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Modeling of impulse waves generated by a viscous collapse in water
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The generation of tsunamis by landslides has been the object of a lot of studies, focusing
in particular on the wave maximum amplitude η0,max to quantitatively assess the damage
which these events may cause. The literature has long identified that this amplitude η0,max

is correlated to a Froude number Frmax proportional to a maximum slide front velocity
ẋ f ,max. Yet the dynamics of the slide needs to be determined from initial conditions to allow
prediction of the maximum amplitude η0,max. Based on a canonical initial configuration, the
aim of the present work is thus to better understand the transient physics connecting the
landslide to the wave growth leading to the prediction of the wave maximum amplitude.
In particular, the collapse of a Newtonian slide from air to water is considered here,
investigating the role of two key ingredients: the slide inertia and viscous dissipation. The
parameter space is systematically varied beyond laboratory and geophysical estimations to
gain understanding on the fundamental process of wave formation, with two-dimensional
three-phase numerical simulations using Basilisk. Results show that the column collapse
of a Newtonian slide allows us to capture most of the physics of wave formation, and
the correlation between η0,max and the Froude number Frmax ∝ ẋ f ,max is recovered. A
dynamical model of collapse reveals how the interplay between inertia and dissipation
controls the slide dynamics through a Reynolds number Re(t ) which, in turn, determines
the kinematics of slide-water interface as quantified by the Froude number Fr(t ). A simple
model based on an idealised evolution of the collapse dynamics and volume conservation
allows us to explicitly determine Frmax and η0,max from the initial condition. This model
allows us to capture results obtained from the numerical simulations and in accordance
with empirical correlations usually found in the literature.

DOI: 10.1103/PhysRevFluids.7.054801

I. INTRODUCTION

The shape and dynamics of impact waves have been widely considered in the literature, partic-
ularly due to their connection with natural hazards such as tsunamis. One of the main difficulties
in providing a predictive model for the characteristics of a tsunami wave is due to the variety of
the triggering processes, from submarine earthquake [1] to subaerial landslides [2]. Even just in
the latter situation, the possible geographical configurations leading to a tsunami are extremely
diverse [3–5, for instance]. Yet, in the midst of this diversity, common features stand out from one
configuration to another. That is why canonical configurations have been widely used to provide the
simplest mechanisms linking the wave characteristics and the triggering process. The present work
restricts to the study of subaerial landslides.
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In the specific case of subaerial landslides, the study of such canonical configurations is expected
to lead to a relationship between the slide dynamics and the wave characteristics, such as its
maximum amplitude η0,max and its horizontal extension. The case of a rigid slide has first been
considered in the literature [6–12]. In most of these studies, a rigid block slides along an inclined
plane before impacting the free surface of a water tank. With a motivation for wave prediction, the
wave characteristics have been linked to several properties of the slide like its velocity, volume,
and shape. More recently, the rigid block has been replaced by a granular material in order to
account for more complex dynamics of the slide [13–19]. Doing so, several physical ingredients
have been added to the slide which can hardly be dissociated. Among others, deformation, porosity,
and compaction/dilatancy of the sliding granular medium are probably significant ones.

Several semianalytical models based on multivariable regression analyses can be found in the
literature of waves induced by subaerial slides [12,19–22]. These studies identify several slide
or terrain characteristics which play a role in the wave generation, group them in dimensionless
numbers, and perform regressions to determine how these characteristics best correlate with mea-
surements in the form of power laws. An example is the impulse product parameter [19] given by
P = FrS1/2M1/4 cos(6α/7)1/2 with Fr a Froude number, S the dimensionless slide thickness, M the
dimensionless slide mass, and α the angle of the slope where the slide is initially released. Such
correlations show how each of several quantities contribute to observing a certain wave in exper-
iments. A key aspect of this approach is therefore to identify the appropriate set of dimensionless
numbers, which is usually done by dimensional analysis, or with the support of equations of motion
by performing a scaling analysis [17]. Naturally, such correlations best agree with measurements.
Nonetheless, the various coefficients which appear in these power laws have a physical origin whose
understanding requires further modeling. The present work is precisely interested in understanding
the physical grounds of the wave development.

In order to provide analytical models describing the growth of a wave, simplifications are
required. In particular, for all tsunamis generated by a subaerial landslide, the Froude number
has long been acknowledged as the main governing dimensionless number (see in particular
Ref. [13]), with a general definition of slide-to-wave velocity ratio whose details vary between
authors (e.g., Refs. [14,16,23]). Various studies evidenced accurate empirical correlations between
this Froude number and wave properties such as its mechanical energy and maximum amplitude
η0,max [12,13,16,23]. Based on this observation, an analogy was built on the wave maker [24,25].
In 1970, Noda [24] established an analytical connection between η0,max and Fr and numerically
obtained that

η0,max

Hw

= 1.32Fr, (1)

with Fr = vp/
√

gHw, vp the constant horizontal velocity of the wave maker, and Hw the initial still
water level. In 1992, Goring [25] directly obtained the analytical relationship

η(t )

Hw

= Fr(t )

1 − Fr(t )
, (2)

with η(t ) the water elevation at the wave maker–water interface, Fr(t ) = vp(t )/c(t ) with vp(t ) the
time-dependent piston velocity, and c(t ) the wave celerity at the same time. Therefore, here the
piston velocity was analytically related to the wave amplitude. Note that η(t ) is maximum when
Fr(t ) is maximum itself. Recently, Sarlin et al. [26] showed that most of the wave types identified in
their experiments of a granular column collapsing at the surface of a water tank can be produced by
the motion of a piston or wave maker. For example, in the case of solitary-like waves, based on (2)
and taking c = cmax = √

gHw[1 + η0,max/(2Hw )], the authors showed that the maximum velocity of
the slide front measured in their experiments was comparable to the expected maximum wave-maker
velocity vp,max, having

η0,max

Hw

= Frmax − 1 +
√

1 + Fr2
max, (3)
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with Frmax = vp,max/cmax. This highlights the robustness of the η0,max(Frmax) relationship. The
relationships in Ref. [26] are a first attempt to build the full dynamical process from the collapsing
dynamics toward the wave generation. Nevertheless, these relationships still require the knowledge
of the sliding dynamics when vp is maximum. In other words, the wave properties are determined
by measurements on the slide after the process of wave generation has started. Therefore, this fails
at providing a full description of the multiphase system from the initial condition (slide and water
at rest) until the state of wave maximum amplitude.

Overall, the studies aforementioned provide accurate laws to compute the wave maximum
amplitude η0,max only based on the Froude number. However, this Froude number, which should be
proportional to the maximum slide front velocity, is usually measured. In order to obtain predictive
models of η0,max(Frmax), it would be necessary to compute the Froude number only from initial
conditions, i.e., prior to the collapse onset. There have been some attempts (see Ref. [18]) to model
similar landslide dynamics during the transient, which provide similar scalings. However, these
models require numerical integrations and the use of nonlinear regression schemes to relate initial
slide properties to its time-dependent characteristics during collapse.

In this framework, the present study aims at providing a model including the relevant processes
for wave formation from known initial conditions. The previous discussion has shown that it requires
simplifications.

According to previous results available in the literature, dominant processes can be extracted.
The transient wave development is the manifestation of an energy transfer from the slide—whose
interface is not initially in equilibrium with water and air because it is denser than both of them—to
the pool, with some energy dissipated in the slide. The diversity of slide models which have
led to a relationship η0,max(Frmax) supports the idea that a granular rheology is not required to
account for this energy transfer. The rate of energy transfer is expected to be governed by the
slide deformation, itself controlled by the slide inertia (or density), and its dissipation (or effective
viscosity). Varying both the slide inertia and dissipation modifies the slide dynamics. This is the
starting point of this study: how do inertia and dissipation modify the slide dynamics (as quantified
by a Reynolds number), and therefore the kinematics of the slide-water interface (as quantified by a
Froude number) which, in turn, controls the wave maximum amplitude η0,max(Frmax)?

Accordingly, the present study considers the numerical modeling of an initial column collapsing
into a free surface water tank, for which all the three phases (slide, water, and air above, which
can be engulfed during collapse) are a Newtonian continuum. This configuration allows us to
continuously vary the physical properties of the sliding phase so as to cover a wide space of the
relevant dimensionless parameters and to build a predictive model of waves generated by a collapse.
Although the flow may be turbulent for some waves, numerical simulations are performed in a
plane since we expect two-dimensional (2D) simulations to catch the essence of the dynamics to be
modelled.

The paper is organized as follows. Section II provides a description of both the physical model
and the numerical method. In Sec. III, flow regimes are characterized in the parameter space. It
confirms the relevance of a Newtonian rheology to both provide wave properties similar to those
obtained in the experiments previously described and to recover the correlation η0,max(Frmax).
Subsequently, Sec. IV focuses on modeling the slide dynamics from initial conditions while Sec. V
presents models to connect the slide dynamics to the transient wave growth. Together, these two
sections provide predictive tools to determine the wave maximum amplitude solely from initial
conditions in the configuration studied here. Conclusions are finally drawn in Sec. VI.

II. NUMERICAL MODELING OF WAVES GENERATED BY A COLUMN COLLAPSE

A. Dimensionless numbers characterizing the slumping and wave dynamics

The problem modelled in this paper is sketched in Figs. 1(a) and 1(b). It consists of an initial
column of heavy fluid, referred to as the slide phase, collapsing into a pool of water, both evolving
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(a) (b)

FIG. 1. Representation of the geometry of the problem (a) initially and (b) at larger times once the wave is
formed and propagates.

into air. Initially, the geometry is parameterized by three lengths: the column height Hc, its width
Wc, and the water depth Hw with Hc > Hw for a partly immersed landslide.

Based on the slide properties which are varied in the following, two control parameters are
defined:

Rρ = ρs

ρw

; Rμ = μs

μw

, (4)

with ρs and μs (respectively, ρw and μw) the slide (respectively, water) density and dynamic
viscosity. Throughout this paper, the parameter space (Rμ, Rρ ) will thus be the main basis for
comparing different simulations. As already mentioned, the geometry of the initial system is
unchanged in this study, i.e., the dimensionless geometrical parameters (Wc/Hc, Hc/Hw) are kept
constant in all simulations.

Two numbers can now be defined to characterize the dynamics of the slide and wave. As previ-
ously mentioned, the wave structure and dynamics are usually related to the Froude number, defined
as a slide-to-wave velocity ratio. During wave formation, the energy transfer mostly happens due to
the horizontal motion of the slide pushing water when collapsing, and inducing the propagation of
the wave. A temporal Froude number can therefore be defined as

Fr(t ) = us(t )

uwave(t )
(5)

In this equation us(t ) = ẋ f (t ) is the slide front velocity; therefore, this definition is intrinsically
linked to the slide dynamics. In the (Rμ, Rρ) parameter space, the slide dynamics is mostly governed
by a balance between inertia and viscous dissipation, disregarding wave formation. We thus define
the Reynolds number associated with the slide dynamics, and more specifically its front velocity, as

Re(t ) = ρsus(t )Hc

μs
. (6)

It should be noted that both Re(t ) and Fr(t ) depend on t . A key question is thus the prediction of
the relevant time to prescribe a relationship between Fr and the state of wave maximum amplitude
as discussed in the literature (see Sec. I). Section III will establish the time when these two numbers
should be computed to provide valuable information. For now, it shall be noted that two control
parameters can be proposed from their initial estimation as

Fr0 =
√

1 − 1

Rρ

√
Hc

Hw

, (7)

and

Re0 = Rρ

Rμ

√
1 − 1

Rρ

ρw

μw

√
gH3

c . (8)
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Compared to Eqs. (5) and (6), the characteristic velocities uwave and us have been chosen as uwave =√
gHw, the celerity of long waves, and us ≡ √

(1 − 1/Rρ )gHc, the typical velocity of a parcel of
density ρs falling in the pool over a distance Hc when subjected to buoyancy only.

Note that control parameters are therefore either (Rμ, Rρ ) or alternatively (Re0, Fr0).

B. Numerical simulations

The three-phase DNS of air, water, and slide are performed thanks to the open-source software
Basilisk [27] using a volume-of-fluid method. The latter corresponds to solving the Navier-Stokes
equations for only one pseudo fluid, whose properties vary in space and time thanks to the
implementation of three volume fractions 0 � fi�3(x, y, t ) � 1, one assigned to each phase. In every
cell of the mesh, the local density and dynamic viscosity are implemented as an arithmetic average
of the respective constant densities ρi�3 and dynamic viscosities μi�3 of all phases, weighted by the
volume fractions. The fluid properties therefore evolve as volume fractions are passively advected
by the local velocity field. Equations are solved for an incompressible flow with finite volumes using
a centered formulation of the Navier-Stokes equations (see Ref. [28]). The stability of the numerical
method is ensured thanks to a CFL condition. An adaptive quadtree mesh is adopted to perform the
simulation (see Ref. [29]), which adapts according to the local values of density and the velocity
components (u, v) to have a sufficient resolution of their gradients. The ability of the code to capture
the physics at play was initially tested with experiments from the literature, see Appendix A.

The initial geometry is sketched in Fig. 1(a). The column of slide collapses in a square domain
of size Ld with a no-slip condition on the velocity field at the bottom and right wall. A symmetry
condition is imposed on the left wall. This prevents the slide from wetting the left wall, as it would
if a no-slip condition were imposed. At the top of the domain, the continuity of the vertical velocity
component v is imposed, i.e., ∂v/∂y = 0 so that air may flow in and out of this boundary. A constant
pressure is also imposed at the top.

The size Ld of the square computational domain is sufficiently large compared to (Hc,Wc, Hw ) to
be considered irrelevant in the slide and wave dynamics throughout all simulations. The parametric
study is performed with Wc/Hc = 3.37, Hc/Hw = 1.95, and Ld/Wc = 13.8. According to the previ-
ous discussion on the relevant parameters to characterize the influence of inertia and dissipation of
the slumping phase (see Sec. II A), these geometrical parameters remain the same for all simulations.

At t = 0 the column is released. Then, for t > 0, the slide front x f (t ) evolves toward increasing
x while a wave is generated and propagates with an amplitude η0(t ) at the crest of the wave, with
η(x, t ) the surface elevation [see Fig. 1(b)].

In order to vary (Rμ, Rρ ), only the slide properties vary throughout this study. Therefore usual
properties are adopted for water (ρw = 1000 kg m−3 and μw = 10−3 Pa s) and air (ρair = 1.0 kg m−3

and μair = 10−5 Pa s). Note that in practice landslides or cliffs collapsing in water are compressible
media, hence their density is expected to vary in a wider range than usually considered for granular
media in the laboratory (ρs � 2000 kg m−3). Hence Rρ is systematically varied in the wide range
[1,14]. The same consequence holds for the slide viscosity so that Rμ ∈ [1, 3 × 104]. Note that
this range includes the mean viscosity 8.7 Pa s (i.e., Rμ = 8700) estimated from the μ(I ) rheology
[30,31] for a dry granular medium with the geometry hereabove.

III. FLOW CHARACTERIZATION: ADEQUACY OF A NEWTONIAN DESCRIPTION

A. Typical flow regimes in the (Rμ, Rρ ) plane

We first explore the type of waves observed in the parameter space (Rμ, Rρ ). In particular,
Fig. 2 shows typical snapshots of water surface deformation and slide shape obtained in the four
corners of the parameter space. The waves obtained are the ones previously reported in the literature
[13,16,23,32]: solitary-like waves, hydraulic jumps, and rollers.

For Rμ � 1 and Rρ � 1 [see Fig. 2(d) for the specific couple (Rμ, Rρ ) = (104, 1.2)], we observe
a leading wave resembling a soliton, followed by a dispersive wave train. For simplicity, this solution
is referred to as a solitary-like wave in the following. In this case, the slide dynamics is expected to
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FIG. 2. Waves produced in the four extreme configurations of the parameter space. The layout (see arrows)
is such that Rμ (respectively, Rρ) increases from left to right (respectively, from bottom to top). Air and slide are
respectively masked in gray and dark while the horizontal velocity field appears in water. The dimensionless
time corresponds to t∗ = t

√
g/Hc. (a) Roller (Rμ, Rρ ) = (1, 14). (b) Hydraulic jump (Rμ, Rρ ) = (104, 14).

(c) Hydraulic jump (Rμ, Rρ ) = (1, 1.2). (d) Solitary-like wave (Rμ, Rρ ) = (104, 1.2). Dotted lines indicate the
initial position of the slide.

be weakly inertial, as Rρ � 1, and highly dissipative, as Rμ � 1. This induces a slow collapse of
the slide with weak deformation, pushing water along the entire depth of the pool [see Fig. 2(d)]. It
can be anticipated that this situation is close to a pistonlike or wave-maker-like motion inducing the
wave.

Rollers, on the other hand, are obtained for a highly inertial slide, i.e., Rρ � 1, and only slightly
dissipative, i.e., Rμ � 1 [see Fig. 2(a)]. While the wave is generated, the slide deforms considerably
and moves fast. The way water is set in motion is very different from the previous case. Here the
slide is strongly deformed and moves fast close to its front, as if sliding underneath the wave [see
the second frame of Fig. 17(b)]. Further observations show that the slide propagates rightward with
the wave while remaining underneath, showing a long-lasting interaction between the slide and the
wave. The latter eventually breaks and dissipates energy with a considerable mixing of the pool.
Later, this violent wave transforms into a hydraulic jump.

Hydraulic jumps are observed in the two other corners of the parameter space, i.e., (Rμ �
1, Rρ � 1) and (Rμ � 1, Rρ � 1). An image of the configuration (Rμ, Rρ ) = (104, 14) can be seen
in Fig. 2(b). Due to its large viscosity the slide hardly deforms. However since Rρ � 1, the slide
spreads faster than for (Rμ � 1, Rρ � 1) [Fig. 2(d)]. For (Rμ, Rρ ) = (1, 1.2), the collapse occurs
on a similar timescale than the previous one, but the shape is less smooth [see Fig. 2(c)]. The
slide front rolls up, as it has been observed in several experiments of impulse waves generated by
a granular collapse [15]. Despite this difference, the dynamics is very similar to the previous one
(Rμ, Rρ ) = (104, 14), leading to the same wave type.

B. Waves properties in the plane (Rμ, Rρ )

Several types of wave have been identified in the parameter space (Rμ, Rρ ). Yet the notion of
wave type has to be considered with caution since it depends on the moment when the wave is
characterized. In all situations, we have observed that the collapse leads to an initial deformation
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FIG. 3. Maps of the type of wave in (Rμ, Rρ ), in the close field (a) and at x = 10Wc (b). Colormap: rollers,
hydraulic jumps, solitary-like waves.

of the free surface which is nearly symmetric (as more clearly observed in the Appendix B, see
Figs. 16–19). Thus, at early stages the wave type is somewhat similar in the entire parameter space.
Later, the perturbation rapidly amplifies and can gently evolve into a solitary-like wave for (Rμ �
1, Rρ � 1) or to an asymmetric and subsequently breaking wave otherwise (Fig. 2). In this latter
case, two wave types are observed: either a roller associated with a plunging breaker or a hydraulic
jump associated with a spilling breaker. Not surprisingly, on a longer timescale, both of these two
types eventually lead to solitary-like waves, which stand as the solution of nonlinear water wave
equations in a shallow layer limit. Consequently, when seeking the maximum amplitude of the wave,
one usually distinguishes three types of wave (as in Fig. 2 for instance), while other classifications
are obtained at larger timescales.

This evolution of the wave morphology in time is manifest when comparing Figs. 3(a) and 3(b),
which present in (Rμ, Rρ) the types of waves as classified previously and identified at two different
locations. In these figures, wave types are distinguished with a specific color code, which is kept
similar throughout the paper. Note that the gradual evolution of wave types toward solitary-like
waves is confirmed: solitary-like waves gain in proportion of the parameter space at the expense
of rollers, as shown in Fig. 3(b). However, the long-term evolution depends on the early state of
the wave [i.e., Fig. 3(a)]. Thus, the prediction of wave dynamics is intimately linked to the initial
phase—whatever the long-time evolution. Therefore, in the rest of this study, the “type of wave
generated” refers to the classification in Fig. 3(a).

To highlight the influence of inertia and dissipation—controlled by (Rμ, Rρ)—on the type of
wave generated, the maximum wave amplitude η0,max/Hw and the pool’s maximum mechanical
energy are shown in Figs. 4(a) and 4(b). Not surprisingly, Fig. 4(a) reveals that a clear correlation
exists between the wave amplitude and the wave type, as rollers tend to be higher than hydraulic
jumps, themselves slightly higher than solitary-like waves. Since a wave energy is connected to its
amplitude, a similar correlation appears in Fig. 4(b) presenting the ratio of the maximum-to-initial
mechanical energy of water, Emax

m,w/Em0,w where w stands for water. These energies are computed
by integrating over the whole volume of water the gravitational potential energy per unit volume
(ρwgy) as well as the kinetic energy per unit volume [ 1

2ρw(u2 + v2)]. These last observations clearly
highlight the influence of the balance between (i) the initial available potential energy associated
with the slide density Rρ and (ii) dissipation associated with the slide viscosity Rμ on the transfer
of energy from the initial state to the wave. In particular, η0,max/Hw and Emax

m,w/Em0,w both increase
with increasing Rρ and decreasing Rμ.

C. Relevant dimensionless numbers of slide-to-wave interaction

To highlight the influence of the Reynolds number and the Froude number on the wave de-
velopment, Fr0 (7) and Re0 (8) defined from the initial configuration are shown in the plane
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FIG. 4. (a) Map of the maximum wave amplitude. (b) Map of the maximum value reached by the pool
mechanical energy throughout the whole simulation.

(Rμ, Rρ ) in Figs. 5(a) and 5(b), respectively. From (7), Fr0 does not depend on Rμ so it can be
anticipated that Fr0 cannot account for the complete map of wave type. This is confirmed by Fig. 5(c)
where no clear correlation appears between Fr0 and the maximum wave amplitude. It implies that
us = √

(1 − 1/Rρ )gHc is too coarse an approximation of the slide velocity, which requires a better
estimate.

The relevant slide velocity to be incorporated in the Froude number therefore requires specific
attention to define a Froude number more adequate than the control parameter Fr0. The question
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FIG. 5. Maps of (a) Fr0 and (b) Re0 in (Rμ, Rρ ). (c) Evolution of the maximum wave amplitude versus Fr0.
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is: When should us(t ) be computed? As long as the wave is still receiving energy from the slide,
it may change shape and velocity, and therefore adapt to become a stable solitary-like wave or be
disturbed and steepen until breaking. As the wave runs away from the slide, such energy transfers
are expected to decrease. The wave type is thus determined when the stage of formation is over,
which we refer to as the stage of “slide-wave separation.” Schematically, at that moment, the wave
tail is formed and runs past the slide front. It can thus be considered that separation is connected to
the deceleration of the slide while the wave propagates away with a nearly constant velocity. This
partly explains why, in the literature, the time of maximum slide front velocity has proved adequate
to link the collapse dynamics and the state of maximum wave amplitude (see Sec. I).

From here onward, the characteristic velocity scales appearing in the definitions (5) and (6) are
always taken to be uwave = √

gHw and us(t ) ≡ ẋ f (t ).
Now let us specifically consider the time tmax when the slide front velocity is maximum, as

the new characteristic time to compute the Reynolds and Froude numbers: ẋ f ,max = ẋ f (t = tmax),
Remax = Re(t = tmax), and Frmax = Fr(t = tmax). At tmax, Eqs. (5) and (6) read

Frmax = ẋ f ,max√
gHw

, (9)

Remax = Rρ

Rμ

ρw

μw

Hcẋ f ,max. (10)

For now, ẋ f ,max is determined numerically from simulations. Both Remax and Frmax are plotted
in Fig. 6. The map of Remax is very similar to that of Re0 in Fig. 5(b) in the range of (Rμ, Rρ)
considered. As for the Froude number, a striking similarity appears between the map of Frmax and
the map of wave type in (Rμ, Rρ ), confirming that tmax is a relevant time to compute Fr(t ) and Re(t ).

The expected correlation between the Froude number Frmax and the maximum wave amplitude
becomes clear in Fig. 6(c). The shaded cone indicates a range of linear relations η0,max/Hw = αFrmax

with α ranging in [1,1.4], as previously reported in the literature (α = 1.23 in Ref. [23]; α = 1.32 in
Ref. [24], slightly overestimating experimental results from Ref. [33]). At larger Frmax, two branches
of solutions are obtained in Fig. 6(c). They correspond to a bifurcation of the waves obtained for
η0,max/Hw � 1 or almost equivalently Frmax � 1. The first branch of larger wave amplitudes is
associated with Rμ < 103, and the second branch of lower amplitudes corresponds to Rμ � 103.
The previous shaded cone is found to poorly describe these branches of solution at large Frmax.
In this case, a power-law trend η0,max/Hw = αFrβ

max with β < 1 is revealed to be more adequate.
One obtains β ≈ 0.74 for the upper branch and β ≈ 0.45 for the lower one. It can be noted that
the power law obtained for the upper branch is close to the values reported in the literature (see
Refs. [24,26] and Ref. [23] which reports a power law η0,max/Hw = 1.23Fr0.8

max), while the lower
branch is more concave with lower values of wave amplitudes when Frmax > 1. To the best of the
authors’ knowledge, this second branch has not been reported in the literature yet. Most likely, this
is because this branch corresponds to simulations with Rμ � 103 and Rρ � 4, which leads to several
combinations of (Rμ, Rρ) which can hardly be reached in experiments and are far from geophysical
values.

To conclude, a Newtonian collapse contains all the required ingredients to numerically model
the wave formation from a slide collapsing in water: Wave properties are similar to those obtained
in experiments in the literature, and the Newtonian slide enables us to recover the correlation
η0,max(Frmax). Understanding and modeling the dynamics of the slumping motion is now funda-
mental to predict the kinematics of the slide front, and to then make it possible to predict the wave
growth by modeling the slide-wave interaction. We thus focus in Sec. IV on the analysis of the
collapse dynamics to predict its front velocity from initial conditions.

IV. MODELLING THE COLLAPSE DYNAMICS

We assume in the following that three different regimes can be distinguished in the collapse
dynamics.
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FIG. 6. Maps of Frmax (a) and Remax (b) in (Rμ, Rρ ). (c) Evolution of the maximum wave amplitude versus
Frmax. The shaded cone corresponds to slopes within the range 1–1.4. Two branches are distinguished in
the region where η0,max/Hw > 1: Those having Rμ � 103 (lower branch, dashed curve with a coefficient of
correlation r2 = 0.884) and those having Rμ < 103 (upper branch, dotted curve with a coefficient of correlation
r2 = 0.949).

The first one is the vertical acceleration phase. As the slide freely falls under gravity, keeping a
rectangular shape, conservation of mass imposes that

ẋ f ,a = HcWcg′t(
Hc − 1

2 g′t2
)2 , as long as t <

√
2Hc

g′ , (11)

where ẋ f ,a is the modelled front velocity during the acceleration phase, and g′ = g(1 − 1/Rρ ) is the
reduced gravity.

After this initial phase, the slide may go through either an inertial regime of constant velocity
or a viscous regime of deceleration [34,35]. Concerning the inertial regime, the front velocity reads
(see Refs. [34] and [35] in the respective contexts of dam-breaks and gravity currents)

ẋ f ,i =
√

g′Hc, (12)

where ẋ f ,i stands for the front velocity in the inertial regime.
The viscous regime corresponds to a balance between viscous stress, overcoming inertia, and

buoyancy. As a result the following relationship was established (see Ref. [35]):

ẋ f ,v = 1.41

5
×

[
ρsg(Rρ − 1)(HcWc)3

μs

]1/5

t−4/5 (13)

with ẋ f ,v the front velocity in the viscous regime.
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FIG. 7. Transition between regimes (a) in the order acceleration-inertial-viscous for tc,i < tc,v and (b) in the
order acceleration-viscous for tc,i > tc,v . For (a) and (b), the three regimes (11)-(12)-(13) are visible respectively
in dark, blue, and red curves. The curve of every regime is solid when the slide evolves in this regime, and it is
in dotted line otherwise. Vertical dashed lines indicate the intersection of the acceleration regime (in dark) with
another one. (c) Theoretical value of the ratio ẋth

f ,max/ẋ f ,i calculated from the analytical expressions (11)–(13).
The dotted region corresponds to unit values of ẋth

f ,max/ẋ f ,i.

From the three regimes aforementioned, two situations can be distinguished, as sketched in
Figs. 7(a) and 7(b). On one hand in Fig. 7(a), the three regimes (11)-(12)-(13) have been represented,
and the dark curve of acceleration turns out to cross the inertial regime before the viscous regime.
By denoting tc,i (respectively tc,v) the time when the acceleration regime (11) crosses the inertial
regime (12) [respectively, the viscous regime (13)], this situation corresponds to tc,i < tc,v . In that
case the maximum slide front velocity is the inertial velocity ẋ f ,i as modelled by (12). On the other
hand, as sketched in Fig. 7(b), the acceleration phase could directly transition to the viscous regime
before ever reaching the inertial regime (here the dark curve crosses the viscous regime first). In
this situation, tc,i > tc,v . In that case the maximum slide front velocity is different from the constant
inertial velocity ẋ f ,i and is instead given by equating the velocities of Eqs. (11) and (13). Following
this approach, a theoretical estimation of the maximum front velocity ẋth

f ,max (where th denotes
theory) can be obtained

ẋth
f ,max =

{
1.41

5 ×
[

ρsg(Rρ−1)(HcWc )3

μs

]1/5
t−4/5
c,v if tc,i > tc,v√

g′Hc if tc,i < tc,v
(14)

Note that tc,i and tc,v cannot be obtained analytically and are always computed numerically. Inter-
estingly, the theoretical estimate ẋth

f ,max enables us to distinguish two distinct groups in the (Rμ, Rρ )
plane, as shown in Fig. 7(c), where ẋth

f ,max/ẋ f ,i is represented in color scale. In the inertial situation
(dotted dark red region) ẋth

f ,max/ẋ f ,i = 1 for tc,i < tc,v , while viscous slides satisfy ẋth
f ,max/ẋ f ,i < 1

with tc,v < tc,i. It appears that this distinction in the (Rμ, Rρ ) plane nearly corresponds to the
distinction of the two branches of solutions reported in Fig. 6(c).

It should be noted that sketches 7(a) and 7(b) are quite simplistic. The slide is expected to
evidence smoother transitions from one regime to the other. Nevertheless, this approach suggests
a strong correlation between the ratio � = tc,v/tc,i and the maximum slide front velocity or
equivalently Remax obtained from numerical results. To confirm these observations, the evolution
of Remax is plotted as a function of � in Fig. 8(a) (dot symbols). This highlights the expected
correlation according to numerical measurements. For a comparison, Fig. 8(a) also shows the
evolution of Re0(�) computed from initial conditions (red solid line). In the light of the present
analysis, remember from its definition (8) that Re0 virtually corresponds to slides which would all
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FIG. 8. (a) Correlation between the ratio � = tc,v/tc,i and the following Reynolds numbers: measure-
ments of Remax, analytical values of Re0 from (15), analytical values of Re(ẋth

f ,max) from (16).
(b) Empirical regressions for Remax(Re0 < Re0,c ) and Remax(Re0 � Re0,c ), again with analytical values of
Re(ẋth

f ,max) in dashed cyan line ( ).

have an inertial maximum slide front velocity
√

g′Hc [Eq. (12)]. This solution reads [see Eq. (8)]

Re0 = Rρ

Rμ

ρw

μw

Hcẋ f ,i = Rρ

Rμ

ρw

μw

Hc

√
g′Hc, ∀� (15)

and is independent of Rμ [see Fig. 5(b)], which explains its noticeable inadequacy for � < 1.
A better estimate of the Reynolds number, in cyan dashed line, is Re(ẋth

f ,max), which is obtained
from Eq. (10) when replacing ẋ f ,max by ẋth

f ,max, i.e.,

Re(ẋth
f ,max ) = Rρ

Rμ

ρw

μw

Hcẋth
f ,max =

⎧⎨⎩
Rρ

Rμ

ρw

μw
Hc

1.41
5 ×

[
ρs (Rρ−1)(HcWc )3

μs

]1/5
t−4/5
c,v if � < 1

Rρ

Rμ

ρw

μw
Hc

√
g′Hc if � > 1

(16)

For � > 1, ẋth
f ,max = √

g′Hc so solution (15) (red line) and solution (16) (cyan line) coincide.
Numerical results are in good agreement with these predictions. As regards the range � < 1,
numerical results are in better agreement with model (16) than (15).

According to the previous results a correlation between the measured Reynolds number Remax

with Re0 is proposed in Fig. 8(b). Such a correlation with Re0 is proposed in the framework of a
predictive description from the initial state, characterized by the dimensionless number Re0 instead
of �. Such a correlation is performed in two parts, since the previous analysis supports a distinction
between the slides which are expected to cross the inertial regime (� > 1) and those which are not
(� < 1). In terms of Re0, this distinction is � < 1 ⇔ Re0 < Re0,c and � � 1 ⇔ Re0 � Re0,c with
Re0,c � 248 as suggested by Fig. 8(a). Figure 8(b) shows the obtained power laws for Re0 < Re0,c

(blue line) and Re0 � Re0,c (red line). For Re0 � Re0,c, the regression is very close to Remax = Re0,
although not exactly equal to it. One cannot overlook the subtle difference between the actual
exponent 1.03 and the unit value, as would be obtained from purely theoretical prediction (16)≡(15)
for � � 1. This difference contains subtle effects of dissipation which are otherwise disregarded by
the simplistic abrupt transition from acceleration regime to inertial regime as sketched in Fig. 7(a)
and previously discussed. Based on these correlations, from the definitions of Remax and Re0

[Eqs. (10) and (8)] we can then predict the Froude number Frmax as defined in (9) from initial
conditions as

F̃rmax,i�2 = aiRe(αi−1)
0

[
Hc(Rρ − 1)

HwRρ

]1/2

with

{
a1 = 0.45, α1 = 1.19 if Re0 < Re0,c ⇔ � < 1
a2 = 1.01, α2 = 1.03 if Re0 � Re0,c ⇔ � � 1,

(17)
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FIG. 9. (a) Map of the predicted maximum Froude number F̃rmax. (b) Comparison of Frmax and F̃rmax,
respectively, the measured and predicted maximum Froude numbers. The dispersion of data around the first
bisector in solid line is of 11.1%. For both figures, dots are colored as wave types and the dotted (respectively
dashed) line separates hydraulic jumps from solitary-like waves (respectively, from rollers).

where the tilde over F̃rmax stands for the predicted value of the maximum Froude number, by
opposition to Frmax which is computed from numerical measurements. Note that F̃rmax,i depends on
Rμ only through the term Reαi−1

0 : Again, it is the difference αi − 1 
= 0 in exponent which accounts
for variations of the Froude number (and therefore the wave maximum amplitude) with Rμ in the
parameter space. The predicted Froude number F̃rmax (the index i � 2 is omitted from here on) is
shown in the parameter space (Rμ, Rρ ) in Fig. 9(a). A clear similarity appears with the map of Frmax

in Fig. 6(a). The two quantities Frmax and F̃rmax are compared quantitatively in Fig. 9(b) where data
points scatter around the first bisector with a dispersion of 11.1%. Such a value is low enough to
enable the prediction of the Froude number with Eq. (17). Figures 9(a) and 9(b) also show that
F̃rmax is an efficient predictor of the type of wave generated with F̃rmax � 0.58 corresponding to
solitary-like waves and F̃rmax � 1.47 corresponding to rollers. Note that these thresholds are only
indicative as the transition from one wave type to the other is smooth in (Rμ, Rρ ), making the
discrimination between wave types somewhat uncertain close to these two thresholds. Finally, note
that the expression of F̃rmax shows no dependency on Wc, even though it is expected to influence the
maximum slide front velocity according to Eqs. (11) and (13). Its influence is implicitly hidden in
the regression coefficients ai and αi of Eq. (17).

V. MODELLING THE WAVE FORMATION

A. Geometrically based models

The aim of this section is to propose simple models for the generation of the wave according to
the slumping motion as described previously. Such modeling is obviously a challenging task if one
considers the entire complexity of such a system. We propose here to adopt a simple argument of
volume conservation as the basis of the model, as sketched in Fig. 10. In particular, one considers
that during a short time dt , the volume per unit width dAr of water rising above the still water level
is equal to the volume per unit width dAm of water moved by the amount of slide going underneath
the still water level. Thus, we get:

dAm(t ) = dAr (t ). (18)

Based on this volume conservation, several assumptions are proposed to simplify the time
evolution of the geometry and of the coupled dynamics of this complex system. This will enable us
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FIG. 10. The morphologies of the slide and wave during formation are simplified based on hypotheses
(H1)–(H6), and the result is illustrated at successive timesteps. Dotted lines always indicate the position of
the slide interface at the previous timestep. The dashed line shows the initial depth of still water. Between
consecutive timesteps water displaced appears in red and water rising in blue. Proportions are not respected in
order for red and blue areas to all be visible.

to propose a connection between the slide front motion and the water elevation. For this purpose,
we first discuss assumptions to model dAm and then dAr .

Our first hypothesis is that water is only displaced because some volume of slide dAm goes
underwater, displacing an equal amount of water dAm (H1). This means that once the slide is entirely
underwater, its motion has no influence on the wave growth because pressure effects are neglected
here. Then, at all times, the slide is assumed to displace water as long as it moves below the initial
still water level Hw (H2).

Now, the specific case of our first geometrically based model is sketched in Fig. 10. Here the slide
is assumed to remain rectangular during the whole dynamics of collapse as suggested by Fig. 2(d)
at large Rμ and low Rρ (H3). This allows us to simply connect the area displaced by the slide and
the front displacement dx f (t ): From (H1)–(H3), it appears that the slide front displaces a volume
dx f (t )Hw during dt . As a consequence of (H1), the slide can move water only when its height is
above Hw. Later, no extra volume of slide is injected underneath Hw (see Fig. 10) so that the slide
deforms underwater with no contribution to the water rise. Since the slide area is constant and equal
to HcWc, wave formation stops when x f (tend ) = WcHc/Hw. Therefore, as long as x f � WcHc/Hw,
we obtain

dAm(t ) = dx f (t )Hw. (19)

As sketched in Fig. 10, a volume of water rises due to the slide motion during dt . In order
to predict this water elevation, we assume that during dt the water level rises with an elevation
η f (t ) over a length dl (t ) (H4). This water column is assumed to be located at the slide front (H5),
hence the notation f in exponent. Assumptions (H4) and (H5) imply η f (t ) = η[x f (t ) � x � x f (t ) +
dl (t )]. Finally, the width dl (t ) is assumed to result from the velocity difference between water
perturbations (celerity c) and the slide front (velocity ẋ f ) so that dl (t ) = c(t )dt − ẋ f (t )dt (H6). As
a consequence of this assumption, this model is relevant only as long as the slide front is slower than
water waves, i.e., Fr(t ) � 1. Considering the celerity of perturbations to be that of gravity waves in
the shallow layer limit c(t ) = √

gHw, assumptions (H4)–(H6) lead to

dAr (t ) = η f (t )[
√

gHw − ẋ f (t )]dt . (20)

In the limit dt → 0, Eq. (18) then leads to

ẋ f (t )Hw = η f (t )[
√

gHw − ẋ f (t )] ⇐⇒ Fr(t ) = η f (t )/Hw

1 + η f (t )/Hw

(21)

as long as x f � WcHc/Hw and Fr(t ) � 1. By contrast, the celerity of perturbations may depend on
the wave amplitude as for solitary-like waves c(t ) =

√
g[Hw + η f (t )]. Proceeding similarly, one is
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FIG. 11. The morphologies of the slide and wave during formation are simplified based on hypotheses
(H3b)–(H6b), and the result is illustrated at successive timesteps, with the same system of symbols as in
Fig. 10.

led to the relationship

Fr(t ) = η f (t )/Hw√
1 + η f (t )/Hw

. (22)

Let us now turn to a second model, based on observations of wave formation at large Froude
numbers, see in particular Figs. 2(a), 2(b), and 2(c). In this case, the slide front is assumed to deform
as a triangle of decreasing slope with increasing time, keeping the triple point (x, y) = (Wc, Hw )
fixed in time (H3b) as illustrated in Fig. 11. Keeping assumptions (H1) and (H2), the surface area
displaced underneath Hw, dAm(t ), is mostly unmodified (disregarding a 1/2 coefficient).

Concerning the rising water area dAr (t ), water is still assumed to rise as successive columns
of width dl (t ) and elevation ηt p(t ) (H4b). However, these columns are now assumed to form right
in front of the supposedly fixed triple point (x, y) = (Wc, Hc) (H5b), hence the notation ηt p(t ) =
η[Wc � x � Wc + dl (t )]. Water columns then develop above a varying water depth (as sketched
in Fig. 11). The sixth assumption is modified in that the slide front velocity does not need to be
subtracted since perturbations propagate away from the fixed triple point: dl (t ) = c(t )dt (H6b).
Again, two cases can be considered to model the celerity c(t ). For intermediate Froude numbers
(see Figs. 18 and 19) waves propagate above the triangular-like slide. Perturbations appear just in
front of the triple point at x � Wc where the water depth is infinitesimal as dl (t ). Hence their celerity
is assumed to depend only on their elevation under the form c(t ) = √

gηt p(t ) so that

Fr(t ) =
[
ηt p(t )

Hw

]3/2

. (23)

For the largest Froude numbers, the slide deforms to such an extent that perturbations quickly
develop over a depth of order Hw (see Fig. 17). Consequently the celerity c(t ) = √

gHw is adopted,
leading to

Fr(t ) = ηt p(t )

Hw

. (24)

Equations (23) and (24) hold as long as the receding top of the slide has not reached the left wall at
x = 0, which yields x f (t ) � Wc(Hc/Hw − 1). In fact, when the front travels a distance dx f (t ), due
to volume conservation the slide top recedes a distance dl (t ) = dx f (t )Hw/(Hc − Hw ) (see Fig. 11).
After integration, imposing l (t ) � Wc leads to the previous condition.

The two models of rectangular and triangular collapse are consistent with previous observations
[23,32], and clarify the link between the slide horizontal motion and the wave formation as
anticipated in Sec. III C. The Froude number Fr ∝ ẋ f quantifies the volume flux of water per unit
depth (and time and width) displaced by the slide, which must rise above Hw. In particular, we note
the absence of any correlation between the amplitude η0,max/Hw and the ratio RρFr2

max which would

054801-15



KRIAA, VIROULET, AND LACAZE

0 1 2
Frmax

0.0

0.5

1.0

1.5

2.0

2.5

η 0
,m

a
x
/H

w

FIG. 12. Comparison of models of wave formation to numerical measurements, at the specific moment
tmax when the slide front velocity is maximum. Dimensionless wave amplitudes are shown as a function of
the measured Froude number Frmax. Bullet points: measurements of η0,max/Hw . Rectangular collapse:
Eq. (25), Eq. (26). Triangular collapse: Eq. (24), Eq. (27). Dash-dotted lines correspond to the
models from Sarlin et al. [26] for a solitary-like wave ( ) and a bore ( ). The shaded Froude numbers
correspond to the region of hydraulic jumps identified in Fig. 9.

quantify a momentum flux, as found in analyses based on momentum transfer from the slide to the
wave, see Ref. [36]. As for the exact relationship between Fr(t ) and η f (t ) or ηt p(t ) it combines two
elements: volume conservation and, during dt , depending on Eqs. (21)–(24), the relative ability of
the wave to store water vertically through η f (t ) or ηt p(t ) for a slower wave, or horizontally through
dl (t ) for a faster wave.

B. Implications for wave prediction

Models of Eqs. (21)–(24) are now tested. Equation (24) does not need to be inverted. As for
Eqs. (21)–(23), they respectively lead to Eqs. (25)–(27) as follows:

η f (t )

Hw

= Fr(t )

1 − Fr(t )
, (25)

η f (t )

Hw

= Fr2(t )

2

[
1 +

√
1 + 4

Fr2(t )

]
, (26)

ηt p(t )

Hw

= Fr2/3(t ). (27)

The dimensionless wave maximum amplitude is deduced from Eqs. (24) and (25)–(27), and
shown in Fig. 12 along with numerical measurements. In the framework of the rectangular model,
the actual dependency of the wave maximum amplitude with Frmax is expected to lie in the blue
shaded region (see Fig. 12) defined by Eqs. (25) and (26) which can be considered as two end-
members for the dependency of the celerity of perturbations with their own elevation. Recall that
the model of rectangular collapse is expected to hold for slides which hardly deform, typically
leading to solitary-like waves for Frmax � 0.58 (see Fig. 9). The dark dots associated to these waves
are nicely delimited by Eqs. (25) and (26), they appear to lie within the blue shaded region up to
Frmax = 0.58.

As expected, the triangular model of Eqs. (24) and (27) better catches the state of maximum
wave amplitude of hydraulic jumps and breaking waves. The uppermost branch of amplitudes is best
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FIG. 13. Assessment of the capacity of previous equations (in ordinate) to predict η0,max/Hw from initial
conditions. Rectangular collapse: Eq. (25), Eq. (26). Triangular collapse: Eq. (24), Eq. (27).

caught by Eq. (24), while the lowermost branch is best caught by Eq. (27). This is consistent with the
uppermost branch corresponding to viscosity ratios lower than 103 (see end of Sec. III C) for which
slides considerably deform, hence waves mostly evolve over a constant depth Hw. On the opposite,
the lower branch corresponds to larger viscosity ratios Rμ � 103 whose slides slightly deform,
hence the celerity of perturbations mostly depends on their elevation, irrespective of the negligible
underlying water depth. This dichotomy between Eqs. (24)–(27) and the two branches of solutions
only holds where data points are separated, i.e., for Frmax � 1. For Frmax � 1, Eq. (27) best captures
all numerical measurements. This is consistent with low Froude numbers Frmax corresponding to
slides of little deformation. Additionally, numerical simulations show that the lower Frmax, the
earlier the moment when Frmax is reached, the less time for the slide to deform and the closer
the whole wave to the triple point, hence the thicker the slide underneath the wave, the more valid
Eq. (27). As Frmax increases above unity, depending on the slide deformability, waves end up on
either of the two branches of solutions.

Compared to preexisting models from Ref. [26] (see the green and orange dash-dotted lines
in Fig. 12), the present model of rectangular slide shows a slight improvement for Frmax � 0.58,
while the model of triangular slide shows a noticeable improvement. The linear trend of Eq. (24) is
closer to the uppermost branch which is sublinear for Frmax > 1, and the concavity of measurements
(especially on the lowermost branch) is nicely captured by Eq. (27). Note that the concavity of
Eq. (27) remains slightly insufficient for the lowermost branch at Frmax � 1. Lower ordinates
suggest waves propagating faster for a given Frmax. This may be captured by accounting for the
contribution of a nonnegligible water depth γ Hw (0 < γ < 1) to the celerity of perturbations.

The contrast between preexisting models and the ones presented here can be explained by the fact
that for most waves, the wave maximum amplitude is reached before wave types can be identified
[i.e., before hydraulic jumps and breaking waves reach their quasisteady state which defines their
wave type in Fig. 3(a), see Sec. III B]. Hence, equations established for steady solitons and steady
bores broadly capture the waves characteristics (as evidenced by the green and orange curves from
Ref. [26]), but their accuracy at tmax is inevitably limited.

We now directly assess the predictive capacity of Eqs. (24)–(27). To do so, we evaluate the
maximum wave amplitude from these equations, obtained at tmax when the slide front velocity is
maximum, and use the Froude number F̃rmax predicted from (17). Note the difference of notations:
The amplitude η0,max has no exponent since it is measured, while amplitudes from Eqs. (24)–(27)
have an exponent indicating where the wave is assumed to appear (at the slide front f or at the
triple point t p), and additionally have a tilde when computed from the predicted maximum Froude
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number F̃rmax to indicate the predictive nature of these amplitudes. Therefore, η̃
f
max and η̃

t p
max are

only computed from the initial state and not from the unknown dynamics of the slide as usually
done in the literature.

Predicted amplitudes are directly compared to the measured value η0,max/Hw in Fig. 13. Equa-
tions (25) and (26) for a rectangular collapse are only compared in the range Frmax � 0.58, and
lead to respective overall errors of 32.8% and 16.7% compared to numerical measurements. As for
Eqs. (24) and (27) for triangular collapses, they respectively lead to overall errors of 15.3% and
17.0% considering all data points. Hence, Eqs. (26), (24), and (27) prove to satisfactorily predict
the wave maximum amplitude knowing that the relative difference between Frmax and F̃rmax already
amounts to 11.1%, as previously assessed from Fig. 9(b).

VI. CONCLUSION

The three-phase numerical simulations performed in this work show that the physics of wave
formation is captured by the simplified model of a Newtonian column collapsing in water. The
interplay between two parameters, the slide inertia and viscous dissipation, proves decisive in the
formation of a certain type of wave among three (Fig. 3). For dense columns of low viscosity, inertia
predominates over viscous dissipation leading to a violent collapse and the formation of rollers.
On the opposite, slides of low inertia and large viscosity hardly deform and smoothly generate
solitary-like waves. Intermediate situations lead to hydraulic jumps, breaking only close to the water
free surface. Hydraulic jumps have been observed to divide in two subcategories which appear as
two branches in Figs. 6(c) and 12. To the best of the authors’ knowledge, one branch has gone
unobserved in experiments or field studies. This may be explained by the fact that corresponding
values of (Rμ, Rρ ) cannot be reached in either context.

An analytical model describes the slide evolution as a succession of transitions between typ-
ical dynamical regimes. It shows how the balance between inertial and viscous effects through
a Reynolds number Re(t ) [Eq. (6)], controls the transient front motion, and consequently the
kinematics of the slide-water interface as quantified by a Froude number Fr(t ) [Eq. (5)]. After
a regression on numerical measurements, the maximum value Remax [Eq. (10)] of the Reynolds
number is calculated from initial conditions only. This enables us to compute the maximum Froude
number F̃rmax [Eq. (9)] directly from initial conditions, and to anticipate the type of wave generated,
should the slide collapse. Further modeling is required to compute Remax with no regression.
Additionally, beyond the state of maximum Reynolds and Froude numbers, a better understanding
and modeling of the transitions between regimes of collapse would ideally enable to connect the
initial state to the whole transient collapse dynamics.

To connect this dynamics to the transient wave growth, analytical models of wave formation are
developed, based on volume conservation. As the slide displaces some water, an equal volume of
water rises as a hydrodynamic perturbation which travels with a velocity depending on its finite
amplitude and the underlying water depth. This whole process shapes the wave. In the parameter
space (Rμ, Rρ ), slides of large viscosity and low density (Rμ � 1, Rρ � 1) which generate solitary-
like waves, approximately deform as rectangles and produce water elevations η f at the slide front.
Conversely, slides of low viscosity and large density (Rμ � 1, Rρ � 1) have fronts deforming
approximately as triangles and induce water elevations ηt p at the triple point. In both cases, the
analytical expression of Fr(t ) as a function of η f [Eqs. (21) and (22)] or ηt p [Eqs. (23) and (24)]
depends on the exact expression of the perturbations’ velocity. In any case, the wave maximum
amplitude is directly related to the maximum value of the Froude number. This is consistent with
Fr(t ) being a quantifier of the volume flux per unit depth of water displaced and therefore rising.

Figure 12 summarizes how the wave maximum amplitude depends on the maximum Froude
number. For hydraulic jumps and breaking waves, two analytical laws are obtained, one capturing
waves of low Froude numbers (Frmax < 1) as well as the lowermost branch of waves in Fig. 12
[Eq. (27)], and the linear law ηt p(t )/Hw = Fr(t ) capturing waves of the uppermost branch at large
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(a) (b)

FIG. 14. Representation of the geometry of the problem, (a) initially and (b) at larger times once the oil
slick propagates.

Froude numbers (Frmax � 1). Unifying equations would require a better modeling of the transient
slide deformation during collapse and its connection with the celerity of perturbations.

APPENDIX A: NUMERICAL VALIDATION

Prior to modeling waves generated by a Newtonian collapse, the code was tested quantitatively
on a three-phase dam-break flow, modeling the spilling of an oil slick at the interface between air
and water (see Fig. 14 for a sketch of the flow). The experimental data used for a comparison were
taken from Ref. [37]. Experiments were conducted in a parallelepipedic tank of large width, so the
flow is invariant along the width, considered two-dimensional and plane. As detailed in Ref. [37],
oil may spread following an inertial regime characterized by the balance of buoyancy and inertia,
which yields

l

L
= α1

(√
g	

L
t

)2/3

, (A1)

with α1 a coefficient of proportionality, l the length of the oil slick along the direction of spilling, g
the acceleration of gravity, L is a length scale whose square is equal to the cross-sectional surface
area of the oil slick, t is time, 	 = (ρw − ρoil )/ρw is the density contrast between oil and water, of
respective densities ρoil and ρw. Similarly, the oil spill is expected to go through a viscous regime

(a)

100 101 102100

101

l/
L

(b)

102 103 104

10

50

l/
L

FIG. 15. Test of the numerical methods with experiments from Ref. [37]. Numerical results appear in
crosses, experimental data as bullet points. (a) Inertial regime of spilling, with colours corresponding to
experiments 9, 11, 14, 18 as numbered in Ref. [37], and the regressions — α1 = 1.5 obtained from
experiments and ..... α1 = 1.42 obtained from the associated simulations. (b) Viscous regime of spilling, with
colors corresponding to experiments 19, 24, •27 as numbered in Ref. [37], and the regressions — α2 = 1.5
from experiments and ..... α2 = 1.55 from simulations.
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FIG. 16. (a) Solitary-like wave produced from (Rμ, Rρ ) = (104, 1.2). (b) Close-ups near the slide at early
times.

characterized by the balance of buoyancy and viscous forces, which yields the law of evolution

l

L
= α2

[
(g	)2/3

ν
1/3
w

t

]3/8

, (A2)

with α2 a coefficient of proportionality and νw the kinematic viscosity of water.
The previous scalings enable comparison of experimental and numerical data in Figs. 15(a) and

15(b) which evidence different realizations of the oil spill, varying with the initial geometry and
size of the parallelepipedic volume of oil. An excellent agreement appears in the inertial regime in
Fig. 15(a). Numerical crosses scatter around the dotted line for which α1 = 1.42. This corresponds
to a difference of 5.3% compared to the value α1 = 1.5 obtained from experimental bullet points,
represented by the solid line. Good agreement is also visible in Fig. 15(b) concerning the viscous
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FIG. 17. (a) Roller produced from (Rμ, Rρ ) = (1, 14). (b) Close-ups near the slide at early times.
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TABLE I. Dimensionless numbers corresponding to the experiments of Suchon [37] whose data appear in
Fig. 15.

Expt. number 9 11 14 18 19 24 27

Fr 1.48 3.85 2.37 2.40 0.42 1.62 0.721
Re (×103) 73.0 73.0 60.0 43.4 16.6 16.6 9.85

regime. For the three configurations modelled, numerical points evolve with the expected slope 3/8.
One simulation slightly exceeds the values of the slick length. It might be due to the low volume
of oil initially released, so that the slick may be sensitive to surface tension in experiments, while
it is not taken into account in numerical simulations. Experimental bullet points scatter around the
model in solid line for which α2 = 1.5 while numerical crosses scatter around a model α2 = 1.55
which is only 3.3% lower. Such agreement confirms the ability of the code to catch the dynamics of
spilling which is similar to the one at play during wave formation, and to deal with the presence of
three phases at an interface.

Note that in these simulations, the size of the computational domain only differs by 6.7% with
respect to simulations of impulse waves. The size of the finest mesh cell is computed in the same
way in both cases. Consequently, the sizes of finest cells also differ by 6.7%. Note as well that a
Reynolds number can be defined from scale laws as

Re =
√

g	L3/2

νw

, (A3)

and, similarly, a Froude number is defined by computing l̇max from Suchon’s experimental values
with finite centered differences,

Fr = l̇max√
g	L

. (A4)

These dimensionless numbers prove to vary in the same ranges as Remax and Frmax of the present
study or even beyond since Fr = 3.85 largely exceeds the maximum value of Frmax around 2 (see
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FIG. 18. (a) Hydraulic jump produced from (Rμ, Rρ ) = (104, 14). (b) Close-ups near the slide at early
times.
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FIG. 19. (a) Hydraulic jump produced from (Rμ, Rρ ) = (1, 1.2). (b) Close-ups near the slide at early times.

table 1). This further supports the code ability to model wave formation for the region we explore
in the parameter space (Rμ, Rρ ).

APPENDIX B: FOUR EXTREMES IN THE PARAMETER SPACE

Further illustrations are gathered in the present Appendix to complement observations on the
different types of waves for the four corners of the parameter space (Rμ, Rρ ) – see Figs. 16-19.
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