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Decomposition of the Reynolds shear stress in a turbulent boundary
layer modified by miniature vortex generators
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The investigation of the spanwise modulation of the Reynolds shear stress (RSS) dis-
tributions of a turbulent boundary layer modified by miniature vortex generators (MVGs)
is performed, using an approach on a time-resolved velocity data set. The methodology is
based on quadrant analysis of RSS to first identify the spatial and temporal information of
the RSS events. We then apply the spanwise Fourier mode decomposition and triple ve-
locity decomposition to obtain various statistics of the decomposed RSS events, including
their conditional mean structures and actual mean skin friction contributions. In addition,
the spanwise modification of the MVG on the RSS has been characterized by the funda-
mental and subharmonic modes of motions that scale with the spanwise separation distance
(�z ) between MVG pairs. The interactions between the �+

z -scaled mode and subharmonic
modes are further investigated using the scale-by-scale RSS transport equation [Kawata
and Alfredsson, Phys. Rev. Lett. 120, 244501 (2018)]. Results show that the �+

z -scaled
motion tends to strengthen due to the inverse cascade of its subharmonic modes of motions,
allowing the �+

z -scaled motion to persist further downstream.

DOI: 10.1103/PhysRevFluids.7.054603

I. INTRODUCTION

A useful device for the study of passive control of flat plate boundary layers is the miniature
vortex generator (MVG). For example, recent studies have illustrated the ability of MVG to generate
streamwise orientated vortices that give rise to long and persistent streamwise streaks that evolve
downstream in boundary layer flows. The MVG has gained interest owing to its simplicity and
ease of manufacturing [1,2]. The characteristics of MVG in laminar boundary layers have been
widely explored in both experimental and numerical studies. Single and consecutive arrays of
MVGs mounted in a flat-plate boundary layer can delay flow transition from laminar to turbulent
through Tollmien-Schlichting waves or oblique disturbance attenuations, results in a substantial
skin friction reduction [1–5]. Experimental and numerical investigations of flow modifications
by MVGs in turbulent wall-bounded flows were limited. Experimental studies were mainly con-
ducted to investigate flow separation controls by vortex generators in adverse-pressure gradient and
zero-pressure gradient turbulent boundary layers (ZPG TBLs) [6]. The flow dynamic related to
streamwise evolution of the MVG-induced vortices persisting for up to 300h (where h is the device
height) has been studied in subsequent work [7].

Flow that exhibits spatial heterogeneity perpendicular to the flow direction (e.g., spanwise peri-
odicity) is often analyzed by the triple decomposition of velocity fluctuations, for example, for flows
over canopy model [8–10], where the total velocity fluctuation can be decomposed into turbulent
and coherent fluctuations. The turbulent fluctuation is associated with the velocity fluctuation about
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the time-averaged velocity and the coherent fluctuation is a spatial fluctuation that arise from the
turbulent fluctuation due to spatial heterogeneity. The coherent fluctuation arose due to spanwise
periodicity introduced by MVG were treated in a similar fashion, as demonstrated by Shahinfar
et al. [11] and recently studied by Chan and Chin [12] in TBL. In our previous work [12], we studied
the flow modification of large-scale counter-rotating primary vortex pairs, such as low-speed streaks
formation and streamwise turbulence intensity, and based on kinetic observations, the evaluation of
the energy transfer among three components of the triple decomposed kinetic energy. However, the
influence of MVG on the Reynolds shear stress (RSS) has not been examined in any detail. In this
paper, we extend our previous work to investigate the RSS in terms of triple velocity decomposition
and scale decomposition. From the viewpoint of studying of turbulent shear flows, the RSS can be
viewed as an important quantity for their importance in the mean momentum transport and turbulent
kinetic energy production, and their contributions in the large-scale and very-large-scale motions
[13–15], as well as their weighted wall-normal distribution to the skin friction coefficient through
the mean momentum transport equation [16,17]. The RSS can be quantified by an analysis of its
signs [18], where an ejection event is related to the Q2 motion, defined as u′′ < 0 and v′′ > 0,
where u′′ and v′′ are the velocity fluctuations with respect to their global mean values Eq. (3) in the
streamwise and wall-normal direction, and a sweep event is related to the Q4 motion (where u′′ > 0
and v′′ < 0). The quadrant analysis of RSS provides a quantitative evaluation of the ejection and
sweep events that observed in the work of Corino and Brodkey [19], which are related to the Q2

and Q4 motions and the major fractional contributions to the RSS [20–22]. The other two quadrants
are the Q1 and Q3 motions defined as u′′ > 0 and v′′ > 0 and u′′ < 0 and v′′ < 0, and refer to
the outward and inward interactions [18]. The quadrant analysis has gained interest in ejection
and sweep-type events as fundamental elements of turbulent wall-bounded flows and has generated
ideas for flow research based on the quadrant classification of the momentum, heat, and vorticity
covariances.

In this paper, we study the flow modification of MVGs set up in a moderate Reynolds number
ZPG TBL, motivated by the recent experimental studies of Lögdberg et al. [7], Sattarzadeh et al. [5]
and Sattarzadeh and Fransson [23]. The specific aims are to (i) employ the quadrant analysis of RSS
adopted with spanwise scale decomposition to investigate the large- and small-scale components
of the RSS and (ii) provide insights into their temporal and spatial properties under the influence
of MVGs using triple velocity decomposition. The present paper aims to provide insight into the
structural representation of the turbulent wall-bounded flow, which is of fundamental importance
for turbulent flow research.

The remainder of this paper is organized as follows. In Sec. II, we present the numerical
procedure and Sec. III the methodology of analysis. Results are presented in Sec. IV and conclusions
are presented in Sec. V.

II. NUMERICAL PROCEDURE

In the following, the streamwise, wall-normal, and spanwise coordinates are denoted as x =
(x, y, z) or xi, and their velocity components are denoted as u = (u, v, w) or ui, respectively. The
present paper is based on the data set of Chan and Chin [12], hereafter referred to as MVG2021.
The MVG is modeled by the introduction of an additional volume force field to the Navier-Stokes
equations, based on the immersed boundary method [24], as discussed and validated in Chan and
Chin [12]. The MVG configuration is shown in Figs. 1(a) and 1(b). The MVG array is positioned
at xM = 950δ∗

0 from the inlet, corresponding to Reτ = δ+ � 430, where δ∗
0 is the inlet displacement

thickness and δ is the boundary layer thickness. The superscript + refers to scaling with the shear
velocity uτ = √

τw/ρ and kinematic viscosity ν, where τw is the wall shear stress and ρ is the fluid
density. The MVG parameters that scale with the inlet displacement thickness are, respectively, h =
4δ∗

0 is the device height, tm = 1δ∗
0 is the blade thickness (where tm � 3.2 grid points in the spanwise

direction), Lx = 10δ∗
0 is the blade length, α = 15◦ is the angle of attack of the MVG with respect

to the flow direction, dz = 10δ∗
0 is the spanwise distance between the centroids of blades in one
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(a) (b)

(c)

(d)

FIG. 1. (a), (b) Schematic of the MVG layouts considered in the present paper. The MVG parameters are
scaled by the inlet displacement thickness δ∗

0 . Here, h = 4δ∗
0 is the device height, tm = 1δ∗

0 is the blade width,
Lx = 10δ∗

0 is the blade length, α = 15◦ is the angle of attack of the MVG with respect to the flow direction,
dz = 10δ∗

0 is the spanwise distance between the centroids of blades in one pair, and �z = 40δ∗
0 is the spanwise

spacing between MVG pairs. (c), (d) Schematic of the TBL numerical domain with a MVG array. The domain
size is xL×yL×zL = 6000δ∗

0×200δ∗
0×360δ∗

0 , with a MVG array positioned at xM = 950δ∗
0 , corresponding to

Reτ = δ+ � 430, where δ is the boundary layer thickness.

pair, and �z = 40δ∗
0 is the spanwise spacing between MVG pairs. The large-eddy simulation of a

turbulent boundary layer was performed using a fully spectral numerical code [25]. A sub-grid-scale
approximate deconvolution model (ADM-RT) has been employed to compute approximations to the
unfiltered solutions of the incompressible continuity and Navier-Stokes equations by a repeated filter
operation [26],

∂ ûi

∂xi
= 0, (1)

∂ ûi

∂t
+ û j

∂ ûi

∂x j
+ ∂ p̂

∂xi
− 1

Re

∂2ûi

∂x j∂x j
= −χHN � ûi, (2)

where superscripts ∧ refer to a resolved-scale, � denotes the convolution, the relaxation term
−χHN � ûi : χ is the model coefficient, and HN � ûi is the high-pass approximately deconvolved
quantities. The ADM-RT model has been shown to be accurate and robust in predicting incompress-
ible transitional and turbulent flows [26–29]. Spatial discretization is based on a Fourier series with
3/2 zero padding for de-aliasing in the streamwise (x) and spanwise (z) directions, and a Chebyshev
polynomial is employed in the wall-normal direction (y). A schematic of the computational domain
is shown in Figs. 1(c) and 1(d). The computational domain in the streamwise, wall-normal, and
spanwise directions are, respectively, xL×yL×zL = 6000δ∗

0×200δ∗
0×360δ∗

0 using 6144×513×768
spectral modes, with uniform grid spacings of 
x+ ≈ 16.9 and 
z+ ≈ 8.1 in the streamwise and
spanwise directions. In the wall-normal direction, there are at least 15 Chebyshev collocation points
within the region y+ < 10. The first grid point away from the wall is at y+ ≈ 0.03, and the maximum
spacing is 
y+

max = 10.6. A fringe region is employed at the end of the computational domain and
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(a)

(b)

(c) (d) (e)

FIG. 2. (a) Instantaneous realization of the streamwise velocity flow field, u/U∞, at y/h = 0.5 around a pair
of MVGs. Top view (b) and cross-section views of the time-averaged streamwise velocity flow field, u/U∞, at
(c) x∗/h = −1, (d) x∗/h = 0, and (e) x∗/h = 1, where x∗ = x − xM . Rectangular box outlines the MVG cross
section. In (b), the solid black lines mark the spanwise locations of high-speed region (HSR) and low-speed
region (LSR) at x∗/h = 25, respectively.

the flow is damped via a volume force to retain periodic boundary conditions in the streamwise
direction. A low-amplitude volume force trip is applied to trigger the transition to turbulent flow at
the inlet region [30]. The time advancement is carried out by a second-order Crank-Nicolson scheme
for the viscous terms and a third-order four-stage Runge-Kutta scheme for the nonlinear terms. In
this paper, time-averaged quantity is denoted by a (·̄), and its fluctuation is denoted by a prime
(′) [see Eq. (3)]. The simulation has been performed for at least 
Tu2

τ /ν ≈ 8340 (or ≈8.8 eddy
turnover time at Reτ � 1000) before we started to gather data. The results shown in this paper (i.e.,
Figs. 3–8) are sampled for 
Tu2

τ /ν ≈ 7300 (or ≈7.7 eddy turnover time). In addition, the mean-
flow realizations (i.e., Fig. 2) presented in this paper used 86 full flow fields, each with sufficient
time span so each field file is considered as statistically independent. The time-averaged quantity is
further averaged over the periodic spanwise direction. The periodic spanwise coordinate is denoted
as z∗ = modulo(z,�z ) within each MVG pair, i.e., f (x, y, z∗) = 1/(N + 1)

∑N
n=0 f (x, y, z + n�z ).

Figure 2 shows the instantaneous and time-averaged streamwise velocity fields obtained in the
streamwise-spanwise plane at y/h = 0.5 [Figs. 2(a) and 2(b)], and spanwise-wall-normal plane
at x∗/h = −1, 0, and 1 of the time-averaged streamwise velocity field [Figs. 2(c)–2(e)], where
x∗ = x − xM is defined at the center of a MVG. Spanwise alternating high- and low-speed pat-
terns are observed with a high-speed region (HSR) formed along the cemter line of the MVG,
accompanied with low-speed region (LSR) to the side-by-side region, The HSR and LSR have
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been shown to be associated with skin friction variation up to ±10 − 15% at x∗/h � 25 − 50 [12],
respectively.

III. ANALYSIS OF THE REYNOLDS SHEAR STRESS FIELD

A. Velocity fluctuation decomposition

The presence of the MVG array introduces a strong spanwise modulation effect on the ve-
locity fluctuations [1,11,12]. To investigate the spatial variations of velocity fluctuations due to
such spanwise modulation, we adopted the approach to analyze roughness surface flow by triple
decomposition of the velocity components, which reads as

ui(x, t ) = ui(x) + u′
i(x, t ) = 〈ui〉(x, y) + u′

i(x, t ) + ũi(x)︸ ︷︷ ︸
u′′

i

. (3)

The symbol 〈·〉 denotes a mean value over the span. u′
i and ũi on the right-hand side of Eq. (3) are the

turbulent and coherent fluctuations, respectively. The coherent fluctuations ũi represent the induced-
spatial variation of the time-averaged flow due to the presence of MVGs. The total fluctuations are
u′′

i � u′
i for the smooth wall case without MVGs since ũi � 0.

B. Fourier mode decomposition of velocity fluctuations

We analyze the RSS fields based on a Fourier mode decomposition. After the instantaneous
velocities, ui are split into their global means 〈ui〉(x, y) and their deviations u′′

i (x, t ), we apply a
sharp spatial filtering based on a spanwise cutoff wave number λz,c = 2π/kz,c to the total velocity
fluctuation fields u′′

i (x, t ). The scale decomposition can be expressed as

u′′
i (x, t ) = u′′

i,L(x, t ; kz,c ) + u′′
i,S(x, t ; kz,c ), (4)

where the total velocity fluctuations are expressed as superposition of the large-scale fluctuations
(u′′

i,L) and small-scale fluctuations (u′′
i,S). Here, subscripts L and S denote the large-scale and small-

scale components, respectively. Moreover, it can be shown that the scale decomposition is equivalent
to

u′′
i,L(x, t ; kz,c ) = u′

i,L(x, t ; kz,c ) + ũi,L(x, t ; kz,c ), (5)

u′′
i,S(x, t ; kz,c ) = u′

i,S(x, t ; kz,c ) + ũi,S(x, t ; kz,c ), (6)

where (′) and (·̃) denote the turbulent and coherent velocity fluctuations based on triple decomposi-
tion Eq. (3), respectively. Given that

u′′
i u′′

j (x, t ) = u′′
i,Lu′′

j,L(x, t ; kz,c ) + u′′
i,Lu′′

j,S(x, t ; kz,c ) + u′′
i,Su′′

i,L(x, t ; kz,c ) + u′′
i,Su′′

j,S(x, t ; kz,c ), (7)

then the Reynolds stresses satisfy the scale decomposition as

u′′
i u′′

j (x) = u′′
i,Lu′′

j,L(x; kz,c) + u′′
i,Su′′

j,S(x; kz,c), (8)

and they also satisfy the triple decomposition as

u′′
i,Lu′′

j,L(x; kz,c) = u′
i,Lu′

j,L(x; kz,c) + ũi,Lũ j,L(x; kz,c), (9)

u′′
i,Su′′

j,S(x; kz,c) = u′
i,Su′

j,S(x; kz,c) + ũi,Sũ j,S(x; kz,c). (10)

Additionally, the one-dimensional spanwise wave-number cospectra of −u′′v′′, −u′v′, and −ũṽ can
be expressed as

−〈u′′
Lv′′

L〉(x, y; kz,c ) =
∫ kz,c

0
φ′′

−uv (x, y, kz )dkz, −〈u′′
Sv

′′
S〉(x, y; kz,c ) =

∫ ∞

kz,c

φ′′
−uv (x, y, kz )dkz, (11)
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−〈u′
Lv′

L〉(x, y; kz,c ) =
∫ kz,c

0
φ′

−uv (x, y, kz )dkz, −〈u′
Sv

′
S〉(x, y; kz,c ) =

∫ ∞

kz,c

φ′
−uv (x, y, kz )dkz, (12)

−〈ũLṽL〉(x, y; kz,c ) =
∫ kz,c

0
φ̃−uv (x, y, kz )dkz, −〈ũSṽS〉(x, y; kz,c ) =

∫ ∞

kz,c

φ̃−uv (x, y, kz )dkz, (13)

for the large-scale and small-scale contributions, respectively.

C. Quadrant analysis of RSS

We further adopt the quadrant analysis of RSS [18]. The total RSS can be expressed as u′′v′′ =∑4
n=1 Q′′

n , where Q′′
n denotes the nth quadrant of (u′′, v′′) plane, e.g., Q′′

2 = {u′′v′′ | u′′ < 0, v′′ > 0}.
Utilizing quadrant analysis of RSS, the large-scale component of the total RSS events can be defined
as

Q′′
1L(x, t ; kz,c ) = {u′′

Lv′′
L | u′′ > 0, v′′ > 0}, Q′′

2L(x, t ; kz,c ) = {u′′
Lv′′

L | u′′ < 0, v′′ > 0},
Q′′

3L(x, t ; kz,c ) = {u′′
Lv′′

L | u′′ < 0, v′′ < 0}, Q′′
4L(x, t ; kz,c ) = {u′′

Lv′′
L | u′′ > 0, v′′ < 0}, (14)

where the small-scale component of total RSS events (Q′′
S) and the large- and small-scale interactions

(Q′′
LS) and (Q′′

SL) are obtained in a similar manner as Eqs. (14), and are given by

Q′′
1LS(x, t ; kz,c ) = {u′′

Lv′′
S | u′′ > 0, v′′ > 0}, Q′′

2LS(x, t ; kz,c ) = {u′′
Lv′′

S | u′′ < 0, v′′ > 0},
Q′′

3LS(x, t ; kz,c ) = {u′′
Lv′′

S | u′′ < 0, v′′ < 0}, Q′′
4LS(x, t ; kz,c ) = {u′′

Lv′′
S | u′′ > 0, v′′ < 0}, (15)

Q′′
1SL(x, t ; kz,c ) = {u′′

Sv
′′
L | u′′ > 0, v′′ > 0}, Q′′

2SL(x, t ; kz,c ) = {u′′
Sv

′′
L | u′′ < 0, v′′ > 0},

Q′′
3SL(x, t ; kz,c ) = {u′′

Sv
′′
L | u′′ < 0, v′′ < 0}, Q′′

4SL(x, t ; kz,c ) = {u′′
Sv

′′
L | u′′ > 0, v′′ < 0}, (16)

Q′′
1S(x, t ; kz,c ) = {u′′

Sv
′′
S | u′′ > 0, v′′ > 0}, Q′′

2S(x, t ; kz,c ) = {u′′
Sv

′′
S | u′′ < 0, v′′ > 0},

Q′′
3S(x, t ; kz,c ) = {u′′

Sv
′′
S | u′′ < 0, v′′ < 0}, Q′′

4S(x, t ; kz,c ) = {u′′
Sv

′′
S | u′′ > 0, v′′ < 0}. (17)

Here, the superscript (′′) denotes the total component of the corresponding quadrant events. In the
subscript, an integer denotes the nth quadrant and capital letter characterises the total RSS events as:
large-scale component (L), small-scale component (S) and large- and-small-scale interactions (LS
and SL). In addition, the quadrant decomposition can be expressed as

u′′
Lv′′

L =
4∑

n=1

Q′′
nL, u′′

Lv′′
S =

4∑
n=1

Q′′
nLS, u′′

Sv
′′
L =

4∑
n=1

Q′′
nSL, u′′

Sv
′′
S =

4∑
n=1

Q′′
nS, (18)

for each of the four components in Eq. (7). It can be shown that each of the total RSS events (Q′′
n)

can also be expressed as four categories (L, S, LS, and SL)

Q′′
n (x, t ) = Q′′

nL + Q′′
nLS + Q′′

nSL + Q′′
nS, where u′′v′′ =

4∑
n=1

Q′′
n, (19)

for each quadrant of the (u′′, v′′) plane: n = 1, 2, 3, and 4, where on the right-hand side are the terms
in Eqs. (18). To further examine the turbulent and coherent components of the quadrant events as
identified above, we apply the triple decomposition scheme to the velocity fluctuation components.
The turbulent component of the quadrant events is computed by following Eqs. (3), (4), and (14).
We define the large-scale turbulent RSS as

Q′
1L(x, t ; kz,c ) = {u′

Lv′
L | u′′ > 0, v′′ > 0}, Q′

2L(x, t ; kz,c ) = {u′
Lv′

L | u′′ < 0, v′′ > 0},
Q′

3L(x, t ; kz,c ) = {u′
Lv′

L | u′′ < 0, v′′ < 0}, Q′
4L(x, t ; kz,c ) = {u′

Lv′
L | u′′ > 0, v′′ < 0}, (20)
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where Q′
LS, Q′

SL, and Q′
S are calculated in a similar fashion as in Eqs. (15)–(17), and are given by

Q′
1LS(x, t ; kz,c ) = {u′

Lv′
S | u′′ > 0, v′′ > 0}, Q′

2LS(x, t ; kz,c ) = {u′
Lv′

S | u′′ < 0, v′′ > 0},
Q′

3LS(x, t ; kz,c ) = {u′
Lv′

S | u′′ < 0, v′′ < 0}, Q′
4LS(x, t ; kz,c ) = {u′

Lv′
S | u′′ > 0, v′′ < 0}, (21)

Q′
1SL(x, t ; kz,c ) = {u′

Sv
′
L | u′′ > 0, v′′ > 0}, Q′

2SL(x, t ; kz,c ) = {u′
Sv

′
L | u′′ < 0, v′′ > 0},

Q′
3SL(x, t ; kz,c ) = {u′

Sv
′
L | u′′ < 0, v′′ < 0}, Q′

4SL(x, t ; kz,c ) = {u′
Sv

′
L | u′′ > 0, v′′ < 0}, (22)

Q′
1S(x, t ; kz,c ) = {u′

Sv
′
S | u′′ > 0, v′′ > 0}, Q′

2S(x, t ; kz,c ) = {u′
Sv

′
S | u′′ < 0, v′′ > 0},

Q′
3S(x, t ; kz,c ) = {u′

Sv
′
S | u′′ < 0, v′′ < 0}, Q′

4S(x, t ; kz,c ) = {u′
Sv

′
S | u′′ > 0, v′′ < 0}, (23)

where the quadrant decomposition can be written as

u′
Lv′

L =
4∑

n=1

Q′
nL, u′

Lv′
S =

4∑
n=1

Q′
nLS, u′

Sv
′
L =

4∑
n=1

Q′
nSL, u′

Sv
′
S =

4∑
n=1

Q′
nS. (24)

Here, we make use of the (u′′, v′′) plane for the quadrant analysis so that the criterion is consistent
to that we used in Eqs. (14)–(17), and thereby we are extracting the turbulent component of the
quadrant events at the same (u′′, v′′) plane that we used in Eqs. (14)–(17). The (u′′, v′′) plane
contains the temporal and spatial information of the quadrant events that we are interested in. It
can be shown that using this criterion, we obtain

Q′
n(x, t ) = Q′

nL + Q′
nLS + Q′

nSL + Q′
nS, where u′v′ =

4∑
n=1

Q′
n, (25)

for each quadrant of the (u′′, v′′) plane: n = 1, 2, 3, and 4. Finally, the coherent part of the quadrant
events can be computed using the above methods because, following Eqs. (3)–(6), we can write

u′′
i,Lu′′

j,L︸ ︷︷ ︸
(I)

(x, t ; kz,c ) = u′
i,Lu′

j,L︸ ︷︷ ︸
(II)

+ u′
i,Lũ j,L︸ ︷︷ ︸
(IVa)

+ ũi,Lu′
j,L︸ ︷︷ ︸

(IVa)

+ ũi,Lũ j,L︸ ︷︷ ︸
(III)

,

u′′
i,Lu′′

j,S︸ ︷︷ ︸
(IVa)

(x, t ; kz,c ) = u′
i,Lu′

j,S︸ ︷︷ ︸
(IVa)

+ u′
i,Lũ j,S︸ ︷︷ ︸
(IVb)

+ ũi,Lu′
j,S︸ ︷︷ ︸

(IVb)

+ ũi,Lũ j,S︸ ︷︷ ︸
(IVa)

,

u′′
i,Su′′

j,L︸ ︷︷ ︸
(IVa)

(x, t ; kz,c ) = u′
i,Su′

j,L︸ ︷︷ ︸
(IVa)

+ u′
i,Sũ j,L︸ ︷︷ ︸
(IVb)

+ ũi,Su′
j,L︸ ︷︷ ︸

(IVb)

+ ũi,Sũ j,L︸ ︷︷ ︸
(IVa)

,

u′′
i,Su′′

j,S︸ ︷︷ ︸
(I)

(x, t ; kz,c ) = u′
i,Su′

j,S︸ ︷︷ ︸
(II)

+ u′
i,Sũ j,S︸ ︷︷ ︸
(IVa)

+ ũi,Su′
j,S︸ ︷︷ ︸

(IVa)

+ ũi,Sũ j,S︸ ︷︷ ︸
(III)

. (26)

Here, (I) are the large- and small-scale contributions of the total Reynolds stresses, (II) is the large-
and small-scale contributions of the turbulent Reynolds stresses, (III) is the large- and small-scale
contributions of the time-independent coherent Reynolds stresses, and (IV) is the time-dependent,
zero-mean interactions: (IVa) denotes interactions either between large- and small-scale components
or between turbulent and coherent components and (IVb) denotes cross-interactions between large-
and small-scale components and turbulent and coherent components. Then we obtain the time-
independent coherent part of the quadrant events using the relation Eqs. (26) by assigning i = 1
and j = 2 and then taking the time average, and we extract the coherent part of the quadrant events
on the same (u′′, v′′) plane that we defined previously for the total and turbulent component of the
quadrant events:

Q̃nL(x; kz,c) = Q
′′
nL − Q

′
nL, Q̃nLS(x; kz,c) = Q

′′
nLS − Q

′
nLS,

Q̃nSL(x; kz,c) = Q
′′
nSL − Q

′
nSL, Q̃nS(x; kz,c) = Q

′′
nS − Q

′
nS. (27)
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More importantly, because of Eqs. (18), (24), and (26), the coherent components of the RSS satisfy

4∑
n=1

Q̃nL =
4∑

n=1

Q
′′
nL −

4∑
n=1

Q
′
nL = ũLṽL,

4∑
n=1

Q̃nLS =
4∑

n=1

Q
′′
nLS −

4∑
n=1

Q
′
nLS = ũLṽS,

4∑
n=1

Q̃nSL =
4∑

n=1

Q
′′
nSL −

4∑
n=1

Q
′
nSL = ũSṽL,

4∑
n=1

Q̃nS =
4∑

n=1

Q
′′
nS −

4∑
n=1

Q
′
nS = ũSṽS, (28)

and it can be shown that

Q̃n(x) = Q̃nL + Q̃nS + Q̃nLS + Q̃nSL = Q
′′
n − Q

′
n, (29)

for each quadrant of coherent RSS: n = 1, 2, 3, and 4. Equations (18) illustrate that the four
different components from specified λz,c ranges [i.e., λz > λz,c and λz < λz,c in Eq. (7)] are directly
associated with four quadrants of the (u′′, v′′) plane. Equations (19) show that if we sum the
four different λz,c-range components, we can reconstruct the same Q′′

n that are obtained from the
quadrants of the (u′′, v′′) plane. Therefore, Eqs. (19) imply that each Q′′

n can be split into four groups:
the large scales (L), the small scales (S), and the large- and small-scale interactions (LS and SL).
Another feature of this decomposition is that it explicitly accounts for the effects of turbulent and
coherent fluctuations [triple decomposition Eq. (3)] that often emerge in MVG or some rough-wall
flows, as demonstrated in Eqs. (24), (25), (28), and (29). In the next section, we demonstrate that
this decomposition can be used to split the mean skin friction generation due to RSS into different
components and assess their relative contributions to the total mean skin friction coefficient. In
particular, we also highlight the significance of the Q2 and Q4 events to the mean wall shear stress
compared to the Q1 and Q3 events (as demonstrated in Secs. IV A and IV B).

D. Turbulent skin friction decomposition for MVG flows

This decomposition enables us to quantify the skin friction generation by different RSS events
through the Fukagata-Iwamoto-Kasagi (FIK) identity [16]. The FIK identity is a momentum-based
decomposition of the total mean skin friction coefficient Cf in TBL, which is given by a triple
integration of the mean streamwise momentum equation over the wall [16]. The decomposition can
be written as

Cf (x) = 2τw/(ρU 2
∞) = Cf ,D + Cf ,R + Cf ,M + Cf ,S, (30)

where τw, ρ, and U∞ are the mean shear stress at the wall, incompressible fluid density, and
free-stream velocity, respectively. Cf ,D denotes the contribution due to the laminar effect, Cf ,R

denotes the contribution due to RSS (turbulent effect), Cf ,M and Cf ,S are related to the mean flow
convection and spatial development of the TBL, respectively. More importantly, the mean skin
friction generation by RSS, denoted as Cf ,R, is given by

Cf ,R(x) =
∫ 1

0

〈
4(1 − y/δ)

U 2∞
[−u′′v′′]︸ ︷︷ ︸

F ′′
R

〉
d (y/δ), (31)

where F ′′
R is the weighed RSS contribution to the skin friction coefficient. From quadrant decompo-

sition of the total RSS (Sec. III C), we first express the skin friction contribution by each quadrant
as

−u′′v′′(x, t ) = −
4∑

n=1

Q′′
n (x, t ), F ′′

R (x) = −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q
′′
n (x)

]
=

4∑
n=1

f ′′
R,n(x), (32)
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where f ′′
R,n(x) = −4(1 − y/δ) Q

′′
n (x)/U 2

∞. The mean skin friction Cf ,R generated by each quadrant
of RSS (n = 1, 2, 3, and 4) can be obtained by integrating 〈 f ′′

R,n〉 over the wall

C′′
R,n(x) =

∫ 1

0
〈 f ′′

R,n〉 d (y/δ), where Cf ,R(x) =
4∑

n=1

C′′
R,n. (33)

Similarly, we have shown from Eqs. (8) and (18) that we can write F ′′
R as

F ′′
R (x)︸ ︷︷ ︸
total

= −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q
′′
nL(x; kz,c)

]
︸ ︷︷ ︸

F ′′
R,L, total

large scale

+ −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q
′′
nS(x; kz,c)

]
︸ ︷︷ ︸

F ′′
R,S, total

small scale

=
4∑

n=1

[ f ′′
R,nL]︸ ︷︷ ︸

nth quadrant
total

large scale

+
4∑

n=1

[ f ′′
R,nS]︸ ︷︷ ︸

nth quadrant
total

small scale

, (34)

where f ′′
R,nL = −4(1 − y/δ) Q

′′
nL/U 2

∞ and f ′′
R,nS = −4(1 − y/δ) Q

′′
nS/U 2

∞. Equation (34) demon-
strates that the total F ′′

R can be split into eight components due to (i) nth quadrant events and (ii)
large-scale or small-scale contributions. Furthermore, following Eqs. (9), (10), and (28), we can
write F ′′

R,L and F ′′
R,S in Eq. (34) as

F ′′
R,L(x; kz,c)︸ ︷︷ ︸

total
large scale

= −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q
′
nL(x; kz,c)

]
︸ ︷︷ ︸

F ′
R,L, turbulent
large scale

+ −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q̃nL(x; kz,c)

]
︸ ︷︷ ︸

F̃R,L, coherent
large scale

=
4∑

n=1

[ f ′
R,nL]︸ ︷︷ ︸

nth quadrant
turbulent

large scale

+
4∑

n=1

[ f̃R,nL]︸ ︷︷ ︸
nth quadrant

coherent
large scale

, (35)

F ′′
R,S(x; kz,c)︸ ︷︷ ︸

total
small scale

= −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q
′
nS(x; kz,c)

]
︸ ︷︷ ︸

F ′
R,S, turbulent
small scale

+ −4(1 − y/δ)

U 2∞

[
4∑

n=1

Q̃nS(x; kz,c)

]
︸ ︷︷ ︸

F̃R,S, coherent
small scale

=
4∑

n=1

[ f ′
R,nS]︸ ︷︷ ︸

nth quadrant
turbulent

small scale

+
4∑

n=1

[ f̃R,nS]︸ ︷︷ ︸
nth quadrant

coherent
small scale

, (36)

where, e.g., f ′
R,nL = −4(1 − y/δ) Q

′
nL/U 2

∞. Finally, the mean skin friction generation by RSS, Cf ,R,
can be expressed as additive terms, accounting for: (i) nth quadrant events, (ii) large-scale and
small-scale contributions, and (iii) turbulent and coherent stresses based on Eqs. (35) and (36),
which lead to the following decomposition:

Cf ,R(x) =
4∑

n=1

C′′
R,nL +

4∑
n=1

C′′
R,nS =

4∑
n=1

C′
R,nL +

4∑
n=1

C̃R,nL︸ ︷︷ ︸
turbulent coherent

large scale

+
4∑

n=1

C′
R,nS +

4∑
n=1

C̃R,nS︸ ︷︷ ︸
turbulent coherent

small scale

, (37)
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(a) (b) (c)

FIG. 3. The one-dimensional spanwise wave number premultiplied (kzy+) cospectra (colour contours)
at x∗/h = 25 (Reτ � 470). (a) Total RSS (−u′′v′′), kzy+φ′′

−uv , (b) turbulent RSS (−u′v′), kzy+φ′
−uv , and

(c) coherent RSS (−ũṽ), kzy+φ̃−uv . Black isolines: 20[20]100 in (a), (b) represent an unmanipulated DNS
TBL (denoted as UBL in Sec. IV B) at Reτ � 500 [31]. Black dashed line in (c) corresponds to the cutoff
wavelength λz,c = δ used in the present paper, and two black solid lines denote the two observed energetic
modes at �+

z and �+
z /2.

where the mean skin friction generations for individual quadrant events can be obtained by integra-
tions over the wall:

C′′
R,nL(x; kz,c) =

∫ 1

0
〈 f ′′

R,nL〉 d (y/δ), C′′
R,nS(x; kz,c) =

∫ 1

0
〈 f ′′

R,nS〉 d (y/δ), (38)

C′
R,nL(x; kz,c) =

∫ 1

0
〈 f ′

R,nL〉 d (y/δ), C′
R,nS(x; kz,c) =

∫ 1

0
〈 f ′

R,nS〉 d (y/δ), (39)

C̃R,nL(x; kz,c) =
∫ 1

0
〈 f̃R,nL〉 d (y/δ), C̃R,nS(x; kz,c) =

∫ 1

0
〈 f̃R,nS〉 d (y/δ). (40)

This decomposition [Eq. (37)] is consistent to the Eq. (33) [i.e., for each Q′′
n of the (u′′, v′′) plane],

since the conditions Eqs. (19) and (25) hold for each quadrant (n = 1, 2, 3, and 4), so

C′′
R,n = C′′

R,nL + C′′
R,nS + C′′

R,nLS + C′′
R,nSL

= C′
R,nL + C′

R,nS + C′
R,nLS + C′

R,nSL︸ ︷︷ ︸
turbulent

(L, S, LS, SL)

+ C̃R,nL + C̃R,nS + C̃R,nLS + C̃R,nSL︸ ︷︷ ︸
coherent

(L, S, LS, SL)

, (41)

for n = 1, 2, 3, and 4. In the following, we will apply this approach to the data set obtained by
the well-resolved large-eddy simulation to quantify the spanwise modification of RSS by the MVG.
For the sake of brevity, some numerical results presented in the following of the paper are limited
to the second and fourth quadrants (i.e., denoted by Q2 and Q4, respectively), and their large- and
small-scale components (i.e., denoted by subscripts L and S, respectively).

E. Choice of cutoff wave number

The choice of spanwise cutoff wave number can be quite arbitrary and depends on the research
aims. We select the appropriate cutoff wave number based on the spanwise wave number premulti-
plied cospectra of −u′′v′′, −u′v′, and −ũṽ. The spanwise wave number uv spectra has been adopted
for the investigation of skin friction generation of turbulent channel flows (e.g., de Giovanetti et al.
[17]). The MVG spanwise modulation is associated with the formation of high- and low-speed
streaks behind the MVG pair, which is commonly reflected on the streamwise velocity spectra as
a discrete set of peaks that scale with �+

z [12], where �z is the spanwise spacing between two
MVG pairs (see Fig. 1). Figure 3 presents the spanwise wave-number spectra φ′′

−uv , φ′
−uv , and
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φ̃−uv at x∗/h � 25 downstream of the MVG by introducing the triple decomposition of velocity
fluctuations based on Eq. (3). As expected, two notable peaks were found [marked with solid lines in
Fig. 3(c)], which correspond to the first two energetic modes that scale with �+

z , i.e., λ+
z = �+

z and
λ+

z = �+
z /2. Thus, we will consider a spanwise cutoff wavelength λz � δ. This corresponds to the

wavelength marked with a dashed line in Fig. 3(c). Our attempt here is to assess the MVG-induced
modification of the RSS as a superposition of the motions by (i) fundamental mode (i.e., �+

z ) and
(ii) the subharmonic modes (i.e., �+

z /2, �+
z /3, and so forth). In the following, we let �+

z1 denote the
fundamental mode that scaled with �+

z and let �+
z2 denote all the subharmonic modes (i.e., �+

z /2,
�+

z /3, and so forth). Moreover, by utilizing this cutoff wavelength, we refer to the large scales as
those with spanwise length scale λz > δ and the small scales as those with spanwise length scale
λz < δ.

IV. RESULTS AND DISCUSSION

A. Conditional fields of the total RSS and coherent RSS

We present the conditional large-scale field of the total RSS Q′′
2L and Q′′

4L at x∗/h = 25 in
Fig. 4(a). Large-scale Q′′

4L positions at the center (z∗ = 0) and characterizes the HSR, adjacent
with the side-by-side Q′′

2L that is peaked at slightly higher y toward the outer region than that of
Q′′

4L (Q′′+
2L � −0.125 at y � 4h � 0.68δ). On the other hand, the small-scale conditional field of

total RSS Q′′
4S and Q′′

4S mainly resides toward the inner region, as shown in Fig. 4(b). We can
observe that Q′′

4S is centered at the HSR and Q′′
2S is centered at the LSR in the inner region.

The large- and small-scale fields of the coherent RSS due to the secondary motions introduced
by the MVG are plotted in Figs. 4(c)–4(f). Q̃2L has a spanwise spacing reflecting the characteristic
wavelength of the �+

z (i.e., the fundamental mode) that has been shown previously [Fig. 3(c)]. The
slightly positive peak is centered at the HSR with two negative peaks that center along the side.
Figures 4(c) and 4(e) suggest that the modulation effect of the MVGs can extend to a height of
5h, therefore modifying the upper part of the TBL. Q̃4L has a similar and consistent pattern but
in the reverse order. It is noted that the negative peak is at a slightly lower wall-normal position
than that of Q̃2L, while the weak positive peak is at a higher wall-normal location compared to the
positive peak in Q̃2L. It is also noted that the positive Q̃2L and Q̃4L are almost fourfold lower than
the negative counterparts, and they are roughly symmetrical with respect to the spanwise direction.
Compared to the large-scale component, the modulation effects due to the small-scale component,
i.e., the positive and negative Q̃2S and Q̃4S, are of similar magnitude, with a fairly uniform spanwise
spacing predominantly reflecting the characteristic wavelength of mode �+

z /2 [Figs. 4(d) and 4(f)].
These structures are confined to the lower part of the TBL and rarely observed in the outer region.
A simplified schematic illustration of the correlations between total and coherent RSS events is
proposed in Fig. 5 based on the observations in Fig. 4. The figure suggests that Q′′

2L and Q′′
2S are

always correlated with (Q̃2L < 0, Q̃4L > 0) and (Q̃2S < 0, Q̃4S > 0), respectively. The opposite is
also true for Q′′

4L and Q′′
4S. In addition, we note that the �+

z -scaled motion is found for x∗/h =
25, 50 and at least up to x∗/h = 200 of our data set; this suggests that the �+

z -scaled motion is
prolonged in terms of streamwise evolution. Figures 4(g)–4(l) show the conditional fields of large-
and small-scale components of the RSS further downstream (x∗/h = 50). Figures 4(g), 4(i), and
4(k) suggest that the organizations of the total RSS and coherent RSS, which are related to the
fundamental mode (�+

z1), are similar to that observed at x∗/h = 25, with greater intensities centered
at slightly higher y/h. For the RSS counterparts related to subharmonic modes (�+

z2), they are of
lower RSS intensities compared to that observed at x∗/h = 25, as shown in Figs. 4(h), 4(j), and 4(l).
A further discussion of this effect is provided in Sec. IV C.

B. Decomposition of mean skin friction generation due to RSS events

The relations between different decomposed quadrant events and mean skin friction generations
(Cf ,R), as mentioned in Sec. III, are assessed in Fig. 6 at x∗/h = 25. The premultiplied integrands
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(a) (c) (e)

(b) (d) (f)

(g) (i) (k)

(h) (j) (l)

FIG. 4. (a), (g) Superposition of the conditional fields of the large-scale total RSS: Q′′+
2L + Q′′+

4L at
(a) x∗/h = 25 and (g) x∗/h = 50 (colour contour). Isolines represent the conditional large-scale ejection Q′′+

2L

(red) and sweep motions Q′′+
4L (blue). (b), (h) Superposition of the small-scale counterparts: Q′′+

2S + Q′′+
4S at

(b) x∗/h = 25 and (h) x∗/h = 50 (colour contour). Isolines represent the conditional small-scale ejection
Q′′+

2S (light red) and sweep motions Q′′+
4S (light blue). (c)–(f), (i)–(l) Contours of conditional fields of the

coherent RSS associated with the (c), (e), (i), (k) large scales (λz > δ) and (d), (f), (j), (l) small scales (λz < δ)
at (c)–(f) x∗/h = 25 and (i)–(l) x∗/h = 50. The vertical solid black lines mark the locations of high-speed
region (HSR) and low-speed region (LSR) at x∗/h = 25 and 50, respectively.

show the majority of skin friction distributions in the wall-normal direction, where the area under
each curve equals the contribution of each type of event to Cf ,R, which is based on the decomposition
presented in Sec. III. It can be seen that the major contributions to Cf ,R are generated by f ′′

R,2L,
f ′′

R,4L, f ′′
R,2S, and f ′′

R,4S (i.e., due to the Q′′
2 and Q′′

4 events), while the contributions from
the Q′′

1 and Q′′
3 events are almost negligible. The peaks of f ′′

R,2L, f ′′
R,4L are found at slightly

higher wall-normal locations than the small-scale counterparts, as shown in Figs. 6(a) and 6(b). The
integrands of the coherent components, which are generated due to secondary motions introduced by
the MVG, particularly, f̃R,2L, f̃R,4L, f̃R,2S, and f̃R,4S, are of similar magnitudes and mainly generated

054603-12



DECOMPOSITION OF THE REYNOLDS SHEAR STRESS …

FIG. 5. Schematic illustration of the identified Q′′
2 and Q′′

4 and their observed correlations with Q̃2 and Q̃4

shown in Fig. 4. The �z and �z/2 reflect their spanwise characteristic length scales shown in Fig. 3.

in the region where y/δ < 0.3 [shown in the inset in Figs. 6(a) and 6(b)]. The distributions of f̃R,2L,
f̃R,4L, f̃R,2S, and f̃R,4S suggest that the coherent components of the second and fourth quadrants
contribute positively to Cf ,R. The existence of the MVG leads to the generation of secondary
motions and, therefore, the contribution to the skin friction drag. Figures 6(c) and 6(d) show the
premultiplied integrands of the interaction components (LS and SL). It can be seen that, although
these integrands cancel each other out in the mean sense (i.e., they do not have direct influence
on Cf ,R), they have individual non-negligible contributions to Cf ,R, with the peaks located also at
y/δ � 0.3 − 0.4 for the total and turbulent components, and peaks are located closer to the wall
y/δ < 0.3 for the coherent component. Figure 7 shows the integrand groups further downstream
(x∗/h = 50). The small-scale integrands f ′′

R,nS, as shown in Fig. 7(b), collapse well with the f ′
R,nS

because f̃R,nS are quickly diminished compared to the large-scale counterparts, which is shown in
Fig. 7(a). This also indicates that the large-scale coherent RSS sustains longer than the small-scale
coherent RSS.

Considering the Cf ,R decomposition developed in Sec. III, the mean skin friction coefficient due
to RSS (Cf ,R) is decomposed into contributions associated with different quadrant events. It has
been shown that Cf ,R can be split based on Eq. (37), where C′′

R,nL are the mean skin friction
components associated with large-scale quadrant events, and C′′

R,nS are the mean skin friction
components associated with small-scale quadrant events. By the triple decomposition, we showed
that C′′

R,nL and C′′
R,nS can be further decomposed into two groups, (C′

R,nL, C′
R,nS) and (C̃R,nL, C̃R,nS),

representing the turbulent and coherent components of quadrant events, respectively. Their actual
values are listed in Table I, in comparison with an unmanipulated (without MVGs) DNS TBL
data set [31] ( hereafter referred to as UBL) at two matched Reynolds numbers Reτ � 500 and
Reτ � 1000. The values are directly computed by integrating the integrand groups over the wall.
In this table, it is straightforward to sum across each row or sum across each column to obtain
different contributions to Cf ,R. For example, the sum of first four elements in the first column is
equal to

∑4
n=1 C′′

R,nL [see Eqs. (18) and (37)], representing the large-scale contribution to Cf ,R at
the cutoff wave number kz,c, while the the sum of first four elements in the second column is equal
to the small-scale contribution to Cf ,R. Meanwhile, the sum of the first four elements in the first
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(a) (b)

(c) (d)

FIG. 6. Comparison of the premultiplied integrands contributing to Cf ,R, between total RSS (′′), turbulent
RSS (′), and coherent RSS (·̃) at x∗/h = 25 (Reτ � 470) for (a) large scales (L), (b) small scales (S), (c),
(d) large- and small-scale interactions (LS and SL).

row is equal to C′′
R,1 = C′′

R,1L + C′′
R,1S + C′′

R,1LS + C′′
R,1SL [see Eqs. (33) and (41)], representing the

Q′′
1 contribution to Cf ,R. The sum of the first four elements in the second row is equal to the Q′′

2

contribution to Cf ,R and so forth. Additionally, it can be seen that the sums
∑4

n=1 C′′
R,nLS = 0 and∑4

n=1 C′′
R,nSL = 0, showing no direct contributions to Cf ,R. In a comparison between MVG2021 and

UBL at Reτ � 500, it is observed that there are significant differences in the coherent components:
C̃R,nL, C̃R,nS, C̃R,nLS, and C̃R,nSL. These values are found to be very close to zero for the UBL case,
while these values are larger in values in the MVG2021 case (highlighted in Table I at Reτ � 500)
because of the occurrence of the secondary motions induced by the MVG giving rise to the coherent
components. The contributions of the coherent components decrease with increasing Reτ , become
similar to that in the UBL case at Reτ � 1000. This is because the secondary motions are expected
to decay in the downstream direction.

Another noticeable difference are the contributions in C′
R,nL and C′

R,nS between MVG2021 and
UBL cases at Reτ � 500. In particular, the contributions from the second and fourth quadrants
small-scale turbulent RSS (i.e., C′

R,2S and C′
R,4S, as highlighted in Table I) are increased by the

MVG as compared to the UBL case. This may reflect how the large-scale vortice control responds
differently to relatively low and high Reynolds numbers. As previously demonstrated by Canton
et al. [32], who reported that, while the large-scale vortices induced a relaminarization effect to
the flow for low Reynolds numbers (Reτ = 104 and 180) in the region where fluid is pushed
toward the wall and can provide considerable drag reduction, the opposite effect was observed for a
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(a) (b)

(c) (d)

FIG. 7. Comparison of the pr-multiplied integrands contributing to Cf ,R between total RSS (′′), turbulent
RSS (′), and coherent RSS (·̃) at x∗/h = 50 (Reτ � 500), for (a) large scales (L), (b) small scales (S), and (c),
(d) large- and small-scale interactions (LS and SL).

higher Reynolds number (Reτ = 550), i.e., the control method becomes ineffective to produce drag
reduction and the method seems to increase the fluctuations in the wall-shear stress by promoting
instabilities. Although there are fundamental differences between closed channel and TBL flows
at higher Reτ , the reported Reτ , whereby the control method becomes ineffective, is similar to
our case here (Reτ � 500). Finally, the difference in the C′

R,nS between MVG2021 and UBL cases
becomes negligible at Reτ � 1000 (also highlighted in Table I). This location is approximately at
x∗/h � 500, suggesting that only the increased large-scale turbulence persists a long downstream
distance in terms of skin friction generation. In the next section (Sec. IV C), we will investigate this
observation in further detail.

C. Inverse transfer of total RSS and �+
z -scaled mode interactions

From the results in Fig. 4, it seems that the intensity of the large-scale RSS events rises with
downstream distance and only the small-scale events decay in the downstream direction. To further
confirm this, we plot in Fig. 8(a) the root-mean-squared coherent RSS (Q̃+

2L, Q̃+
2S, Q̃+

4L, and Q̃+
4S) at

downstream locations x∗/h = 25, 50, and 200, and Fig. 8(b) shows the evolution of the mean total
RSS and the coherent RSS (i.e., Q̃2 and Q̃4), premultiplied by y. Figure 8(a) suggests a trend that
the intensity of the large-scale coherent RSS grows with the downstream distance from x∗/h = 25
to x∗/h = 50, and after that it decreases further downstream, while the intensity of the small-
scale coherent RSS shows a trend that it decreases monotonically from x∗/h = 25 to x∗/h = 200
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(a) (b)

FIG. 8. (a) Streamwise evolution of the root-mean-squared coherent RSS for the second and fourth quad-
rants: y+Q̃+

rms of the large scales (λz > δ) and in the inset plot the small scales (λz < δ). Arrows in (a) indicate
the trends with respect to x∗/h. (b) Premultiplied of the mean total RSS and coherent RSS for the second and
fourth quadrants: y+〈Q〉+ of the large scales (λz > δ) and in the inset plot the small scales (λz < δ). In (b), solid
lines colored according to the same color code represent the mean total RSS in the UBL case at Reτ � 500.

[inset in Fig. 8(a)]. Despite that it is the limitation of our data set that makes it difficult to draw a clear
conclusion about the trend of these intensities between x∗/h = 25 − 50, it has been demonstrated
in Fransson and Talamelli [1] that the fundamental mode (i.e., �+

z ) shows a monotonic increasing
energy level until it reaches x∗/h = 100, based on the streamwise velocity power spectral density,
while the energy level of the first subharmonic mode (�+

z /2) grows until it reaches x∗/h = 40,
followed by an exponential decay further downstream. The monotonic decrease of the small-scale
coherent RSS with the amplification of the intensity of the large-scale coherent RSS may help
explain how organized high- and low-speed streaks can be sustained up to x∗/h = 200 downstream
of the MVG when subjected to turbulence. A possible explanation for this may be attributed to the
streaks interaction between neighboring MVG pairs through its subharmonic modes of motion. The
following analysis aims to show that an inverse energy transfer occurs from the subharmonic modes
(�+

z2) to the fundamental mode (�+
z1).

Finally, we provide partial evidence that supports the observation. We adopt the scale-by-scale
transport of RSS budget equation, following the approach proposed by Kawata and Alfredsson [33].
The interscale Reynolds stress transports between small and large scales, taking the forms of

Tri j =
〈
u′′

j,Lu′′
k,L

∂u′′
i,S

∂xk

〉
+

〈
u′′

i,Lu′′
k,L

∂u′′
j,S

∂xk

〉
−

〈
u′′

j,Su′′
k,S

∂u′′
i,L

∂xk

〉
−

〈
u′′

i,Su′′
k,S

∂u′′
j,L

∂xk

〉
(42)

and

tri j = −∂Tri j

∂kz
, (43)

where the Reynolds stress fluxes Tri j represent a local transfer of 〈u′′
i u′′

j 〉 between large and small-
scale component at the cutoff wave number. The tri j , therefore, represent the net gain and loss of
energy at each spanwise length scale through the Reynolds stress fluxes [33]. Kawata and Alfredsson
[33] used this approach, and by using the Fourier mode decomposition on the Reynolds stress
transport equations for plane Couette flow, they reported the small-scale dependence of RSS for
large-scale structures. Figure 9 shows that there is an inverse energy transfer from the subharmonic
modes �+

z2 (i.e., �+
z /2 and �+

z /3) to the larger scales λ+
z > �+

z /2. Two notable negative peaks
representing inverse energy transfer are found at the first two subharmonic modes (�+

z /2 and �+
z /3)

at x∗/h = 25, y+ � 100 [marked with × in Figs. 9(a) and 9(b)], accompanied by an increased
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(a) (b) (c)

FIG. 9. The interscale transport of RSS, kzy+tr+−uv (tr+−uv = tr−uvν/u4
τ ): (a) MVG2021 case at x∗/h = 25,

(b) MVG2021 case at x∗/h = 50, and (c) UBL case (unmanipulated DNS TBL) at Reτ � 500.

local gain of energy (higher tr−uv) at the larger scales λ+
z > �+

z /2, including the fundamental
mode (�+

z1 = �+
z ). The local energy gain at �+

z is also shown to be enhanced at the near-wall
region y+ < 100 while, in the UBL case, such local energy gain at the wavelength λ+

z � �+
z is

less prominent and the inverse energy transfers at the subharmonic modes (�+
z /2 and �+

z /3) are
clearly absent. In addition, at the outer region (y+ � 200), there is a region of relatively strong local
energy gain at between the �+

z /2 and �+
z /3 (marked with a symbol ◦) that is absent in the UBL

case. Further downstream (x∗/h = 50), the previously observed positive and negative peak values
are decreased, however, a slightly negative peak persists at the first harmonic �+

z /2. The result of
Fig. 9(b) demonstrates that there is an increased local energy gain at wavelength λ+

z � �+
z below

y+ � 250 (∼ 3h) compared to the UBL case. Finally, the interscale transport for the MVG2021
case collapses well to that of the UBL case further downstream at approximately x∗/h � 1000 (not
shown). Overall, the inverse interscale transfer of RSS from small scales to large scales reveals
a nontrivial scale interaction between �+

z1 and �+
z2 (more specifically, i.e., between �+

z , �+
z /2,

and �+
z /3) that partially supports that the preservation of the �+

z -scaled motion is supported by it
subharmonic modes of motions, which scale with �+

z /2 and �+
z /3. Results are also consistent with

the trend of the coherent RSS intensities as presented in Fig. 8.

V. CONCLUSIONS

In this paper, we have investigated the influence of MVGs on the RSS in a moderate Reynolds
number zero-pressure gradient TBL, using a data set obtained from a well-resolved large-eddy
simulation [12]. We considered an approach based on the quadrant classification of the RSS events.
The triple velocity decomposition and spanwise Fourier mode decomposition are then used in the
quadrant classification to describe the flow modification by the MVGs in terms of different types of
large- and small-scale RSS events at a given cutoff wavelength.

In our approach, we have shown sections of large- and small-scale conditional Q′′
2 and Q′′

4
quadrant event structures associated with LSRs and HSRs. The averaged properties of these
quadrant events, such as mean skin friction generations Cf ,R under the influence of MVGs, are
estimated through the FIK identity proposed by Fukagata et al. [16]. We have also shown how
coherent RSS component arises due to the secondary motions induced by the MVG and we
estimated their additional contributions to the mean skin friction coefficient in comparison with
a unmanipulated turbulent boundary layer flow. In addition, we showed that the spanwise RSS
modification is reflected on the energetic modes of the spanwise wave-number cospectra of −u′′v′′,
−u′v′, and −ũṽ, and the modification can be expressed by the superposition of the fundamental
and subharmonic modes that scaled with the spanwise separation distance (�+

z ). A further analysis,
based on the interscale transport of the RSS, proposed by Kawata and Alfredsson [33], showed that
an inverse energy transfer from the subharmonics modes to the fundamental mode, suggesting that
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the �+
z -scaled motion is partly sustained by its subharmonic modes of motions. The results provided

insights into how large-scale motion of �+
z -scaled, which is introduced by the MVGs, is capable

of persisting at distance of the order of O(100h). Finally, the approach used in the present paper is
generally applicable to other types of flows such as rough-wall bounded flows with spatial evolving
heterogeneous surfaces.
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