −3◦

α = +3◦

FIG. 11. Wave energy absorption κQ by a simply supported perforated elastic disk as a function of nondi-
mensional wave-number k0h for different inclination angles, including: α = 0◦, −3◦, and +3◦, at R/h = 2.0,
d/h = 0.2, A/h = 0.02, γ /h = 0.01, τ = 0.08, μ = 0.5, and ν = 0.3.
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FIG. 12. Modulus of normalized hydroelastic deflection ‖η‖/A of a perforated flexible disk subjected to
a quadratic pressure discharge condition under a clamped edge condition at k0h = 2.0, β = 0◦, R/h = 2.0,
d/h = 0.2, χ/h4 = 0.01, γ /h = 0.01, τ = 0.2, and μ = 0.5.

wave range k0h > 7, however, a slanting disk, no matter whether upward or downward, harnesses
appreciably more wave energy than that by a horizontal disk. Specifically, a disk with the upwave
side downward slanting (α < 0) can harness even larger wave power.
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FIG. 13. Same as Fig. 12 but for simply supported edges with the Poisson’s ratio ν = 0.3.
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FIG. 14. Modulus of normalized hydroelastic deflection of two identical perforated disks ‖η‖/A with the
edge clamped in a side-by-side configuration at k0h = 2.0, A/h = 0.01, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01,
γ /h = 0.01, τ = 0.2, and μ = 0.5. Two disks have the same immersion depths, and the center-to-center
distance is l/h = 5.0.

F. Hydroelastic deflections of a single disk

Figures 12 and 13 exhibit the normalized hydroelastic deflection ‖η‖/A of a perforated elastic
disk subjected to the clamped and simply supported edge conditions, respectively. The deflection
patterns for different wave amplitudes (a): A/h = 0.01; (b): A/h = 0.02 are displayed in subplots (a)
and (b). By comparing subplots (a) and (b), the nondimensional hydroelastic deflection ‖η‖/A is also
dependent on wave amplitude A, and a higher wave amplitude excites larger normalized hydroelastic
deflection. As for the displacement of hydroelastic deflections, the hydroelastic deflection subjected
to the simply supported edge condition as in Fig. 13 is appreciably larger than that to the clamped
edge as in Fig. 12, whereas there is an opposite tendency in the wave exciting forces as in Fig. 6 (a).
Therefore, stronger constraints at the edge can result in a reduction in the hydroelastic deflections
but an increase in the wave exciting forces.

G. Hydroelastic deflections of two disks in a side-by-side configuration

Figures 14 and 15 exhibit the normalized hydroelastic deflections of two perforated flexible disks
in a side-by-side configuration for clamped edge and simply supported edge conditions, respec-
tively. The centers of two disks are located at (xc

1, yc
1, zc

1)/h = (0.0, 2.5,−0.2) and (xc
2, yc

2, zc
2)/h =

(0.0,−2.5,−0.2). The hydroelastic deflection patterns for different wave incidence angles β = 0◦,
β = 45◦, and β = 90◦ are displayed in subplots (a)–(c), respectively. As also observed for the
single disk scenario, a disk under a clamped edge condition with stronger constraints has smaller
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FIG. 15. Same as Fig. 14 but for simply supported edges with the Poisson’s ratio ν = 0.3.

hydroelastic deflection than that subjected to a simply supported edge. When the wave incidence
direction is in line with the deployment line β = 90◦ as in subplots (c), the lee side disk has much
smaller hydroelastic deflection than the weather side one. The reason is that the weather side disk
acts as a “breakwater,” appreciably dissipating waves downstream. As a consequence, the lee side
disk experiences much smaller hydroelastic deformation.

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

A numerical model is developed via fully coupling the boundary element method for hydrody-
namic loads and modal functions for structural deformation to investigate interactions between water
waves and perforated elastic disks. The disks are either simply supported or clamped at their edges,
the quadratic pressure discharge condition is applied. After verification with benchmark results, a
multiparameter analysis has been carried out to delve into flow physics concerning wave exciting
force, hydroelastic deformation, and wave energy extraction. Through this paper, the following
conclusions are drawn:

(1) Nondimensional hydrodynamic responses, including: wave exciting force, wave energy
absorption, and hydroelastic deflection, are dependent on the incident wave amplitude because
of nonlinear characteristics of the quadratic pressure drop condition. Generally, the higher wave
amplitude is, the larger hydrodynamic responses are induced.

(2) Increasing the flexural rigidity of the disk or rendering stronger constraints at the edge leads
to an increase in the wave exciting forces and a reduction in hydroelastic deformation. Nevertheless,
in the computed range of wave frequencies, they have negligible effects on wave energy absorption.
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(3) It is possible to devise an optimal open-area ratio so that high wave power is harnessed. The
optimal open-area ratio for the quadratic pressure drop model is only consistent with the one for the
linear pressure drop model at a small wave steepness, and appreciable inconsistency is observed at
a large wave slope. Moreover, the linear pressure discharge model cannot represent the dependency
of the maximum wave power captured on the wave amplitude, indicating the limitation of the linear
pressure drop model.

(4) A disk with the upwave-side downward slanting can harness more energy than that by a
horizontal counterpart especially in short waves. This feature can be used either in a wave basin to
mitigate wave reflection or in plate-shaped wave energy converters to capture higher energy.

(5) When the incident waves propagate in line with the deployment line of multiple disks, the
lee-side disk has much smaller responses because waves are considerably attenuated by the weather
side disk.

In view of the fact that flexible bodies can extend the theoretical limit of wave power absorption
[38], the present model will be generalized to study flexible plate shaped wave energy converters
with discrete power take-off system as in Ref. [39]. Moreover, a perforated plate subjected to the
quadratic pressure drop condition can also be applied as a fictitious dissipation surface to model
the energy dissipation due to flow separation [40–42]. In view of small thickness of disks, viscous
effects may play a part, and the energy dissipation due to flow separation from the edge will be
considered in future studies.
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