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Creation of turbulence in polyatomic gas flow via an intermolecular potential
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We develop a tractable interaction model for a polyatomic gas, whose kinetic equa-
tion combines a Vlasov-type mean field forcing due to an intermolecular potential, and a
Boltzmann-type collision integral due to rotational interactions. We construct a velocity
moment hierarchy for the kinetic equation, and find that, under the high Reynolds number
condition, the pressure equation becomes decoupled from the angular momentum and
stress. For the heat flux, we propose a closure by prescribing the specific-heat capacity
of the gas flow. Setting the specific-heat capacity to that of a constant-pressure process
leads to the system of equations for a balanced flow, where the momentum transport
equation contains the mean field forcing, which is an averaged effect of the intermolecular
potential. Remarkably, the balanced flow equations do not contain any information about
internal thermodynamic properties of the gas, and are thereby applicable to a broad range
of different gases. We conduct numerical simulations for an airlike gas at normal conditions
in the inertial flow regime, where the pressure is constant throughout the domain. We find
that the presence of the intermolecular potential produces a distinctly turbulent flow, whose
time-averaged Fourier spectra of the kinetic energy and temperature exhibit Kolmogorov’s
power decay.

DOI: 10.1103/PhysRevFluids.7.054605

I. INTRODUCTION

While turbulent motions in a liquid have first been documented by Leonardo da Vinci, it appears
that Boussinesq [1] presented the first systematic account of turbulence in the scientific literature.
Six years later, Reynolds [2] demonstrated that an initially laminar flow of a liquid consistently
develops turbulent motions whenever the high Reynolds number condition is satisfied. Almost
60 years later, Kolmogorov [3,4,5] and Obukhov [6] observed that the time-averaged Fourier spectra
of the kinetic energy of an atmospheric wind possess a universal decay structure, corresponding to
the inverse five-thirds power of the Fourier wave number. Numerous attempts to explain the physical
nature of turbulence have been made throughout the 20th century [7–21], yet none successfully.
Until recently, the physics of turbulence formation in an initially laminar flow, as well as the origin
of the power scaling of turbulent kinetic energy spectra, remained unknown. As an example, one
can refer to relatively recent works [22,23], where turbulentlike motions in a numerically simulated
flow had to be created artificially by deliberate perturbations. In reality, turbulence emerges sponta-
neously by itself (even if all reasonable measures were taken to preserve the laminarity of the flow,
e.g., Reynolds’ experiment), which was the primary reason why this peculiar phenomenon attracted
worldwide scientific interest to begin with.

In our recent works [24,25], we considered a system of many particles, interacting solely via a re-
pelling short-range potential φ(r). In the limit of infinitely many such particles, we obtained, via the
standard Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) formalism [26–28], a Vlasov-type
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equation [29] for the mass-weighted distribution density of a single particle. This equation contained
the mean field potential φ̄, which was the result of the average effect of the short-range potential φ.
Then, we computed the usual hierarchy of the transport equations for the velocity moments, closed it
under the infinite Reynolds number assumption, and arrived at a system of equations for a balanced
compressible gas flow.

In [24], we numerically simulated these equations in the inertial flow regime through a straight
pipe, with the interaction potential of hard spheres with the mass and diameter corresponding to
those of argon. For the initial condition of that simulation, we selected a straight laminar Bernoulli
jet, which happens to be a steady state in the conventional Euler equations. We observed, however,
that in our simulation such a jet quickly developed into a fully turbulent flow. We also examined
the Fourier spectrum of the kinetic energy of the simulated flow, and found that its time average
decayed with the rate of inverse five-third power of the wave number, which corresponded to the
famous Kolmogorov spectrum. In [25], we extended the framework of [24] onto a gas flow under
strong gravity acceleration, which, on a large scale, is effectively two dimensional. We simulated the
two-dimensional equations in the inertial and cyclostrophic flow regimes, and found that turbulent
motions also appear in an initially laminar flow.

In the past, a similar approach, originating from the basic principles of kinetic theory, was
undertaken by Tsugé [30], who attempted to explain the creation of turbulence via long-range
correlations between molecules. However, Tsugé’s result was restricted to incompressible flow,
while, from what we found thus far, it appears that density fluctuations are instrumental in the
creation of turbulent dynamics. We have considered long-range interaction effects in our past work
[31]; however, from what we later found in [24,25], it appears that even a short-range hard sphere
potential is capable of creating turbulence via the mean field effect.

The goal of this work is to extend the turbulent framework of [24,25] onto polyatomic gases. The
main challenge with a polyatomic gas is the corresponding kinetic model of interactions between its
molecules. Unlike monatomic gases (which can, in many practical situations, be approximated via
hard spheres), molecules of polyatomic gases possess rotational degrees of freedom, which store the
momentum and energy just like the translational degrees of freedom do. When two such molecules
interact, the momentum and energy are exchanged, generally, between linear and angular velocities
of both molecules in a complex manner. In order to derive transport equations for a polyatomic
gas from kinetic theory, these complex interactions must be described, to a necessary extent, in the
context of the kinetic model of intermolecular collisions.

The work is organized as follows. In Sec. II we propose a tractable kinetic model of interactions
of polyatomic gas molecules, which combines a deterministic potential with random collisions.
In Sec. III we introduce a dynamical system of many molecules which interact according to the
aforementioned model, and construct its corresponding forward Kolmogorov equation. In Sec. IV
we compute the equation for the statistical distribution of a single molecule, which combines a
potential forcing with a Boltzmann-type collision integral, and derive the corresponding system of
transport equations of the velocity moments. In Sec. V we decouple the pressure equation from the
angular momentum and stress via the high Reynolds number condition, and implement a closure
for the divergence of the heat flux by prescribing the specific-heat capacity of the process. For the
specific-heat capacity corresponding to that of a process at constant pressure (that is, Charles’ law of
classical thermodynamics), we arrive at the same system of balanced flow equations as in our recent
works [24,25] for monatomic gases. In Sec. VI we show the results of numerical simulations of a
turbulent air flow through a straight pipe. We demonstrate that, in the presence of an intermolecular
potential, the flow becomes turbulent, and the time averages of the Fourier spectra of its kinetic
energy and temperature exhibit a power decay. Section VII summarizes the results of our work.

II. KINETIC MODEL OF INTERACTIONS OF POLYATOMIC MOLECULES

As the first step, we need to formulate a tractable mathematical model of a polyatomic gas on
the molecular level. Before proceeding further, however, we have to emphasize that the actual
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interaction of atoms is a rather complicated process, which involves quantum-mechanical effects
such as the Pauli exclusion. Therefore, what follows has to be interpreted strictly in the context of a
vastly simplified, i.e., “mechanical,” model of atomic and molecular interaction, whose purpose is
to provide an appropriate formalism which connects the kinetic formulation of the problem and its
fluid-mechanical approximation, consistent with fundamental properties of interaction such as the
conservation of energy.

In addition to the three usual translational degrees of freedom, each molecule of a polyatomic gas
also possesses multiple rotational degrees of freedom, which are capable of storing the momentum
and energy. When such molecules interact, they exchange the momentum and energy between
all degrees of freedom of both molecules. Unlike monatomic gases, the main challenge with a
polyatomic gas is to describe its molecular interactions, which can roughly be separated into two
issues.

A. Excessive complexity of a detailed molecular interaction

The first issue to consider with a polyatomic gas is that the exact description of the collision
mechanics of two objects beyond that of a pair of hard spheres is excessively complicated for a
practical treatment in the context of a kinetic equation. For example, even if two hard spheres are
replaced with two rigid ellipsoids (which is a simple topological deformation of a sphere), the
collision mechanics already become too complicated to use in a Boltzmann-type collision integral.
In particular, not only the actual mechanics of transformation of linear and angular velocities are
complex, but even the collision detection criterion is highly nontrivial (as an example, refer to Jia
et al. [32] and references therein).

B. Effect of Heisenberg’s uncertainty principle

Even if one develops a tractable model of mechanical collisions of two molecules beyond that
of hard spheres, there is another difficulty which renders the utility of such model somewhat
questionable. Due to Heisenberg’s uncertainty principle, gas molecules cannot be regarded as fully
classical objects, especially if the rotational motion of a molecule is involved. Let us look at the
following crude estimates of uncertainties associated with the translational and rotational motion:

(i) A molecule of nitrogen (which we take as an example because it is the primary component
of air) has the mass of 4.65 × 10−26 kg, which means that the product of the uncertainties in the
velocities and coordinates is about 10−9 m2/s (the Planck constant divided by the mass). The typical
mean-free path between collisions at normal conditions is around 7 × 10−8 m, while the average
speed of a molecule at normal temperature is around 500 m/s. Their product is ∼10−5, which gives
the relative uncertainty, associated with translational motion, of ∼10−4, or 0.01%.

(ii) At the same time, the size of a molecule of nitrogen is 4 × 10−10 m, which means, that,
during the rotation, the two atoms move about each other on this scale. Now, since the kinetic energy
of motion is distributed uniformly across translational and rotational degrees of freedom, we have
to assume that the atoms of nitrogen move about each other within the molecule at roughly same
speeds, that is, ∼500 m/s. Their product is ∼10−7, which gives the relative uncertainty, associated
with rotational motion, of ∼10−2 or 1%.

As we can see, the relative uncertainty associated with rotational motion is about two orders of
magnitude larger than that of translational motion, solely due to the corresponding difference in
spatial scales (mean-free path vs the molecule size). Note that this difficulty is not related to any
interactions, only the fact that the rotational motion of a gas molecule is in itself less deterministic
than its translational motion.

C. Our model of interactions between polyatomic molecules

From what is outlined above, the obvious conclusion is not only tracking the angles and angular
velocities of molecules, as well as quantifying their collisions in a detailed fashion, is complicated

054605-3



RAFAIL V. ABRAMOV

technically, it is also largely meaningless from the standpoint of physics. Even if one develops a
kinetic model which tracks the angular motions and interactions of polyatomic molecules exactly
and, deterministically, it is not clear what benefit it would provide if applied to realistic gases at
normal conditions. Thus, a reasonable way to proceed from here is to resort to a more general,
stochastic model of rotational collisions.

Here, we will take a semiempirical approach to the kinetic description of polyatomic molecular
interactions. What this means is that we will formulate a general mathematical model of the
interaction of two polyatomic gas molecules with basic properties, but, at the same time, will not
elaborate on the specific details of the interaction (as that may be quite complicated). This will
lead to a correct mathematical form of the kinetic equation, where the rotational collision integral
possesses all necessary general properties. We will neglect interactions of three or more molecules
at once: for most gases at normal temperature and pressure, such interactions are not statistically
significant.

In the context of our model, the interaction of a gas molecule with another gas molecule can be
separated into two distinct effects.

(1) The first effect is the deterministic interaction via an intermolecular potential, where the
potential depends only on the translational coordinates, and whose gradient accelerates only the
linear velocities. The rotational coordinates and angular velocities are unaffected by the potential
interaction.

(2) The second effect is the stochastic collisional interaction, which generally depends on all
degrees of freedom, and affects both linear and angular velocities. This effect is responsible for the
exchange of the momentum and energy between the linear and angular velocities of both involved
molecules.

While the first effect is easy to describe by introducing a suitable intermolecular potential φ(r),
the second effect needs a more detailed elaboration. Namely, we have to formulate a collision
model, which is general enough to be capable of describing a broad range of interactions between
polyatomic gas molecules, and at the same time is simple enough to be treated analytically to the
extent needed. In order to accomplish this, we employ the same mathematical mechanism which we
used in our work [33].

In what follows, we assume that collisional interactions occur instantaneously, that is, when a col-
lision occurs, linear and angular velocities of both colliding molecules are changed instantaneously
to new values. Thus, the description of a collisional interaction must involve two parts: when the
interaction occurs, and how it occurs. Below, we start with the latter, followed by the former.

D. General mechanics of a polyatomic collision

In what follows, we assume that the total number of degrees of freedom of each gas molecule is
N , of which 3 are translational, and N − 3 are rotational. We denote the translational coordinates
via x, rotational via y, while their respective linear and angular velocities are given via v and w.
Let the linear and angular velocities of the two colliding molecules be denoted via (v1,w1) and
(v2,w2), respectively. We assume that, whenever the collision occurs, the velocities are changed
instantaneously via a collision mapping C to (v′

1,w
′
1) and (v′

2,w
′
2), respectively, where the incre-

ment depends only on the differences of the precollisional values of the coordinates and velocities,
that is,

(v′
1,w

′
1, v

′
2,w

′
2) = C(v1,w1, v2,w2) = (v1 + g12,w1 + h12, v2 + g21,w2 + h21). (1)

Above, the increments g12 and h12 depend only on the differences between the properties of the two
molecules, i.e., they are of the form

g12 = g(x1 − x2, y1 − y2, v1 − v2,w1 − w2), (2a)

h12 = h(x1 − x2, y1 − y2, v1 − v2,w1 − w2), (2b)
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with g21 and h21 obviously resulting from inverting the signs of all arguments. From the fundamental
principles of physics, the collision must preserve both the linear and angular momenta, as well as
the total kinetic energy:

v′
1 + v′

2 = v1 + v2, w′
1 + w′

2 = w1 + w2, (3a)

‖v′
1‖2 + ‖w′

1‖2 + ‖v′
2‖2 + ‖w′

2‖2 = ‖v1‖2 + ‖w1‖2 + ‖v2‖2 + ‖w2‖2. (3b)

The momentum conservation automatically implies

g21 + g12 = 0, h21 + h12 = 0, (4)

which means that g and h are skew symmetric, that is,

g(−z) = −g(z), h(−z) = −h(z), z = (x, y, v,w). (5)

We also assume that the mapping C from precollision to postcollision velocities, given via (1),
is bijective, that is, there is a unique postcollision state to each precollision state, with a unique
inverse. Moreover, the same mapping transforms the negatives of the postcollision velocities into
the negatives of the precollision velocities, that is, the negative of C is an involution:

−C ◦ (−C) = I. (6)

This simply means that if the postcollision velocities are immediately reversed, then the collision
occurs in a reverse manner and leads to the reversed precollision velocities. The latter identity, in
particular, ensures that the Jacobian of C is unity.

Recall that, in the mechanics of a hard-sphere collision, the collision mapping C itself is also an
involution [33,34]. Here, however, we do not make such an assumption since a collision between
two polyatomic molecules could be vastly more complicated than a collision between two hard
spheres, and it is unclear whether such property would hold.

E. Criterion for triggering a collision

The general mechanics of collision, described above, are deterministic. However, the conditions,
under which those collisions occur will be modeled stochastically, as in our recent work [33]. We
assume that, when two molecules are sufficiently close to each other (that is, ‖x1 − x2‖ is sufficiently
small), random collisional interactions may happen with a prescribed conditional intensity. Such
artificial randomness reflects the presence of the Heisenberg uncertainty associated with the angular
orientation and velocities of the pair of interacting molecules.

Mathematically, the collisions will be triggered via increments of a Poisson process with condi-
tional intensity λ [35,36], where the latter depends on the differences of coordinates and velocities:

λ12 = λ(x1 − x2, y1 − y2, v1 − v2,w1 − w2). (7)

This conditional intensity must satisfy the following properties:
(1) λ is invariant with respect to the reordering of the molecules, that is,

λ(−x,−y,−v,−w) = λ(x, y, v,w). (8)

(2) λ is the same for reversed postcollision velocities, that is,

λ(x, y,−v′,−w′) = λ(x, y, v,w) (9)

since, for the same angles, in the time-backward configuration the collision must be as likely to
occur as in the time-forward configuration.

In what follows, we will generally presume that λ is zero when the two molecules are spaced apart
by a considerable distance, so that the collisions are not triggered. Once the molecules approach
each other, λ becomes nonzero, thus possibly triggering collisions. The dependence of λ on the
angular coordinates and velocities additionally provides for configuring the fine details of a collision
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criterion, however necessary. For additional convenience, here we impose the following simplifying
assumption on λ:

λ(x, y, v′,w′) = λ(x, y, v,w), (10)

that is, the intensity of collisions does not change due to a collision, which, particularly, may result
in more than one rotational collision interaction during a single pass of one molecule by another. The
latter assumption leads, together with (8) and (9), to λ being fully symmetric under the collisions
and reordering of molecules:

λ(x, y, v,w) = λ(x, y, v′,w′) = λ(x, y,−v,−w) = λ(x, y,−v′,−w′) = λ(−x,−y, v′,w′)

= λ(−x,−y, v,w) = λ(−x,−y,−v′,−w′) = λ(−x,−y,−v,−w). (11)

This symmetry is markedly different from the setting we previously used for the random hard-sphere
collisions in [33], where the conditional intensity of the Poisson process was set to zero in a
postcollision state. In the present context, however, the molecules are repelled via the intermolecular
potential φ (which was absent in [33]), while the collisions are only used to model additional
interactions emerging from the presence of rotational degrees of freedom. Thus, we do not find
the condition in (10) too restrictive.

III. DYNAMICAL SYSTEM OF POLYATOMIC MOLECULES

With what is formulated above, the evolution equations for a system of K polyatomic molecules,
whose linear and angular coordinates and velocities are expressed via xi, yi, vi, and wi, are given
via the following Lévy-type Feller process [37–40]:

dxi

dt
= vi,

dyi

dt
= wi, (12a)

dvi =
∑
j �=i

[
− ∂

∂xi
φ(‖xi − x j‖)dt +

∫
R>0

gi jξMi j (dt, dξ )

]
, (12b)

dwi =
∑
j �=i

∫
R>0

hi jξMi j (dt, dξ ). (12c)

Above, φ(r) is the intermolecular potential, and Mi j (t, ·) is a Poisson random measure with the
intensity λi j , which models rotational collisions between the ith and jth molecules. In a similar
manner as in [24,31,33], we concatenate

X = (x1, y1, . . . xK , yK ), V = (v1,w1, . . . , vK ,wK ), (13)

and denote

�(X ) =
K−1∑
i=1

K∑
j=i+1

φ(‖xi − x j‖), Gi j = (0, . . . , 0, gi j, hi j, 0, . . . , 0, g ji, h ji, 0, . . . , 0), (14)

where gi j and hi j occupy the slots corresponding to vi and wi, respectively, while g ji and h ji occupy
the slots corresponding to v j and w j , respectively, with i < j. Then, the dynamical system in (12)
can be written in the form

d

(
X
V

)
=

(
V

−∂�/∂X

)
dt +

K−1∑
i=1

K∑
j=i+1

∫
R>0

(
0

Gi j

)
ξMi j (dt, dξ ). (15)

Obviously, the system above preserves the total energy of the system along its trajectory,

E = 1
2‖V (t )‖2 + �(X (t )) = const, (16)
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which follows from the fact that the collisions preserve the kinetic energy part of the above
expression, and do not affect the coordinates.

A. Forward Kolmogorov equation and its steady states

The time derivative of the conditional expectation of a test function ψ is given via the infinitesi-
mal generator of (15),

∂

∂t
E[ψ] = V · ∂ψ

∂X
− ∂�

∂X
· ∂ψ

∂V
+

K−1∑
i=1

K∑
j=i+1

λi j[ψ (Ci j (V )) − ψ (V )], (17)

where Ci j is the collision mapping for the ith and jth velocities. For details on the infinitesimal
generators of Lévy-type Feller processes, see [37–40]. The forward Kolmogorov equation for the
density of states F is obtained in the same manner as in [33]: we multiply (17) by F , integrate over
X and V , change the variable of integration in the first term of the collision integral from Ci j (V )
to V , and then strip the integral together with ψ , while making use of (11), and the fact that the
Jacobian of Ci j is unity. The resulting forward Kolmogorov equation is given via

∂F

∂t
+ V · ∂F

∂X
= ∂�

∂X
· ∂F

∂V
+

K−1∑
i=1

K∑
j=i+1

λi j[F (C−1
i j (V )) − F (V )]. (18)

It is easy to find some steady states of (18) if we require that F is invariant under collisions, that is,

F (Ci j (V )) = F (V ), (19)

for all pairs of molecules. For such F , the forward Kolmogorov equation (18) becomes

∂F

∂t
+ V · ∂F

∂X
= ∂�

∂X
· ∂F

∂V
. (20)

Next, we note that F = F0(E ) satisfies (19) (since the energy is invariant under the collisions), and
is at the same time the steady state for (20), which means that it is automatically the steady state for
the forward Kolmogorov equation (18). Among all such states, the canonical Gibbs state is given
via

FG = 1

(2πθ0)KN/2ZK
K
exp

(
−‖V‖2 + 2�(X )

2θ0

)
, ZK =

∫
e−�/θ0 dx1 . . . dxK , (21)

where 
 is the full solid angle of the domain of rotational coordinates, and θ0 is the equilibrium
kinetic temperature of the system of molecules. Here, observe that, thanks to (10) and (11), the
presence of stochastic rotational collisions does not affect the structure of the steady state; this is to
the contrary of what we had previously in [33], where the asymmetry of the intensity of collisions
created the “potential well” instead.

A solution of the forward Kolmogorov equation (18) possesses the following entropy
inequalities:

− ∂

∂t

∫
F ln F dX dV � 0,

∂

∂t

∫
F ln

(
F

F0

)
dX dV � 0, (22)

where F0 is a steady state of (18). Above, the first quantity is the Shannon entropy [41], while
the second one is the Kullback-Leibler entropy [42]. The proof of the relations in (22) is given in
Appendix A.
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B. Structure of a two-molecule marginal distribution of the Gibbs state

Let us integrate FG over all molecules but the first two. This integration decomposes into the
product of integrals over the velocities and coordinates separately:

F (2)
G = 1

(2πθ0)N
2
e−(‖v1‖2+‖w1‖2+‖v2‖2+‖w2‖2 )/2θ0

1

ZK

∫
e−�/θ0 dx3 . . . dxK . (23)

Next, note that the single-particle marginal distribution fG is given via

fG(v,w) = 1

(2πθ0)N/2V 

e−(‖v‖2+‖w‖2 )/2θ0 , (24)

where V is the volume of the domain of translational coordinates. The reason for the form above
is that, spatially, FG depends only on the differences of the translational coordinates, and thus the
integration over all molecules but one removes the spatial dependence completely. Thus, in terms
of fG, F (2)

G can be written in the form

F (2)
G = fG(v1,w1) fG(v2,w2)

V 2

ZK

∫
e−�/θ0 dx3 . . . dxK . (25)

Next, let us look at the factor which multiplies the product of fG’s. It can be written in the form

V 2

ZK

∫
e−�/θ0 dx3 . . . dxK = K

K − 1
e−φ(‖x1−x2‖)/θ0YK (θ0, ‖x1 − x2‖), (26)

where YK (θ0, r) is the pair cavity distribution function for K molecules [43,44]:

YK (θ0, ‖x1 − x2‖) = K − 1

K

V 2

ZK

∫ K∏
i=3

e−[φ(‖x1−xi‖)+φ(‖x2−xi‖)]/θ0

K∏
j=i+1

e−φ(‖xi−x j‖)/θ0 dx3 . . . dxK .

(27)

Thus, with help of YK (θ0, r), F (2)
G is given via

F (2)
G = K

K − 1
e−φ(‖x1−x2‖)/θ0YK (θ0, ‖x1 − x2‖) fG(v1,w1) fG(v2,w2). (28)

IV. EQUATION FOR THE DISTRIBUTION OF A SINGLE MOLECULE

Let us integrate the forward Kolmogorov equation (18) over all molecules but the first one, and,
for convenience, denote zi = (xi, yi, vi,wi ):

∂ f

∂t
+ v · ∂ f

∂x
+ w · ∂ f

∂y
=

K∑
i=2

∫ (
∂

∂x
φ(‖x − xi‖) · ∂F (2)

1,i (z, zi )

∂v

+ λ1i
[
F (2)

1,i (C−1(z, zi )) − F (2)
1,i (z, zi )

])
dzi. (29)

This equation constitutes the first iteration of the Bogoliubov-Born-Green-Kirkwood-Yvon [26–28]
hierarchy (BBGKY). In order to obtain a closure for the right-hand side of (29) in terms of f , as
previously in [24,25,33], we assume that all pair distributions F (2)

1,i are identical, which leads to

∂ f

∂t
+ v · ∂ f

∂x
+ w · ∂ f

∂y
= (K − 1)

∫ (
∂

∂x
φ(‖x − x2‖) · ∂F (2)(z, z2)

∂v

+ λ12[F (2)(C−1(z, z2)) − F (2)(z, z2)]

)
dz2. (30)
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This is a standard assumption in kinetic theory [45], whose purpose is a formal reduction of the
multimolecular dynamics to those of a single molecule, and, therefore, we use it here for the lack of
a better option. However, one must understand that, in practice, such an assumption can only hold for
a relatively small “parcel” of gas (confined, for example, to a periodic cube whose size is not much
larger than the mean-free path), otherwise there would be no reason for different pairs of molecules
to have identical distributions. As a result, a kinetic interaction of such a parcel with surroundings
is not accounted for in the context of such a formalism, which below leads to an empirical closure
of the moment hierarchy in an attempt to accommodate such unaccounted interactions.

Next, we need to approximate F (2) in terms of f ; as we have done previously in [24,33], we
assume that F (2) has the same form as does F (2)

G in (28):

F (2)(z, z2) = K

K − 1
e−φ(‖x−x2‖)/θYK (θ, ‖x − x2‖) f (z) f (z2). (31)

Above, θ is no longer an equilibrium temperature; instead, it is now the average kinetic energy of
the given molecule (and thus an appropriate moment of f itself), which endows it with a dependence
on x. Thus, for symmetry, in the closure above we compute θ at the midpoint between x and x2:
θ = θ [(x + x2)/2]. In addition, we renormalize f so that it is the mass density f → Km f , where m
is the mass of a single molecule. Applying the closure and the rescaling, we arrive at the following
closed equation:

∂ f

∂t
+v · ∂ f

∂x
+w · ∂ f

∂y
= 1

m

∫
e−φ(‖x−x2‖)/θ[(x+x2 )/2]YK (θ [(x+x2)/2], ‖x − x2‖)

×
(

∂

∂x
φ(‖x−x2‖)·∂ f (z)

∂v
f (z2)+λ(z−z2)[ f (z′′) f (z′′

2 ) − f (z) f (z2)]

)
dz2,

(32)

where z′′ and z′′
2 refer to the inverse of the collision mapping, (z′′, z′′

2 ) = C−1(z, z2). Above, the
kinetic temperature θ is given as follows: let us introduce the average 〈ψ〉 of a function ψ (x, y, v,w)
via

〈ψ〉(t, x) =
∫

ψ (x, y, v,w) f (t, x, y, v,w)dy dv dw. (33)

Then, we define the density ρ, linear and angular velocities u and uw, respectively, and the kinetic
temperature θ via the following velocity moments:

ρ = 〈1〉, ρu = 〈v〉, ρuw = 〈w〉, ρθ = 1

N
〈‖v − u‖2 + ‖w − uw‖2〉. (34)

Above, the product ρθ can be referred to as the “kinetic” pressure, defined through the equation of
state for an ideal gas, as opposed to the “true” van der Waals’ pressure, to be found below. With the
above notations, we can separate the integrals in (32) as follows:

∂ f

∂t
+ v · ∂ f

∂x
+ w · ∂ f

∂y
= ∂ f (z)

∂v
· 1

m

∫
e− φ(‖x−x2‖)

θ [(x+x2 )/2] YK (θ [(x + x2)/2], ‖x − x2‖)

× ∂

∂x
φ(‖x−x2‖)ρ(x2)dx2+ 1

m

∫
e− φ(‖x−x2‖)

θ [(x+x2 )/2] YK (θ [(x+x2)/2], ‖x−x2‖)

× λ(z − z2)[ f (z′′) f (z′′
2 ) − f (z) f (z2)]dz2. (35)

A. Hydrodynamic limit

For most practical situations, the size of each molecule is much smaller than the size of the
domain. If so, the transport equation for f can be simplified further by computing what is known
as the “hydrodynamic limit,” that is, an appropriate limit where the size of a molecule becomes

054605-9



RAFAIL V. ABRAMOV

infinitely small in comparison with the size of the domain. To this end, we introduce the constant
parameter σ , which is to be the “diameter” of a molecule, and, with its help, rescale the distance
between the molecules in all of the properties of molecular interactions:

φ(r) → φ(r/σ ), YK (θ, r) → YK (θ, r/σ ), λ(x, y, v,w) → λ(x/σ, y, v,w), (36a)

g(x, y, v,w) → g(x/σ, y, v,w), h(x, y, v,w) → h(x/σ, y, v,w). (36b)

Then, as σ → 0, m → 0, and K → ∞, with m/σ 3 and Km being constants (so that the density of a
molecule and the total mass of the system would be fixed), Eq. (35) is transformed as follows:

∂ f

∂t
+ v · ∂ f

∂x
+ w · ∂ f

∂y
= 1

ρ

∂φ̄

∂x
· ∂ f

∂v
+ C( f ). (37)

Above, the potential forcing and the collision integral in the right-hand side are given, respectively,
via

φ̄ = 2π

3

σ 3

m
ρ2(x)θ (x)

∫ ∞

0
(1 − e−φ(r)/θ (x) )

∂

∂r
(r3Y (θ (x), r))dr, (38a)

C( f ) = σ 3

m

∫
α(x, r, y − y2, v − v2,w − w2)[ f (x, y, v′′,w′′) f (x, y2, v

′′
2,w

′′
2 )

− f (x, y, v,w) f (x, y2, v2,w2)]dr dy2 dv2 dw2, (38b)

α(x, r, y, v,w) = λ(r, y, v,w)e−φ(‖r‖)/θ (x)Y (θ (x), ‖r‖), (38c)

where the integration in dr occurs over R3. Below, we refer to (37) as the Boltzmann-Vlasov
equation because it contains both the deterministic potential (as in the Vlasov equation [29]), and
the stochastic collision integral (as in the Boltzmann equation [46]).

In (38), Y (θ, r) denotes the cavity distribution function for infinitely many molecules, and the
increments in the collision mapping C are computed as

g12 = g(r, y1 − y2, v1 − v2,w1 − w2), (39a)

h12 = h(r, y1 − y2, v1 − v2,w1 − w2). (39b)

The derivation of the forcing and collision terms in (38) is presented in Appendix B. Since it is
assumed that the volume of the domain is constant, we can see that the packing fraction (that is, the
total volume of molecules divided by the volume of the domain) also approaches a constant, and, in
particular, does not vanish in the hydrodynamic limit:

Kσ 3 · 1

V
= (Km)

σ 3

m

1

V
∼ const. (40)

Generally, the cavity distribution function Y (θ, r) also depends on the packing fraction.

B. Steady state of the collision integral

Observe that, irrespectively of α, the collision integral in (38b) is guaranteed to be zero when

f (x, y, v′′,w′′) f (x, y2, v
′′
2,w

′′
2 ) = f (x, y, v,w) f (x, y2, v2,w2) (41)

or, if we take a logarithm on both sides,

ln f (x, y, v′′,w′′) + ln f (x, y2, v
′′
2,w

′′
2 ) = ln f (x, y, v,w) + ln f (x, y2, v2,w2). (42)

Taking into account the momentum and kinetic energy conservation laws of collision (3), we
conclude that the above identity holds under the same conditions as in the usual Boltzmann
equation [45–48], that is,

ln f = a1 + a2 · v + a3 · w + a4(‖v‖2 + ‖w‖2), (43)
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for arbitrary a1, a2, a3, and a4. As a result, the Maxwell-Boltzmann equilibrium state

fMB = ρ

(2πθ )N/2
exp

(
−‖v − u‖2 + ‖w − uw‖2

2θ

)
, (44)

which has the correct values of the moments in (34), is a steady state for the collision integral alone.
Additionally, if ρ, u, uw, and θ do not depend on x, then fMB becomes a steady state for the whole
Boltzmann-Vlasov equation in (37).

C. Moments of the collision integral

We define a moment of the collision integral via

〈ψ〉C (t, x) =
∫

ψ (x, y, v,w)C( f )dy dv dw =
∫

α(x, r, y − y2, v − v2,w − w2)

× [ψ (x, y, v′,w′) − ψ (x, y, v,w)] f (x, y, v,w)

× f (x, y2, v2,w2)dr dy2 dv2 dw2 dy dv dw, (45)

where in the second identity we changed the collision mapping from backward to forward under the
integral. Observe that, due to (11), 〈ψ〉C is invariant under the permutation of the two molecules:

〈ψ〉C (t, x) = 1

2

∫
α(x, r, y − y2, v − v2,w − w2)[ψ (x, y, v′,w′) + ψ (x, y2, v

′
2,w

′
2)

− ψ (x, y, v,w) − ψ (x, y2, v2,w2)] f (x, y, v,w)

× f (x, y2, v2,w2)dr dy2 dv2 dw2 dy dv dw. (46)

Due to the momentum and kinetic energy conservation laws of the collision mechanics, we can
see that the collision moments are zero for ψ = 1, v,w, (‖v‖2 + ‖w‖2), and, subsequently, ln fMB.
Additionally, we show in Appendix C that

〈ln f 〉C � 0. (47)

Then, it is easy to verify that the following inequalities hold for the Shannon entropy 〈− ln f 〉 and
the Kullback-Leibler entropy 〈ln( f / fMB)〉:

∂

∂t
〈− ln f 〉 + ∇x · 〈−v ln f 〉 � 0,

∂

∂t
〈ln( f / fMB)〉 + ∇x · 〈v ln( f / fMB)〉 � 0. (48)

The first inequality constitutes Boltzmann’s H theorem for (37).

D. Velocity moment equations

To obtain the transport equation for a velocity moment of the form (33), we integrate the
Boltzmann-Vlasov equation in (37) against ψ (v,w), and assume that there are no boundary effects
when the forcing is integrated by parts:

∂〈ψ〉
∂t

+ ∇ · 〈ψv〉 = − 1

ρ
∇φ̄ · 〈∇vψ〉 + 〈ψ〉C . (49)

Above, “∇” without a subscript denotes the differentiation in x. From (3) and (46), it automatically
follows that, for ψ = 1, v,w and (‖v‖2 + ‖w‖2), the collision integral disappears. In particular, the
transport equation for the density ρ is given via

∂〈1〉
∂t

+ ∇ · 〈v〉 = 0 or
∂ρ

∂t
+ ∇ · (ρu) = 0, (50)

054605-11



RAFAIL V. ABRAMOV

where we recall the notations in (34). For the momentum transport equation, we write

∂〈v〉
∂t

+ ∇ · 〈v2〉 = −∇φ̄,
∂〈w〉
∂t

+ ∇ · 〈wvT 〉 = 0, (51)

where we adopt the convention that the tensor contraction occurs over the trailing (or column) index.
Introducing the stresses

S = 〈(v − u)2〉 − ρθ I , 〈(v − u)(w − uw )T 〉 = Svw, (52)

we write the equations for the linear and angular momenta above as

∂ (ρu)

∂t
+ ∇ · [ρ(u2 + θ I ) + S] = −∇φ̄,

∂ (ρuw )

∂t
+ ∇ · (ρuwuT + Swv ) = 0. (53)

For the energy transport equation, we write

∂

∂t
〈‖v‖2 + ‖w‖2〉 + ∇ · 〈(‖v‖2 + ‖w‖2)v〉 = 1

ρ
〈(‖v‖2 + ‖w‖2)∇v · ( f ∇xφ̄)〉. (54)

Introducing the heat flux

q = 1
2 〈(‖v − u‖2 + ‖w − uw‖2)(v − u)〉, (55)

we observe, via simple manipulations, that

〈‖v‖2 + ‖w‖2〉 = ρ(‖u‖2 + ‖uw‖2 + Nθ ), (56a)

〈(‖v‖2 + ‖w‖2)v〉 = ρ
[‖u‖2 + ‖uw‖2 + (N + 2)θ

]
u + 2(Su + Svwuw + q), (56b)

1

ρ
〈(‖v‖2 + ‖w‖2)∇v · ( f ∇φ̄)〉 = −2u · ∇φ̄, (56c)

which leads to

∂

∂t
[ρ(‖u‖2 + ‖uw‖2 + Nθ )] + ∇ · [ρ[‖u‖2 + ‖uw‖2 + (N + 2)θ ]u

+ 2(Su + Swvuw + q)] = −2u · ∇φ̄. (57)

In order to obtain the equation for the kinetic pressure ρθ , we express the time derivatives via

∂ (ρ‖u‖2)

∂t
= 2u · ∂ (ρu)

∂t
− ‖u‖2 ∂ρ

∂t
= ‖u‖2∇ · (ρu) − 2uT ∇ · [ρu2 + (ρθ + φ̄)I + S]

= −∇ · (ρ‖u‖2u) − 2u · ∇(ρθ + φ̄) − 2uT ∇ · S, (58a)

∂ (ρ‖uw‖2)

∂t
= 2uw · ∂ (ρuw )

∂t
− ‖uw‖2 ∂ρ

∂t
= ‖uw‖2∇ · (ρu) − 2uT

w∇ · (ρuwu + Swv )

= −∇ · (ρ‖uw‖2u) − 2uT
w∇ · Swv, (58b)

and subtract from the energy transport equation, which, upon division by N , retains the time
derivative for the kinetic pressure only:

∂ (ρθ )

∂t
+ ∇ · (ρθu) + 2

N
(ρθ∇ · u + S : ∇u + Svw : ∇uw + ∇ · q) = 0. (59)

V. A CLOSURE FOR THE HEAT FLUX BASED ON A PRESCRIBED SPECIFIC-HEAT CAPACITY

The Boltzmann-Vlasov equation (37) and, subsequently, the transport equations for the density
(50), momentum (53), and pressure (59) are derived from the multimolecular forward Kolmogorov
equation (18), under the assumption that the latter represents a closed system of molecules, which
has no interaction with any outside effects. Moreover, all molecules are regarded to be statistically
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identical and thus any molecule is equally likely to collide with any other molecule, which of course,
cannot be true for domains whose size exceeds the length of the mean-free path by many orders of
magnitude. As a result, the Boltzmann-Vlasov equation practically describes the behavior of a small
parcel of gas, which does not interact with its surroundings at all.

Subsequently, its direct and naive closure, which solely relies upon, broadly speaking, hypoellip-
tic properties of the collision integral, invariably leads to the compressible Enskog-Euler equations
[33,49], where the stress and heat flux are suppressed toward zero by the collision damping, which
emerges from the Chapman-Enskog expansion [34,47,48]. The Enskog-Euler equations describe a
thermodynamic process, where a parcel of gas, following its trajectory, does not exchange the heat
energy with the neighboring parcels at all. This is a good approximation for the behavior of a gas at
short spatial and temporal scales, such as shock transitions at supersonic Mach numbers, or acoustic
waves.

However, at longer temporal and spatial scales, the parcel of gas exchanges the heat energy
with neighboring parcels, which results in a qualitatively different behavior such as, for example,
incompressible flow, which has a tendency to manifest at subsonic Mach numbers. Furthermore, in
our recent works [24,25], we demonstrated that turbulent behavior in a monatomic gas is observed
for a constant-pressure (or inertial) flow. It is, however, common for the exchange of momentum to
be negligible in practical situations since high Reynolds number flows are ubiquitous in nature at
macroscopic scales.

Therefore, in order to arrive at a suitable closure, which realistically describes a turbulent flow
regime, we assume that, while the stress is negligible as a result of the high Reynolds number
condition, the heat flux is not [even despite the presence of the collision damping in (37)], since the
gas exchanges the heat energy with its surroundings. To this end, we remove the terms with stresses
S and Svw from (53) and (59) to signify the high Reynolds number flow, but retain the divergence
of the heat flux ∇ · q in the pressure equation (59). Once the stresses S and Svw are removed, the
pressure equation (59) becomes decoupled from uw and Svw, and we can discard the equation for
the angular momentum in (53) from consideration. For reasons which will become clear below, we
also recall the formula for the dimensionless specific-heat capacity cv of an ideal gas at a constant
volume,

cv = N

2
, (60)

and express N via cv in the pressure equation (59). In the formula for cv above, it is assumed that
the kinetic energy of the gas is distributed uniformly across all of its degrees of freedom, both
translational and rotational.

The above manipulations lead to the following system of transport equations for the density (50),
momentum (53), and kinetic pressure (59) at a high Reynolds number:

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ (ρu)

∂t
+ ∇ · (ρu2) + ∇(ρθ + φ̄) = 0, (61a)

∂ (ρθ )

∂t
+ ∇ · (ρθu) + 1

cv

(ρθ∇ · u + ∇ · q) = 0. (61b)

Above, observe that the expression ρθ + φ̄ has the meaning of the “true,” or van der Waals, pressure,
that is, the quantity whose gradient constitutes the forcing in the momentum equation of the gas and
thereby accelerates its flow.

Although the transport equations in (61) no longer contain the stress, the divergence of the heat
flux ∇ · q is still present in the pressure equation (61b) due to yet unspecified properties of the heat
exchange with the surrounding gas. Thus, we need a closure for the divergence of the heat flux.

Here, we show that the closure for ∇ · q can be achieved if one requires the flow to have a
prescribed constant specific-heat capacity c. Of course, we have to understand that one cannot
simply set the specific-heat capacity to an arbitrary constant value and expect meaningful results;
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yet, it is known that, for certain values of c, valid thermodynamic processes do indeed exist. For the
purposes of the derivation, however, we will assume that c is an arbitrary constant parameter.

First, we multiply the whole kinetic pressure equation (61b) by a constant c:

∂ (cρθ )

∂t
+ ∇ · (cρθu) + c

cv

(ρθ∇ · u + ∇ · q) = 0. (62)

Next, we assume that the whole term, multiplied by c/cv , is by itself equal to ∇ · q:
c

cv

(ρθ∇ · u + ∇ · q) = ∇ · q or ∇ · q = c

cv − c
ρθ∇ · u. (63)

If so, (62) becomes

∂ (cρθ )

∂t
+ ∇ · (cρθu + q) = 0 or

∂

∂t

∫
V

cρθ dV =
∮

S
(cρθu + q) · n dS, (64)

where V is the volume enclosed by a surface S, and we used Gauss’ theorem with the inward unit
normal vector n. It is clear that the above equation describes a process with the constant specific-heat
capacity equal to c; indeed, the rate of increase of the heat energy in the volume V is the sum of the
inward advective and thermal heat fluxes.

If we assume that, for a prescribed constant specific-heat capacity c, the corresponding ther-
modynamic process indeed exists, then the relation in (63) can be used for the heat-flux closure.
Expressing ∇ · q via ρθ∇ · u by means of (63) and substituting it into the kinetic pressure equa-
tion (61b), we obtain a closed equation for the kinetic pressure:

∂ (ρθ )

∂t
+ ∇ · (ρθu) + ρθ

cv − c
∇ · u = 0. (65)

The system of equations, consisting of the mass and momentum transport in (61a), and the kinetic
pressure transport in (65), preserves the generalized entropy S of the form

S (c) = ρθ c−cv (66)

along the stream lines. Indeed, differentiating S in time, and replacing the time derivatives of ρ and
ρθ with their respective advection terms from (61a) and (65), we obtain

∂S
∂t

+ u · ∇S = 0. (67)

For computational purposes, it is usually desirable to express a system of transport equations in the
form of conservation laws. In the present setting, the mass and momentum transport equations in
(61a) indeed have the conservation law form, however, the pressure transport equation (65) does
not. Fortunately, the quantity A(c), given via

A(c) = θ cv−c, (68)

has the transport equation in the form of a conservation law:

∂A
∂t

+ ∇ · (Au) = 0. (69)

The equations in (61a), (68), and (69) constitute a closed system of the transport equations for the
high Reynolds number flow of a gas with the specific-heat capacity c.

A. Notable special cases

As we mentioned above, the equations in (61a), (66), and (67) do not necessarily describe a valid
process for an arbitrary specific-heat capacity c. However, there are notable special cases for certain
values of c, which are empirically known to be valid thermodynamic processes. Below we list these
known special cases.
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(i) Adiabatic process. Sending c → 0 requires ∇ · q → 0 in (63) (that is, a parcel of gas does
not exchange heat energy with the surroundings), which yields the compressible Enskog-Euler
equations [33,49], with the entropy S given via

S (0) = ρθ−cv . (70)

This regime accurately describes processes at transonic and supersonic Mach numbers, such as
acoustic waves or shock transitions.

(ii) Process at constant density. Sending c → cv requires ∇ · u → 0 in (63), which leads to the
incompressible Euler equations [50,51]. The quantity which is preserved along the stream lines is
naturally the density ρ of the gas, that is,

S (cv ) = ρ. (71)

This regime describes processes at intermediate subsonic Mach numbers, such as the flow around
the airfoil of a piston engine aircraft at its typical cruising speed. In classical thermodynamics, such
process is described by Gay-Lussac’s law.

(iii) Process at constant temperature. Sending c → ∞ in (63) leads to the kinetic pressure
equation in the same form as that for the density, which means that the quantity which is preserved
along the stream lines is the kinetic temperature θ :

∂θ

∂t
+ u · ∇θ = 0. (72)

In classical thermodynamics, such process is described by Boyle’s law.
(iv) Process at constant kinetic pressure. Setting c = cp, where the latter is the specific-heat

capacity at a constant kinetic pressure, and recalling Mayer’s relation

cp = cv + 1, we find that S (cv + 1) = ρθ, (73)

that is, the kinetic pressure is preserved along the stream lines. In classical thermodynamics, such
process is described by Charles’ law.

B. Suitable thermodynamic process for a turbulent gas flow at normal conditions

At this point, we need to choose one of the four thermodynamic processes above to model a
turbulent flow in realistic conditions. Here, we note that, normally, turbulence is observed roughly
in the same conditions as is convection in the atmosphere under the effect of gravity. Convection
occurs as follows: when a parcel of air, being initially in hydrostatic balance between the gravity
force and the pressure gradient, increases its temperature, it simultaneously expands. However, its
pressure remains invariant; as an example, envision a hot air balloon, clearly, the pressure inside it
is the same as outside. The expansion decreases the density of the parcel and upsets the hydrostatic
balance, that is, the gravity force, being the product of the density and the gravity acceleration, is no
longer sufficient to counter the pressure gradient. Thus, the warmer air rises up.

From what is described above, observe that only the process at constant kinetic pressure is consis-
tent with the phenomenon of convection; otherwise, either the gas cannot increase its temperature,
or it cannot expand, or, worse yet, an increase in temperature results in compression of the gas
(adiabatic process). Setting c = cv + 1 in (65) leads to

∂ (ρθ )

∂t
+ u · ∇(ρθ ) = 0, (74)

which, together with the mass and momentum transport equations in (61a), constitutes the same
transport equations for a balanced flow as those in [24,25] for a monatomic gas. What is more
surprising is that the equations in (61a) and (74) no longer contain the specific-heat capacity cv

and, therefore, apply to any polyatomic gas, as long as it possesses only translational and rotational
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degrees of freedom. For numerical computations, we note that

A(cv + 1) = θ−1, (75)

which yields the conservation laws for the transport of mass, momentum, and inverse kinetic
temperature, identical to those for a monatomic gas [24,25]:

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ (ρu)

∂t
+ ∇ · (ρu2) + ∇(ρθ + φ̄) = 0,

∂ (θ−1)

∂t
+ ∇ · (θ−1u) = 0. (76)

In what follows, we study the special case of balanced flow (76), where the kinetic pressure
throughout the domain is constant ρθ = p0 (also known as inertial flow). In such a case, the inverse
temperature θ−1 becomes a constant multiple of the density ρ, which makes the equation for the
former redundant. The system of equations for such a flow is thus comprised solely by the mass and
momentum transport equations:

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ (ρu)

∂t
+ ∇ · (ρu2) + ∇φ̄ = 0. (77)

C. Hard-sphere approximation for the mean field potential

Following [24,25], here we approximate the mean field potential φ̄ in (38a) via a simple formula,
which can be obtained for a hard-sphere interatomic potential. Observe that, for φ being that of a
hard sphere, that is, zero for r � 1, and infinite for r < 1, the integral in (38a) becomes the cavity
distribution function itself,

∫ ∞

0
(1 − e−φHS(r)/θ )

∂

∂r
(r3YHS(θ, r))dr =

∫ 1

0

∂

∂r
(r3YHS(θ, r))dr = YHS(θ, 1), (78)

which leads to

φ̄HS = 2π

3

σ 3

m
ρ2θYHS(θ, 1) = 4ρ2θ

ρHS
YHS(θ, 1), ρHS = 6m

πσ 3
. (79)

Here, observe that, for hard spheres, the potential forcing in the momentum equation is the same
as the one in the Enskog-Euler equations [33,49], that is, the hard-sphere collision integral in the
Enskog equation produces the same momentum forcing term as does the hard-sphere potential in
the Boltzmann-Vlasov equation (37).

In turn, the cavity distribution function YHS(θ, 1) for hard spheres is no longer a function of the
temperature, and is only a function of the packing fraction ρ/ρHS [43,44]:

YHS(θ, 1) = exp

(
5

2

ρ

ρHS

)
+ o

(
ρ

ρHS

)
. (80)

In the numerical simulations that follow, the packing fraction ρ/ρHS ∼ 10−3; in such a situation,
Y ≈ 1 and φ̄ will be approximated below via

φ̄HS ≈ 4ρ2θ

ρHS
, (81)
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FIG. 1. The longitudinal section (z = 0) of the simulation domain. The domain dimensions are 36 × 5.2 ×
5.2 cm. The inlet is on the left, and the outlet is on the right. The pipe walls are shown via thick black lines,
so that both the inlet and outlet are visible. The boundaries of the Fourier spectrum measurement regions are
shown in different colors. Each region is a box of 14 cm in length, and 3.6 × 3.6 cm in cross section. The
longitudinal offsets of regions are 0 (red), 4 (blue), 8 (green), 12 (yellow), 16 (cyan), and 20 (magenta) cm
from the inlet.

which is the same formula as we used previously in [24,25]. For the hard-sphere mean field potential
given via (81), the equations in (76) become

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ (θ−1)

∂t
+ ∇ · (θ−1u) = 0, (82a)

∂ (ρu)

∂t
+ ∇ · (ρu2) + ∇

[
ρθ

(
1 + 4ρ

ρHS

)]
= 0. (82b)

The corresponding inertial flow equations in (77) become

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ (ρu)

∂t
+ ∇ · (ρu2) + 4p0

ρHS
∇ρ = 0. (83)

Remarkably, one can verify that the potential forcing above in (83) acts in the direction of the
temperature gradient, by substituting ρ = p0/θ under the gradient of the potential term in (83).
Thus, the forcing due to the intermolecular potential likely creates the thermal creep flow at constant
pressure [52], and is possibly also responsible for the Soret effect [53]. We will, however, abstain
from focusing on these interesting phenomena here since the goal of this work is to address the
creation of turbulence instead.

VI. NUMERICAL SIMULATIONS OF THE INERTIAL FLOW IN A STRAIGHT PIPE

Here, we use the inertial flow equations with the hard-sphere mean field potential in (83) to
simulate the flow of air in a straight pipe, with the parameters similar to those in the experiment
by Buchhave and Velte [54]. We use the same computational software as in our previous works
[24,25], namely, OPENFOAM[55]. Noting that the inertial flow equations in (83) comprise a system
of nonlinear conservation laws, we simulate them with the help of the appropriately modified
rhoCentralFoam solver [56], which uses the central scheme of Kurganov and Tadmor [57] for
the numerical finite-volume discretization, with the flux limiter due to van Leer [58]. The time
stepping of the method is adaptive, based on the 20% of the maximal Courant number.

A. Details of the computational implementation

We simulate the inertial flow equations with the hard-sphere mean field potential (83) in a
straight pipe of a square cross section, with dimensions of 36 × 5.2 × 5.2 cm. In the corresponding
Cartesian reference frame, the x coordinate varies between 0 and 36 cm, while both the y and z
coordinates vary between −2.6 and 2.6 cm. The longitudinal section of the domain (that is, what
lies in the xy plane with z = 0) is shown in Fig. 1. The spatial discretization step is 0.8 mm in all
three dimensions, totaling 450 × 65 × 65 = 1 901 250 finite-volume cells.

054605-17



RAFAIL V. ABRAMOV

The air enters the pipe through the round inlet of 1 cm in diameter, located in the middle of the
square wall which lies in the yz plane (that is x = 0 cm). The air exits the pipe through a square
3.6 × 3.6 cm outlet, located in the middle of the opposite square wall at x = 36 cm (so that, within
the outlet, both the y and z coordinates vary between −1.8 and 1.8 cm). Both the inlet and outlet
are visible in Fig. 1 as gaps on the left- and right-hand sides of the plot. The length of the domain,
together with the size and shape of the inlet, are consistent with those in the experiment of Buchhave
and Velte [54].

In what follows, we compute the Fourier spectra of the streamwise kinetic energy and tempera-
ture in the six regions, distributed uniformly along the pipe. Each region is a box of 14 cm in length
and 3.6 × 3.6 cm in cross section. The regions are situated on the longitudinal axis of the pipe with
varying distances from the inlet wall: 0, 4, 8, 12, 16, and 20 cm. These regions are also displayed in
Fig. 1 in different colors.

The constant parameters p0 and ρHS in (83) are set, respectively, to 105 Pa (normal pressure),
and 1850 kg/m3, based on the molar mass and viscosity of air (for details, see Abramov [25]). The
following boundary conditions are used throughout the computation:

(i) Inlet and walls. For the density, we set the Neumann boundary condition with zero normal
derivative. For the velocity, we set the Dirichlet boundary condition, with zero value at the walls,
and a radially symmetric parabolic profile at the inlet, with the maximum value of 30 m/s at the
center (as in the experiment of Buchhave and Velte [54]), directed along the x axis of the pipe.

(ii) Outlet. For the density, we set the Dirichlet boundary condition with the value of
1.209 kg/m3, which corresponds to the density of air at normal conditions (that is, the pressure 105

Pa and temperature 288.15 K, or 15 ◦C). For the velocity, we set the Neumann boundary condition
with zero normal derivative.

At the start of the numerical simulation, the air inside the domain is at rest (zero velocity,
1.209 kg/m3 density). This initial condition simulates a realistic laboratory scenario, where a jet
enters the otherwise resting air. This is markedly different from what we used previously in [24,25],
where the initial condition was a laminar jet inside the domain.

The reason why the outlet in our domain does not comprise the whole square wall, but rather
forms a “window” in it, is the following. Given that the mathematical properties of (83) have not
been studied in detail as of yet, the consistency of its boundary conditions is currently an open
question. However, empirically, we found that, when the adjacent domain patches with different
types of boundary conditions were transversal, a numerical instability developed in the vicinity of
the conjoining edge. Conversely, we also found that, when such adjacent patches were located in
the same plane, such numerical instability did not manifest. Thus, we implemented the window-type
outlet at the end of the pipe to avoid the aforementioned numerical instability.

B. Results of the numerical simulation

As a benchmark, we first simulated the inertial flow equations in (83) without the mean field
potential. In such a case, the velocity becomes decoupled from the density, and is governed by the
standalone equation

∂u
∂t

+ (u · ∇)u = 0. (84)

The above equation does not, however, have the form of a conservation law, and thus the numerical
simulation is still completed using (83) with the initial and boundary conditions set as described
above in Sec. VI A, except that the mean field potential forcing is set to zero. In the same fashion as
we did in [24], here we show the snapshots of the speed of the flow, captured in the xy plane of the
pipe (that is, for z = 0), in the form of contour plots. The snapshots are taken at the times t = 0.01,
0.02, 0.03, and 0.05 s of the elapsed time, and are shown in Fig. 2. As we can see, in the absence of
the potential forcing, the jet “pierces” the resting air and exits through the outlet, remaining laminar
in the process. Once the jet fully traverses the length of the pipe, the numerical solution reaches a
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FIG. 2. Speed of the flow (m/s) without the mean field potential, captured in the xy plane (z = 0) of the
pipe at (a) 0.01, (b) 0.02, (c) 0.03, and (d) 0.05 s of elapsed model time.

steady state. The air outside of the jet (that is, at the distance more than 0.5 cm from the axis of the
pipe) remains at rest at all times.

For comparison, in Fig. 3, we show the speed of the flow in the same form as in Fig. 2, except that
the potential forcing is set as described in Sec. VI A, with p0 = 105 Pa and ρHS = 1850 kg/m3. As
we can see, there is a remarkable difference between the plots. Once the potential forcing is present,
the jet creates fluctuations around itself, disintegrating in the process, just as typically observed in
nature and experiments [2,54], as well as in numerical simulations of our recent works [24,25]. The
length of the pipe is such that the jet completely falls apart by the time the flow reaches the outlet;
in fact, at time t = 0.03 s, the jet extends somewhat farther than in the subsequent snapshot, taken
at time t = 0.05 s. By the time t = 0.05 s, the structure of the flow is as follows. In the first third of
the pipe, the jet is largely intact, with small fluctuations around it. In the second third of the pipe, the
jet disintegrates, transitioning into a chaotic flow. In the last third of the pipe, the flow is completely
chaotic, with weak remnants of the jet, which can be observed in the middle of the pipe. After the
time t = 0.05 s, the overall structure of the flow remained the same as the computation proceeded,
and thus we concluded that the statistical steady state has been reached at t = 0.05. However, unlike
the simulation without the potential shown in Fig. 2, here the flow never settles on a steady state,
and remains in chaotic motion at all times.

The remarkable difference between the flows in Figs. 2 and 3 confirms that, at normal conditions,
the effect of an intermolecular potential, expressed via the mean field forcing, is non-negligible and
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FIG. 3. Speed of the flow (m/s), captured in the xy plane (z = 0) of the pipe at (a) 0.01, (b) 0.02, (c) 0.03,
and (d) 0.05 s of elapsed model time.

quantifiable. Furthermore, the presence of the mean field potential unambiguously creates turbulent
motions in the numerical simulation of an inertial flow, and these motions are similar to those
observed in nature and experiments.

In addition, observe that the geometry of the domain, as well as the initial and boundary condi-
tions, are symmetric with respect to the central axis of the pipe. This means that, technically, the flow
must also remain symmetric relative to the central axis at all times. However, it remains symmetric
only in the absence of the intermolecular potential (see Fig. 2). When the intermolecular potential
is present, we observe that the flow symmetry breaks as early as at t = 0.02 s [Fig. 3(b), small
fluctuations near the outlet]. This breaking of the symmetry is a reliable indication of a strongly
chaotic dynamics: what we observe is roundoff errors of the floating point arithmetic, which intro-
duce a very weak asymmetry into the numerical solution, grow exponentially rapidly in time due to
large positive Lyapunov exponents. As an example, a similar phenomenon manifested in the work
of Majda and Timofeyev [59], where the initial condition from a low-dimensional stable manifold
of the truncated Burgers-Hopf system evolved into a fully chaotic and mixing solution due to the ex-
ponential growth of machine roundoff errors (for a more detailed explanation, see [60], Sec. 2.2.4).

1. Density of the flow

In addition to the snapshots of the flow speed, in Fig. 4 we show the snapshots of the density
of the flow, captured in the same way and at the same times, and also displayed as contour plots.
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FIG. 4. Density of the flow (kg/m3), captured in the xy plane (z = 0) of the pipe at (a) 0.01, (b) 0.02,
(c) 0.03, and (d) 0.05 s of elapsed model time.

Just as in our recent works [24,25], observe that the fluctuations of density from its background
value of 1.209 kg/m3 are rather unrealistic, as much as by a factor of 2 both ways. We currently
presume that this happens due to that fact that our model is “too idealized”; namely, the pressure
is presumed to be strictly constant irrespectively of how the other variables behave. In a real gas,
obviously, such condition may not strictly hold: if a large enough density gradient develops locally
in a flow, it would also inevitably create a pressure fluctuation. Our simplified model, on the other
hand, adheres strictly to Charles’ law for a constant pressure process, and thus has certain bounds
of practical applicability. Generally, it appears to be a challenging problem to create a universal gas
transport model, which would be accurate in all thermodynamic regimes of the flow, from Charles’
law at low Mach numbers, to acoustic waves and adiabatic shock transitions at high Mach numbers.

2. Fourier spectra of the kinetic energy

Here, we show the time averages of the Fourier spectra of the streamwise kinetic energy of the
flow (that is, the energy of the x component of the velocity), computed in the six regions which
were described in Sec. VI A and shown in Fig. 1. In each region, the kinetic energy spectrum
was computed as follows: first, the kinetic energy of the x component of the velocity Ex = u2

x/2,
was averaged over the cross section of the region, thus becoming the function of the x coordinate
only. Then, the linear trend was subtracted from the result in the same manner as was done by
Nastrom and Gage [61] and also in our recent works [24,25], to ensure that there was no sharp
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FIG. 5. The Fourier spectra of the kinetic energy, computed within different spatial windows, situated at
(a) 0–14, (b) 4–18, (c) 8–22, (d) 12–26, (e) 16–30, and (f) 20–34 cm, counting from the inlet. The slope lines
k−5/3, k−2, k−4/3, and k−8/3 are given for the reference.

discontinuity between the energy values at the western and eastern boundaries of the region. Finally,
the one-dimensional discrete Fourier transformation was applied to the result. The subsequent time
averaging of the modulus of the Fourier transform was computed in the time interval 0.1 � t � 0.2
s of the elapsed model time.

The time averages of the kinetic energy spectra, computed as described above, are shown in
Fig. 5 for all six regions, in the ascending order of their distance from the inlet. In the first region,
which begins directly at the inlet [Fig. 5(a)], the kinetic energy spectrum has the decay of k−5/3

x (the
famous Kolmogorov spectrum) on the moderate and small scales, and looks very similar to what
was observed by Buchhave and Velte [54] in their experiment, and simulated in our recent work [24]
for the flow of argon. However, as the measurement region shifts away from the inlet, a qualitative
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change in the kinetic energy spectra is observed: the decay rates become different between the
moderate and small scales. At the small scales, starting approximately with the wave number 35 and
up, the decay rate of the kinetic energy corresponds to k−8/3

x in all remaining measurement regions,
and looks similar to what we observed in our recent work [25] for a large-scale two-dimensional
flow. However, at the moderate scales (between the wave numbers 15 and 35, approximately) the
power of the decay rate varies between different regions:

(1) In the region beginning at 4 cm from the outlet [Fig. 5(b)], the rate of decay corresponds to
k−2

x .
(2) In the regions beginning at 8 and 12 cm from the outlet [Figs. 5(c) and 5(d)], the rate of

decay corresponds to k−5/3
x .

(3) In the region beginning at 16 cm from the outlet [Fig. 5(e)], the rate of decay becomes k−1
x .

(4) In the region beginning at 20 cm from the outlet [Fig. 5(f)], there is no decay at the moderate
scales; the spectrum is flat.

Such two-tiered kinetic energy spectra, with steeper decay at small scales, were observed in the
Jovian atmosphere by Cassini [62] and Juno [63] missions.

3. Fourier spectra of the temperature

In addition to the kinetic energy spectra of the large-scale meridional and zonal winds, Nastrom
and Gage [61] reported the Fourier spectra of the temperature, and found that the latter also had
power scaling. Therefore, in this work, we also report the time-averaged Fourier spectra of the
temperature, which are computed in the precisely same manner as those of the kinetic energy,
presented above. The temperature T (in K) is computed via the formula

T = M

R

p0

ρ
, (85)

where R = 8.314 46 kg m2/s2 mol K is the universal gas constant, and M = 2.897 kg/mol is the
molar mass of air.

We show the temperature spectra in Fig. 6, computed in the same measurement regions as shown
in Fig. 1. As we can see, in the first measurement region, which extends from 0 to 14 cm, counting
from the inlet, the rate of decay of the temperature spectrum largely corresponds to k−5/3

x [Fig. 6(a)].
However, a “two-tiered” decay is observed in the rest of the measurement regions, where, contrary
to what was observed above for the kinetic energy, the steeper decay of k−2

x and k−8/3
x is observed

at the moderate scales (between the wave numbers 25 and 45, approximately). At small scales, the
temperature spectrum decay corresponds to k−5/3

x for all measurement regions. We note that this
power structure of the temperature spectrum (with slower decay rate at smaller scales) is similar to
what was observed by Nastrom and Gage [61].

VII. SUMMARY

In this work, we extend our previous results in [24,25] onto polyatomic gas flows. We develop
a tractable kinetic model of a general polyatomic gas, which describes the translational interaction
via a deterministic intermolecular potential, and rotational interactions via stochastic collisions. In
the suitable hydrodynamic limit for the distribution function of a single particle, we arrive at what
we refer to as the Boltzmann-Vlasov equation, because our kinetic equation possesses both the
deterministic potential and the stochastic collision integral. For the transport equations of velocity
moments, we introduce a heat-flux closure by prescribing the appropriate specific-heat capacity of
the process. For the specific-heat capacity taken at a constant pressure, we obtain the inertial flow
equations of the same form as in [24], albeit with a slightly more accurate estimate of the mean field
potential, which now includes the cavity distribution function.

For the numerical simulation, we choose a scenario which roughly corresponds to the experiment
of Buchhave and Velte [54]. The air at normal conditions enters a straight pipe through the inlet of
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FIG. 6. The Fourier spectra of the temperature, computed within different spatial windows, situated at
(a) 0–14, (b) 4–18, (c) 8–22, (d) 12–26, (e) 16–30, and (f) 20–34 cm, counting from the inlet. The slope lines
k−5/3, k−2, and k−8/3 are given for reference.

1 cm in diameter, with the parabolic velocity profile at the maximum speed of 30 m/s. We show
that, in the absence of an interaction potential, the resulting laminar jet “pierces” the resting air and
exits through the outlet; yet, in the presence of the interaction potential, the jet quickly breaks up
into turbulent motions similarly to the results in our recent works [24,25]. We record the kinetic
energy spectra within measurement regions at different distances from the inlet, and find a variety
of different power spectra (in particular, a double-slope decay similar to that observed on Jupiter
[62,63]). We also measure the temperature spectra of the flow in the same fashion, and observe that
the structure of the power decay is similar to that observed in the Earth atmosphere [61].
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APPENDIX A: ENTROPY INEQUALITY FOR THE FORWARD KOLMOGOROV EQUATION

To obtain the entropy inequalities in (22) for the forward Kolmogorov equation (18), let us
consider the quantity

Q[�1(F ), �2(F0)] =
∫

�1(F )�2(F0)dX dV , (A1)

where F0 is a steady state of (18), and �1 : R → R and �2 : R → R are two differentiable
functions. The time derivative of Q is given via

∂

∂t
Q[�1(F ), �2(F0)] =

∫
D�1(F )

∂F

∂t
�2(F0)dX dV =

∫
D�1(F )�2(F0)

×
(

∂�

∂X
· ∂F

∂V
− V · ∂F

∂X
+

K−1∑
i=1

K∑
j=i+1

λi j[F (C−1
i j V ) − F (V )]

)
dX dV ,

(A2)

where the notation D�1 denotes the derivative of �1 with respect to its argument. Observe that the
part of the latter integral which does not involve collisions is zero; indeed, the integration by parts
yields ∫

D�1(F )�2(F0)

(
∂�

∂X
· ∂F

∂V
− V · ∂F

∂X

)
dX dV

=
∫

�1(F )D�2(F0)

(
V · ∂F0

∂X
− ∂�

∂X
· ∂F0

∂V

)
dX dV = 0. (A3)

For the collision term, we use the fact that both λi j and F0 are invariant under Ci j , and obtain

∂

∂t
Q[�1(F ), �2(F0)] =

K−1∑
i=1

K∑
j=i+1

∫
λi jF [D�1(F (Ci j (V ))) − D�1(F (V ))]�2(F0)dX dV . (A4)

Clearly, for some special cases of �1 and �2, the expression above can be treated further. The
most obvious simplification occurs when �1(F ) = F , in which case the expression above is zero
irrespective of �2:

∂

∂t
Q[F, �2(F0)] = 0. (A5)

Next, let us consider the special case with �1(F ) = −F ln F , �2(F0) = 1, such that Q is the
Shannon entropy. In this case, we prove the first statement in (22):

− ∂

∂t

∫
F ln F dX dV =

K−1∑
i=1

K∑
j=i+1

∫
λi jF (V ) ln

(
F (V )

F (Ci j (V ))

)
dX dV

�
K−1∑
i=1

K∑
j=i+1

∫
λi jF (Ci j (V ))

(
F (V )

F (Ci j (V ))
− 1

)
dX dV = 0, (A6)

where we used the inequality x ln x � x − 1. Setting �2(F0) = ln F0 in (A5), and subtracting (A6),
yields the second statement in (22).

APPENDIX B: HYDRODYNAMIC LIMIT FOR THE BOLTZMANN-VLASOV EQUATION

Here we compute the integral in the right-hand side of (35), with the rescalings in (36).
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1. Potential forcing

Upon replacing the dummy variable of integration x2 = x − σ r, the integral for the potential
forcing in the right-hand side of (35) becomes

1

m

∫
e− φ(‖x−x2‖/σ )

θ [(x+x2 )/2] YK (θ [(x + x2)/2], ‖x − x2‖/σ )
∂

∂x
φ(‖x − x2‖/σ )ρ(x2)dx2

= σ 2

m

∫
e− φ(‖r‖)

θ (x−σ r/2) YK (θ (x − σ r/2), ‖r‖)
∂φ(‖r‖)

∂r
ρ(x − σ r)dr. (B1)

Next, we observe that

e− φ(‖r‖)
θ (x−σ r/2)

∂φ(‖r‖)

∂r
= e− φ(‖r‖)

θ (x−σ r/2) θ (x − σ r/2)

(
σ

2

∂

∂x
+ ∂

∂r

)(
φ(‖r‖)

θ (x − σ r/2)

)

= θ (x − σ r/2)

(
σ

2

∂

∂x
+ ∂

∂r

)
(1 − e− φ(‖r‖)

θ (x−σ r/2) ). (B2)

We now can now manipulate the integral as follows:

σ 2

m

∫
e− φ(‖r‖)

θ (x−σ r/2) YK (θ (x − σ r/2), ‖r‖)
∂φ(‖r‖)

∂r
ρ(x − σ r)dr

= σ 3

2m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)

∂

∂x
(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

+ σ 2

m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)

∂

∂r
(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr. (B3)

The first integral above can be expressed via

σ 3

2m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)

∂

∂x
(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

= σ 3

2m

∂

∂x

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

− σ 3

2m

∫
(1 − e− φ(‖r‖)

θ (x−σ r/2) )
∂

∂x
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)]dr

= σ 3

2m

∂

∂x

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

+ σ 2

m

∫
(1 − e− φ(‖r‖)

θ (x−σ r/2) )

(
− σ

2

)
∂

∂x
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)]dr, (B4)

where we observe that

− σ

2

∂

∂x
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)]

= ∂

∂r
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)]

− θ (x − σ r/2)ρ(x − σ r)
∂

∂r
YK (θ (x − σ r/2), ‖r‖)

r
‖r‖

+ σ

2
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)

∂

∂x
ρ(x − σ r). (B5)
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The second integral can be integrated by parts:

σ 2

m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)

∂

∂r
(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

= −σ 2

m

∫
(1 − e− φ(‖r‖)

θ (x−σ r/2) )
∂

∂r
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)]dr. (B6)

Thus, (B1) is given via

σ 2

m

∫
e− φ(‖r‖)

θ (x−σ r/2) YK (θ (x − σ r/2), ‖r‖)
∂φ(‖r‖)

∂r
ρ(x − σ r)dr

= σ 3

2m

∂

∂x

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

+ σ 3

2m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)(1 − e− φ(‖r‖)

θ (x−σ r/2) )
∂

∂x
ρ(x − σ r)dr

− σ 2

m

∫
(1 − e− φ(‖r‖)

θ (x−σ r/2) )θ (x − σ r/2)ρ(x − σ r)
∂

∂r
YK (θ (x − σ r/2), ‖r‖)

r
‖r‖ dr. (B7)

The sum of the first two integrals in the right-hand side above is

σ 3

2m

∂

∂x

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ(x − σ r)(1 − e− φ(‖r‖)

θ (x−σ r/2) )dr

+ σ 3

2m

∫
YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)(1 − e− φ(‖r‖)

θ (x−σ r/2) )
∂

∂x
ρ(x − σ r)dr

= σ 3

2m

∫
1

ρ(x − σ r)

∂

∂x
[YK (θ (x − σ r/2), ‖r‖)θ (x − σ r/2)ρ2(x − σ r)(1 − e− φ(‖r‖)

θ (x−σ r/2) )]dr

→ 2π
σ 3

m

1

ρ(x)

∂

∂x

[
θ (x)ρ2(x)

∫ ∞

0
Y (θ (x), r)(1 − e− φ(r)

θ (x) )r2 dr

]
, (B8)

as σ → 0 and K → ∞, with σ 3/m being fixed. The second integral becomes, upon expanding in
powers of σ and taking the same limit,

− σ 2

m

∫
(1 − e− φ(‖r‖)

θ (x−σ r/2) )θ (x − σ r/2)ρ(x − σ r)
∂

∂r
YK (θ (x − σ r/2), ‖r‖)

r
‖r‖ dr

= −σ 2

m

∫
(1 − e− φ(‖r‖)

θ (x) )θ (x)ρ(x)
∂

∂r
YK (θ (x), ‖r‖)

r
‖r‖ dr

+ σ 3

2m

1

ρ(x)

∂

∂x

[
θ (x)ρ2(x)

∫
(1 − e− φ(‖r‖)

θ (x) )
∂

∂r
YK (θ (x), ‖r‖) · r2

‖r‖ dr
]

+ O(σ 4/m)

→ σ 3

2m

1

ρ(x)

∂

∂x
·
[
θ (x)ρ2(x)

∫
(1 − e− φ(r)

θ (x) )
∂

∂r
Y (θ (x), r)r3dr n2 dn

]
, (B9)

where n is a unit vector, and the integration over dn occurs over a unit sphere. We recognize that∫
n2 dn = 4π

3
I , (B10)
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and thus

σ 3

2m

1

ρ(x)

∂

∂x
·
[
θ (x)ρ2(x)

∫
(1 − e− φ(r)

θ (x) )
∂

∂r
Y (θ (x), r)r3dr n2 dn

]

= 2π
σ 3

m

∂

∂x

[
θ (x)ρ2(x)

∫ ∞

0
(1 − e− φ(r)

θ (x) )
r3

3

∂

∂r
Y (θ (x), r)dr

]
. (B11)

The sum is, therefore,

2π

3

σ 3

m

1

ρ(x)

∂

∂x

[
θ (x)ρ2(x)

∫ ∞

0
(1 − e− φ(r)

θ (x) )
∂

∂r
(r3Y (θ (x), r))dr

]
, (B12)

which is what appears in (38a).

2. Collision integral

Changing the dummy variable of integration x2 = x − σ r in the collision integral of (35), we
arrive at

1

m

∫
e− φ(‖x−x2‖)

θ [(x+x2 )/2] YK (θ [(x + x2)/2], ‖x − x2‖)λ(z − z2)[ f (z′′) f (z′′
2 ) − f (z) f (z2)]dz2

= σ 3

m

∫ [
f (x, y, v′′,w′′) f

(
x − σ r

2
, y2, v

′′
2,w

′′
2

)
− f (x, y, v,w) f

(
x − σ r

2
, y2, v2,w2

)]
× λ(r, y − y2, v − v2,w − w2)e− φ(‖r‖)

θ (x−σ r/2) YK (θ (x − σ r/2), ‖r‖)dr dy2 dv2 dw2, (B13)

where the collision mappings are computed via (39). Taking the limit as σ → 0, K → ∞, and
σ 3/m ∼ constant, we further obtain

σ 3

m

∫
λ(r, y − y2, v − v2,w − w2)e− φ(‖r‖)

θ (x) Y (θ (x), ‖r‖)

× [ f (x, y, v′′,w′′) f (x, y2, v
′′
2,w

′′
2 ) − f (x, y, v,w) f (x, y2, v2,w2)]dr dy2 dv2 dw2

= σ 3

m

∫
α(x, r, y − y2, v − v2,w − w2)

× [ f (x, y, v′′,w′′) f (x, y2, v
′′
2,w

′′
2 ) − f (x, y, v,w) f (x, y2, v2,w2)]dr dy2 dv2 dw2, (B14)

which is what appears in (38b), with α given via (38c).

APPENDIX C: ENTROPY INEQUALITY FOR THE BOLTZMANN-VLASOV EQUATION

The computation of (47) proceeds as follows:

〈ln f 〉C (t, x) = 1

2

∫
α ln

(
f (x, y, v′,w′) f (x, y2, v

′
2,w

′
2)

f (x, y, v,w) f (x, y2, v2,w2)

)

× f (x, y, v,w) f (x, y2, v2,w2)dr dy2 dv2 dw2 dy dv dw

= 1

2

∫
α ln

(
f (x, y, v′,w′) f (x, y2, v

′
2,w

′
2)

f (x, y, v,w) f (x, y2, v2,w2)

)
f (x, y, v,w) f (x, y2, v2,w2)

f (x, y, v′,w′) f (x, y2, v
′
2,w

′
2)

× f (x, y, v′,w′) f (x, y2, v
′
2,w

′
2)dr dy2 dv2 dw2 dy dv dw

� 1

2

∫
α

(
1 − f (x, y, v,w) f (x, y2, v2,w2)

f (x, y, v′,w′) f (x, y2, v
′
2,w

′
2)

)

× f (x, y, v′,w′) f (x, y2, v
′
2,w

′
2)dr dy2 dv2 dw2 dy dv dw = 0. (C1)
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