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Temporally evolving convective boundary layers that develop on the external surface of
an isothermally heated vertical circular cylinder are investigated with scale analysis in this
study. Large variation of cylinder aspect ratio, 1 � A � 100, is considered. The Rayleigh
number ranges from 1 × 106 to 5 × 108, and the Prandtl number varies from 10 to 100.
The present numerical simulations suggest that the curved boundary layer experiences
a transient and a steady state. Our study demonstrates that the key to correctly scaling
the curvature effect is the determination of an appropriate estimation of the diffusion
term. One set of scale laws quantifying the flow is obtained by assuming (1/r)(∂/∂r) ∼
1/[(R + δ/2)δ], where r is the radial coordinate, and R and δ denote cylinder radius and
boundary layer thickness, respectively. It is demonstrated that if the boundary layer is much
thinner than the cylinder radius, the proposed scale laws are reduced to the well-known flat
boundary layer ones. However, with reducing the cylinder radius or the governing Rayleigh
number, the curvature effect gradually differentiates the present boundary layer flow from
the flat ones. The corresponding flow behaviors are reasonably described by the various
(R + Nδt )m terms of the present scale laws, where N and m are the corresponding scale-law
constants. Numerical validations indicate that the proposed scale laws are capable of
precisely describing from flat boundary layers at ξ = 0 to remarkably curved ones at
ξ = 26 (almost a line heat source), where ξ is the ratio of boundary layer thickness to
cylinder radius. Therefore, the proposed scale relations are considered as unified laws.

DOI: 10.1103/PhysRevFluids.7.054101

I. INTRODUCTION

Natural convection boundary layer flow is a ubiquitous problem of great interest to fluid
mechanics [1], with many industrial, atmospheric, and geophysical applications. Existence and
structure of boundary layers were first identified and reported by Prandtl [2]. Soon after that, a
two-dimensional boundary layer flow developing on a semi-infinite plate was studied by Blasius
[3]. Batchelor pioneered cavity studies by investigating a buoyancy-driven flow across a closed
rectangle enclosure between two vertical boundaries at different temperatures [4]. Subsequently,
many aspects of the natural convection boundary layer flow have been extensively investigated
and documented in the literature; see, e.g., [5–7]. In the last several decades, the unprecedented
development in semiconductor equipment, hot filaments, and heat loss of various tanks in the crude
and ocean thermal energy conversion (OTEC) industries urgently demanded better understanding
of curved boundary layer flows; see, e.g., [8–10]. The present study is in fact illuminated by the
request to maintain the temperature of an icebreaker ship using vertically arranged cylindrical heat
radiators. The prototype of the industrial radiator adopts the general form of domestic ones, where
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the corresponding Ra is approximately 2 × 108, the typical aspect ratio of the heated cylinder is
around 20, and the Prandtl number of the fluid is around 10.

Over the years, the curved boundary layer flows have indeed attracted some attention. However,
most of the documented works in the literature focused on the associated heat transfer properties.
That was to determine how the Nusselt number is correlated with the characterizing Rayleigh
number and geometrical dimensions of the vertical cylinder. Langmuir [11] carried out the first
experiment and confirmed the effect of curvature. Elenbaas [12] employed Langmuir’s stagnant
film model and predicted the heat transfer coefficient for vertical cylinders by replacing the natural
convection problem with a heat conduction problem. The transient and steady-state temperatures
of thin vertical cylinders suspended in various fluids were measured by Dring and Gebhart [13].
The experimental data confirmed that the conduction theory could properly address the transient
temperature response of the cylindrical wires. Minkowycz and Sparrow [14] successfully applied
the local nonsimilarity solution method to account for the natural convection flow on a vertical
cylinder for fluids with Pr = 0.733. Khouaja et al. [15] further studied the mixed convection flow
along slender vertical cylinders that are subjected to heat flux conditions. The authors demonstrated
that the Nusselt number results could be calculated by the summation of the local Nusselt number
for pure natural convection and that for pure forced convection. In comparison to the various
attempts of determining the scale of the Nusselt number, flow characteristics of the curved boundary
layer were relatively less discussed. Recently, Zhao et al. [16] investigated the steady-state curved
boundary layer on a vertical cylinder, and the authors indicated that thickness and Nusselt number
of the curved boundary layer vary according to Ra–1/5 and Ra1/5, respectively. However, several
previous works argued that an exponent 1/4 is more appropriate; see, e.g., [12,17]. This discrepancy
suggests that flow behaviors of the curved boundary layer on a circular cylinder have not yet been
thoroughly understood by the convection community, which is mainly attributed to the fact that the
flow behavior greatly depends on the curvature of the heated surface.

The so-called flow scale analysis, among many others, is considered a highly inspiring, useful,
and powerful technique to understand the corresponding flow behaviors, and there are mainly two
popular types of scale analysis in the literature.

The first type is a derivation-based approach where scales describing the natural convection flow
are determined by analyzing the governing equations of the flow. This type of scaling analysis is
most frequently utilized to study the flow with a distinct boundary layer. As is widely known, the
general form of governing equations for any flow variable φ could be written as ∂φ/∂t + �V · �∇φ =
�∇2φ + s. By analyzing the various terms and choosing dominant ones at different flow states, the
corresponding flow scales could be subsequently obtained. This simple scaling methodology was
pioneered by Patterson and Imberger [1], Bejan [18], and others. Patterson and Imberger [1] studied
the natural convection flow in a differentially heated cavity for fluids at Pr > 1, where important
scales were obtained. Bejan [18] suggested that the Boussinesq number Bo, rather than the Rayleigh
number, is the more appropriate governing parameter for Pr < 1 fluids. Lin et al. [19] revisited
and analyzed the Pr > 1 fluids, and the Prandtl number dependency was successfully obtained.
Recently the convective boundary layer flows induced by a linear thermal forcing at the heated
surface were intensively studied in [20–22]. The authors demonstrated that unlike the homogenously
heated problems, the initial growth of the thermal boundary layer becomes two-dimensional. Apart
from the above isothermally heated problems, evenly heated flat boundary layers have also been
extensively studied over the years; see, e.g., [23–27].

The second type of scale analysis is generally based on data processing, where scales quantifying
the convective flow are obtained either by regressing simulation data or by fitting experimental
data. This branch of scaling analysis is usually employed to study relatively complex convection
flows that have no distinct boundary layer or a discernible interface, for instance, the Rayleigh-
Taylor instability and Rayleigh-Bénard convection. The Nu ∼ Ra dependency was obtained at
the interface of two fluids with different densities in [28]. Celani et al. [29] demonstrated that
the transient Nusselt and Reynolds numbers scale with the square root of the Rayleigh number.
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Boffetta et al. [30] showed that the Reynolds and Nusselt numbers change with the Rayleigh number
according to Nu ∼ Pr1/2Ra1/2 and Re ∼ Pr–1/2Ra1/2, respectively, which agree well with [29] and
[31]. Dependency of the Nusselt number on the Rayleigh number has been an everlasting topic
of the Rayleigh-Bénard convection problem. Among many others, [32] proposed the scale laws
Nu ∼ Pr0Ra1/3 and Re ∼ Pr−1Ra2/3 for the thermal convection flow, which were later confirmed
in [33]. Later, Miquel et al. [34] suggested that the scaling regime Nu ∼ Ra of the asymptotic
solution corresponds to a maximization of the heat flux for thermal convection driven by internal
sources. Recently, wall-bounded turbulent flows were studied by the scaling analysis in [35,36]
where Reynolds stresses and kinetic energy were appropriately described by the proposed scale
laws.

The above literature review suggests that scale laws of cylindrical boundary layers have not been
obtained previously. Intuitively, natural convection boundary layers at an adequately high Rayleigh
number or on a cylindrical surface of a sufficiently large radius should behave similarly to those
develop on a flat plate. However, the curvature effect becomes increasingly crucial as the radius of
the heated cylinder decreases. The present scale-law investigation essentially inherits the scaling of
flat boundary layer studies but is dedicated to resolving the curvature effect of a heated cylindrical
surface. The traditional flat boundary layer scalings will be reduced to one limiting scenario of the
present scale laws. To the authors’ best knowledge, this is the first time that these results are reported
in the literature. It is also worth clarifying that in comparison to the work in Zhao et al. [16], we
aim to further analyze the transient state, elucidate the corresponding scale laws, especially the
exponents at both transient and steady states, and propose a set of unified scale laws as our ultimate
goal.

The present study investigates the temporally evolving curved boundary layer around the external
surface of an isothermally heated vertical circular cylinder and obtains a set of unified scale laws to
account for the curvature and Rayleigh and Prandtl number dependencies. In the present study, both
the transient and steady states are studied to reveal the corresponding fundamental fluid mechanics.
It is worth noting that the present scale-law study aims to obtain a set of scale laws that could
describe flow behaviors in different flow scenarios rather than investigating the flow characteristics
at a specific flow condition as is usually seen in simulation-based works.

In the remainder of this paper, Sec. II describes the flow and governing equations followed by
scale-law analysis in Sec. III. Validations of the proposed scale laws are given in Sec. IV. The main
conclusions of this work are summarized in Sec. V.

II. PHYSICAL PROBLEM AND NUMERICAL METHODS

Under consideration is a laminar convective boundary layer flow developing on a heated vertical
cylinder. Height and radius of the vertical cylinder are L and R, respectively. It is noted that in the
present study, L is fixed at 1 m. Therefore, by adopting the different aspect ratio A, the radius of the
cylinder is changed accordingly, which will subsequently alter the curvature of the heated surface.
It is worth noting that the following scale-law study is carried out in a dimensional scheme, and this
is consistent with [1,37].

At a time instance t < 0 s, the fluid is quiescent and the temperature is kept at T0, whereas the
circular cylinder is also isothermal at T0. At t = 0 s, temperature of the cylinder surface is suddenly
raised to Tw (Tw > T0), and it is maintained thereafter. The increase in temperature initiates and
sustains the boundary layer flow on the external surface of the cylinder.

The convective flow around the external surface of the circular cylinder could be described by
the following governing equations for boundary layer with the Boussinesq approximation for the
buoyancy term:

1

r

∂rur

∂r
+ ∂uz

∂z
= 0, (1)
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FIG. 1. Two typical flow scenarios depicting the effect of curvature on the convective boundary layer at
Pr = 10: (a) a strongly curved boundary layer where δt equals approximately 14R at z = L (Ra = 106 and
A = 100); (b) an almost flat boundary layer where δt equals approximately 0.12R at z = L (Ra = 5 × 108 and
A = 5).
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where ur and uz denote the velocity components in the radial and axial directions, respectively. In
the present study, the convective boundary layer flow is governed by three parameters: the Rayleigh
number Ra, Prandtl number Pr, and aspect ratio A of the cylinder (or cylinder radius R). They are
defined as

Ra = gβ
T L3

νκ
, Pr = ν

κ
, A = L

R
, (4)

where g, β, ν, and κ are the gravitational acceleration, thermal expansion coefficient, kinematic
viscosity, and thermal diffusivity of the working fluid, respectively. 
T is the temperature difference
characterizing the convective flow, which is defined by 
T = (Tw–T0).

Figure 1 schematically shows the thermal boundary layers at two typical flow conditions. It is
seen that the leading edge of the boundary layer is at z = 0 and the boundary layer thickens with
the streamwise coordinate z. It is also seen in Fig. 1 that the present boundary layer could be much
thicker or much thinner than the radius of the cylinder. Note that Fig. 1(a) corresponds to the most
curved boundary layer under investigation, and Fig. 1(b) stands for the second least curved boundary
layer.

The present study utilizes the so-called scale-law analysis to investigate the boundary layer flow,
which is mainly by analyzing the various force and momentum terms of the governing Eqs. (1)–(3).
Nonetheless, to validate the obtained scale laws, a numerical approach needs to be employed,
where the governing equations are accounted for by the finite volume method (FVM). All the
first linear and second derivative terms of the governing equations are spatially discretized by a
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FIG. 2. Schematic of the computational domain.

second-order central differencing scheme. The first-order implicit method is employed to approx-
imate the transient terms. The pressure and velocity correlation utilizes the SIMPLE scheme. The
governing equations are then solved iteratively by incorporating a third-order Runge-Kutta scheme.
The solution is regarded converged when the scaled residual falls below 10–3 for the continuity
and momentum equations and 10–6 for the temperature equation. These numerical procedures are
essentially similar to those adopted in [20,21]. It is worth noting that the present code has been
intensively utilized in the past decade for various buoyancy-driven convective flows, and it has been
proven accurate and robust; see, e.g., [20,37,38]. It is hence used in this study.

In this study, a two-dimensional model is employed for the numerical simulations. Figure 2
schematically shows the adopted computational domain. It is seen that z and r represent stream-
wise/axial and radial directions, respectively. The height of the entire computational domain is 1.4L.
The boundary layer evolves from z = 0, which corresponds to its leading edge location. An adiabatic
extension and another heated extension of length 0.2H is considered at the upstream and downstream
of the boundary layer flow respectively to avoid any potential effects that might be caused by the
boundaries. Therefore, the length of flow of interest to the present study is L, 0 < z < L. In the radial
direction, r = 0 corresponds to the axis of the heated cylinder and the width of the computational
domain is also L. At the top and right boundaries, a nonreflective boundary condition is employed.
The present computational domain and the adopted boundary conditions are essentially the same
as those adopted in [7,21,23,24], and these works suggested that the combination of two Neumann
boundaries and the employed computational domain could be properly utilized for the boundary
layer flow under investigation.

It is worth mentioning that the Cartesian coordinate is extensively utilized for flat boundary layer
problems and hereby not employed for the present study. Alternatively, the cylindrical coordinates
which could better facilitate descriptions of cylindrical boundary layer variables and the subsequent
derivations of the corresponding scaling laws are used. It is also worth clarifying in Fig. 2 that when
the cylinder radius R changes, it affects several advection and diffusion terms in the corresponding
governing equations, and subsequently, the curvature effect is taken into account. This numerical
approach is in fact consistent with [9,16].

A total of 84 numerical simulations have been carried out to validate the above derived scale
laws. The Rayleigh number varies from 1 × 106 to 5 × 108. At each Rayleigh number, three Prandtl
numbers and seven aspect ratios, A, are calculated. Table I details the utilized parameters. It is
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TABLE I. Flow parameters of the simulated case runs.

Case runs Ra A = L/R Pr

1–21 106 100, 50, 20, 10, 5, 2, 1 10, 40, 100
22–42 107 100, 50, 20, 10, 5, 2, 1 10, 40, 100
43–63 108 100, 50, 20, 10, 5, 2, 1 10, 40, 100
64–84 5 × 108 100, 50, 20, 10, 5, 2, 1 10, 40, 100

worth repeating that L does not vary in this study, and by adopting different cylinder aspect ratios,
the radius of the cylinder is subsequently changed. Herein, the aspect ratio A varies from 100 to
1, and this corresponds to a minimum radius R = 0.01L and a maximum radius R = L. That is,
the radius of the heated cylinder is very small at A = 100, and this is associated with the most
significantly curved boundary layer (the following numerical data suggest that δt|maximum ∼ 14R in
this scenario). A = 1 corresponds to a very large radius, and this value results in a much less curved
boundary layer that is almost equivalent to the flat-plate problem (the following numerical data
suggest that δt|minimum ∼ 0.02R in this scenario).

To ensure the adopted numerical settings do not affect the accuracy of simulations, grid and time
step dependency tests are carried out. In this study, three meshes and three time steps are employed
for this purpose. The three sets of computational mesh consist of 300 × 600, 200 × 426, and 100 ×
213 quadrilateral cells (r × z), respectively. The size of the grid immediately adjacent to the heated
cylinder surface is 0.1 mm, 0.17 mm, and 0.21 mm, and the computational cell stretches linearly
towards the ambient at an inflation rate of 1.09, 1.1, and 1.3, respectively, for the three meshes.
This corresponds to no fewer than 34, 29, and 27 grids within the convective thermal boundary
layer, which, according to previous similar studies, are sufficient to resolve the present boundary
layer flow; see, e.g., [20,23,37]. It is also worth pointing out that the grid is evenly spaced in the
streamwise direction, i.e., in the z direction. Three time steps, 
t = 0.0025 s, 0.005 s, and 0.01 s,
are further examined to guarantee the present numerical results are time step independent. During
transient calculations of the governing Eqs. (1)–(3), the characteristic velocity and thickness of the
convective boundary layer are monitored and recorded at z = L for the case with Ra = 5 × 108,
Pr = 100, and A = 100. Figure 3(a) presents the corresponding results. Note that δt is identified
at (Tw − 
T × 0.99), and the maximum streamwise velocity within the thermal boundary layer
is recognized as uz. It is seen that the variations are quite minor. The maximum relative error is
approximately 0.075% and 0.15% for the characteristic velocity and thickness of the steady-state
convective boundary layer, respectively. This suggests that any of the utilized grids and time steps
could be employed. Hence, the mesh with 200 × 426 computational cells together with the time
step 0.005 s is adopted for the following numerical simulations.

Temporal evolution of isotherms adjacent to the heated surface is depicted in Fig. 3(b). It is seen
that the boundary layer development is one-dimensional in the first place, which is evidenced by the
fact that its thickness is streamwise independent at t = 0.5 s, 1 s, and 1.5 s. It also demonstrates that
two-dimensional growth sets in when t exceeds 2.5 s, and thereafter the boundary layer thickness
depends on the streamwise location. It is noted that the r coordinate in this figure is rescaled with
a factor of 4 to produce a better view of the extremely thin boundary layer. The corresponding
temporal and spatial development of velocity vectors are shown in Fig. 3(c). It is seen that the
local velocity uz first increases in the r direction due to the buoyancy effect, and it then reduces
towards the ambient. At each streamwise location, e.g., y = 1, the velocity increases temporally
until it reaches a threshold time instance, after which it does not vary with time any longer. This
flow structure is essentially the same as the extensively investigated flat boundary layer; see, e.g.,
[1,18,19].
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FIG. 3. Grid and time step dependency tests: temporal development of uz and δt of the thermal boundary
layer at Ra = 5 × 108, Pr = 100, and A = 100. (a) Comparison between different meshes and time steps,
(b) isotherms obtained with 200 × 426 and 
t = 0.005 s, (c) velocity vector obtained with 200 × 426 and

t = 0.005 s.
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FIG. 4. Temporal development of the thickness and characteristic velocity of the curved boundary layer
with Ra = 1 × 107, Pr = 10, and A = 100, monitored and recorded at a streamwise location z = L.

III. SCALE-LAW ANALYSIS

For the extensively studied boundary layer flow along a heated vertical flat plate (flat-plate
problems), we could easily reach uzδt ∼ urL from the continuity equation, where uz and ur denote
the characteristic velocity of the vertical thermal boundary layer flow and the weak horizontal
entraining flow from the ambient. This reveals the flow rate of the boundary layer equals the
entraining flow flux. Moving on from this, we could write 2π (R + δt )Lur ∼ 2π (R + δt/2)δtuz for
the present study, where 2π (R + δt )L is the surface area of the characteristic cylindrical boundary
layer and 2π (R + δt/2)δt denotes the cross-sectional area of the boundary layer annulus. Therefore,
we could arrive at

ur ∼ uz
δt

L

R + δt/2

R + δt
. (5)

Equation (5) could also be rearranged in the form of Eq. (1) as

1

R + δt/2

1

δt
(R + δt )ur + uz

L
∼ 0. (6)

A comparison of Eq. (1) against Eq. (6) suggests that the proper estimation of the differential
operator (1/r)(∂/∂r) in the cylindrical coordinate system may adopt the form 1/[(R + δt/2)δt].
This will be utilized in the following analysis. It is noted that the scaling methodology does not
account for the sign of the various terms, and it focuses only on order of magnitude of the terms [1].

Figure 4 shows the numerically determined thickness δt and characteristic velocity uz of the
curved boundary layer at a typical flow condition with Ra = 1 × 107, Pr = 10, and A = 100. Three
distinct development states are clearly demonstrated in this figure, which consists of an initial
unsteady growth, a leading-edge-effect (LEE) dominated oscillatory state, and a steady state. The
first two states could be grouped and treated as a transient state. This flow evolution is essentially the
same as the extensively investigated flat-plate boundary layers. In what follows, the scale analysis
will be separately carried out for the transient state and the fully developed state.

A. Initial growth

Immediately after the circular cylinder is heated, the boundary layer flow is initiated, and it is
dominated by heat conduction in the first place. In the energy Eq. (3), the transient time ∂T/∂t
is larger than the advection term before the boundary layer reaches its steady state. Therefore, we
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could write the following balance:

∂T

∂t
∼ κ

1

r

∂

∂r

(
r
∂T

∂r

)
. (7)

Similar to the thermal boundary layer at vertical flat plates, the first derivate ∂T/∂t is estimated
by 
T/t . Note that in the present study, curvature of the cylinder could significantly “bend” the
boundary layer towards the cylinder surface, and it hereby spatially alters the profile of temperature
and velocity within the boundary layer. Consequently, the derivative term (r∂T/∂r) cannot be
simply quantified by R
T/δt . However, it is worth noting that estimating (r∂T/∂r) by R
T/δt

is a routine for boundary layer flows developing at vertical flat plates. In this study, to account for
the curvature effect in the circumferential direction, the numerator r in (r∂T/∂r) is alternatively
estimated by R1, and it is to be determined by the radius R and δt . Therefore, by considering and
incorporating the estimation of r∂T/∂r, Eq. (7) could be recast as


T

t
∼ κ

1

(R + δt/2)

1

δt

R1
T

δt
, (8)

which gives

δ2
t ∼ κt

R1

R + δt/2
. (9)

We assume the coefficient R1 in Eq. (9) is in the form R + C1δt . Owing to the curving nature of the
boundary layer, the constant C1 has to be determined from the present numerical simulations, more
specifically, from seven cases with a Rayleigh number 108, Prandtl number 10, and L/R ranging
from 100 to 1. To achieve this, the following function �1 is defined:

�1(C1) = δt
(R+0.5δt

R+C1δt

)1/2

κ1/2t1/2
. (10)

In Eq. (10), κ1/2t1/2 is a known and definitive value at any evolutionary time instant t . The value
of the term δt (R + 0.5δt )1/2/(R + C1δt )1/2 depends on C1. Different C1 values will lead to different
�1, and the primary task here is to find an appropriate C1 value that could best describe the present
boundary layer thickness at different flow conditions. Note that at any specific C1, the value of �1 is
calculated at 70 data points during the transient calculations, which comprise ten evolutionary times
t and seven aspect ratios L/R. Subsequently, the standard deviation of �1|C1 could be determined
from the 70 data clusters. Figure 5 summarizes and compares σ (�1), the standard deviation of �1,
obtained at 100 C1 values ranging from 0 to 2 with a uniform step of 0.02. It is clear in this figure
that σ (�1) hits its minimum at approximately C1 = 0.3. This suggests that this particular C1 is the
most appropriate value, and C1 is hence determined to be 0.3. It is worth noting at this point that to
be more rigorous, we compare the σ (�1) curve determined at Ra = 108 and Pr = 10 against that
obtained for all 84 cases considered in this study. It is obviously demonstrated in Fig. 5 that both
data suggest C1 = 0.3 corresponds to the minimum deviation and hence it is the most appropriate
value. In other words, the determined coefficient is Ra and Pr independent. Our following results in
the validation section also demonstrate that an identical Cn exists for different Ra and Pr; therefore,
we utilize only the data at Ra = 108 and Pr = 10 in this section, in Figs. 5–9. Therefore, δt could
be quantified by the following:

δt

(
R + 0.5δt

R + 0.3δt

)1/2

∼ κ1/2t1/2. (11)

It is clear that the above scale relation is not in the directly explicit form that is commonly seen
for thermal boundary layers at vertical flat plates, and the complexity of Eq. (11) demonstrates the
effect of curvature and its difference from vertical flat ones. This equation strongly implies three
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FIG. 5. σ (�1) plotted vs C1 for the cases with data set 1 (Ra = 1 × 108, Pr = 10, and 1 � A � 100) and
data set 2 (at 4 Ra, 3 Pr, and 7 A).

scenarios for the curved thermal boundary layer. First, if the radius of the circular cylinder is much
larger than the thickness of the boundary layer, the problem is subsequently reduced to the flat plate
problems, and Eq. (11) will become the well-known δt ∼ κ1/2t1/2 relation. Second, in the case of
a very small radius, δt will be much larger than R, and the scale relation will also tend to approach
δt ∼ κ1/2t1/2. Third, if δt and R are comparable, the term (R + 0.5δt )/(R + 0.3δt ) does not converge
to any specific value. Alternatively, it indicates the underlying interplay between the two parameters
and hereby reflects the effect of the curvature of the circular cylinder in this competing scenario.
Nevertheless, the most important thing here is that the proposed Eq. (11) gives unified predictions
of the initial growth of the boundary layer thickness covering a large range of δt/R.

For the thermal boundary layer flow at vertical flat plates, the scale δt ∼ κ1/2t1/2 is used to
quantify the temporal development of its thickness. Hence, we could estimate the thickness of the
boundary layer flow at any evolutionary time t with this scaling law in a straightforward way. That
is, for example, at a given time instance t , one could easily obtain the value of κ1/2t1/2. Nevertheless,
Eq. (11) demonstrates that to precisely include the present curvature effect, an additional term
needs to be considered, and the term δt (R + 0.5δt )1/2/(R + 0.3δt )1/2, rather than δt , correlates with
κ1/2t1/2. Mathematically, the scale relation in Eq. (11) will reduce to 0.5δ3

t + Rδ2
t –0.3κtδt –κtR ∼ 0.

FIG. 6. σ (�2) plotted vs C2 for the cases with Ra = 1 × 108, Pr = 10, and 1 � A � 100.
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FIG. 7. σ (�3) plotted vs C3 for the cases with Ra = 1 × 108, Pr = 10, and 1 � A � 100.

However, it could not lead to a unique δt value as the intercept is not fixed. Also, several subsequent
scale laws are not possible without determination of an exact solution of δt. This implicit style of
δt suggests that to obtain an estimation of δt at a specific time t in the initial growth state, which is
usually desired by the convection community, Eq. (11) needs to be accounted for iteratively. In this
respect, the order of magnitude sign in Eq. (11) must be replaced by an equal sign. The exact form
of Eq. (11) is determined from our numerical simulations of the seven cases at a Rayleigh number
108, Prandtl number 10, and L/R ranging from 100 to 1. Regression analysis is carried out for the
simulation data, and it is found that a coefficient 3.7 is appropriate and the associated R2 is 0.997.
Then, we could come to the following Eq. (12):

δt

(
R + 0.5δt

R + 0.3δt

)1/2

= 3.7κ1/2t1/2. (12)

Buoyancy drives the curved convective boundary layer flow. Therefore, gβ
T must present and
dominate the momentum of the flow in Eq. (2). As suggested by Patterson and Imberger [1], the
viscous force is more significant than the inertial effect for the present fluids at Pr � 1. Therefore,

FIG. 8. σ (�4) plotted vs C4 for the cases with Ra = 1 × 108, Pr = 10, and 1 � A � 100.
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FIG. 9. σ (�5) plotted vs C5 for the cases with Ra = 1 × 108, Pr = 10, and 1 � A � 100.

we could write

gβ
T ∼ ν
1

r

∂

∂r

(
r
∂uz

∂r

)
. (13)

By adopting an analogy to the above employed techniques for deriving δt , Eq. (13) could be
rewritten as

gβ
T ∼ ν
1

(R + 0.5δvi )

1

δvi

R2uz

δvi
, (14)

where R2 denotes the circumferential effect caused by the curved surface, and it assumes the
form R2 = R + C2δvi. Due to the viscous effect, the local velocity adjacent to the heated surface
maximizes at R + δvi, where δvi is the thickness of the inner viscous layer. It is crucial to mention
here that, in addition to utilizing the operator (1/r)(∂/∂r) ∼ 1/[(R + δvi/2)δvi], we use δvi as the
length scale for the momentum equation, while many previous scaling investigations employed δt

for both the momentum and energy equations. Our study suggests that the correct velocity scale
and Prandtl number effect will not be obtained by utilizing δt , and employing δvi for the momentum
equation is in fact consistent with the work in [19]. The authors also suggested that δvi could be
described by δvi ∼ δt/(1 + Pr–1/2) for the present Pr � 1 fluids [19]. Similar to the above technique
of deciding C1 for the boundary layer thickness, Fig. 6 compares the standard deviation of the
function �2 expressed in Eq. (15):

�2(C2) =
gβ
T t

(1+Pr1/2 )2

(R+0.5δvi
R+C2δvi

)(R+0.3δt
R+0.5δt

)
uz

. (15)

Note that C2 is also determined from the numerical simulations with the seven case runs at a
Rayleigh number 108, Prandtl number 10, and L/R from 100 to 1. Figure 6 demonstrates that C2 is
determined to be 0.5. Hence, Eq. (14) becomes

uz ∼ gβ
T t

(1 + Pr1/2)2

(
R + 0.3δt

R + 0.5δt

)
. (16)

Equation (16) demonstrates that the characteristic velocity in the thermal boundary layer is
not an explicit relation as well. To obtain the scale-law-predicted uz, the thickness of the thermal
boundary layer has to be determined prior. Likewise, the term (R + 0.3δt )/(R + 0.5δt ) in Eq. (16)
suggests the curvature effect of the heated surface. That is, for cylinders with a sufficiently large or a
sufficiently small radius, uz could be simply described by a recast version of the scale relation (16),
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(Raκ2t )/[L3(1 + Pr–1/2)
2
], which is the widely utilized velocity scale for flat-plate boundary layers

proposed in [19]. In comparison, the term (R + 0.3δt )/(R + 0.5δt ) acts to calibrate a flat plate scale
law towards a curved one.

With the passage of time, convection gradually improves, and the boundary layer flow reaches a
steady state at ts, from which time instance the convection effect is equivalent to heat conduction.
This could be determined from the balance between the advection term and diffusion term of the
energy equation, which gives

uz

T

L
∼ κ

1

R + 0.5δt

1

δt

[
(R + C3δt )
T

δt

]
. (17)

By inserting the scale relations of uz and δt , Eqs. (16) and (11), we could arrive at the following
scale, where the subscript s denotes steady-state value:

ts ∼ L2

κ

1 + Pr−1/2

Ra1/2

(R + C3δts)1/2(R + 0.5δts)1/2

R + 0.3δts
. (18)

By adopting the aforementioned approach, the following variable �3 is proposed and employed
to determine the coefficient C3:

�3(C3) =
L2

κ
1+Pr−1/2

Ra1/2
(R+C3δts )1/2(R+0.5δts )1/2

R+0.3δts

ts
. (19)

The numerically calculated standard deviation of �3 is presented in Fig. 7, where the Rayleigh
number 108, Prandtl number 10, and L/R from 100 to 1 are again employed.

It is clear in this figure that the value of C3 could be determined as 0.37. This subsequently leads
to

ts ∼ L2

κ

1 + Pr−1/2

Ra1/2

(R + 0.37δts)1/2(R + 0.5δts)1/2

R + 0.3δts
. (20)

It is seen that Eq. (20) is also an implicit equation, and it reveals the relation between the thickness
of the steady-state thermal boundary layer and the time to reach such a flow condition. It is also
worth noting that ts for thermal boundary layer flow developing at flat plates takes an explicit form
ts ∼ L2κ−1Ra–1/2(1 + Pr–1/2); see, e.g., [19]. In comparison to the derived scale relation (20), it is
inferred that the term (R + 0.37δts )1/2(R + 0.5δts )1/2/(R + 0.3δts ) reflects the effect of the curvature
of the heated surface.

B. Steady state

After the initial growth, the boundary layer will eventually transition to a steady state, in which
the flow variables do not change temporally. The transient terms in the governing Eqs. (2) and (3)
could be consequently ignored. Hence, for the steady-state boundary layer flow, by substituting the
differential operators, Eq. (3) may be estimated as

urs

T

δts
+ uzs


T

L
∼ κ

1

(R + 0.5δts)δts

R4
T

δts
. (21)

As argued above, the derivative term (r∂T/∂r) cannot be simply quantified by R
T/δts for the
present curved boundary layer flow. Hereby, the numerator r in (r∂T/∂r) is estimated by R4, which
is to be determined by the radius R and δts. The scale of uzs could be obtained by inserting Eq. (5)
into Eq. (21), which gives

uzs ∼ κL

δts
2

R4

R + 0.5δts

1
R+0.5δts

R+δts
+ 1

. (22)
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We assume the coefficient R4 in Eq. (22) is also in the form R + C4δts. Likewise, the constant C4

is decided from the seven case runs of our simulations at a Rayleigh number 108, Prandtl number
10, and L/R ranging from 100 to 1. Figure 8 illustrates the associated regression process, and C4

is herein determined to be 0.33. At this point, it is worth noting that C4 = 0.33 does also hold for
other flow conditions:

�4(C4) =
κL
δts

2
R+C4δts
R+0.5δts

1
R+0.5δts

R+δts
+1

uzs
. (23)

Therefore, uzs could be correlated with δts by

uzs ∼ κL

δts
2

R + 0.33δts

R + 0.5δts

1
R+0.5δts

R+δts
+ 1

. (24)

For the present fluid with a Prandtl number larger than the unity, the momentum of the convective
flow is dominated by the viscous and buoyancy effects. By balancing the two terms in Eq. (2), the
dominance of the boundary layer flow could be expressed by

ν
1

(R + 0.5δvis )δvis

R5uzs

δvis
∼ gβ 
T . (25)

In Eq. (25), δvis is the location that corresponds to the maximum uz at the steady state of the
convective flow. By incorporating the relation δvis ∼ δts/(1 + Pr–1/2) and assuming R5 is in the form
R + C5δvis, a parameter �5 could be therefore defined as

�5(C5) =
[

νuzs
R+C5δvis

(R+0.5δvis ) (1+Pr−1/2 )
2

gβ 
T

]1/2

δts
. (26)

Standard deviation of �5 is plotted at various C5 in Fig. 9. This figure suggests that the minimum
σ (�5) is obtained at approximately C5 = 0.727. Therefore, C5 is determined to be 0.727. Note that
the seven case runs employed for identifying C1 ∼ C4 are also utilized for determining C5 here.
Hence, Eq. (25) is reduced to

ν
(R + 0.727δvis)

(R + 0.5δvis)

uzs

δts
2 (1 + Pr−1/2)2 ∼ gβ
T . (27)

It needs to mention that each of the above determined coefficients, C1–C5, is designed to obtain
one scale law, and they are not utilized at the same time to describe one flow parameter. Hence, five
coefficients in total are involved in this work to quantify different flow parameters and the curvature
effect at various flow states.

By inserting Eq. (24) to Eq. (27), thickness of the steady-state boundary layer may be described
by

δts ∼ L(1 + Pr−1/2)1/2

Ra1/4

{
(R + 0.33δts)[R(1 + Pr−1/2) + 0.727δts]

(R + 0.5δts)[R(1 + Pr−1/2) + 0.5δts]

1
R+0.5δts

R+δts
+ 1

}1/4

. (28)

It is seen that Eq. (28) is implicit, and the least-square method could be utilized to obtain the
scale of the steady-state boundary layer thickness, δts. It is, however, crucial to note that a direct
estimation of δts by Eq. (28) will not be justified since correctly accounting for this equation requires
an equal sign equation rather than an order of magnitude sign equation, which is similar to the
above derivation of Eq. (12). In this aspect, to precisely obtain the scale of boundary layer thickness
δts, which will also be employed to obtain uzs, we must know the exact form of Eq. (28). This is
also achieved by processing our simulation data of the seven cases with a Rayleigh number 108,
Prandtl number 10, and L/R ranging from 100 to 1. Figure 10 depicts and compares the numerically
obtained δts values against the scale law in Eq. (28). A linear fit correlation is clearly shown in this
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FIG. 10. Numerically calculated δts vs its scale law in Eq. (28).

figure. Also, it is also revealed that a coefficient of 3.5 is appropriate, and the corresponding R2 of
the linear fit reaches 0.996. Therefore, the exact form of Eq. (28) could be achieved as

δts = 3.5
L(1 + Pr−1/2)1/2

Ra1/4

{
(R + 0.33δts)[R(1 + Pr−1/2) + 0.727δts]

(R + 0.5δts)[R(1 + Pr−1/2) + 0.5δts]

1
R+0.5δts

R+δts
+ 1

}1/4

. (29)

Hence, in order to determine the scaling-predicted steady-state δts, one needs to iteratively resolve
the implicit Eq. (29). Subsequently, the scaling-predicted characteristic velocity in the curved
boundary layer flow, uzs, is obtained by inserting δts into Eq. (24).

It is seen in Eqs. (28) and (24) that when the radius of the cylinder approaches a very large
value, the thickness and characteristic velocity of the convective boundary layer will converge to
the following forms:

δts ∼ L(1 + Pr−1/2)1/2

Ra1/4
, (30)

uzs ∼ κL

δ2
ts

∼ κRa1/2

L(1 + Pr−1/2)
. (31)

Note that they are, in fact, the scales for thermal boundary layer at vertical flat plates proposed
in [1,19], in which scenario the curvature of the surface does not affect the boundary layer flow at
all. Hence, the (R + Nδt )m terms in Eqs. (28) and (24) could be considered as the manifestation of
curvature effect of the circular cylinder.

C. Implementation of the proposed scale laws

In comparison to the well-known scaling relations of the convective boundary layers adjacent to
flat plates, most of the above derived scale laws are implicit, and this results in a different sequence
in applying and utilizing these scaling relations. Therefore, it is crucial to elaborate and clarify the
scheme of scale-law implementation in this subsection.

For the initial growth of the convective boundary layer, the prioritized task is to determine the
temporal growth of its thickness and characteristic velocity, that is, to determine δt and uz at any
specific evolutionary time instance t . To achieve this, Eq. (12) is first invoked and the exact solution
of δt is obtained by, for example, a numerically iterative approach. Subsequently, the scale of the
characteristic velocity uz is determined by inserting δt into Eq. (16).
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TABLE II. Sequence of implementation of the proposed unified scale laws.

Flow state Variables and the corresponding scale laws Scheme

a. Transient δt (
R+0.5δt
R+0.3δt

)1/2 = 3.7κ1/2t1/2 Exact

uz ∼ gβ
T t

(1+Pr1/2 )
2 ( R+0.3δt

R+0.5δt
) Scaling

b. Steady δts = 3.5 L(1+Pr−1/2 )
1/2

Ra1/4 { (R+0.33δts )[R(1+Pr−1/2 )+0.727δts]
(R+0.5δts )[R(1+Pr−1/2 )+0.5δts]

1
R+0.5δts

R+δts
+1

}1/4 Exact

uzs ∼ κL
δts

2
R+0.33δts
R+0.5δts

1
R+0.5δts

R+δts
+1

Scaling

c. Cutoff time for initial growth ts ∼ L2

κ

1+Pr−1/2

Ra1/2
(R+0.37δts )1/2 (R+0.5δts )1/2

R+0.3δts
scaling

After the boundary layer reaches a steady state, its thickness and velocity do not vary with time
any longer. Similar to the initial growth state, thickness of the steady-state boundary layer δts is
decided from the equation with an equal sign, i.e., Eq. (29). Then the scale of the steady-state
boundary layer velocity uzs is obtained by substituting δts into Eq. (24).

As the scale of threshold time for the steady state ts is implicitly correlated with δts and uzs, it
could only be determined towards the very end. This could now be simply achieved by utilizing
Eq. (20).

To better demonstrate how the present scale laws should be implemented and utilized, Table II
details the corresponding sequence and scheme.

IV. VALIDATION OF THE PROPOSED SCALE LAWS

It is worth mentioning at this point that in this validation section, plain denotations stand for the
numerically obtained values, while primed symbols denote the results determined from the present
scale laws. That is, for instance, δt is obtained from numerical simulations, and δ′

t is decided from
the proposed scale law. It also needs to clarify that determination of the primed scale variables in this
section exactly follows the procedure and sequence elaborated in Table II. In the present validation
section, variable dependency of the proposed scale law is validated separately, which is consistent
with previous works; see, e.g., [22,39].

A. Initial growth

Figure 11(a) plots the numerically obtained boundary layer thickness δt against evolutionary time
t . It is found that the boundary layer under all flow conditions experiences a transient and a steady
state. Oscillations and overshoot in the thickness are observed in the LEE-dominated oscillatory
state, and this is induced by the convective instability associated with the first group of unstable
waves in the boundary layer, namely, the leading edge effect. Figure 11(b) depicts a rescaled version
by normalizing the ordinate with the scale-law-predicted thickness at the steady state, δ′

ts, and the
horizontal axis is normalized with the scale-law-predicted ts. Figure 11(b) clearly demonstrates
that all data almost collapse together with the three development states clearly shown. This also
suggests the proposed temporal development of boundary layer thickness indicated in Eq. (12), the
relation describing the steady-state boundary layer thickness, Eq. (29), and the time to reach steady
state, Eq. (20), are correct. Figure 11(b) also demonstrates that the present boundary layer thickness
grows with t1/2. It is worth noting that, unlike the flat-plate boundary layers, this dependency is not
immediately discernible from the corresponding scale law in Eq. (12).

Temporal evolution of the characteristic velocity in the thermal boundary layer is presented
in Fig. 12, where Fig. 12(a) plots the original raw data and the normalized results are given in
Fig. 12(b). Similar to the development of boundary layer thickness, this figure suggests that the
characteristic velocity also undergoes a transient and a steady state. The numerically obtained char-
acteristic velocities are normalized by the scale-law-predicted steady-state uzs, and the dimensional
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FIG. 11. Time series of thickness of the curved thermal boundary layer: (a) raw data, (b) normalized results.

evolutionary time is divided by the scale-law-predicted ts in Fig. 12(b). It is seen that, by doing such,
all data converge together. It is also found that the characteristic velocity increases linearly with time
in the initial growth state, which is the same as the flat-plate boundary layers. It is worth mentioning
that, unlike the flat-plate boundary layers, this linear growth does not immediately manifest itself
from the scale law in Eq. (16), since uz is implicitly correlated with both thickness and time.
Nevertheless, the collapse of all calculated data strongly suggests that the proposed scale relation
for the boundary layer thickness in Eq. (16), the scale law describing the steady-state boundary layer
thickness in Eq. (24), and the time to reach steady state in Eq. (20) are revealing the correct flow
mechanics.

As argued in Sec. III, correctly and precisely accounting for flow quantities crucially depends
on determination of the balance between the various terms of the governing equations. Figure 13(a)
compares the horizontal profiles of the unsteady, diffusion, streamwise advection, and radial ad-
vection terms of the energy equation. Note that the case that corresponds to the highest curvature
effect is utilized here, since the opposite situation, the flat-plate condition, has been intensively
studied in the literature. It is clearly seen in Fig. 13(a) that the unsteady term and diffusion terms are
much more important than the other terms, which validates and supports the balance for analyzing
the boundary layer thickness in the initial growth state. Likewise, various terms of the momentum
equation, i.e., the diffusion term, buoyancy term, unsteady term, streamwise advection, and radial
advection terms, are plotted in Fig. 13(b) for the initial growth state. It is found that the buoyancy
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FIG. 12. Time series of characteristic velocity of the curved thermal boundary layer: (a) raw data,
(b) normalized results.

and diffusion terms are the most important, and the flow is subsequently dominated by these two
effects. This is consistent with and validates the force balance utilized for deriving Eq. (16).

B. Steady state

Thickness and characteristic velocity do not vary with time when the convective boundary layer
eventually reaches the steady state. Our scale analysis suggests that the boundary layer thickness
could be quantified by Eq. (29). Figure 14 compares the numerically calculated values against the
scale-law-predicted data at various Ra, Pr, and A. A linear fit line is clearly seen, and it implies that
the proposed Eq. (29) could suitably address the thickness of the curved boundary layer flow in the
steady state.

Figure 15 plots the numerically obtained characteristic velocities against the scale-law-predicted
values at various Ra, Pr, and A. It is seen that the two sets of data compare favorably well, and all
data fall onto the same linear fitted line. This suggests that the proposed scale relation in Eq. (24)
could appropriately describe the momentum of the curved boundary layer flow.

In the analysis of the steady-state energy equation in Sec. III, we utilized the balance between
the summation of the two advection terms and the diffusion term, which physically means the heat
conducted through the curved surface is convected away both radially and axially by the curved
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FIG. 13. Horizontal profiles of the various terms of the governing equations, obtained with Ra = 1 × 107,
Pr = 10, A = 100 and at a streamwise location z = L (t = 0.3286ts): (a) energy equation, (b) streamwise
momentum equation.
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FIG. 14. Numerically obtained δts vs the scaling-law predicted δ′
ts (A = 100, 50, 20, 10, 5, 2, 1).
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FIG. 15. Numerically obtained uzs vs the scale-law-predicted u′
zs (A = 100, 50, 20, 10, 5, 2, 1).

boundary layer. Figure 16(a) depicts horizontal profiles of the various terms of the energy equation
in the steady state with the case Ra = 1 × 107, Pr = 10, and R = L/100. This figure demonstrates
that the diffusion term, which corresponds to heat conduction, is the most important factor of the
flow, while the two advection terms are of equivalent but slightly less significance in comparison.
Nevertheless, summation of the two advection terms is at the same order of the diffusion term.
Consequently, it validates the balance adopted for analyzing the energy equation at the steady state.
It is also seen that the unsteady term is zero, indicating the steady-state flow does not depend on
time. Likewise, Fig. 16(b) presents the comparison of various terms of the momentum equation. It
clearly shows that the buoyancy effect and the momentum diffusion are of similar importance and
all other effects could be hereby ignored, which supports and is consistent with the dominance we
utilized in Eq. (25).

The scale-law-determined t ′
s is plotted against the numerically calculated values at various Ra,

Pr, and A in Fig. 17. A linear fit line is clear, and the regression constant is 0.999, suggesting
the proposed scale relation in Eq. (20) is sound and reasonable. It is worth mentioning that in the
numerical simulation, ts is determined at the time instance when the characteristic velocity in the
boundary layer reaches 95% of its steady-state value at the streamwise location z = L, and a similar
approach was utilized in [16,21,39].

C. Effect of curvature on boundary layer flow

It has been widely acknowledged in the literature that if the radius of the heated circular cylinder
is much larger than the thickness of the thermal boundary layer, the curvature effect of the heated
surface does not remarkably affect the flow and is negligible accordingly. In this scenario, we will
have a flat boundary layer. However, if the radius of the cylinder is equivalent or smaller than the
boundary layer thickness, the curvature effect will then profoundly affect the boundary layer, and it
will subsequently lead to a curved boundary layer. Here a dimensionless parameter ξ is defined to
straightforwardly address the effect of curvature:

ξ = δt

R
. (32)

As discussed above, the present study aims to account for the effect of curvature on the
convective boundary layer, that is to provide a set of unified scale laws that is capable of de-
scribing the convective boundary layer flow covering large value range of cylinder radius. The
scale analysis in Sec. III suggests that at the steady state, the boundary layer thickness could be
described by Eq. (29), whereas the complex term (R + 0.33δts )(R + δts )[R(1 + Pr–0.5) + 0.727δts]/
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FIG. 16. Horizontal profiles of the various terms of the governing equations, obtained with Ra = 1 × 107,
Pr = 10, A = 100 and at a streamwise location z = L (t = 6.37ts): (a) energy equation, (b) streamwise
momentum equation.

FIG. 17. Numerically obtained ts against its scale-law-determined t ′
s.
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FIG. 18. Effect of curvature on the thickness of boundary layer flow at various ξ : (a) f (ξ ) vs ξ ,
(b) f (ξ )/ f (ξ ′) vs ξ .

(R + 0.5δts )(R + 0.75δts )[R(1 + Pr–0.5) + 0.5δts] denotes the curvature effect at different radius. To
better understand the curvature effect of the heated surface, the following function could be defined:

f (ξ, Pr) = (1 + 0.33ξ )(1 + ξ )(1 + Pr−1/2 + 0.727ξ )

(1 + 0.5ξ )(1 + 0.75ξ )(1 + Pr−1/2 + 0.5ξ )
. (33)

In the above equation, we could obtain a ξ value for each calculated case run. The effect of
curvature is associated with ξ and reflected by the term f (ξ, Pr). Note that the scale for the
thickness of flat boundary layers is δts ∼ L(1 + Pr–1/2)1/2/Ra1/4. For the present curved boundary
layers, it takes the form of Eq. (28), in which the δts ∼ L(1 + Pr–1/2)1/2/Ra1/4 term corresponds to
the flat boundary layer scale, and the complicated (R + Nδt ) term indicates the effect of the present
curvature effect. To examine the curvature effect in a straightforward way and to demonstrate that the
present unified laws work well at all curvature effects, i.e., at small ξ , intermediate ξ , and large ξ , we
herein define the complicated (R + Nδt ) term as f (ξ, Pr) since it is also Prandtl number dependent.
It is plotted against ξ at various Pr numbers for this purpose. On the one hand, when ξ approaches
infinitesimal, the flow becomes a flat-plate problem, we have limξ=0 f (ξ, Pr) = 1, and the scale
laws in Table II will reduce to the flat-plate scalings. On the other hand, when ξ is very large, i.e.,
the boundary layer is much thicker than the radius of the cylinder, f (ξ, Pr) will also approach a
constant. Figure 18(a) plots f (ξ, Pr) at three Pr numbers. Note that both the numerically obtained
and scale-law-predicted values are presented in this figure, and the solid line is a direct plot of the
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function in Eq. (33). It is clear that the three data clusters almost converge together, indicating the
proposed scale laws are consistent with the numerical simulations. This figure demonstrates that the
proposed scale law is unified, and it could appropriately describe the limiting cases of flat boundary
layer (at small ξ ) and significantly curved boundary layer (at large ξ ) as well as all intermediate ξ .
It is also worth pointing out in this figure that f (ξ, Pr), which represents the deviation of curved
boundary layer from the flat-plate flow, increases drastically with ξ at 0 < ξ < 5 in the first place.
Then it steadily approaches a constant of approximately 1.23. This figure also suggests that the
maximum ξ in the present study reaches approximately 14, suggesting the maximum boundary
layer thickness is 14 times the cylinder radius, in which case the convective boundary layer has
become a dramatically curved one [see Fig. 1(a)]. At the other end, the minimum ξ is approximately
0.02 indicating a flat-plate problem, in which scenario a good agreement is also achieved. It is worth
noting the minimum ξ is found to be 0.02 for the case run with Ra = 5 × 108, Pr = 100, and A = 1.
Consequently, it is known that the present scale laws could reasonably quantify the boundary layer
thickness for a large range of ξ .

In order to precisely and quantitatively examine the difference between the numerical simulations
and the proposed scale laws, Fig. 18(b) presents the ratio of f (ξ, Pr) and f (ξ ′, Pr) at various ξ . The
comparison demonstrates that the present scale-law-predicted values agree well with the numerical
results and the relative error is below 1%, validating the proposed scale law in Eq. (29).

Similar to the above discussion of the curvature effect on boundary layer thickness, the following
function g(ξ ) is defined to expound the effect of curvature on the characteristic velocity. It is noted
that this function is chosen from Eq. (24):

g(ξ ) = (1 + 0.33ξ )

(1 + 0.5ξ )

1
(1+0.5ξ )

(1+ξ ) + 1
. (34)

Similar to the above f (ξ ), in Eq. (34), we could obtain a ξ value for each calculated case run.
The effect of curvature on the characteristic velocity is associated with ξ and reflected by the term
g(ξ ). Values of g(ξ ) are obtained at various ξ from the present numerical simulations and from
the proposed scale laws. The corresponding data are plotted in Fig. 19(a), where the solid line is by
directly calculating the function g(ξ ). This figure shows that the proposed scale law could reasonably
describe the limiting cases of flat boundary layer (at small ξ ) and highly curved boundary layer
(at large ξ ) as well as intermediate ξ . When ξ approaches zero, that is, when the boundary layer
thickness is much smaller than the radius of the cylinder, the flow is reduced to flat-plate problems.
In this situation, we have limξ=0g(ξ ) = 0.5, and this is consistent with Fig. 19(a). However, when
the boundary layer thickness is significantly larger than the radius of the cylinder, ξ � 1, g(ξ ) also
gradually approaches a constant. Figure 19(b) plots the ratio g(ξ )/g(ξ ′) against ξ . It is seen that the
agreement is reasonable with the maximum relative error at approximately 0.3%. It is also clear in
Figs. 19(a) and 19(b) that the three sets of data almost collapse together covering a wide range of
thickness-radius ratio, at 0.02 � ξ � 14. This suggests the proposed scale law in Eq. (24) could
properly account for the curvature effect.

To assess how precisely the present scale law describes the curvature effect in a more direct and
straightforward way, Fig. 20 plots the ratio of the numerically obtained flow parameters against
the scale-law-predicted values at various ξ , where Figs. 20(a) and 20(b) depict the boundary layer
thickness and characteristic velocity data, respectively. It demonstrates that the present scale-law-
predicted values are in good agreement with the numerical simulations, and this consequently
suggests that the present unified scale laws could accurately account for the boundary layer flow
from the extensively investigated flat-plate type to a strongly curved one, covering 0.02 � ξ � 14.

The above discussion suggests that the present scale laws could reasonably address 0.02 � ξ �
14. It is worth pointing out that this data range as well as the associated scale laws are in fact
determined by the corresponding case runs analyzed, i.e., by numerically obtaining the coefficients
C1 ∼ C5. Therefore, it makes perfect sense that the proposed scale laws could satisfactorily describe
these flow conditions. It is obvious that the present scale laws are still valid when ξ is further lower
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FIG. 19. Effect of curvature on the characteristic velocity of boundary layer flow at various ξ . (a) g(ξ ) vs
ξ , (b) g(ξ )/g(ξ ′).

and closer to the unity. How the present scale laws perform at higher ξ could be an interesting
question, as one may expect the present scale laws should still be valid at least to some extent
beyond the upper limit ξ = 14 . An increase in ξ corresponds to an augmented curvature effect, and
this could be achieved by further decreasing the cylinder radius or reducing the Rayleigh number. In
this aspect, we have further calculated and examined several additional cases, and the maximum ξ

tested is equal to 26. The scale-law-predicted thickness and characteristic velocity differentiate from
simulation values by up to 0.26% and 6.28%, respectively, for 14 � ξ � 26. This implies that the
present scale laws could practically describe the boundary layers at 0 � ξ � 26 with satisfactory
agreement. In the upper limiting case, ξ = 26, the boundary layer thickness is about 26 times the
cylinder radius, and the cylinder has almost been reduced to a line heat source. In the lower limiting
case, however, the boundary layer becomes the traditional flat boundary layer.

V. CONCLUDING REMARKS

This work investigates the convective boundary layer flow developing along the external surface
of a vertical circular cylinder by means of scale-law analysis. The effect of curvature is taken into
account by adopting different aspect ratios of the employed heated cylinder. Large variation of the
cylinder aspect ratio, 1 � A � 100, is considered, and it leads from a most curved boundary layer
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FIG. 20. Comparison of the numerically determined flow variables against the scale-law-predicted ones at
various ξ : (a) δts/δ

′
ts, (b) uzs/u′

zs.

at approximately ξ ≈ 14 [refer to Fig. 1(a)] to an almost flat boundary layer at approximately ξ ≈
0.02. In the meantime, the Rayleigh number and Prandtl number dependencies are also resolved.

Two distinct flow states are revealed from the present simulations, a transient and a steady
state. Through analyzing the various terms in the governing equations, we obtain the scale laws
describing the thickness δt and characteristic velocity uz in the initial growth state, the time to
reach the steady state ts, and the steady-state thickness δts and characteristic velocity uzs of the
thermal boundary layer. It demonstrates that several scale laws are in an implicit form, and hence
precisely evaluating the flow variables will need to utilize an iterative approach. The present study
also suggests that if the radius of the cylinder is much larger or much smaller than the boundary
layer thickness, the proposed scale laws will converge to the classic scaling relations for flat-plate
problems. Nevertheless, when they are comparable, the traditional flat-plate scale laws will fail. It is
also found that the proposed scale laws quantifying the curved boundary layer at various ξ generally
resemble the classic flat-plate scaling relations. The various (R + Nδt )m terms in the scale laws act to
calibrate the corresponding flat-plate relations towards curved ones, and they quantitatively describe
the curvature effect.

The present study indicates that the proposed scale laws are capable of reasonably describing
from flat boundary layers at ξ = 0 to remarkably curved ones at ξ = 26. The effect of the Rayleigh
and Prandtl numbers could also be suitably quantified and described by the proposed scale laws.
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Therefore, the present proposed relations are considered as generalized and unified scale laws for
convective boundary layers developing along an isothermally heated vertical cylinder.
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