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Wavelet-based adaptive large-eddy simulation (WA-LES) is an extension of the LES
method where wavelet threshold filtering is used to separate resolved (more energetic) from
residual (less energetic) turbulent flow motions. The effect of unresolved less energetic
coherent structures is approximated through deterministic closure models. The method
has been recently extended to compressible flows, where the governing equations are ex-
pressed in terms of wavelet-based density-weighted Favre-filtered variables. In this study,
a novel localized dynamic model for compressible WA-LES of inhomogeneous flows is
developed and tested for wall-bounded turbulence. The proposed model, which is based
on the solution of the additional evolution equation for the subgrid-scale turbulent kinetic
energy, extends the original incompressible formulation in De Stefano et al. [Phys. Fluids
20, 045102 (2008)] to compressible flows. The new modeling procedure is successfully
validated for a classical benchmark case that is the supersonic turbulent flow in a plane
channel.
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I. INTRODUCTION

The accurate modeling of turbulence continues to be one of the major challenges in develop-
ing computational technologies capable of effectively predicting the behavior of high Reynolds
number flows of engineering interest. Due to the ability to directly resolve flow dependent large
scale structures, rather than modeling time or ensemble averaged flow fields as in Reynolds-
averaged Navier-Stokes (RANS) approaches [1–3], large-eddy simulation (LES) [4–6] and related
methods, such as wall-modeled LES [7–9], detached-eddy simulation (DES) [10,11], and hybrid
RANS/LES [12–15], have been gaining more and more popularity in computational fluid dynamics.
The main strength of the LES–type approaches is that they mitigate the high-computational cost
restrictions of direct numerical simulation (DNS) [16,17], while preserving the ability to accurately
predict spatiotemporal characteristics of turbulent flows.

Fluid turbulence is characterized by the existence of coherent energetic eddies that are highly
localized and intermittent in both space and scale, yet traditional LES approaches rely on static
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computational meshes that, at best, make use of stretched grids or zonal mesh adaptation. As a
result, the flow is often over-resolved in regions between the coherent structures, and under-resolved
in regions where localized energetic coherent small-scale structures control the flow dynamics, thus,
relying on modeling the effect of unresolved subgrid-scale (SGS) turbulent motions. While a variety
of turbulence closures has been proposed [5,6,9,14], most of them consist of deterministic SGS
models, which were shown to be dominated by a small number of coherent modes that mainly
contribute to SGS dissipation [18]. In fact, the majority of the incoherent SGS modes, due to
substantial decorrelation with resolved modes, practically, have very little influence, with negligible
contribution to SGS dissipation.

An alternative approach, referred to as wavelet-based adaptive large-eddy simulation (WA-LES),
was recently introduced [19,20] adopting a somewhat different philosophy, where, instead of
resolving a priori defined large scales, dynamically important energetic coherent structures are re-
solved on a dynamically adaptive computational mesh. The approach fully utilizes spatial/temporal
intermittency of turbulent flows and tightly integrates numerics and physics-based modeling. The
WA-LES method, which has been recently comprehensively reviewed in Ref. [21], employs a
wavelet threshold filter (WTF) to dynamically resolve and track the more energetic, coherent
structures during the simulation, while modeling the effect of the unresolved less energetic modes.
Similarly to classical LES approaches, the effect of unresolved motions is approximated by means
of deterministic closure models, but, due to better resolution of the coherent turbulent eddies, only
the effect of less energetic coherent flow structures, which are filtered out, needs to be modeled. In
contrast to traditional LES that is based on linear low-pass filtering, WA-LES uses nonlinear WTF
that depends on the instantaneous flow realization. Furthermore, the distinctive feature of WA-LES
is in the direct coupling between the dynamically adaptive computational grid and the SGS model.
In fact, the method has the ability to either compensate for inadequate SGS dissipation provided by
the model by increasing the local resolution and, hence, the level of resolved viscous dissipation, or
coarsen the mesh in regions of excessive SGS dissipation [22].

Analogously to traditional LES research, where relatively few approaches have been developed
for compressible turbulent flows [23–27], most of the efforts in developing WA-LES methodology
were concentrated on incompressible flows. Indeed, a number of closure procedures from incom-
pressible LES were extended to WA-LES, including dynamic Smagorinsky model [19], Lagrangian
path-line/tube dynamic model [28], and one-equation dynamic models [29]. It is worth noting that,
due to the local nature of the WA-LES approach and the use of dynamically adaptive meshes
resolving the energetic coherent flow structures, all of the SGS models utilized in WA-LES are
localized and do not involve any spatial averaging. These models have been thoroughly assessed
for both homogeneous [30,31] and inhomogeneous [22,32] incompressible turbulent flows. A first
step towards the construction of SGS models for compressible WA-LES was recently undertaken in
Ref. [33], where the unclosed terms in the wavelet-filtered governing equations were approximated
by using an eddy-viscosity/conductivity modeling procedure based on the anisotropic minimum-
dissipation (AMD) approach [34]. The AMD model, which was properly designed to account
for grid anisotropy, has a low computational complexity and gave accurate results in WA-LES of
turbulent compressible channel flow.

In this work, a new localized dynamic kinetic-energy model (LDKM) is developed for WA-
LES of inhomogeneous compressible turbulent flows. The modeling procedure is based on the
classical eddy-viscosity/conductivity assumption, where the model coefficients are expressed in
terms of the so-called SGS kinetic energy, for which the evolution equation is derived. The present
formulation extends the original WA-LES approach based on LDKM, which was already developed
for incompressible flows [29], by following the compressible LES formulation based on local
one-equation dynamic kinetic-energy modeling of Chai and Mahesh [26], where WTF is used to
derive the exact SGS kinetic-energy transport equation and the LDKM procedure. The compressible
LDKM formulation has two properties that make it particularly suitable for compressible WA-LES,
namely, its localized nature, which does not require additional volume averaging, and individual
dynamic modeling of the different residual terms that are SGS stresses, SGS heat flux, triple
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correlation, solenoidal and dilatational dissipations, and pressure dilatation. To establish the viability
of the proposed model, as well as its potential application to inhomogeneous flows, the supersonic
turbulent flow in a plane channel is considered as a benchmark problem [35].

The rest of the paper is organized as follows. The WA-LES methodology for modeling and sim-
ulation of turbulent compressible flows is briefly reviewed in Sec. II. The novel LDKM procedure
for compressible WA-LES is introduced and developed in Sec. III, while the dynamic procedure for
the determination of the model coefficients is presented in Sec. IV. The results of the application to
supersonic channel flow are discussed in Sec. V and, finally, some concluding remarks are drawn in
Sec. VI.

II. COMPRESSIBLE WAVELET-BASED ADAPTIVE LARGE-EDDY SIMULATION

In this section, the overall wavelet-based adaptive methodology for the numerical simulation of
compressible turbulent flows is presented.

A. Wavelet threshold filtering

Let us briefly outline the main features of WTF, which plays the key-role in WA-LES formu-
lations. A flow field variable, say ϑ (x), can be represented in terms of wavelet basis functions as

ϑ (x) =
∑
l∈L0

c0
l φ

0
l (x) +

+∞∑
j=0

23−1∑
μ=1

∑
k∈Kμ, j

dμ, j
k ψ

μ, j
k (x), (1)

where φ0
l and ψ

μ, j
k are three-dimensional scaling functions and wavelets of different families and

levels of resolution, indexed with μ and j, respectively. Indeed, the scaling function coefficients
c0

l represent the averaged values of the field, while the wavelet coefficients dμ, j
k represent the

details of the field itself at different scales. The above wavelet decomposition can be thought as
of a multiresolution representation of the variable ϑ , where each level of resolution (except the
coarsest one) consists of a family of wavelets ψ

μ, j
k having the same scale but located at different

positions.
Wavelet filtering is performed in wavelet space using wavelet coefficient thresholding, which

represents a nonlinear filter that depends on each flow realization. Given the number of resolution
levels Jmax, the wavelet thresholding filtered variable is defined by

ϑ
>ε

(x) =
∑
l∈L0

c0
l φ

0
l (x) +

Jmax∑
j=0

23−1∑
μ=1

∑
k ∈ Kμ, j

|dμ, j
k | > ε‖ϑ‖WTF

dμ, j
k ψ

μ, j
k (x), (2)

where ε > 0 stands for the nondimensional (relative) threshold parameter, with ‖ · ‖WTF being the
WTF norm providing the (absolute) dimensional scale. For instance, in this work, the dimensional
scaling ‖ϑ‖WTF is specified using the L2 norm. This way, the filtering operation Eq. (2) is uniquely
defined by the parameter ε, which stands for the prescribed, uniform threshold.

The major strength of WTF is the ability to compress the numerical solution. For turbulent flow
fields, which contain isolated high-energy coherent structures on a low-energy background, most
wavelet coefficients are small. Thus, a good approximation of the unfiltered field can be retained
even after discarding a large number of wavelets with small coefficients. Intuitively, in the wavelet
decomposition Eq. (1), the coefficient dμ, j

k is small unless the variable ϑ has significant variation on
the level of resolution j, in the immediate vicinity of the wavelet ψ

μ, j
k location.

When applying the WTF to the compressible Navier–Stokes equations, each variable should be
spatially filtered, according to Eq. (2), with a corresponding absolute scale. But, this strategy would
lead to numerical complications, due to the one-to-one correspondence between wavelet locations
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and grid points, because each variable should be solved on a different numerical grid. To avoid
this difficulty, the coupled wavelet thresholding strategy is employed. Namely, after constructing
the various masks of significant wavelet coefficients for each dependent variable, the union of them
provides the global thresholding mask that is actually used for all the variables. This way, WTF can
be viewed as a local low-pass filtering procedure. Such an interpretation highlights the similarity
between WA-LES and conventional LES approaches. However, the wavelet filter is drastically
different from the standard LES filters mainly due to its ability to dynamically adapt to the solution.
Practically, the WTF-based process generates an adaptive computational grid that tracks the areas
of locally significant energy in physical space for the ongoing simulation.

B. Wavelet-filtered compressible Navier-Stokes equations

The governing equations for compressible WA-LES, which describe the evolution of the resolved
energetic coherent structures, are formally obtained by applying the WTF procedure to the following
balance equations for mass, momentum, and total energy,

∂ρ

∂t
= − ∂

∂x j
(ρu j ), (3)

∂

∂t
(ρui ) = − ∂

∂x j
(ρuiu j + pδi j − σi j ) + ρ fi, (4)

∂

∂t
(ρe) = − ∂

∂x j
[(ρe + p)u j − σi jui + q j] + ρ f ju j, (5)

where the summation convention over repeated indices applies, while δi j stands for the Kronecker δ.
The body force fi is assumed uniform in space, with f ju j representing the associated power supplied
to the fluid flow. Assuming a Newtonian fluid, the viscous shear-stress tensor in Eq. (4) is given by

σi j = 2μS∗
i j = 2μ

(
Si j − 1

3
Skkδi j

)
, (6)

wherein S∗
i j represents the deviatoric part of the strain rate tensor

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (7)

The molecular dynamic viscosity is assumed dependent on the temperature, μ = μ(T ), while the
thermodynamic state of the fluid is determined by the ideal-gas equation

p = ρRT, (8)

where R is the specific gas constant. The fluid is assumed as a calorically perfect gas, for which
the specific heat at constant pressure and the speed of sound are defined as, respectively, cp =
γ R/(γ − 1) and a(T ) = (γ RT )1/2, with γ being the ratio of specific heats. In Eq. (5), the total
energy per unit volume is defined as the sum of internal and kinetic energies, namely,

ρe = p

γ − 1
+ 1

2
ρuiui, (9)

while the heat flux is defined by

q j = −λ
∂T

∂x j
. (10)

The thermal conductivity is dependent on the temperature, λ = λ(T ), according to λ = Pr−1cpμ,
where Pr stands for the molecular Prandtl number that is assumed constant.

Similarly to classical compressible LES formulations, the WA-LES governing equations are
written in terms of density-weighted Favre-filtered variables. In this study, the linear Favre-filtering

054604-4



LOCALIZED DYNAMIC KINETIC-ENERGY MODEL FOR …

operator (̃·) is defined in conjunction with the WTF operator (·)>ε
based on the following identity:

ρϑ
>ε = ρ>εϑ̃, (11)

where ϑ stands for a generic flow field variable. Therefore, the wavelet-filtered version of the ideal-
gas Eq. (8) reads

p>ε = ρ>εRT̃ , (12)

with T̃ representing the resolved Favre-filtered temperature field. By applying the WTF operation to
the continuity Eq. (3) and momentum Eq. (4), while assuming that filtering commutes with temporal
and spatial derivatives, the following filtered equations are obtained:

∂ρ>ε

∂t
= − ∂

∂x j
(ρ>ε ũ j ), (13)

∂

∂t
(ρ>ε ũi ) = − ∂

∂x j
(ρ>ε ũiũ j + p>εδi j − σ̂i j ) − ∂τi j

∂x j
+ ρ>ε fi. (14)

The resolved viscous shear-stress tensor in the filtered momentum equation is defined as

σ̂i j = 2μ̃S̃∗
i j, (15)

where μ̃ = μ(T̃ ) stands for the resolved dynamic viscosity, while S̃∗
i j represents the deviatoric part

of the resolved strain rate tensor. Note that, here and in the following, the hat symbol is not used to
indicate filtered variables, but does denote computable quantities.

Owing to the Favre-filtering approach, the filtered continuity Eq. (13) does not contain any
unclosed term. On the contrary, the filtered momentum Eq. (14) involves the SGS stresses,

τi j = ρ>ε (ũiu j − ũiũ j ), (16)

which represent unknown quantities to be modeled. Note that, in deriving Eq. (14), the residual
term ∂

∂x j
(σ >ε

i j − σ̂i j ) has been omitted, as is usually done in LES, according to the results of a priori
tests [36].

C. Wavelet-filtered total energy equation

As far as the energy balance is concerned, several different formulations exist in the literature for
the filtered energy equation, e.g., Ref. [37]. Here, the balance equation is written for the wavelet-
filtered total energy, namely,

ρ>ε ẽ = p>ε

γ − 1
+ 1

2
ρ>ε ũiui, (17)

which is obtained by applying the WTF operator to Eq. (9). The same energy variable can be
expressed in terms of resolved momentum as

ρ>ε ẽ = p>ε

γ − 1
+ 1

2
ρ>ε ũiũi + ρ>εk, (18)

where ρ>εk = 1
2τii, with k being referred to as SGS kinetic energy that is

k = 1
2 (ũiui − ũiũi ). (19)

Straightforwardly, the transport equation for the filtered energy variable Eq. (17) is obtained
by applying the WTF operation to the energy Eq. (5). Following Ref. [38], the filtered energy
equation can be formally written as

∂

∂t
(ρ>ε ẽ) = − ∂

∂x j
[(ρ>ε ẽ + p>ε )̃u j − σ̂i j ũi + q̂ j] − ∂

∂x j
(Q j + J j − D j ) + ρ>ε f j ũ j, (20)
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where q̂ j = −λ̃ ∂T̃
∂x j

, with λ̃ = λ(T̃ ), stands for the resolved heat flux. Note that, in deriving Eq. (20),

the residual term ∂
∂x j

(q>ε
j − q̂ j ) has been omitted, as is usually done in LES, according to the results

of a priori tests [36].
At the right-hand side of Eq. (20), it holds

Q j + J j = (ρe + p)u j
>ε − (ρ>ε ẽ + p>ε )̃u j, (21)

where the SGS heat flux Q j and the triple correlation term J j are given by

Q j = cpρ
>ε

(
T̃u j − T̃ ũ j

)
(22)

and

J j = 1
2ρ>ε

(
ũiuiu j − ũiuiũ j

)
, (23)

respectively. These definitions derive form the total energy Eq. (9) and the ideal-gas Eq. (8),
supplemented by their filtered counterparts Eqs. (17) and (12). As for the SGS viscous diffusion,
which would be exactly expressed as [38]

∂D j

∂x j
= ∂

∂x j
(σi jui

>ε − σ̂i j ũi ), (24)

by neglecting the term ∂
∂x j

(μS∗
i jui

>ε − μ̃S̃∗
i jui ), the following approximation is actually used in

Eq. (20):

∂D j

∂x j
= ∂

∂x j
[2μ̃(S̃∗

i jui − S̃∗
i j ũi )] = ∂

∂x j

[
μ̃

∂k

∂x j
+ μ̃

∂τ ′
i j

∂xi

]
− εd , (25)

where τ ′
i j = τi j/ρ

>ε , for conciseness. The last term at the right-hand side of Eq. (25) that is

εd = ∂

∂x j

[
5

3
μ̃

(
˜

u j
∂ui

∂xi
− ũ j

∂ ũi

∂xi

)]
(26)

can be referred to as SGS dilatational dissipation, since it vanishes in the incompressible limit. In
this study, following Ref. [26], this variable is approximated as

εd
∼= 5

3
μ̃

⎡⎣(̃
∂ui

∂xi

)2

−
(

∂ ũi

∂xi

)2
⎤⎦. (27)

Finally, based on approximation Eq. (25), the filtered total energy Eq. (20) can be rewritten as

∂

∂t
(ρ>ε ẽ) = − ∂

∂x j
[(ρ>ε ẽ + p>ε )̃u j − σ̂i j ũi + q̂ j] − ∂

∂x j

[
Q j + J j − μ̃

∂k

∂x j
− μ̃

∂τ ′
i j

∂xi

]
− εd + ρ>ε f j ũ j . (28)

As for any other compressible LES approach, suitable closure models are needed to estimate
the unknown SGS terms in the wavelet-filtered momentum Eq. (14) and total energy Eq. (28).
In the WA-LES framework, the SGS terms account for the effect of unresolved (less energetic)
coherent/incoherent structures on the thermofluid dynamics of resolved (more energetic) coherent
structures. It is worth noting that, analogously to what happens for LES with nonuniform filter width,
there would be a commutation error between filtering and derivative operators, the theoretical effect
of which is not considered in deriving the WA-LES equations. In fact, in a practical simulation, a
significant number of wavelets below the prescribed thresholding level are retained in the regions of
coherent flow structures, due to using the adjacent zone and reconstruction check procedures, which
results in a significant reduction of the commutation error [39].
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D. Numerical implementation

The compressible WA-LES equations are numerically solved by means of the adaptive
anisotropic wavelet collocation (A-AWC) method [40]. This method employs wavelet compres-
sion as an integral part of the numerical algorithm such that the solution is obtained with the
optimal number of grid points for a given level of accuracy. Briefly, the AWC method is an
adaptive, variable-order method for solving partial differential equations with localized structures
that continuously change location and size. Since the computational grid automatically adapts to the
solution at every step of the time integration process, in both position and scale, the regions of high
gradients or localized structures do not need to be known a priori. Also, the method is based on
the use of second-generation wavelets [41], which allows the order of the numerical scheme to be
easily varied, while showing a computational complexity O(N ), where N is the number of retained
wavelets, which are those with significant coefficients plus nearest neighbours. For further details,
the interested reader is referred to Ref. [39], for instance.

The A-AWC formulation is an extension of the original method developed for general curvi-
linear coordinate systems, which preserves active error-controlling properties. By separating the
computational space from the physical one, while introducing a mapping between the two different
spaces, this improved method provides additional flexibility to control mesh anisotropy and solve
the problem in complex physical domains. At the same time, the structured rectilinear assembly
of collocation points in the computational space may be maintained, thus allowing the use of
computationally efficient discrete adaptive wavelet transform and derivative approximations.

III. LOCALIZED DYNAMIC KINETIC-ENERGY EQUATION MODEL

As the coherent part of the unresolved SGS quantities dominates the effect on the evolution of
the resolved fields [18], deterministic closure models are presumed to capture this effect in a similar
fashion as for incompressible WA-LES. The new LDKM procedure for compressible WA-LES is
developed taking into account the corresponding approach proposed for conventional LES [26]. The
proposed modeling procedure provides a localized dynamic estimation of the SGS effects, while
taking full advantage of the WA-LES adaptivity for complex turbulent flows, without performing
any spatial averaging. Furthermore, it exhibits attractive convergence properties, whereby the
modeled terms are implicitly coupled to the prescribed WTF level, while automatically vanishing
in well resolved or laminar flow regions.

SGS energy-based models were first proposed in Ref. [42] as variations on the dynamic
Smagorinsky model that explicitly track a budget of the SGS kinetic-energy Eq. (19), enabling
localized computation of SGS terms, while ensuring the numerical stability of the calculations.
In fact, originally, spatial averaging was used to compute SGS model coefficients and maintain
stability, which limited the application of LES to complex turbulent flows. To compute SGS terms
locally and dynamically, LDKM exploits the SGS kinetic energy through resolving an additional
transport equation. In the WA-LES context, the LDKM was already developed and successfully
implemented for incompressible flows in Ref. [29], while its extension to compressible flow is the
subject of the present work.

A. SGS kinetic-energy equation

Differently from other studies, where the compressible SGS kinetic-energy equation stands for
a modeled equation that is adapted from the transport equation for turbulent kinetic energy [43],
here, this equation is formally derived by properly combining the unfiltered and filtered momentum
equations, while exploiting the continuity equation. Following Ref. [26], the SGS kinetic-energy
equation is written as

∂ (ρ>εk)

∂t
= − ∂

∂x j

[
ρ>εkũ j − τi j ũi − μ̃

∂k

∂x j
− μ̃

∂τ ′
i j

∂xi
− γ − 1

γ
Q j + J j

]
− εd − εs + � + P, (29)
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where WTF takes the place of the spatial filtering operation in the original formulation. Besides the
terms that were already introduced above, the other three unknown terms at the right-hand side of
Eq. (29) are defined as follows. The SGS solenoidal dissipation rate is given by

εs = 2μ̃( ˜S∗
i jS

∗
i j − S̃∗

i j S̃
∗
i j ), (30)

where the deviatoric part of the strain rate tensor Eq. (7) is involved. This variable represents an
approximation of the SGS viscous dissipation that is εv = σi jSi j

>ε − σ̂i j S̃i j [38], which is perfectly
consistent with similar approximations discussed in Sec. II C. Moreover, the SGS pressure-dilatation
term is defined as

� = p
∂ui

∂xi

>ε

− p>ε ∂ ũi

∂xi
, (31)

which clearly vanishes in the incompressible limit. Finally, the SGS kinetic-energy production is
given by

P = −τi j S̃i j, (32)

representing the energy transfer (back and forth) between resolved and SGS modes.
Since the evolution of the SGS kinetic energy is explicitly simulated by means of Eq. (29), the

computable total energy can be defined in terms of the resolved kinetic energy as follows [36]:

ρ>ε ê = p>ε

γ − 1
+ 1

2
ρ>ε ũiũi. (33)

In fact, according to Eq. (18), the filtered total energy, ρe>ε = ρ>ε ê + ρ>εk, results in being the sum
of filtered internal energy, resolved kinetic energy, and SGS kinetic energy. Therefore, the balance
equation for the computable total energy can be derived by combining Eqs. (28) and (29), thus,
obtaining

∂

∂t
(ρ>ε ê) = − ∂

∂x j
[(ρ>ε ê + p>ε )̃u j − σ̂i j ũi + q̂ j]

− ∂

∂x j
(τi j ũi ) − 1

γ

∂Q j

∂x j
+ εs − � − P + ρ>ε f j ũ j . (34)

The compressible WA-LES Eqs. (13), (14), (34), and (29) represent a set of unclosed equations in
the variables ρ>ε , ρ>ε ũi, ρ>ε ê, and ρ>εk, which are solved with the A-AWC methodology. In
particular, the global thresholding mask for WTF is constructed by considering all these flow
variables. It is worth noting that the solution of the additional transport equation for the SGS kinetic
energy is not computationally expensive because several terms appearing in Eq. (29) are already
present in the filtered total energy Eq. (34), besides SGS stresses and SGS heat flux [44]. Also
note that, after expressing the filtered pressure field p>ε in terms of resolved variables by exploiting
Eq. (33), the resolved temperature field T̃ is determined according to the filtered ideal-gas Eq. (12),
so that the coefficients μ̃ and λ̃ can be evaluated.

B. Compressible WA-LES closure

The compressible WA-LES equations involve a number of unknown SGS terms that need to
be modeled. In this work, the following approximations are introduced. The unknown SGS stress
tensor Eq. (16) appearing in Eq. (14) is modeled according to

τi j
∼= −2ρ>ενeS̃∗

i j + 2
3ρ>εkδi j, (35)

where the (traceless) deviatoric part is approximated by adopting the classical eddy-viscosity
modeling assumption, while the isotropic part is directly expressed in terms of the solution of the
SGS kinetic-energy Eq. (29). By assuming the square root of k as the velocity scale and the WTF
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characteristic local width � as the length scale for the turbulent eddy-viscosity definition [42], it
holds

νe = Cν�
√

k, (36)

where the dimensionless model coefficient Cν has to be determined. It is worth noting that the
filter width �, being a function of the local spatial resolution, has a key role in the WA-LES
formulation, strictly reflecting the adaptive nature of the method. Practically, given the prescribed
wavelet threshold ε, the corresponding thresholding mask implicitly defines a pointwise variable
time-dependent filter width. This is completely different from classical nonadaptive LES, where
the local, possibly nonuniform, filter width is defined a priori and does not depend on the actual
flow realization. Naturally, the approximation Eq. (35) is also employed to model the unknown SGS
terms involving τi j in the energy Eqs. (29) and (34). In particular, this holds for the production term
P that appears, with opposite signs, in both of the equations.

As for the residual unclosed terms in the energy equations, in this work, the contribution of each
term is approximated separately, instead of being grouped and modeled together, as is often made in
other SGS energy-based modeling procedures, e.g., Ref. [25]. Both energy equations are supplied
with the eddy-diffusivity model for the unknown SGS heat flux, namely,

Q j
∼= −λe

∂T̃

∂x j
, (37)

where λe represents the unknown eddy-conductivity coefficient. The latter parameter can be de-
termined as λe = Pr−1

t cpρ
>ενe, where Prt stands for the turbulent Prandtl number. Differently

from what is usually done in analogous compressible LES applications [45], here, the turbulent
Prandtl number is not assumed constant. Therefore, combining with Eq. (36), the turbulent eddy-
conductivity can be written as

λe = Cλcpρ
>ε�

√
k, (38)

with Cλ representing the second model coefficient to be determined. Following Ref. [26], the triple
correlation Eq. (23) and the SGS pressure-dilatation Eq. (31) terms are approximated, respectively,
as

J j
∼= CJ�ρ>εk1/2 ∂k

∂x j
(39)

and

� ∼= C��2 ∂ p>ε

∂x j

∂

∂x j

(
∂ ũi

∂xi

)
, (40)

where CJ and C� stand for additional model coefficients. Moreover, using simple scaling argu-
ments [42], the following approximation is used for the SGS solenoidal dissipation rate Eq. (30):

εs
∼= Cεs�

−1ρ>εk3/2, (41)

with Cεs representing a further model coefficient. Finally, the unknown SGS dilatational dissipation
rate Eq. (27) can be modeled by being related to the SGS solenoidal dissipation rate as follows:

εd = Cd M2
t εs, (42)

where the SGS turbulent Mach number is defined by Mt = √
2k/̃a, with ã = a(T̃ ), and Cd is a

constant of order unity [46]. Practically, combining with Eq. (41), the following approximation is
employed in this work:

εd
∼= 2Cεd �

−1ρ>εk5/2ã−2, (43)
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where Cεd represents another model coefficient. In the end, the proposed LDKM procedure involves
six model coefficients, namely, Cν , Cλ, CJ , C�, Cεs , and Cεd , which need to be determined.

IV. DYNAMIC MODELING PROCEDURE

A fully dynamic version of the kinetic-energy equation model for compressible WA-LES,
with the model coefficients not prescribed but dynamically derived from the resolved fields, is
proposed. The model coefficients Cν , Cλ and CJ are determined following a Germano-like dynamic
approach [4,47], by test-filtering the resolved WA-LES fields and assuming some scale similarity
or analogy relationship. This particular implementation of LDKM follows that one proposed in
standard LES studies [23,26].

Here, differently from previous works for incompressible WA-LES, where the WTF at twice
the threshold was employed, a local low-pass filter is used for test-filtering. Specifically, a discrete
low-pass test-filter is constructed using the adjacent grid-points, while ensuring the filter weights
positivity and a proper filter width �̂ = α�, where α > 1 is a constant coefficient of proportionality.

By super-imposing the secondary filter, the test-filtered quantity is formally denoted as either ϑ̂
>ε

or
{ϑ>ε}, with ϑ representing a generic flow field variable. Thus, at the test-scale level, the associated

density-weighted Favre-filtered variable, say ˘̃
ϑ , is defined by

ρ̂>ε ˘̃
ϑ = ̂

ρϑ
>ε

. (44)

At the same level, the resolved total energy becomes: p̂>ε

γ−1 + 1
2 ρ̂>ε ˘̃ui

˘̃ui, while the ideal-gas equa-

tion reads: p̂>ε = ρ̂>εR ˘̃T , from which the temperature variable ˘̃T can be evaluated.
By applying the test-filtering operation upon the momentum Eq. (4), the corresponding residual,

subtest-scale (STS) stresses are given by

Ti j = ρ̂>ε ( ˘̃uiu j − ˘̃ui
˘̃u j ). (45)

Test filtering Eq. (16) and combining with Eq. (45), results in the following Germano-like identity:

Ti j − τ̂i j = Li j, (46)

where

Li j =
{

ρui
>ερu j

>ε

ρ>ε

}
−

̂ρui
>ε

̂ρu j
>ε

ρ̂>ε
(47)

represent the exact Leonard stresses. These stresses are directly computable from the resolved fields
and can be exploited to determine the unknown eddy-viscosity model coefficient as follows. As an
analog of Eq. (19), the unresolved kinetic energy at the test-scale level, which is referred to as STS
kinetic energy, is defined by

ksts = 1
2 ( ˘̃uiui − ˘̃ui

˘̃ui ), (48)

that is ρ̂>εksts = 1
2 Tii. This way, analogous to Eq. (46), the following identity for the kinetic-energy

variables holds:

ρ̂>εksts − ρ̂>εk = 1
2Lii, (49)

which allows for the STS kinetic energy to be directly expressed in terms of resolved quantities.
Based on the eddy-viscosity assumption for the deviatoric SGS stresses, which can be written as

τ ∗
i j

∼= −2Cν�ρ>εk1/2S̃∗
i j, (50)

a similar approximation for the deviatoric STS stresses is employed, namely,

T ∗
i j

∼= −2Cν�̂ρ̂>εk1/2
sts

˘̃S∗
i j, (51)
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where the model coefficient is assumed to be independent of the filtering level. Test filtering Eq. (50)
and combining with Eq. (51), while taking into account Eq. (47), results in

L∗
i j = 2CνM∗

i j, (52)

where

M∗
i j = {�ρ>εk1/2S̃∗

i j} − �̂ρ̂>εk1/2
sts

˘̃S∗
i j (53)

stand for the modeled Leonard stresses. Solving the over-specification in Eq. (52) by means of a
least-square method to minimize the error [47], the space-time dependent model coefficient Cν is
finally determined as

Cν = 1

2

L∗
i jM∗

i j

M∗
lnM∗

ln

. (54)

One of the main advantages of the proposed procedure is that negative values for Cν are permitted,
thus emulating the local SGS turbulent kinetic-energy backscatter, which is the transfer of kinetic
energy from unresolved to resolved motions [48]. The inherent instability due to the possible
negative SGS dissipation is practically limited by the local budget of SGS kinetic energy that is
explicitly taken into account by the modeling process.

A fully dynamic version of the kinetic-energy-based eddy-conductivity model Eq. (38), with
the model coefficient not prescribed but derived from the resolved fields, is similarly developed by
combining the approximations for SGS and STS heat fluxes that are, respectively,

ρ>ε (T̃u j − T̃ ũ j ) ∼= −Cλ�ρ>εk1/2 ∂T̃

∂x j
(55)

and

ρ̂>ε ( ˘̃Tuj − ˘̃T ˘̃u j ) ∼= −Cλ�̂ρ̂>εk1/2
sts

∂
˘̃T

∂x j
, (56)

where, again, the same model coefficient is assumed. Test filtering Eq. (55) and combining with
Eq. (56), results in the following Germano-like vector identity:

{ ρ>ε ũ j T̃ } − ρ̂>ε ˘̃u j
˘̃T = Cλ

[{
�ρ>εk1/2 ∂T̃

∂x j

}
− �̂ρ̂>εk1/2

sts
∂

˘̃T

∂x j

]
, (57)

which can be formally written as Lj = CλMj , where Lj and Mj stand for exact and modeled
Leonard-type vector fields, respectively. Solving the over-specification by means of a least-square
method to minimize the error [47], the model coefficient Cλ is finally determined as

Cλ = LiMi

MjMj
. (58)

As for the triple correlation term, the following approximations are used at the grid and test-scale
levels:

1

2
ρ>ε (ũiuiu j − ũiuiũ j ) ∼= CJ�ρ>εk1/2 ∂k

∂x j
(59)

and

1

2
ρ̂>ε ( ˘̃uiuiu j − ˘̃uiui

˘̃u j ) ∼= CJ�̂ρ̂>εk1/2
sts

∂ksts

∂x j
, (60)
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where, again, the same model coefficient is assumed. By test filtering Eq. (59) and combining with
Eq. (60), one gets the following Germano-like vector identity:

1

2
{ρ>ε ũiuiũ j} − 1

2
ρ̂>ε ˘̃uiui

˘̃u j = CJ

(
�̂ρ̂>εk1/2

sts
∂ksts

∂x j
−

{
�ρ>εk1/2 ∂k

∂x j

})
, (61)

which is rewritten as l j = CJmj , from which the model coefficient CJ can be dynamically evaluated
as

CJ = limi

mjmj
. (62)

Analogously, the model coefficient for the SGS pressure-dilatation in Eq. (40) can be determined
based on the following two approximations:

p
∂ui

∂xi

>ε

− p>ε ∂ ũi

∂xi

∼= C��2 ∂ p>ε

∂x j

∂2ũi

∂x j∂xi
(63)

and
̂

p
∂ui

∂xi

>ε

− p̂>ε ∂ ˘̃ui

∂xi

∼= C��̂2 ∂ p̂>ε

∂x j

∂2 ˘̃ui

∂x j∂xi
, (64)

where, once again, the same model coefficient is assumed. By test filtering Eq. (63) and combining
with Eq. (64), one obtains the following Germano-like scalar identity:

{p>ε ∂ ũi

∂xi
} − p̂>ε ∂ ˘̃ui

∂xi
= C�

(
�̂2 ∂ p̂>ε

∂x j

∂2 ˘̃ui

∂x j∂xi
−

{
�2 ∂ p>ε

∂x j

∂2ũi

∂x j∂xi

})
, (65)

from which the model coeffient C� is directly estimated.
As for the determination of the model coefficients for the SGS energy dissipation rates that are

Cεs and Cεd , a Bardina-like approach is followed [29,49], because the Germano-like approach was
shown to provide underestimated values [24,50]. According to definitions Eqs. (30) and (27), the
resolved solenoidal and dilatational dissipation rates at the test-scale level are, respectively,

Es = 2{μ̃S̃∗
i j S̃

∗
i j} − 2 ˘̃μ ˘̃S

∗
i j

˘̃S
∗
i j (66)

and

Ed = 5

3

{
μ̃

(
∂ ũi

∂xi

)2}
− 5

3
˘̃μ

(
∂ ˘̃ui

∂xi

)2

, (67)

where ˘̃μ = μ( ˘̃T ). By analogy with approximations Eqs. (41) and (43), these quantities can be
evaluated as, respectively,

Es = Cεs�̂
−1ρ̂>εk3/2

sts (68)

and

Ed = 2Cεd �̂
−1ρ̂>εk5/2

sts
˘̃a
−2

, (69)

where ˘̃a = a( ˘̃T ), from which the two unknown model coefficients are directly determined.

V. APPLICATION TO SUPERSONIC CHANNEL FLOW

The compressible WA-LES approach supplied with the LDKM procedure is specifically designed
to simulate complex inhomogeneous turbulent flows. The present study evaluates the proposed
method for a classical benchmark problem that is the turbulent supersonic flow in a plane channel
with isothermal walls.
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A. Case study

The present flow geometry is based on the pioneering DNS studies of Coleman and co-
authors [35,51], where the size of the computational domain is given as 4πH × 2H × 4πH/3,
with H representing the channel half-height. The spatial coordinates, denoted as either (x1, x2, x3)
or (X,Y, Z ), are aligned with the streamwise, wall-normal, and spanwise directions, respectively,
where x2 = 0 corresponds to the midplane of the channel. Periodic boundary conditions are applied
along the two homogeneous directions that are x1 and x3, while no-slip conditions for the velocity
and the constant temperature of Tw = 293.15 K are imposed at the cooled walls of the channel
(x2/H = ±1).

Fully developed flow conditions are achieved by sustaining the flow through external uniform
body forcing in the streamwise direction [51], similar to what was done in other LES studies [45],
where the forcing level is determined as follows. Theoretically, by averaging the streamwise
momentum Eq. (14) on the homogeneous plane, it holds

∂

∂t
[ρ>ε ũ1]XZ = − ∂

∂Y
[ρ>ε ũ1ũ2 − σ̂12 + τ12]XZ + [ρ>ε]XZ fiδi1, (70)

where [·]XZ denotes plane averaging. Defining the mean bulk mass flux and density as

(ρU )b = 1

2H

∫ H

−H
[ρ>ε ũ1]XZ dY (71)

and

ρb = 1

2H

∫ H

−H
[ρ>ε]XZ dY, (72)

respectively, by further averaging Eq. (70) along the wall-normal direction, the relation

d

dt
(ρU )b = −τw

H
+ ρb f1 (73)

is obtained. Therefore, by imposing a steady condition for the bulk mass flux, the time-dependent
body force intensity results in being directly related to the averaged wall shear stress, namely f1(t ) =
τw

ρbH . Practically, following Ref. [33], the forcing variable f1 is evolved in time according to a simple
feedback control equation that is

df1

dt
=

[
1 − (ρU )b

(ρU )0
b

]
f1

τ f
, (74)

where (ρU )0
b is the imposed goal value, with τ f being a suitable relaxation time parameter. This

way, during the simulation, the time-dependent body force is increased when the instantaneous
mean bulk mass flux is lower than prescribed, and viceversa.

The higher Mach number case presented in Ref. [35] is chosen here as the benchmark flow,
where significant thermodynamic variations of the fluid properties are present. Specifically, the bulk
Mach and Reynolds numbers are Ma = Ub/aw = 3 and Re = (ρU )bH/μw = 4880, where Ub =
(ρU )b/ρb, while aw = a(Tw) and μw = μ(Tw) = 1.81 × 10−5 kg m−1s−1. Considering ideal gas air
conditions, the specific heat ratio γ = 7/5 and the gas constant R = 287 J kg−1K−1 are assumed.
Moreover, the dependence of the dynamic viscosity on the temperature is given by the Sutherland’s
law, which is normalized as follows:

μ(T )

μw
= Tw + S1

T + S1

( T

Tw

)3/2

, (75)

where S1 = 110.4 K . Also, the molecular Prandtl number Pr = 0.72 is prescribed.
The WA-LES solution is examined in terms of friction Reynolds number, Reτ = ρwuτ H/μw,

friction Mach number, Maτ = uτ /aw, and heat flux coefficient, −Bq = Tτ /Tw. The friction velocity

054604-13



DE STEFANO, DYMKOSKI, AND VASILYEV

FIG. 1. Instantaneous adaptive mesh colored by normalized temperature (top) and streamwise velocity
(bottom) contours, for four different equispaced cross-sections of the channel.
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TABLE I. Numerical resolution, grid compression and mean flow results for WA-LES, LES and DNS.

Method Resolution Compression �x+
1 �x+

2,w �x+
3 Reτ Maτ −Bq uc/Ub Tc/Tw ρc/ρw

WA-LES (LDKM) 132 × 177 × 132 96% 41.1 0.12 13.7 432 0.113 0.13 1.18 2.37 0.42
WA-LES (AMD) 141 × 95 × 94 95% 40.8 0.13 20.4 458 0.107 0.13 1.20 2.69 0.37
LES [45] 128 × 65 × 81 0% 45 0.23 23.7 459 0.112 0.14 1.2 2.67 —
DNS [35] 144 × 119 × 80 0% 39 0.2 24 451 0.116 0.137 1.17 2.49 0.40

and temperature are determined as uτ = (τw/ρw)1/2 and Tτ = −qw/(ρwcpuτ ), where ρw and qw

represent the wall-averaged density and the wall heat flux. The present results for compressible
WA-LES with LDKM are compared with the reference studies, namely, the DNS in Ref. [35], the
nonadaptive LES in Ref. [45], and the WA-LES based on AMD model in Ref. [33].

B. Simulation settings

WA-LES solution for the above benchmark flow is attained by employing the parallel version of
the wavelet-based solver [52], using the fourth-order A-AWC method supplied with the linearized
Crank–Nicolson split-step time integration method with adaptive time stepping. The number of
resolution levels in the wavelet decomposition Eq. (2) is fixed to Jmax = 8, with the coarsest and
the finest adaptive rectilinear grids consisting of 48 × 65 × 48 and 768 × 1025 × 768 wavelets,
respectively. As permitted by the A-AWC approach, uniform grids are used in the computational
space, whereas the corresponding meshes in the physical domain are stretched in the wall-normal
direction, following a hyperbolic tangent distribution. Since the minimum mesh spacing in the
wall-normal direction that is �Yw/H = 2.9 × 10−4 results in being even smaller than that used
for DNS [35], the present simulation can be referred to as wall-resolved WA-LES. Note that, for
the efficient parallel implementation of the simulation, an octree type wavelet collocation grid has
been employed for wavelet coefficients storage, retrieval, and parallel data migration. In addition, a
dynamic load balancing algorithm has been implemented via domain repartitioning during the grid
adaptation step and reassigning tree data structure nodes to the appropriate processors.

To adequately capture both kinematically and thermodynamically significant phenomena, the
grid adaptation is performed based on all the resolved variables. Only a low fraction of the total
number of available wavelets is actually employed in the simulation, depending on the wavelet
thresholding level that is used. As demonstrated in past studies, the choice of the uniform level of
thresholding is very important, especially if no explicit filtering operation is performed and the pure
built-in filtering effect of the wavelet-based grid adaptation is used [53]. Here, also based on past
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FIG. 2. Normalized mean streamwise velocity (left), temperature (middle) and density (right) for WA-LES
solutions, compared to reference DNS [35].
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FIG. 3. Normalized RMS values of streamwise velocity (left), temperature (middle), and density (right)
fluctuations for WA-LES solutions, compared to reference DNS [35].

WA-LES studies, this parameter is selected as ε = 5 × 10−2, which represents a fair compromise
between desired turbulence resolution, necessary numerical accuracy, and acceptable computational
cost. The model coefficients for the LDKM procedure are dynamically evaluated as discussed in
Section IV, where the test-filtering operation is performed with α = 2.

C. Results

To illustrate the instantaneous resolved flow field, the adapted grid is shown in Fig. 1, together
with the contours of normalized temperature and streamwise velocity, for four different cross-
sections equispaced along the channel. Apparently, the actual mesh consists of a very low fraction
of the available grid points, being refined around localized flow structures. In fact, the high grid
compression that is achieved in the present case is comparable to that found in past WA-LES studies
of wall-bounded turbulent flows, for both incompressible [32] and compressible [33] cases.

The present mesh spacings, expressed in viscous wall units, are provided in Table I, together with
some mean flow results. These data show a very good agreement of the integral flow characteristics
in comparison to reference data, with the friction Reynolds number being slightly underestimated.
Following Ref. [33], instead of reporting the numerical resolution corresponding to the finest grid
that is occasionally employed in WA-LES, the resolution corresponding to a reference, say equiv-
alent, nonadaptive grid is shown. The equivalent grid is defined by not altering the relative number
of points along the three spatial directions, while approximately matching the overall number of
retained grid points. This way, a more meaningful comparison between WA-LES and reference
nonadaptive resolutions is achieved in the homogeneous directions. Unfortunately, this is not true
for the nonhomogeneous wall-normal direction, for which, more appropriately, the minimum mesh
spacing close to the walls is provided. Note that finer spatial resolution is permitted in the spanwise
direction with respect to DNS, where a higher order numerical approach using a Fourier-Legendre
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FIG. 4. Resolved turbulent normal stresses for WA-LES solutions, compared to reference DNS [35].
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spectral discretization was utilized [35]. In practice, the number of retained wavelets on the highest
levels of resolution is very low and the corresponding finest spatial grids are used only in very
limited flow regions. This is demonstrated by the achieved grid compression that is measured as
the percentage of discarded grid points with respect to the nominally available ones. Here, since the
finest collocation grid is very seldom involved in the calculation, the grid compression reported in
Table I is measured at the highest but one level of resolution ( j = Jmax − 1).

It should be emphasized that the appearance of intermittently occurring regions of high
resolution, as illustrated in Fig. 1 for the present case, indicates the existence of localized
energy–containing/dynamically important coherent turbulent eddies, whose relative importance is
controlled by the WTF level. This fact is consistent with the results of high-fidelity turbulence
simulations, where the rare occurrence of strong eddy structures at scales even smaller than the
Kolmogorov scale was observed [54,55]. In the context of classical lowpass filter-based LES,
the reduction of the local mesh resolution would predetermine the smallest allowable scales and
dynamically important structures would need to be dissipated by the SGS mdel. For WA-LES,
a similar reduction of the turbulence resolution can also be achieved by increasing the level of
thresholding, as was discussed in details in Ref. [33].

Once fully developed turbulent flow conditions are achieved, the mean flow variables can be
evaluated as Reynolds-averaged fields, by employing a long-time averaging procedure conducted
over several flow-through times, along with spatial averaging in the homogeneous plane. Note that,
after having double checked the mean flow symmetry with respect to the channel midplane, the
reported flow statistics are obtained by further averaging the sampled data on the two sides of the
channel. In the following discussion, the mean variables are denoted by angular brackets, while
primed quantities stand for the corresponding fluctuations. Some mean flow variables of interest
are illustrated in Fig. 2, where the profiles across the channel of normalized streamwise velocity,
temperature and density are reported. The overall comparison with reference DNS data [35] is
quite satisfying. To demonstrate the ability of the WA-LES approach to adequately predict turbulent

|Y| / H

< 
ρ  

> 
< 

u
2’ 

T
 ’ 

> 
/ (

ρ b
 U

b
T

w
 )

 

0 0.5 1

0

0.001

0.002

0.003
DNS
LDKM
AMD

FIG. 6. Resolved turbulent heat flux for WA-LES solutions, compared to reference DNS [35].
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FIG. 7. Instantaneous contour maps of viscosity (top) and conductivity (bottom) ratios, for four different
equispaced cross-sections of the channel.

fluctuations in the resolved variables, the normalized root-mean-square (RMS) values of the same
variables are depicted in Fig. 3. The fluctuations are slightly overestimated in the central region of
the channel. However, the present results are consistent with traditional nonadaptive LES [45].

Furthermore, the WA-LES solution is analyzed in terms of resolved turbulent stresses that are
Ri j = 〈ρ>εu′

iu
′
j〉, where u′

i = ũi − 〈̃ui〉. The resolved normal stresses, which are drawn in Fig. 4,
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FIG. 8. Instantaneous contour maps of the dynamic model coefficients that are Cν , Cλ, CJ , C�, Cεs , and Cεd

at the channel midplane.

show good agreement with the reference DNS data [35], with the location of the peaks, correspond-
ing to the turbulence-producing regions close to the walls, being well predicted. Apparently, the
resolved turbulent stresses in WA-LES are generally lower than found in DNS, because the energy
content of the discarded wavelet modes is however nonnegligible, with the SGS contribution being
responsible for approximating the differences. As far as the turbulent shear stress is concerned, the
total stress that is the sum of resolved turbulent shear stress, viscous shear stress and modeled SGS
shear stress,

Rtot
12 = 〈ρ>ε ũ1ũ2〉 +

〈
−μ̃

∂ ũ1

∂x2

〉
+

〈
−ρ>ενe

∂ ũ1

∂x2

〉
, (76)

is reported in Fig. 5. When making a comparison with the resolved stress in DNS, the effect of
LDKM in approximating the unresolved part of the turbulent shear stress in WA-LES is apparent.
Similarly to turbulent stresses, the turbulent heat flux is partly resolved by the WA-LES solution, as
illustrated in Fig. 6, where the profile of 〈ρ>ε〉〈u′

2T ′〉 is drawn.
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It should be pointed out that, even though the results of WA-LES based on LDKM and AMD
models are in good agreement with each other and DNS data, there are some distinct differences
in the higher order statistics that originate from the different nature of the closing procedures.
Contrarily to the LDKM approach, where the evolution of the SGS energy is explicitly simulated
by solving the associated transport equation, the AMD model imposes a balance of production
and dissipation of SGS energy at the local grid scale [56]. The above discrepancy is thus not
surprising, taking into account that SGS models directly affect what part of the turbulent flow
structures is resolved and what part is modeled. Indeed, the analysis of WA-LES statistics with
respect to DNS should be used to highlight the difference in modeling approaches and not to make
a direct comparison between partially and fully resolved turbulent flow simulations. For instance,
as can be seen in Fig. 4, the longitudinal turbulent stress is better resolved by LDKM, while AMD
better captures normal and transverse turbulent stresses. This is due to the more robust handling of
the flow anisotropy by the AMD model, compared to the isotropic nature of the Smagorinsky-type
approximation Eq. (50) employed by the LDKM procedure. A similar discussion could be made for
the turbulent fluctuations reported in Fig. 3, as well as the turbulent heat flux in Fig. 6.

Finally, to demonstrate the importance of the modeled residual terms in WA-LES with LDKM,
the ratios of turbulent eddy-viscosity and eddy-conductivity to corresponding molecular values,
namely, νe/̃ν (where ν̃ = μ̃/ρ>ε) and λe/λ̃, are examined. The instantaneous contours of these
variables are reported in Fig. 7, at the same time instant and for the same four different cross-
sections considered in Fig. 1. The present values of these ratios are perfectly consistent with previous
findings for both incompressible and compressible WA-LES [20,33]. It is worth stressing that the
modeled SGS terms provided by the LDKM procedure automatically converge to zero at the walls,
where the eddy-viscosity and the eddy-conductivity vanish. The localized dynamic character of the
proposed model is further illustrated in Fig. 8, where the instantaneous contours of the six different
model coefficients are drawn, for instance, at the midplane of the channel.

VI. CONCLUSIONS

The use of localized closure models is essential for the application of compressible WA-LES to
inhomogeneous flows. In this work, a new dynamic model based on the solution of the additional
transport equation for the SGS kinetic energy is originally introduced and developed. The various
residual terms appearing in the wavelet-filtered governing equations are individually modeled by
means of either Germano-like or Bardina-like dynamic procedures. This way, differently from other
SGS modeling approaches involving the use of a priori prescribed model coefficients, including the
reference AMD model, the proposed LDKM leads to a self-closed procedure.

The results obtained for a classical benchmark flow that is the supersonic plane channel with
isothermal walls show that the localized dynamic kinetic-energy model can be successfully used for
closing the compressible WA-LES governing equations. Both accuracy and efficiency of the solution
are demonstrated, making a comparison with conventional nonadaptive LES and DNS. Moreover,
based on the present application results, the accuracy of the resolved turbulent fluctuations in the
wall region demonstrates an important feature of the compressible WA-LES method. Due to the
automatic adaptation process, the presence of high gradients in the mean flow field variables, along
with significant turbulent fluctuations, results in using locally finer grid resolution close to the walls.
This fact leads to the retention of energy for the high wavenumber modes and the corresponding
increased local resolution with respect to conventional lowpass filter-based nonadaptive LES. In
contrast, in the central region of the channel, due to the slowly spatially varying mean flow and less
significant turbulence, coarser grids are employed in the calculation, which results in the inferior
resolution. In the future, it would be beneficial to study the performance of WA-LES with LDKM
in complex external flow scenarios [57].

It should be noted that the compressible WA-LES method discussed in this paper has to
be distinguished from the recently proposed compressible LES with adaptive mesh refinement
(AMRLES) [27], where ad hoc gradient-based adaptive block-structured mesh refinement is used
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for better resolution of the flow regions near the shocks, rather than capturing and resolving the
energetic coherent turbulent structures on the dynamically adaptive computational mesh as in
the present formulation. Also, it is worth stressing that the present WA-LES approach exploits
the wavelet collocation method for solving the wavelet-filtered governing equations, differently
from lower-fidelity approaches, where the same method was limited to the efficient solution of
differently modeled equations. However, together with the wavelet-based adaptive unsteady RANS
recently developed in Refs. [58–60], the present wall-resolved WA-LES formulation paves the way
for further development of the wavelet-based adaptive eddy-resolving method for modeling and
simulation of complex wall-bounded compressible turbulent flows [61].
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