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Hydrodynamics of slender swimmers near deformable interfaces

Sankalp Nambiar 1 and J. S. Wettlaufer1,2,*

1Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm 10691, Sweden
2Yale University, New Haven, Connecticut 06520-8109, USA

(Received 9 December 2021; accepted 31 March 2022; published 2 May 2022)

We study the coupled hydrodynamics between a motile slender microswimmer and a
deformable interface that separates two Newtonian fluid regions. From the disturbance field
generated by the swimming motion, we quantitatively characterize the interface deforma-
tion and the manner in which the coupling modifies the microswimmer translation itself.
We treat the role of the swimmer type (pushers and pullers), size and model an interface
that can deform due to both surface tension and bending elasticity. Our analysis reveals
a strong dependence of the hydrodynamics on the swimmer orientation and position.
Given the viscosities of the two fluid media, the interface properties and the swimmer
type, a swimmer can either migrate toward or away from the interface depending on
its configurations. When the swimmer is oriented parallel to the interface, a pusher-type
swimmer is repelled from the interface at short times if it is swimming in the more viscous
fluid. At long times, however, pushers are always attracted to the interface, and pullers are
always repelled from it. However, swimmers oriented orthogonal to the interface exhibit
a migration pattern opposite to the parallel swimmers. In consequence, a host of complex
migration trajectories emerge for swimmers arbitrarily oriented to the interface. We find
that confining a swimmer between a rigid boundary and a deformable interface results
in regimes of attraction toward both surfaces depending on the swimmer location in the
channel, irrespective viscosity ratio. The differing migration patterns are most prominent
in a region of order the swimmer size from the interface, where the slender swimmer model
yields a better approximation to the coupled hydrodynamics.

DOI: 10.1103/PhysRevFluids.7.054001

I. INTRODUCTION

Swimming microorganisms are often found in fluid environments near interfaces that can be
either rigid [1–7] or compliant [8–11]. The hydrodynamics in such systems involves a coupling
between the intrinsic swimming motion of the microswimmer and the boundary [12–21], due to
which a host of rich and complex dynamical responses emerge [16,22–29]. For instance, observa-
tions near rigid interfaces include aspects of confinement induced microswimmer migration such
as upstream swimming and boundary accumulation [4,27,28,30–37], changes in the confinement
pressure and fluctuation forces [20,32,38,39], as well as boundary-induced changes in the swimmer
trajectory [7,27,36,40]. When swimming near complaint interfaces however, hydrodynamic effects
drive interfacial deformation. The resulting coupled dynamics depends on surface tension and/or
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elasticity [41–45]. Depending on the properties of the deformable interface, the fluid medium and
the swimmer model adopted, simulations and continuum theories have shown enhanced pumping
of the disturbance flow field [14], as well as deformation-induced enhancements [15,19] and
retardation [21,46] in the swimmer translation.

Analytical studies that have investigated the hydrodynamics of microswimmers and passive
particles near deformable interfaces, have treated the bodies as singularities (point forces, force-
dipoles, quadropoles, etc.) [12,19,42,44,45], two-dimensional swimming sheets [14], or spherical
particles/squirmers [17,47]. Each of these unique approaches can explore observations in the regime
of their applicability. For example, Dias and Powers [14] showed that a two-dimensional sheet
swimming near a deformable interface can generate a pumping velocity that can be either attractive
or repulsive to the interface depending on the viscosity ratio of the two fluid regions. Moreover,
they found that an increase in the bending stiffness resulted in enhanced swimmer translation
but reduced the fluid pumping. Daddi-Moussa-Ider et al. [19] considered higher order terms of a
multipole analysis for determining the effect of the coupled hydrodynamics on the translational
and rotational motion of a microswimmer near a deformable interface. By considering an interface
which exhibits resistance to both bending and shear, they established that the swimmer translation
was enhanced due to interface bending and suppressed due to shear resistance. In contrast, Shaik
and Ardekani [17] modeled the swimmer as a sphere with a prescribed surface slip velocity (the
spherical squirmer approach [48]) and quantitatively characterized both the interface deformation
and the swimmer translation for different squirmer configurations. They found that, depending on
the initial orientation of the squirmer relative to the interface, the squirmer either swam toward or
away from the interface.

Analytical progress in such approaches has been contingent upon a small parameter, such a
small capillary number Ca (the ratio of viscous fluid stress to surface tension) [12,17], or small
sheet deformations in a two-dimensional domain [14]. Alternatively, the small parameter emerges
from the separation of scales of the swimmer size relative to its distance from the interface; when it
is sufficiently far away from the interface to evoke a multipole analysis [12,19]. There are, however,
systems where the microswimmers are at distances of order their size L from the interface, that aren’t
necessarily constrained as in a quasi-two-dimensional setting [8,9]. Moreover, several bacteria, such
as Helicobacter pylori and Bacillus subtilis, have a strongly orientable geometry. The orientability
can be characterized in terms of an aspect ratio κ , which is defined as the total swimmer length
(head + flagellar bundle combined) to its lateral extent. Typical values of the aspect ratio are of
the order κ ∼ 10, implying that κ � 1 [8,31,49,50]. One would therefore like to relax some of
the constraints and develop a more general framework to model microscopic swimmers near
deformable interfaces. These could include aspects of the finite swimmer size and geometry,
characterizing the hydrodynamics for swimmer distances of O(L) from the interface, and going
beyond the limit where the ratio of the viscous fluid stress to the deformation driving stress is small.

Here, we consider the motion of a slender microswimmer moving in the proximity to a de-
formable interface that separates two Newtonian fluid regions of different viscosities. By modulating
the distribution of forces along the swimmer length, we are able to model both pusher- and
puller-type swimmers [51,52], hereafter referred to as pushers and pullers, respectively. Importantly,
using slender-body theory enables us to resolve the hydrodynamics in regions of order the swimmer
size L owing to the weak inverse logarithmic scaling of the disturbance flow field in κ [53]. In
particular, this weak scaling also allows us to avoid the smallness of the stress ratios discussed
above and thereby access a wider parameter regime of interfacial properties. We characterize the
nature of interface deformation and swimmer translation due to the coupled hydrodynamics for
different swimmer orientations. We treat an interface that can deform due to both surface tension
and bending elasticity, and our study extends the framework developed to model such systems by
Bickel [42] and Daddi-Moussa-Ider et al. [44].

The manuscript is organized as follows. In Sec. II, we formulate the governing equations and
the boundary conditions for a slender swimmer disturbing the fluid medium in the vicinity of a
deformable interface. Specifically, in Sec. II A we describe the Stokes equations of the two fluid
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FIG. 1. A schematic representation of a slender swimmer translating near a deformable interface with speed
Vs along its director vector p. The swimmer is characterized by an aspect ratio κ defined as the ratio of its total
length L to its lateral extent W . The circles along the axial length of the fore-aft symmetric swimmer represent a
line distribution of stokeslets characterizing the head and tail for pushers. The disturbance flow field generated
by the swimming motion deforms the interface, and uz is the interface deformation (solid gray line) relative to
its initially flat undeformed (dotted line) state z0.

region along with the relevant velocity and stress boundary conditions at the interface, and in
Sec. II B we describe the nondimensional system, approximations to the field variables and the
boundary conditions that exploit slender swimmer model. These nondimensional equations and
boundary conditions are solved in Appendix A, for swimmers oriented parallel to the interface
and Appendix B for swimmers oriented orthogonal to the interface. In Appendix C, we validate
the approximations to the boundary condition for swimmers oriented orthogonal to the interface.
We discuss the results for the swimmer translation and interface deformation, first for swimmers
oriented parallel to the interface in Sec. III A, and for swimmers oriented orthogonal to the interface
in Sec. III B. In each case, we describe the results pertaining to the interface deformation and of the
effect on the swimming motion due to the hydrodynamic coupling. In Sec. III C we generalize
our analysis for arbitrary swimmer orientations, focusing only on the swimmer translation and
rotation. In Sec. IV we analyze the change in the swimmer translation when it is confined between
a deformable interface and a rigid boundary, and oriented parallel to both. Last, in Sec. V we
summarize the results and present concluding remarks on our analysis.

II. SLENDER SWIMMERS NEAR A DEFORMABLE INTERFACE:
A COUPLED HYDRODYNAMICS FRAMEWORK

In this section, we derive the coupled set of differential equations that characterize the disturbance
flow field and the interface deformation due to a force- and torque-free microswimmer translating
in the vicinity of a deformable interface. As described in Sec. I we model a slender microswimmer
moving near a deformable interface at distances of order its own body length away from it. The
interface separates two density-matched Newtonian fluid regions that have different viscosities, and
is modeled such that it can deform due to surface tension and bending elasticity as is the case for
typical lipid bilayer membranes or vesicles and cells [54–57]. A schematic is given in Fig. 1.

A. Equations for the fluid velocity and the boundary condition

The equations governing the two fluid regions are the Stokes equations and the continuity
equations which characterize the disturbance flow field v and the pressure field P, and are

−∇Pα + ηα∇2vα =
∫ L

2

− L
2

f αδ(x − xs − Vs pt − sp)ds and (1a)

∇ · vα = 0. (1b)
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Here, the subscript α ∈ [1, 2] represents the two fluid regions, η is the fluid viscosity, δ(x) is the
Dirac-δ function [58], L is the total swimmer length, Vs is the swimming speed, and s refers to the
distance along the slender swimmer axial coordinate, whose center-of-mass is at position xs and is
oriented along the direction p. The orientation vector p is characterized by a polar angle θ relative
to the vertical and azimuthal angle φ in the plane of the undeformed interface. The kernel in the
integral on the right-hand side of Eq. (1a), f α , represents the forcing due to the slender swimmer
and characterizes a line distribution of Stokeslets along the axial coordinate of the swimmer. For a
fore- and aft-symmetric swimmer, which disturbs in the surrounding fluid medium as it moves, one
may write f α as [51,52]

f α =
{

D ηαVs p sgn(s)/(ln κ ), α = 1,

0, α = 2,
(2)

where κ refers to the slender swimmer aspect ratio, and is defined as the ratio of the total swimmer
length to its lateral extent, as shown in Fig. 1. The above form of f α describes two swimming
mechanisms, namely, pushers (rear propelled) and pullers (fore propelled). In the far-field both
swimming mechanisms exhibit a disturbance flow field akin to a point-force dipole with opposing
dipole strength [59,60]. This opposing character is encoded in the parameter D = −1 (+1) in Eq. (2)
which describes the specific nature of the force-dipole swimming mechanism, that is extensile
for pushers (contractile for pullers). Typically, pusher-type bacteria such as Escherichia coli and
B. subtilis are fairly slender with κ ∼ 10 when the swimmer length is measured based on the cell
body and the flagellar bundle length combined [31,51,61,62].

Equation (1) must be solved subject to appropriate boundary conditions at the interface. We con-
sider an impenetrable no-slip interface of infinitesimal thickness within the continuum framework
[41]. This translates to the following velocity boundary conditions: v1 · n = v2 · n and v1 · (I −
nn) = v2 · (I − nn), where n = ∇F/|∇F | is the unit normal to the interface F = z − z0 − uz [41],
and I is the identity tensor. The z component of the interface deformation relative to its undeformed
planar state is uz (see Fig. 1). As described in Sec. I, the interface can deform when there is a flow
in the fluid medium surrounding it, since it has a finite surface tension and can to bend elastically.
Therefore, the normal component of the stress undergoes a jump across the interface: σ zz

1 |u+
z

−
σ zz

2 |u−
z

= γ∇ · n + δFbend, where σα = −PI + ηα (∇ · v + ∇ · vt ) is the stress tensor, γ the isotropic
surface tension and δFbend represents the stress jump due to bending. Here, we consider linear elastic
bending, and use the Helfrich model [63] to relate the interface deformation to the bending stress.
This model has been used extensively in the literature for analyzing swimming sheets, Stokeslets and
other higher-order singularities near deformable interfaces [see Refs. 14,19,44,45,64, and references
therein]. For simplicity we consider the tangential component of the stress jump across the interface
to be continuous, implying that σ xz

1 |u+
z

= σ xz
2 |u−

z
and σ

yz
1 |u+

z
= σ

yz
2 |u−

z
. However, we note that the

present analytical framework allows incorporation of a shear resistance on the interface [19]. Now,
in addition to these fluid equations and boundary conditions, we also have the kinematic condition at
the interface, which provides a direct relation between the interface deformation and the disturbance
flow field measured at the interface [17,41,47], and is

∂F

∂t
+ v · ∇F = 0. (3)

With the interface deformation and the disturbance field characterized, we express the swimmer
translation velocity and rate of rotation due to the hydrodynamic interaction with the interface as
follows. From viscous slender-body theory [53,65] the velocity V for a slender swimmer is

V (sp) − v(sp)|swim location = f 1

4πη1
· (I + pp) ln κ, (4)

where the second term on the left-hand side of Eq. (4) is the disturbance flow field at the location
of the swimmer. For a rigid slender swimmer, V = V T + ω ∧ ps, with V T being the translational
velocity and ω the angular velocity of the swimmer emanating from the coupled hydrodynamics.
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The force-free (
∫ 1

2

− 1
2

f 1ds = 0) and torque-free (
∫ 1

2

− 1
2

sp ∧ f 1ds = 0) swimming constraints translate

to the following expressions for the swimmer translational velocity V T and rotation rate ṗ = ω ∧ p
[52],

V T =
∫ 1

2

− 1
2

v(sp)ds and (5a)

ṗ = 12
∫ 1

2

− 1
2

(I − pp) · v(sp)sds. (5b)

Therefore, in addition to the swimmers intrinsic motion, a slender swimmer translates along the
length averaged disturbance field at its center and rotates due to the first moment of the disturbance
field along its axial coordinate.

B. Nondimensionalization

We nondimensionalize the equations and the boundary conditions using L as a length scale, Vs as
a velocity scale and η1Vs/L as a scale for the fluid stress. It is convenient to solve the problem
in a reference frame moving with the swimmer center: r = x − xs − (Vstc/L)p t ; ∇ ≡ ∇r and
∂ (·)/∂t = ∂ (·)/∂t − (Vstc/L)p · ∇r(·), where we have allowed the timescale tc to remain arbitrary
for the moment. This yields the following nondimensional form of the Stokes equations and the
continuity equations, Eq. (1), in the two fluid regions:

−∇P1 + ∇2
r v1 = D p

ln κ

∫ 1
2

− 1
2

sgn(s)δ(r − sp)ds, (6a)

∇r · v1 = 0, (6b)

−∇rP2 + λ∇2
r v2 = 0, and (6c)

∇r · v2 = 0, (6d)

where λ = η2/η1 is the viscosity ratio. Here, Eqs. (6a) and (6c) correspond to Eq. (1a), and
Eqs. (6b) and (6d) correspond to Eq. (1b) for α ∈ [1, 2]. Note that, for brevity, we retain the original
notation of the field variables in the nondimensional Eqs. (6a)–(6d). Now, the leading order flow
field generated by a slender-body is O(ln κ )−1 [51,53,59,65], where we emphasize that the aspect
ratio κ � 1. As the disturbance field v in the Stokes Eq. (6a) is linear in the forcing, it will also
scale as O(ln κ )−1, and is therefore asymptotically small. Hence, we can consider small interface
deformations without having to invoke the smallness of the ratio of viscous fluid stresses to the
deformation driving stresses on the interface (surface tension and bending). In other words, owing
to the weak flow field of a slender-body, the slender swimmer model enables simplifications of the
boundary conditions.

For small deformations, we can linearize the expressions for the unit normal and the curvature
at the interface as: n ≈ 1z and ∇r · n ≈ −
r‖uz, where 1z is the rz component of the unit normal
[42,44]. Within the linear response framework the height function, uz, depends only upon the rx and
ry coordinates, and an analytical expression for the stress jump due to bending using the Helfrich
elastic energy function dimensionally is: δFbend = κβ
2

‖uz, where �‖ represents the Laplacian in
the rx-ry plane and κβ the bending modulus of the interface [44]. Thus, the nondimensional form of
the boundary conditions specified above Eq. (3) are

v1z|r+
z0

= v2z|r−
z0
, (7a)

v1 · (I − 1z1z )|r+
z0

= v2 · (I − 1z1z )|r−
z0
, (7b)(

∂v1z

∂rx
+ ∂v1x

∂rz

)∣∣∣∣
r+

z0

= λ

(
∂v2z

∂rx
+ ∂v2x

∂rz

)∣∣∣∣
r−

z0

, (7c)
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(
∂v1z

∂ry
+ ∂v1y

∂rz

)∣∣∣∣
r+

z0

= λ

(
∂v2z

∂ry
+ ∂v2y

∂rz

)∣∣∣∣
r−

z0

, and (7d)

−(
P1|r+

z0
− P2|r−

z0

) + 2

(
∂v1z

∂rz

∣∣∣∣
r+

z0

− λ
∂v2z

∂rz

∣∣∣∣
r−

z0

)
= − γ

η1Vs

r‖uz + κβ

η1VsL2

2

r‖uz. (7e)

We are studying an interfacial deformation process and to nondimensionalize the kinematic con-
dition Eq. (3), we can choose between the scale for the elastic bending and surface tension,
corresponding to tc1 = η1L3/κβ and tc2 = η1L/γ , respectively. For ultra-soft interfaces, the surface
tension can be γ ∼ O(10)−5N/m or smaller [54,56,66], and for example the bending rigidity
of vesicles is κβ ∼ O(10)−19J [54,55,67,68]. In a fluid medium with a viscosity approximately
that of water, η1 ∼ O(10)−3Ns/m2, and a swimmer of size L ∼ O(10)−5m, this implies that
tc1 ∼ O(1) − O(10)2 and tc2 ∼ O(10)−3 − O(1). Independent of the timescale chosen, the relative
importance of the surface tension and bending stress on the right-hand side of Eq. (7e) can then
be characterized by the ratio of the two scales, namely γ L2/κβ . Depending on the stiffness of
the interface, for typical values of the timescales, γ L2/κβ can vary from O(1) to γ L2/κβ � 1.
Therefore, we choose tc1 as a timescale noting that choosing tc2 is equally plausible. In the literature,
γ L2/κβ is also treated as an elasto-capillary length [69,70], to characterize the length scales over
which surface tension or elasticity dominate. The dimensionless kinematic boundary condition
Eq. (3) becomes

∂uz

∂t
+

(
η1L2Vs

κβ

)
v · ∇r‖uz =

(
η1L2Vs

κβ

)[
vz|uz + pz

]
, (8)

where pz = cos θ , and the right-hand side of Eq. (8) applies at the location of the deformed
interface uz.

In principle, there is a third timescale in the problem if we account for the intrinsic reorientation
timescale of a microswimmer. For instance, tc3 = τ or tc3 = D−1

r , where τ is the mean run duration
of a run-and-tumble particle (RTP) [32,49,50,71–73] and Dr the rotary diffusivity coefficient of an
active Brownian particle (ABP) [31,37,71,73,74]. For simplicity, we neglect this third scale and treat
only straight-swimmers, that is, the class of swimmers that do not tend to intrinsically reorient. In
Sec. V, we briefly discuss the relevance of the swimmer reorientation time and how it compares to
the response scale of the interface deformation.

For small deformations, one can use the method of domain perturbation [41,64] to represent this
term at the location of the planar undeformed interface z0 instead. Namely, vz|uz , can be perturbed
about rz0 as: vz|uz ≈ vz|rz0

+ uz(∂vz/∂rz )|rz0
+ O(uz )2 + . . ., and therefore considering terms up to

O(uz ) in the velocity, one may rewrite Eq. (8) as

∂uz

∂t
+

(
η1L2Vs

κβ

)[
v · ∇r‖uz − uz

∂vz

∂rz

]
=

(
η1L2Vs

κβ

)[
vz|rz0

+ pz
]
. (9)

Note that the second and third nonlinear terms on the left-hand side of Eq. (9) involve products
of the field variable (uz, v) and their associated gradients. These terms are usually neglected if
the forcing is sufficiently far away from the interface so that terms involving their products are
asymptotically small in the far-field [42,44]. Given that we consider swimmers at O(1) distances
from the interface, these terms can not be neglected a priori. However, as noted below Eq. (6), the
disturbance field v is O(ln κ )−1. Therefore, if we express the interface deformation as a perturbation
series in (ln κ )−1, uz = uz1 × (ln κ )−1 + uz2 × (ln κ )−2 + . . ., the second and third terms on the
left-hand side of Eq. (9) will be O(ln κ )−2, and hence asymptotically smaller than the disturbance
field v. A similar argument, owing to the asymptotically weak flow field of a slender swimmer,
has recently been used to treat the tracer diffusivity and the velocity variance in a suspension of
interacting slender swimmers in bulk [52]. Thus, to a leading order in (ln κ )−1, one can simplify
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Eq. (9) as

∂uz

∂t
≈

(
η1L2Vs

κβ

)[
vz|rz0

+ pz
]
, (10)

for a slender-body near a deformable interface. We can solve the above system of lin-
ear Eqs. (6a)–(6d) and the boundary condition Eqs. (7a)–(7e) in Fourier space [42,44,58],
and we define the two-dimensional Fourier transform of any variable A(rx, ry) as: Â(k) =∫ ∞
−∞

∫ ∞
−∞ dxdyA(rx, ry) exp(−2π ik · r‖). Determining the Fourier transformed disturbance field v̂z

is straightforward, as shown in Appendices A and B for swimmers oriented parallel and perpen-
dicular to the interface, respectively. However, here we show the Fourier transformed kinematic
boundary condition Eq. (10):

dûz

dt
=

(
η1L2Vs

κβ

)[
v̂z|rz0

+ pz
δ(k)

πk

]
, (11)

which is solved in the next section for different swimmer configurations relative to the interface. For
swimmers translating parallel to the interface pz = 0, in which case the right-hand side of Eq. (11) is
only the Fourier transformed disturbance velocity at the undeformed interface. This approximation
holds as long as the ratio of the viscous to bending stress: η1VsL2/κβ remains O(1). However, if
η1VsL2/κβ � 1, then the nonlinear boundary condition given by Eq. (9) would have to be used. In
Appendix C, we validate the above approximation for the interface deformation by comparing uz

derived from solving Eq. (9) with that from Eq. (10), for the specific case of swimmers oriented
orthogonal to the interface over a range of η1VsL2/κβ . In the following sections, we fix the aspect
ratio κ = 10 and the ratio of the viscous to bending stresses η1VsL2/κβ = 1.

III. SWIMMERS NEAR A SINGLE INTERFACE

In general, simultaneously solving Eqs. (5) and (11) results in an inherently unsteady problem,
with the coupling involving a dependence on both the distance of the swimmer to the interface as
well as its orientation. Therefore, in what follows, we first discuss the results for a swimmer oriented
parallel to the interface, then for a swimmer orthogonal to the interface, and finally for a swimmer
with an arbitrary orientation. In Sec. IV we consider a swimmer confined between a rigid boundary
and a deformable interface.

A. Microswimmers swimming parallel to the interface

To understand the coupled hydrodynamics, it is useful to refer to the equation for the interface
deformation and for the swimmer motion for swimmers oriented parallel to the interface. For the
former, we use the expression for v̂1z|rz0

from Eq. (A15) in Appendix A 3 and obtain the following
equation for the time evolution of ûz:

dûz

dt
+ πk

(1 + λ)
(4π2k2 + �)ûz =

(
η1L2Vs

κβ

)[
D

πk(1 + λ) ln κ
sin2

(
π

2
kpl

)
rz0 exp(2πkrz0 )

]
,

(12)

where � ≡ γ L2/κβ characterizes the relative importance of surface tension to bending stress. Note
that the interface deformation is linked to the swimmers instantaneous configuration via rz0 and p,
both of which can evolve in time. Here, ṗ = 0, as is also true for a generic force-dipole swimmer
near a planar or weakly deforming boundary [13,19,75]. However, the same is not true for V T , since
the z component of the translation is responsible for the coupling with the interface deformation in
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FIG. 2. The nondimensional interface deformation plotted for a swimmer of unit length oriented along the
rx direction (a) viewed at an angle of 30◦ from the undeformed interface and (b) top view. The black line in
(b) spanning from rx ∈ [−1/2, 1/2] signifies the slender swimmer. The colorbar given on the right-hand side
of (b) applies to both figures. The plot is for � = 0.1, λ = 0.5 at t ≈ 2, κ = 10, and η1VsL2/κβ = 1.

Eq. (12) via rz0 . We only focus on V T
z , which is

V T
z ≡ drz0

dt
= −

∫
dk

sin(πkpl )

πkpl

[
2Dr2

z0

ln κ

(
1 − λ

1 + λ

)
sin2

(
π

2
kpl

)
exp

(
4πkrz0

)

+
(

κβ

η1VsL2

)
πk

(1 + λ)
(4π2k2 + �)

(
1 − 2πkrz0

)
ûz exp

(
2πkrz0

)]
, (13)

where we have used the definition of the inverse Fourier transform: A(rx, ry) = ∫
dkÂ exp(2π ik ·

r‖); k = (kx, ky) and r‖ = (rx, ry). Thus, characterizing the coupled hydrodynamics due to a swim-
mer translating parallel to the interface reduces to simultaneously solving Eqs. (12) and (13)
to obtain ûz and rz0 , and then the disturbance flow field given by Eq. (A12) and Eq. (A15) in
Appendix A 3.

We now interpret the nature of the deformation influenced by the disturbance field generated
from the swimmer. In Fig. 2(a) we plot the three-dimensional contour of the interface deformation
due to a pusher in fluid region 1 for the parameters λ = 0.5 and � = 0.1. As expected, for pushers
(or pullers) oriented parallel to the interface, the deformation is not radially symmetric [17]. The
qualitative nature of the deformation remains the same for all values of λ (not shown), with the
magnitude of the deformation decreasing as λ increases, as expected from Eq. (12), noting that for
λ � 1, uz ∝ 1/λ.

To characterize the interface response with �, the deformation is plotted as a function of the radial
distance parallel and orthogonal to the swimmer axis in Fig. 3 for λ = 0.5 and � = 0.1, 1, 5. It is
clear that increasing the importance of surface tension, decreases the magnitude of the deformation.
In the far-field, however, at any finite time, the deformation is independent of � and scales as
O(r‖)−3, as shown in the insets of Fig. 3. In fact, for any small but finite time, one can obtain an
analytical expression for the interface deformation assuming rz0 to be nearly constant; this constraint
of a constant rz0 is reasonable up to an O(1) change in time, as will be seen below while interpreting
the swimmer translation. The resulting expression for uz is

uz|r‖�1 ≈
(

η1L2Vs

κβ

)
D

(1 + λ) ln κ

rz0t

16π

r2
‖ − 3r2

x

r5
‖

, (14)

highlighting independence from �, and the O(r‖)−3 scaling in the far-field. The approximate form
of uz given by Eq. (14) is shown in the insets of Fig. 3, and it agrees well with the numerically
determined values.
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FIG. 3. The interface deformation, uz, plotted for a swimmer oriented along the rx − coordinate for three
values of � = 0.1, 1 and 5 (a) along rx (b) along ry. In both the figures λ = 0.5, rz0 (0) = 1, t ≈ 2, κ = 10, and
η1VsL2/κβ = 1. Legends under ◦ refer to uz obtained from solving the pair of Eqs. (12) and (13), and those
under 
 from solving the approximate Eqs. (15) and (16). The (black) dotted line in the insets is the far-field
approximation from Eq. (14).

Now, the interface deformation is also a function of the distance of a swimmer from the
interface: At distances of order the swimmer size, one needs to numerically solve Eqs. (12) and
(13) simultaneously, whereas simplifications can be made when the swimmer is farther away. We
rescale the wave vector in the interface deformation, Eq. (12), as k̄ ≡ kr̄z0 and time as t̄ = t/r̄z0 ,
which is valid in the regime r̄z0 ≡ |rz0 (0)| � 1. Seeking simplifications appropriate for k̄, t̄ ∼ O(1)
[76] yields the following reduced equation for the interface deformation:

dûz

dt̄
+ π k̄

(1 + λ)
�ûz =

(
η1L2Vs

κβ

)[
πDrz0

4(1 + λ) ln κ
k̄ p2

l exp

(
2π k̄

rz0

r̄z0

)]
. (15)

The simplified expression for the vertical component of the swimmer translation is

V T
z = − 3D

256π ln κ

(
1 − λ

1 + λ

)
1

r2
z0

+
(

κβ

η1VsL2

) ∫
dk

πk�

(1 + λ)

(
1 − 2π k̄

rz0

r̄z0

)
ûz exp

(
2π k̄

rz0

r̄z0

)
.

(16)
Equation (15) highlights two important qualitative changes in the interface deformation for swim-
mers that are far from the interface. First, the interface deformation is controlled by surface tension
alone, as the term proportional to bending is O(r̄z0 )−2 smaller than � on the left-hand side of
Eq. (12), and hence is absent from the leading order approximation. Second, the above rescalings of
k and t recover the original dependence of the rescaled variables on rz0 , as in Eq. (12). This implies
that, for rz0 � 1, the time evolution slows down in proportion to rz0 . In other words, swimmers
at an O(1) distance from the interface influence an O(1) growth of the interface deformation at
O(1) times. However, a swimmer that is farther away (rz0 � 1) will influence an O(1) growth
of the interface deformation only when t ∼ O(rz0 ). In the insets of Fig. 3 we plot the interface
deformation determined from simultaneously solving Eqs. (15) and (16). The agreement of both
equations is excellent for � = 5 for r‖ ∼ O(1), but the deviation of the approximate solution is
large for � = 0.1. This is expected as Eq. (15) relies on � being larger than the bending term, and
hence, for r̄z0 = 1 it relies solely on the largeness of �. At large r‖, the agreement is good for the
same reason underlying Eqs. (15) and (16), but now for r‖ � 1 instead of rz0 � 1. For large r̄z0

(not shown), the approximations in Eqs. (15) and (16) agree well even for � < O(1). We note that
the far-field approximation corresponds to modeling the swimmer as a point force-dipole, and the
disagreement at small to moderate values of �, particularly for rz0 ∼ O(1) is indicative of the dipolar
swimmer overestimating the interface deformation.
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λ=0.5 λ=1

λ=1.5

FIG. 4. The vertical swimmer translation velocity V T
z of pushers plotted as a function of the initial distance

of the swimmer from the interface rz0 (0) at different time instants for the viscosity ratios (a) λ = 0.5, (b) λ = 1,

and (c) λ = 1.5. The plot is to be interpreted as follows: at each rz0 (0), the vertical black dotted lines trace the
time evolution of V T

z . In all the plots κ = 10, � = 1, and η1VsL2/κβ = 1.

A result arising from the neglect of the bending term in Eq. (15) is a subtle qualitative change in
the deformation behavior when bending dominates (� � 1) versus when surface tension dominates
(� � 1). In particular, following a zero-crossing at an O(1) distance away from the swimmer, when
� � 1, the deformation monotonically transitions to an O(r‖)−3 far-field character, whereas for �

up to O(1), the deformation exhibits an intermediate scaling before transitioning to the far-field
decay. As shown in the insets of Fig. 3, there is a characteristic maxima in |uz| for � = 0.1 [see
the red curve corresponding to the solution of Eqs. (12) and (13)]. These features are absent in the
approximate Eqs. (15) and (16), and are most evident in Fig. 3(a) (see orange and dark green curves
in the inset). This qualitative difference emerges since the bending mode, which dominates in this
regime, depends on higher order derivatives in the curvature as specified by the stress boundary
condition, Eq. (7e).

In Fig. 4, we plot the vertical translation velocity V T
z of a pusher oriented parallel to the interface

for three specific viscosity ratios λ = 0.5, 1, and 1.5. We note two interesting features of the vertical
migration. First, as shown in Fig. 4(a), when λ < 1, V T

z is positive for short times and negative for
long times. That is, a pusher is repelled from the interface at short times, while at long times it
is eventually attracted to the interface. Second, the crossover time from repulsion to attraction is
shorter for swimmers closer to the interface. For rz0 (0) ∼ O(1), the swimmer undergoes a change in
its vertical translational velocity at a ttransition < O(1), whereas, when rz0 (0) � 1, ttransition ∼ O(rz0 );
here, ttransition is the time taken for V T

z to vanish. For instance, when rz0 (0) ∈ [1, 2], ttransition < 0.5
and when rz0 (0) � 4, ttransition > 1. This is unlike the case of λ � 1 as shown in Figs. 4(b) and 4(c),
where the pusher is monotonically attracted to the interface. Pullers (not shown) behave in the exact
opposite manner, that is, for λ < 1 they are attracted to the interface at short times and repelled at

054001-10



HYDRODYNAMICS OF SLENDER SWIMMERS NEAR …

FIG. 5. The relative vertical swimmer trajectory rz0 (t ) − rz0 (0) of pushers plotted as a function of time, for
the viscosity ratios λ = 0.5, 1 and 1.5. In all the plots κ = 10, � = 1 and η1VsL2/κβ = 1.

long times, with the crossover time for attraction to repulsion having the same character; for λ � 1
pullers are monotonically repelled from the interface.

In Fig. 5, we plot the relative swimmer trajectories of pushers as a function of time for swimmers
starting from different initial locations rz0 (0), for λ = 0.5, 1, and 1.5 as well. Owing to the repulsion
(V T

z > 0) at short times when λ < 1 as highlighted in Fig. 4(a), the relative swimmer trajectory:
rz0 (t ) − rz0 (0) � 0 in Fig. 5(a). Moreover, as expected from the discussion surrounding Fig. 4,
the time it takes for the swimmer to return to its initial location depends sensitively upon its
initial distance from the interface. For instance, when rz0 (0) = 1, the return time is about t ∼ 0.25,
whereas, when rz0 (0) = 5, return time is t ∼ 3.7. Such a nonmonotonic vertical swimmer translation
for λ < 1 stands in contrast to what has been observed for swimmers near rigid boundaries
[4,13,30,32,50], where the pushers are, hydrodynamically, only attracted to the interface. Even
for model swimmers near deformable interfaces, the swimmer migration has been reported to
behave monotonically for a given λ [14,17]. For instance, Dias and Powers [14] noted that the
average pumping velocity between a swimming sheet and the interface was of negative for λ < 1
and positive for λ > 1. Shaik and Ardekani [17] calculated the vertical translational velocity of a
spherical squirmer over a range of λ, and did not find a qualitative change in the swimmer migration
across λ = 1 (see Figs. 2 and 8 therein).

The first of the above observations regarding the nonmonotonic swimmer translational for λ < 1
can be explained from a closer inspection of V T

z given by Eq. (13). The translational velocity has
two principal contributions: (1) the instantaneous contribution from Stokes flow that is proportional
to (1 − λ)/(1 + λ), (2) the time dependent term associated with the interface deformation ûz. In
fact, at t = 0, V T

z (red circles in Fig. 4) is precisely the instantaneous contribution before the
interface deforms. The time dependent term remains negative at all times t > 0, and its magnitude
gradually increases as the interface deformation grows. However, the instantaneous term changes
sign depending on whether λ is greater than or less than unity, although its magnitude remains
nearly constant. For pushers, when λ < 1 (>1), the instantaneous term is positive (negative),
and it vanishes when λ = 1. Its magnitude remains nearly constant because it changes only via
the hydrodynamic interaction-induced change in the swimmer vertical motion rz0 (t ), which does
not change appreciably over O(1) times implying that 
rz0 (t ) ≡ rz0 (t ) − rz0 (0) � rz0 (0). Hence,
among the two fluid regions, if a pusher is present in the more viscous fluid (λ < 1), it starts off being
repelled at short times due to the dominance of the repulsive instantaneous term. At t = ttransition, the
growing time dependent deformation term exactly matches the nearly constant instantaneous Stokes
term, whence V T

z vanishes, and this is characterized by the peak in the relative swimmer trajectory in
Fig. 5 (left panel). For t > ttransition the swimmer experiences an attraction to the interface owing to
the dominance of the time dependent term. This explains the repulsion of pushers from the interface
at short times and attraction at long times only when it is in the more viscous fluid.

To explain the second observation of the time dependence of the swimmer translation as a
function of its distance from the interface, we note that the time dependence in the problem
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FIG. 6. The relative swimmer trajectory rz0 (t ) − rz0 (0) of a pusher plotted as a function of time. In
panel (a) the initial swimmer distance to the interface is fixed: |rz0 | = 1 and the ratio of surface tension
to bending stress is varied: � = 0.1, 1, 10. In panel (b) both rz0 (0) and � are varied so as to yield sim-
ilar swimmer translation, with rz0 (0) = 1.5, 2 and � = 1, 4, respectively. In both figures λ = 0.5, κ = 10,

and η1VsL2/κβ = 1. In the inset the corresponding swimmer translation velocities V T
z are plotted for the same

parameters.

originates from the kinematic boundary condition of the interface deformation given by Eq. (12).
The swimmer translation velocity V T

z (and thus, rz0 ) obeys the same time dependence as uz due to
the linear relationship between the two field variables in Eq. (13), independent of λ. Therefore,
such a delay in the time to return back to its original position when λ < 1 is expected following
the arguments explained in the context of the interface deformation. That is, when rz0 ∼ O(1),
the interface deformation, and hence, V T

z evolves on O(1) time units. However, when rz0 � 1, the
interface deformation evolves on a timescale of O(rz0 ). Therefore, as shown in Fig. 5 for λ = 0.5,
the farther the pusher (puller) is from the interface, the longer it will sense a repulsion (an attraction),
albeit with reduced intensity.

To show the relative importance of surface tension to bending stress on the swimmer motion,
in Fig. 6(a) we plot the relative swimmer translation as a function of time for different values of
�(≡ γ L2/κβ ). Clearly, increasing the surface tension results in a more rapid translation, with a
dramatic reduction in the time spent in the repulsive state. For instance, as � is increased from 0.1
to 10, the return time decreases from t ≈ 0.28 to t ≈ 0.06. Moreover, as evident from the inset
of Fig. 6(a), the swimmer translation velocity approaches a quasisteady state when � � 1. Note
the emphasis on “quasisteady state,” as the problem is inherently an unsteady one, even though
V T

z appears to be almost steady for � = 10 following the initial transient. This is because as the
swimmer is moving closer to the interface, it will continue to accelerate, given that the interface
undergoes a stronger deformation from swimmers closer to it. In turn, the translation velocity will
continue to grow. Nevertheless, this acceleration remains small after sustaining an initial growth in
the deformation, as the driving force is still small [see the scales along the ordinate of Fig. 6(a)].

This analysis shows that the swimmer translation must be analyzed in terms of both distance
to the interface and interface properties. That is, both rz0 and � have comparable effects on the
swimmer translation when these quantities are large. Note, however, that owing to the exponential
damping of uz and V T

z with respect to rz0 even an O(1) change in the distance of the swimmer to the
interface results in a large reduction of the swimmer translational velocity. Therefore, a swimmer
near an interface with relatively low surface tension can exhibit similar translational dynamics to
that of a swimmer that is slightly farther away from the interface with higher surface tension. An
example of such a trajectory is highlighted in Fig. 6(b), where the initial locations of the swimmers
are displaced by 0.5 units of rz0 , but � is more than doubled. For an O(1) change in time, the
trajectories in two scenario are similar.
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B. Microswimmers swimming orthogonal to the interface

We now consider swimmers oriented orthogonal to the interface (pz = ±1 and px = py = 0),
since the results are easier to interpret relative to swimmers with arbitrary orientation. Here too, the
rate of rotation ṗ = 0, and therefore characterizing the swimmer motion requires simultaneously
solving for the interface deformation and the vertical translation.

The equation governing the interface deformation is obtained using the expression for v̂1z|rz0

from Eq. (B7) (Appendix B) in Eq. (11) and is

∂ ûz

∂t
+ πk

1 + λ
(� + 4π2k2)ûz

=
(

η1L2Vs

κβ

)
D

(1 + λ) ln κ

exp
(
2πkrz0

)
4π2k2

{
2
(
1 − πkrz0

)
[cosh(πk) − 1] − πk sinh(πk)

}

+
(

η1L2Vs

κβ

)
pz

δ(k)

πk
. (17)

The expression for the vertical component of the swimmer translation velocity V T
z is

V T
z =

(
2π

1 + λ

)(
κβ

η1L2Vs

) ∫ ∞

0
dk k(� + 4π2k2) exp

(
2πkrz0

)

× [
πk cosh(πk) − 2

(
1 − πkrz0

)
sinh(πk)

]
ûz

+ D

4π ln κ

(
1 − λ

1 + λ

)(
1

2 − 40r2
z0

+ 128r4
z0

{
12r2

z0
− (

5 − 4rz0 − 100r2
z0

+ 80r3
z0

+ 320r4
z0

− 256r5
z0

)
ln[−2 + 4rz0 ] + (

5 − 8rz0 − 100r2
z0

+ 160r3
z0

+ 320r4
z0

− 512r5
z0

)
ln

[−1 + 4rz0

]
+ (

5 + 8rz0 − 100r2
z0

− 160r3
z0

+ 320r4
z0

+ 512r5
z0

)
ln

[
1 + 4rz0

]
+ (−5 − 4rz0 + 100r2

z0
+ 80r3

z0
− 320r4

z0
− 256r5

z0

)
ln

[
2 + 4rz0

]

− 24r2
z0

+ 3
(
1 − 20r2

z0
+ 64r4

z0

)
ln

[
4 − 16r2

z0

1 − 16r2
z0

]}
+ 1

2
(
4r2

z0
− 1

)
)

;
∣∣rz0

∣∣ >
1

2
. (18)

Here, the interface deformation and the swimmer translation exhibit a radial symmetry in the plane
of the interface, which enables a convenient analytical formulation of the instantaneous part of V T

z
as given in Eq. (18). Such a radial symmetry is specific to swimmers orthogonal to the interface,
and is a consequence of the linearity of the problem. Note that we have not incorporated the self-
swimming term in V T

z , which would involve addition of a constant factor pz to Eq. (18). Therefore,
the discussion here pertains to shakers—swimmers that disturb the fluid with a flow field Vs/ ln κ

but do not self-propel [77].
We now analyze the interface deformation created by the swimming motion. In Fig. 7, we plot

the interface deformation due to a pusher as a function of the radial distance along the plane of the
interface, r‖, for � = 0.1, 1, and 10. As defined previously, r‖ = 0 is the swimmer location on the
interface. For large r‖ the deformation uz is independent of �, similar to that of swimmers parallel
to the interface (see the collapse in the inset of Fig. 7 for r‖ � 1). This far-field scaling is O(r‖)−3,
and can be identified by solving Eq. (17) analytically, applying the approach used to obtain Eq. (14)
in Sec. III A, yielding

uz|r‖�1 ≈ 1

2π�

(
η1L2Vs

κβ

)
D

ln κ

(
r2

z0

4
(
r2
‖ + r2

z0

) 3
2

+ rz0 (1 + λ)
[
�t − 2rz0 (1 + λ)

]
{4r2

‖ (1 + λ)2 + [
�t − 2rz0 (1 + λ)

]2} 3
2

)
. (19)

The above approximation also holds for rz0 � 1 at r‖ = O(1), and is plotted in the inset of
Fig. 7(b).
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FIG. 7. The interface deformation, uz, due to a pusher plotted as a function of the radial distance along
the interface r‖ for � = 0.1, 1, and 10 at time t = 2 (a) for rz0 (0) = 1 and (b) rz0 (0) = 5. The dotted lines in
the inset represent the far-field O(r‖)−3 scaling. Legends under ◦ refer to uz obtained from solving the pair of
Eqs. (17) and (18) and those under 
 from solving Eqs. (20) and (21). The “Far-field” in the inset of (b) refers
to uz from Eq. (19) for � = 1.

However, the interface deformation for this swimmer configuration exhibits an opposite trend
to that of swimmers oriented parallel to the interface; namely, for a pusher the deformation occurs
away from the swimmer (into fluid region 2) at short separations, whereas its positive for r‖ � 1,
as also noted previously in Lee et al. [10] for point force-dipoles and Shaik and Ardekani [17] for
spherical squirmers. This is expected as the disturbance field generated by a pusher exits along the
ends of its long side and is thereby pushing onto the interface when it is oriented orthogonal to
it. Given that the interface deformation also contributes to the evolution of the vertical translation,
this opposing trend will have important consequences for the nature of the migration of swimmers
oriented orthogonal to the interface, as will be discussed below.

The radial symmetry in the plane of the interface enables simplifications to both uz and V T
z

for swimmers positioned far away from the interface [rz0 � O(1)]. Following the discussion in
Sec. III A for swimmers oriented parallel to the interface, we rescale the wave vector k̄ = kr̄z0 and
time t̄ = t/r̄z0 in Eq. (17) to find

∂ ûz

∂ t̄
+ π�k̄

1 + λ
ûz =

(
η1L2Vs

κβ

)
πDrz0

4(1 + λ) ln κ
k̄ exp

(
2π k̄

rz0

r̄z0

)
, (20)

with the corresponding expression for vertical component of the translation velocity becoming

V T
z = −

(
2π2�

(1 + λ)r̄3
z0

)(
κβ

η1L2Vs

) ∫ ∞

0
dk̄ k̄2 exp

(
2π k̄

rz0

r̄z0

)
ûz + 3D

128π ln κ

(
1 − λ

1 + λ

)(
1

r2
z0

)
. (21)

In the insets of Fig. 7, we plot |uz| using both the full Eqs. (17) and (18), and the approximate
Eqs. (20) and (21). Similar to the discussion in Sec. III A, for rz0 (0) = 1 in Fig. 7(a), the agreement
of both pair of equations is excellent for � = 10, but the deviation of the approximate solution
is large for � = 1 and 0.1. For rz0 = 5, however, this holds for � < O(1), as seen in the inset of
Fig. 7(b).

In Fig. 8, we plot the time trace of the vertical component of the swimmer translation velocity
V T

z of a pusher at different initial swimmer distances from the interface rz0 (0), for λ = 0.5, 1, and
1.5. Similar to swimmers parallel to the interface, for λ < 1, both repulsive and attractive regimes
are exhibited by V T

z as a function of time. Here, the deformation term is repulsive owing to the
opposite character of the interface deformation, as discussed below Eq. (18). The instantaneous
term in V T

z is attractive (repulsive) when λ < 1 (λ > 1). Therefore, when λ < 1, for short times,
V T

z is attractive (negative), and is repulsive (positive) at long times. In turn, the relative swimmer
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λ=0.5

λ=1.5

λ=1

FIG. 8. The vertical swimmer translation velocity V T
z of pushers plotted as a function of the initial distance

of the swimmer from the interface rz0 (0) at different time instants for the viscosity ratios (a) λ = 0.5, (b) λ = 1,

and (c) λ = 1.5. The plot is to be interpreted as follows: at each rz0 (0), the vertical black dotted lines trace the
time evolution of V T

z as indicated by the black arrow. In all the plots κ = 10, � = 1 and η1VsL2/κβ = 1.

trajectory rz0 (t ) − rz0 (0) shown in Fig. 9 is the qualitative mirror image about rz0 (t ) − rz0 (0) = 0, to
that of a swimmer parallel to the interface in Fig. 5.

The transition time from attraction to repulsion, ttransition, exhibits a character similar to that of
swimmers parallel to the interface, and is expected from the similar scaling’s of Eqs. (15) and
(20). Namely, for rz0 ∼ O(1), ttransition ∼ O(1), whereas for large rz0 , ttransition ∼ O(rz0 ). However, the
magnitude of V T

z is larger for swimmers oriented orthogonal to the interface compared to swimmers
oriented parallel to the interface. At rz0 (0) = 1, for a swimmer parallel to the interface V T

z changes
from +0.5 × 10−3 to about −10−3 in a time interval t ∈ [0, 4], as can be seen in Fig. 4(a) (see the

FIG. 9. The relative vertical swimmer trajectory rz0 (t ) − rz0 (0) of pushers plotted as a function of time, for
the viscosity ratios λ = 0.5, 1, and 1.5. In all the plots κ = 10, � = 1, and η1VsL2/κβ = 1.
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dotted trace of the first vertical line). In contrast, for swimmers oriented orthogonal to the interface,
V T

z transitions from about −10−3 to about +2.5 × 10−3 in the same time interval, as shown in
Fig. 8(a). Since the velocity at t = 0, is that prescribed by the instantaneous component, and that at
large times is dominated by the deformation, such character shows that both terms of V T

z are larger
for swimmers oriented orthogonal to the interface. Therefore, in a given time interval, the relative
swimmer vertical translation of an orthogonally oriented swimmer as shown in Fig. 9 is larger than
that of a swimmer parallel to the interface (see Fig. 5). In other words, the coupled hydrodynamics
more strongly repels a pusher oriented orthogonal to the interface than it attracts a pusher oriented
parallel to the interface.

The relative importance of surface tension to bending stress on the swimmer motion (not shown),
is similar to that of swimmers parallel to the interface, as discussed in Sec. III A and as is evident in
Eqs. (17) and (18). Increasing the surface tension results in a more rapid translation, and for λ < 1
this implies a reduction in the time spent being attracted to the interface. Thus, this monotonic
response in � implies that swimmers farther away from an interface with larger � can exhibit
migration similar to those closer to an interface with lower �. This is qualitatively similar in
character to Fig. 6(b) but again of an opposite trend.

C. Microswimmers swimming arbitrarily oriented to the interface

We now generalize the coupled hydrodynamics to arbitrary swimmer orientations. As explained
in Appendix B, the derivation procedure for any nonparallel swimmer orientation remains the
same, and the changes to the fluid equations due to a nontrivial in-plane orientation component
are discussed in Appendix D. Unlike the previous cases, here the vertical component of the rotation
rate is nonzero; ṗz �= 0. For brevity we omit the large equations for ûz, V T

z , and ṗz, the girth of
latter two associated with the contributions from all three orientation components. In the following,
we only focus on the role of the coupled hydrodynamics on the swimmer vertical translation and
rotation. We study how the change in the swimmer orientation affects the nature of the swimmer
migration, and the final swimmer orientation given an arbitrary initial orientation. As in Sec. III B,
here too we do not account for the self-swimming term in V T

z , which is instantaneously shifted by
constant factor pz.

As in the case of swimmer translation, the rotation rate has two parts; one from the time
dependent interface deformation and the other from the instantaneous Stokes flow field. However,
because the time dependent interface deformation term in ṗz is smaller than the instantaneous term,
the rotation rate is dominated by the latter. This quasisteady behavior allows us to construct a phase
portrait in orientation space, as shown in Fig. 10(a) [78]. For pushers, only trajectories in the first
and third quadrants are admissible and hence any initial orientation pz �= 0 approaches pz = ±1
depending on whether its directed away from (pz → 1 or θ → 0) or toward the interface (pz → −1
or θ → 180◦). Now, from the analysis of swimmers parallel to the interface in Sec. III A, we know
that ṗz = 0, for pz = 0. Therefore, pz = 0 is an unstable fixed point for pusher, and hence a stable
fixed point for pullers. Similar rotational preferences have been reported by Shaik and Ardekani
[17] for spherical squirmers near a deformable interface.

In Fig. 10(b) the time dependence of the vertical component of the swimmer translation velocity
V T

z is shown for pushers starting from different initial orientations θ (0). When a swimmer is nearly
aligned with the interface (θ (0) = 89.5◦), V T

z decreases until t ∼ O(1), owing to the dominant
contribution from the parallel configuration, as anticipated from Sec. III A. However, V T

z grows
at large times, owing to the dominant contribution of the orthogonal configuration as θ (t ) → 0.
Therefore, the translation velocity V T

z of swimmers nearly aligned with the interface goes through a
minimum, which is negative for nearly parallel swimmers [see curves of θ (0) = 85◦ and 89.5◦]
and positive for those that start at a smaller initial orientation, say θ (0) � 75◦ and �45◦. At
θ (0) � 45◦, V T

z only increases in time with a θ (0) dependent t = 0 intercept. Therefore, the early
time trajectories are qualitatively and quantitatively dependent upon θ (0) but all of the curves
collapse at late times.

054001-16



HYDRODYNAMICS OF SLENDER SWIMMERS NEAR …

FIG. 10. (a) The rotation rate ṗz plotted as a function of pz(≡ cos θ ). (b) The vertical component of the
translation velocity V T

z (t ) of pushers plotted as a function of time, for a range of initial swimmer orientation
relative to the rz axis θ (0) = 30◦, 45◦, 60◦, 75◦, 85◦, and 89.5◦. In the inset, V T

z is shifted by the time it
takes the θ (0) = 89.5◦ curve to attain the corresponding θ (0). In all the plots λ = 0.5, κ = 10, � = 1 and
η1VsL2/κβ = 1.

Owing to the sensitive dependence of V T
z (t ) on θ (0) at short times, the swimmer migration has

a rich set of trajectories up to times of O(1). In Fig. 11(a), we plot the relative vertical swimmer
trajectories rz0 (t ) − rz0 (0) for the same values of θ (0). The inset shows short time oscillations for
θ (0) = 85◦ and 89.5◦, the latter of which briefly becomes weakly attractive, whereas the curvature
gradually changes as θ (0) decreases. At long times the slopes asymptote for all θ (0) and the overall
displacement increases as θ (0) decreases.

In Fig. 11(b), we plot the relative vertical swimmer trajectory rz0 (t ) − rz0 (0), for three values
of the viscosity ratio λ = 0.5, 1, and 1.5 for a pusher that starts off initially almost parallel to
the interface (θ = 85◦). Although the three trajectories are qualitatively similar, here a swimmer
exhibits regimes of attraction and repulsion for λ � 1. The underlying principle for such a response
can be explained as follows. For swimmers that start off nearly aligned with the interface, at short
times V T

z is positive for λ < 1, zero for λ = 1 (no contribution from instantaneous component), and
negative for λ > 1. As time evolves the swimmer rotates to an orthogonal configuration and V T

z

FIG. 11. (a) The relative vertical swimmer trajectory rz0 (t ) − rz0 (0) of pushers plotted as a function of time
for a range of initial swimmer orientation relative to the rz axis θ (0) = 30◦, 45◦, 60◦, 75◦, 85◦ and 89.5◦.
The viscosity ratio is λ = 0.5, and the inset is a zoomed version of the abscissa for t ∈ [0, 1]. (b) The relative
vertical swimmer trajectory rz0 (t ) − rz0 (0) of pushers plotted as a function of time, for the viscosity ratios λ =
0.5, 1 and 1.5. In the inset the corresponding vertical swimmer translation velocity V T

z of pushers plotted as a
function of time. In all the plots κ = 10, � = 1, and η1VsL2/κβ = 1.
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FIG. 12. The relative vertical swimmer trajectory rz0 (t ) − rz0 (0) of pushers and pullers plotted as a function
of time, initial orientations θ (0) = 30◦ and 60◦. In the insets, the corresponding V T

z (t ) plotted as a function of
time. In all the plots λ = 0.5, κ = 10, � = 1 and η1VsL2/κβ = 1.

increases, independent of λ. In turn, V T
z (t = 0) of a pusher nearly aligned to the interface positive,

zero, or negative if λ < 1, λ = 1, or λ � 1, respectively. Therefore, for t < O(1), a swimmer will
always have an attractive component for λ � 1, and rz0 (t ) − rz0 (0) < 0.

We now understand that hydrodynamic interactions with a deformable interface lead to pushers
reorienting into an orthogonal configuration, pullers reorient into a parallel configuration. Therefore,
unlike their response to a rigid boundary, both swimmer types seek a configuration that drives them
away from the interface. As shown in Fig. 12, pushers and pullers that start at the same location will
eventually segregate spatially, independent of their initial orientation but to a degree that increases as
θ (0) decreases. Note that p = 0 is a stable configuration for pushers only the absence of an imposed
flow, which may be present in many microswimmer settings, as we discuss in Sec. V.

IV. MICROSWIMMERS CONFINED BETWEEN A RIGID BOUNDARY AND
AN INTERFACE—SWIMMING PARALLEL TO BOUNDARIES

Here, we generalize our approach to treat the coupled hydrodynamics of a swimmer confined
between a rigid boundary and an underlying deformable interface (Fig. 13). We note that in this
configuration the rotation rate ṗ = 0, similar to a swimmer oriented parallel to a single deformable
interface (see Sec. III A), or to a single rigid boundary [4]. Therefore, the hydrodynamics is
characterized by the interface deformation uz and the vertical component of the translation velocity
V T

z . It is convenient to choose a reference frame moving with the swimmer but shifted to the plane
of the undeformed interface, and hence the definition of rz0 used here is the opposite of that used for
a swimmer near a single interface in Sec. III (see the direction of arrows in Figs. 1 and 13).

The equation for the Fourier transformed interface deformation ûz is

dûz

dt
+ πk

E (4π2k2+�)[1+λ − (1 − λ) exp(−8πkH ) − 2(λ+4πkH + 8π2k2H2λ) exp(−4πkH )]ûz

=
(

η1L2Vs

κβ

)(
D

πk ln κ

)
sin2

(
π

2
kpl

)
1

E
{
(1 + λ)rz0 exp

(−2πkrz0

) − (1 − λ)rz0

× exp
[−2πk

(
4H − rz0

)] + (1 + λ)
(−rz0 − 4πkHrz0 + 4πkH2

)
exp

(−2πk(2H − rz0

)
+ (1 − λ)

(
rz0 − 4πkHrz0 + 4πkH2

)
exp

[−2πk
(
2H + rz0 )

]}
, (22)
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FIG. 13. A sectional schematic representation of a slender swimmer translating with speed Vs along its
director vector p in a channel with a deformable interface below and a rigid boundary on top. The distance
between the plane of the undeformed interface and the rigid boundary is H . The circles along the axial length
of the fore-aft symmetric swimmer represent a line distribution of stokeslets characterizing the head and tail
for pushers. The disturbance flow field generated by the swimming motion deforms the interface, and uz is the
interface deformation (solid gray line) relative to its initially flat undeformed (dotted line) state z0.

and the expression for V T
z is

V T
z ≡ drz0

dt
= − 2D

ln κ

∫
dk

sin(πkpl )

πkpl

1

E sin2

(
π

2
kpl

)(
(1 − λ2)r2

z0

{
exp

(−4πkrz0

)

+ exp
[−4πk

(
2H − rz0

)]} + (
H − rz0

)2{
(1 + λ)2 exp

[−4πk
(
H − rz0

)]
+ (1 − λ)2 exp

[−4πk
(
H + rz0

)]} + 2H (1 − λ2)
(
H − 2rz0

)
exp(−4πkH )

)

+
(

κβ

η1VsL2

) ∫
dk

sin(πkpl )

πkpl
πk(4π2k2+�)

ûz

E
{−(1+λ)

(
1+2πkrz0

)

× exp
(−2πkrz0

) + (1 − λ)
(
1 − 2πkrz0

)
exp

[−2πk
(
4H − rz0

)]
− (1 − λ)

[
(1 − 4πkH )(1 + 2πkrz0 ) + 8π2k2H2

]
exp

[−2πk
(
2H + rz0

)]
+ (1 + λ)

[
(1 + 4πkH )

(
1 − 2πkrz0

) + 8π2k2H2
]

exp
[−2πk

(
2H − rz0

)]}
, (23)

where E in both Eqs. (22) and (23) is

E = (1 + λ)2 + (1 − λ)2 exp(−8πkH ) − 2(1 − λ)2(1 + 8π2k2H2) exp(−4πkH ). (24)

We note that the additional H-dependent terms in Eq. (22) for the interface deformation are at least
exponentially smaller by a factor exp(−2πk(2H − rz0 ). Unless H → rz0 (extreme confinement), the
contributions from these terms remains small, apart from there being an H-dependent amplitude, as
the terms with the smaller exponents are proportional to 1 − λ. Hence, varying λ about unity does
not yield a qualitatively different deformation than that of a swimmer parallel a single interface.
Therefore, in the following we focus only on the change in the swimmer translation effected by the
coupled hydrodynamics between the swimmer and the boundaries.

In Fig. 14(a) we plot the relative swimmer trajectory rz0 (t ) − rz0 (0) as a function of the distance
between the boundaries H , for rz0 (0) = 1 and λ = 0.5. In the limit H � 1, we recover the trajectory
corresponding to that of a swimmer in the vicinity of a single interface as discussed in Sec. III A.
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FIG. 14. (a) The relative swimmer trajectory rz0 (t ) − rz0 (0) of a pusher plotted as a function of time for
different distance H between the interface and the rigid boundary: H = 2, 2.2, 2.4, 10, when the viscosity ratio
is λ = 0.5. (b) rz0 (t ) − rz0 (0) of a pusher plotted as a function of time for λ = 0.5, 1, and 1.5, and fixing H =
2.3. The insets contains the corresponding vertical component of the translation velocity V T

z ≡ drz0/dt . The
“repulsion” and “attraction” are to be interpreted relative to the interface. In both figures, the initial swimmer
distance to the interface is |rz0 | = 1 and the ratio of surface tension to bending stress is � = 1. The attraction
and repulsion are specified relative to the deformable interface.

Upon increased confinement by reducing H and increasing confinement, the residence time of the
swimmer in the repulsive state increases. When the swimmer begins at the midpoint, it always
moves toward the rigid boundary. This is also shown in the inset of Fig. 14(a), where for H = 2,
V T

z does not undergo a zero-crossing in finite time. Physically, a rigid boundary provides an infinite
resistance to both bending and shear, and thus facilitates a stronger attraction relative to an interface
that only supports finite bending [19]. In other words, the flow field induced by the rigid surface
dominates that of the deformable interface.

In Fig. 14(b) we plot the relative swimmer trajectory rz0 (t ) − rz0 (0) for three different viscosity
ratios λ = 0.5, 1, 1.5, with the distance between the interface and the rigid boundary fixed to
H = 2.3. Interestingly, unlike a swimmer in the vicinity of a standalone interface, the swimmer
experiences a transient attraction and repulsion for all values of λ. In Sec. III A we explained that
for λ < 1 the swimmer translation had both repulsive and attractive component due to the difference
in the instantaneous contribution, dominant at short times, and the interface deformation dependent
contributions of V T

z , dominant at long times [see Eq. (13)]. Here, however, the rigid boundary
creates repulsion, through an H-dependent positive shift of the instantaneous component of V T

z , the
largest contribution being proportional to (1 + λ)2, and thus positive for any λ. As the confinement
increases, the contribution of this term increases, and eventually for H � 2rz0 , the swimmer only
moves toward the rigid boundary. Although not shown, the dependence on the ratio of surface
tension to bending stress, �, remains the same as that for a swimmer near a single deformable
interface, and seen in Eqs. (22) and (23).

V. SUMMARY AND CONCLUSION

We have investigated the coupled hydrodynamics between finite sized orientable swimmers
and a deformable interface. By treating the swimmers as slender bodies, we have gone beyond
a far-field picture, solving the hydrodynamics appropriate at O(1) swimmer lengths from the
interface. Moreover, we predict the hydrodynamics for a robust range of the ratio of the viscous
stress to bending stress, η1VsL2/κβ , and the capillary number, η1Vs/γ . Our analysis reveals that
the swimmer orientation plays a crucial role in the response of both the swimmer and deformable
interface. Because parallel and perpendicular orientations exhibit differing overall trajectories, when
swimmers take an arbitrary orientations we find a rich dynamical behavior. Importantly, given that
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an arbitrarily oriented pusher (puller) preferentially rotates to a perpendicular (parallel) orientation,
the migration pattern for both swimmer types remains the same. However, given the difference in
the migration speed in the two orientations, a pusher and puller that start from the same location
with any orientation will spatially segregate.

When confined to swimming between a rigid and a deformable boundary, pushers closer to the
latter interface experience repulsion that is extended to timescales longer than the elastic response
time. Such confinement, between rigid and soft boundaries, provide new controls on swimmer
migration. For example, the different rotational preferences near deformable versus rigid boundaries
provides one such confinement-dependent control of swimmers.

In general, the dynamics of swimmer translation is extremely sensitive to the distance from the
interface. Even an O(1) increase in this distance results in a large slowdown in the migration toward
or away from the interface. The interfacial properties play a crucial role in migration, second only
to the distance from the interface. Therefore, it is possible that two scenarios in which swimmers
have different distances from the interface display similar migration patterns. Owing to the strong
sensitivity of swimmer migration to distance from the interface, even a small change in the latter
would require an O(1) change in the interface properties to obtain a nearly matching migration
pattern. This is particularly relevant from a practical standpoint, because interfacial properties are
not necessarily spatially homogeneous. In consequence, swimmers in a suspension at different
distances from the interface can, in principle, redistribute in a spatially similar manner.

We find that the viscosity ratio plays a controlling role in whether a swimmer is attracted or
repelled from the interface. Indeed, viscosity variations may be dictate the migration of planktonic
biota in marine ecology, by modifying both swimming and the nutrient dispersion [79–81]. How-
ever, whereas interfacial deformation is clearly controlled by the relative importance of bending
elasticity and surface tension, it also depends on the swimmer orientation and distance from the
interface. Importantly, independent of the swimmer orientation, the interfacial deformation in the
interfacial plane extends well beyond distances of order the swimmer size L. Moreover, the far-field
scaling of the deformation in the interfacial plane remains O(r‖)−3 for swimmers oriented parallel
or perpendicular to the interface. Even in the dilute limit, such far-field scaling can have important
consequences in analyzing the deformation due to a suspension of microswimmers near deformable
interfaces. This is because inclusion of the collective contribution from the swimmers upon the
interface involves an integral over the domain volume, which decays as O(r‖)−3, implying the
potential for long-ranged radial contributions.

It is important to note that timescales short relative to the elastic response time, tc1(= η1L3/κβ ),
are still usually very long compared to the timescales of swimming. For typical soft interfaces,
the bending modulus κβ ≈ 10−19 J [55,57], so if one considers a viscosity approximately that
of water, η1 ≈ 10−3 N s/m2, and swimmers of length L ≈ 10 μm (cell body + flagellar bundle
combined), then tc1 ≈ 10 s. In general, microscopic swimmers also respond to external cues, such
as an externally imposed flow [26–28,31,34,37,72,82] or some form of chemical actuation [83–90],
that can influence their migration on such long timescales. Typically, even in the absence of such
an external driving force, the reorientations take seconds, as most microscopic swimmers have an
inherent mechanism allowing them to change their orientation [49,71,72,91]. We note that when
λ < 1, a swimmer aligned with the interface might only sense either a repulsion (pusher) or an
attraction (puller), before reorienting itself. Therefore, the nature of the short time dynamics shown
in Fig. 5 implies the possibility of pushers migrating away from the interface on average. A similar
argument can be made for other swimmer orientations.

Although we have considered the motion of a single swimmer near a deformable interface and
confined between a deformable interface and a rigid boundary, one can readily extend this study to
a dilute suspension of noninteracting swimmers. This requires a more careful consideration of the
single-swimmer statistics developed here, as the expressions for the instantaneous field variables
depend on the swimmer configuration. Moreover, given the complex dynamics involved, deriving
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a position-orientation space swimmer distribution function is challenging. Finally, a host of new
dynamical processes will be revealed when extending this approach beyond the linear regime.
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APPENDIX A: TWO-DIMENSIONAL FOURIER TRANSFORM SUMMARY—SWIMMERS
PARALLEL TO INTERFACE

Here we outline the two-dimensional Fourier transform technique used in the main text to solve
the governing equations and boundary conditions for a slender swimmer translating parallel to a
deformable interface. For a more detailed description of the method, the reader is directed to Bickel
[42] and Daddi-Moussa-Ider et al. [44].

1. Formulating the governing equations in Fourier space

For a swimmer translating parallel to the interface, the Stokes equations and the continuity
equation in fluid region 1 given in Eqs. (6a) and (6b) are

−2π ikxP̂1 + ∂2v̂1x

∂r2
z

− 4π2k2v̂1x = 2D px

π ik · p ln κ
δ(rz ) sin2

(
π

2
k · p

)
, (A1a)

−2π ikyP̂1 + ∂2v̂1y

∂r2
z

− 4π2k2v̂1y = 2D py

π ik · p ln κ
δ(rz ) sin2

(
π

2
k · p

)
, (A1b)

−∂P̂1

∂rz
+ ∂2v̂1z

∂r2
z

− 4π2k2v̂1z = 0, and (A1c)

2π i(kx v̂1x + kyv̂1y) + ∂ v̂1z

∂rz
= 0. (A1d)

In fluid region 2, the right-hand side of the corresponding Stokes equations for v̂2, P2 vanishes. It
is convenient to solve this system of equations in Fourier space in a coordinate system aligned with
the wave vector k [42,44]. We define the longitudinal and transverse coordinate systems l̂ and t̂ as

l̂ = kx

k
x̂ + ky

k
ŷ and (A2a)

t̂ = ky

k
x̂ − kx

k
ŷ, (A2b)

respectively. This choice of coordinates has a few advantages. First, it is evident from Eq. (A1d) that
the continuity equation provides a direct relation between the longitudinal and the z component of
the fluid velocity. Second, as will be described below, the pressure gradient term drops out of the t̂
component of the Fourier transformed Stokes equation. Lastly, one can obtain a single fourth-order
differential equation for the z component of the fluid velocity, again without the pressure gradient
term, thereby decoupling the flow-field field variables. In the (l̂, t̂, z) coordinates Eqs. (A1a)–(A1d)
become

−2π ikP̂1 + ∂2v̂1l

∂r2
z

− 4π2k2v̂1l = 2D

π ik ln κ
δ(rz ) sin2

(
π

2
kpl

)
, (A3a)

∂2v̂1t

∂r2
z

− 4π2k2v̂1t = 2D pt

π ikpl ln κ
δ(rz ) sin2

(
π

2
kpl

)
, (A3b)
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−∂P̂1

∂rz
+ ∂2v̂1z

∂r2
z

− 4π2k2v̂1z = 0, and (A3c)

2π ikv̂1l + ∂ v̂1z

∂rz
= 0, (A3d)

where we note that the z-component is the same as Eq. (A1c). In Eqs. (A3a) and (A3b), pl ≡ p · l̂ is
the component of the orientation vector parallel to the wave vector and pt ≡ p · t̂ is that transverse
to the wave vector. Using Eqs. (A3a) and (A3c) to eliminate the pressure term, and Eq. (A3d) to
represent v̂1l in terms of v̂1z, one arrives at the following differential equation to solve for v̂1z:

∂4v̂1z

∂r4
z

− 8π2k2 ∂2v̂1z

∂r2
z

+ 16π4k4v̂1z = − 4 D

ln κ
δ′(rz ) sin2

(
π

2
kpl

)
, (A4)

where δ′(rz ) is the derivative of δ(rz ). Similar to the above derivation, in fluid region 2 we have the
following set of equations:

∂4v̂2z

∂r4
z

− 8π2k2 ∂2v̂2z

∂r2
z

+ 16π4k4v̂2z = 0, (A5a)

∂2v̂2t

∂r2
z

− 4π2k2v̂2t = 0, and (A5b)

2π ikv̂2l + ∂ v̂2z

∂rz
= 0. (A5c)

Once v̂αz is determined, we can use the continuity Eqs. (A3d) and (A5c) to determine the longitudi-
nal component v̂αl , where α ∈ [1, 2] refers to the two fluid regions.

2. Formulating boundary conditions in Fourier space

The equations for v̂αz and v̂αt are solved subject to the appropriate boundary conditions; the
impenetrability and the no-slip conditions at the interface, and the continuity of tangential stress and
the normal-stress jump across the interface. The Fourier transformed velocity boundary conditions
are

v̂1z|r+
z0

= v̂2z|r−
z0
, (A6a)

v̂1t |r+
z0

= v̂2t |r−
z0
, and (A6b)

∂ v̂1z

∂rz

∣∣∣∣
r+

z0

= ∂ v̂2z

∂rz

∣∣∣∣
r−

z0

, (A6c)

where we have used the continuity Eqs. (A3d) and (A5c) to arrive at Eq. (A6c) as an alternative to
the no-slip boundary condition.

The continuity of tangential stress given by Eqs. (7c) and (7d) in the main text can be simplified
in the l̂ − t̂ coordinates to yield the following pair of equations for v̂αz and v̂αt at the interface

(
∂2v̂1z

∂r2
z

+ 4π2k2v̂1z

)∣∣∣∣
r+

z0

= λ

(
∂2v̂2z

∂r2
z

+ 4π2k2v̂2z

)∣∣∣∣
r−

z0

and (A7a)

∂ v̂1t

∂rz

∣∣∣∣
r+

z0

= λ
∂ v̂2t

∂rz

∣∣∣∣
r−

z0

. (A7b)
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The Fourier transformed normal stress boundary condition at the interface give by Eq. (7e) is

−(
P̂1|r+

z0
− P̂2|r−

z0

) + 2

(
∂ v̂1z

∂rz

∣∣∣∣
r+

z0

− λ
∂v2z

∂rz

∣∣∣∣
r−

z0

)
= 4π2k2 γ

η1Vs
ûz + 16π4k4 κβ

η1VsL2
ûz. (A8)

Eq. (A8) can be further simplified by using Eq. (A1c) (and its equivalent equation for v̂2 and P2)
along with the continuity Eqs. (A3d) and (A5c) to find
(

∂3v̂1z

∂r3
z

∣∣∣∣
r+

z0

− λ
∂3v2z

∂r3
z

∣∣∣∣
r−

z0

)
+ 12π2k2

(
∂ v̂1z

∂rz

∣∣∣∣
r+

z0

− λ
∂v2z

∂rz

∣∣∣∣
r−

z0

)
= 16π4k4

(
κβ

η1VsL2

)
(4π2k2 + �)ûz,

(A9)

for the boundary condition of the normal component of the stress without the pressure term; note
that � ≡ γ L2/κβ in Eq. (A9).

3. Solving for the velocity field in Fourier space

Here, we first solve for the transverse components of the Fourier transformed velocity fields
and then the normal and the longitudinal components. A general solution for equations of the
form of Eqs. (A3b) and (A5b) is: v̂αt = A exp(±2πkrz ) [e.g., Refs. 42,92]. In the specific problem
considered here, the disturbance flow field must decay in the far field, and hence, the transverse
velocity components are

v̂1t =
{

A1 exp(−2πkrz ); rz > 0,

A2 exp(−2πkrz ) + A3 exp(2πkrz ); rz0 < rz < 0, and (A10a)

v̂2t = A4 exp(2πkrz ); rz < rz0 . (A10b)

Now, the right-hand side of Eq. (A3b) is proportional to δ(rz ), and hence, we seek the Greens
function of the differential equation. From Appendix A 2, we have two boundary conditions for v̂αt ,
namely, the no-slip condition given by Eq. (A6b) and the continuity of tangential stress given by
Eq. (A7b), and four unknown constants A1–A4 to determine. Therefore, we seek two conditions to
uniquely determine the constants. To extract additional boundary conditions, we use the continuity
properties of the Greens function: (a) about the location of forcing (rz = 0) and (b) the first derivative
with respect to rz exhibiting a finite-jump discontinuity about rz = 0 [42,92]. These additional
conditions are

v̂1t |rz=0+ = v̂1t |rz=0− and (A11a)

∂ v̂1t

∂rz

∣∣∣∣
rz=0+

− ∂ v̂1t

∂rz

∣∣∣∣
rz=0−

= 2D pt

π ikpl ln κ
sin2

(
π

2
kpl

)
. (A11b)

Using Eqs. (A6)b, (A7b), and (A11), the four constants are uniquely determined, and we obtain the
following expressions for the transverse velocity components in the two fluid region:

v̂1t = iD pt

2π2k2 pl ln κ
sin2

(
π

2
kpl

)[
exp(−2πk|rz|) +

(
1 − λ

1 + λ

)
exp(4πkrz0 ) exp(−2πkrz )

]
;

rz > rz0 and (A12a)

v̂2t = iD pt

π2k2 pl (1 + λ) ln κ
sin2

(
π

2
kpl

)
exp(2πkrz ); rz < rz0 . (A12b)

Next, we consider the normal velocity components in Fourier space v̂αz. A general solution
for the fourth-order differential equations Eqs. (A4) and (A5a) can be written as: v̂αz = (B +
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Crz ) exp(±2πkrz ) [42,44,92]. Again, noting that the disturbance flow field must decay in the
far-field, we write the solutions as

v̂1z =
{

(B1 + B2rz ) exp(−2πkrz ); rz > 0,

(B3 + B4rz ) exp(2πkrz ) + (B5 + B6rz ) exp(−2πkrz ); rz0 < rz < 0, and
(A13a)

v̂2z = (B7 + B8rz ) exp(2πkrz ); rz < rz0 . (A13b)

In Appendix A 2, we have four boundary conditions for the normal velocity components, namely,
the impenetrability of the velocity across the interface Eq. (A6a), the no-slip velocity at the interface
Eq. (A6c), the continuity of tangential stress Eq. (A7a) and the normal stress jump Eq. (A9).
Therefore, we require four relations to uniquely determine the eight unknown constants B1–B8,
and we follow the protocol outlined above for v̂αt , using the Greens function properties. In this
case, however, the forcing on the right-hand side of Eq. (A4) is proportional to δ′(rz ). Therefore, the
additional boundary conditions are the continuity of v̂1z, its first and third derivative with respect rz

at rz = 0, whereas the second derivative undergoes a jump discontinuity [42,44,92]. Note that if the
third derivative exhibited a finite jump discontinuity, then a δ(rz ) would appear on the right-hand
side of Eq. (A4). The four additional boundary conditions are

v̂1z|rz=0+ = v̂1z|rz=0− , (A14a)

∂ v̂1z

∂rz

∣∣∣∣
rz=0+

= ∂ v̂1z

∂rz

∣∣∣∣
rz=0−

, (A14b)

∂2v̂1z

∂r2
z

∣∣∣∣
rz=0+

− ∂2v̂1z

∂r2
z

∣∣∣∣
rz=0−

= − 4 D

ln κ
sin2

(
π

2
kpl

)
, and (A14c)

∂3v̂1z

∂r3
z

∣∣∣∣
rz=0+

= ∂3v̂1z

∂r3
z

∣∣∣∣
rz=0−

, (A14d)

allowing v̂αz to be uniquely determined as

v̂1z = D

2πk ln κ
sin2

(
π

2
kpl

)

×
[

rz exp(−2πk|rz|) +
(

1 − λ

1 + λ

)(
rz + 4πkrz0 (rz − rz0 )

)
exp

(
4πkrz0

)
exp(−2πkrz )

]

−
(

κβ

η1VsL2

)
πkûz

(1 + λ)

[
1 + 2πk

(
rz − rz0

)]
(4π2k2 + �) exp

[−2πk
(
rz − rz0

)]
;

rz > rz0 , and (A15a)

v̂2z = D

πk(1 + λ) ln κ
sin2

(
π

2
kpl

)
rz exp(2πkrz )

−
(

κβ

η1VsL2

)
πkûz

(1 + λ)

[
1 + 2πk

(
rz0 − rz

)]
(4π2k2 + �) exp

[−2πk
(
rz0 − rz

)]
;

rz < rz0 . (A15b)

We now use the continuity Eqs. (A3d) and (A5c) to determine the longitudinal velocity components
v̂αl . Note that the longitudinal component of the fluid velocity field is independent of the interface
deformation at rz = rz0 .
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APPENDIX B: SWIMMERS ORTHOGONAL TO INTERFACE—TWO-DIMENSIONAL
FOURIER TRANSFORM SUMMARY

Here, for swimmers oriented orthogonal to the interface we summarize the expressions for
the disturbance flow field in Fourier space. In this case, px = py = 0, whereas pz = +1(−1), for
swimmers oriented away from (toward) the interface. While the continuity equations given by
Eqs. (A3d) and (A5c) remain unchanged, the Stokes equations become

−2π ikxP̂1 + ∂2v̂1x

∂r2
z

− 4π2k2v̂1x = 0, (B1a)

−2π ikyP̂1 + ∂2v̂1y

∂r2
z

− 4π2k2v̂1y = 0, and (B1b)

−∂P̂1

∂rz
+ ∂2v̂1z

∂r2
z

− 4π2k2v̂1z = D

ln κ
sgn(rz )H

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]
, (B1c)

where sgn(x) is the sign function and H[x] is the Heaviside step function [93]. The corresponding
equations for v̂2 and P2 have a right-hand side equal to zero. Following the steps described in
Appendix A 1, in the (l̂, t̂, z) coordinates, the Stokes equations become

∂4v̂1z

∂r4
z

− 8π2k2 ∂2v̂1z

∂r2
z

+ 16π4k4v̂1z = − D

ln κ
4π2k2sgn(rz )H

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]
, (B2a)

∂4v̂2z

∂r4
z

− 8π2k2 ∂2v̂2z

∂r2
z

+ 16π4k4v̂2z = 0, and (B2b)

∂2v̂1t

∂r2
z

− 4π2k2v̂1t = 0, (B2c)

with the corresponding continuity equations being given by Eqs. (A3d) and (A5c). We note that
unlike swimmers with a nonzero px and/or py, in this case the v̂αt satisfy a homogeneous second
order differential equation. Therefore, the no-slip and the tangential stress boundary conditions are
sufficient to determine the transverse component of the velocity field, and give v̂αt = 0.

To determine the normal component, we first determine the Green’s function of the differential
operator in fluid region 1, which is

∂4v̂1z

∂r4
z

− 8π2k2 ∂2v̂1z

∂r2
z

+ 16π4k4v̂1z = F1δ(rz − r′
z ), (B3)

for an arbitrary forcing F1, and then express the solution of Eq. (B2a) as a convolution integral with
the Green’s function [92]. In other words, we solve for Eqs. (B2b) and (B3). The solution form for
v̂αz remains the same as described in Appendix A 3. In this case, the additional boundary conditions
are [42,92]

v̂1z|rz=r′+
z

= v̂1z|rz=r′−
z
, (B4a)

∂ v̂1z

∂rz

∣∣∣∣
rz=r′+

z

= ∂ v̂1z

∂rz

∣∣∣∣
rz=r′−

z

, (B4b)

∂2v̂1z

∂r2
z

∣∣∣∣
rz=r′+

z

= ∂2v̂1z

∂r2
z

∣∣∣∣
rz=r′−

z

, and (B4c)

∂3v̂1z

∂r3
z

∣∣∣∣
rz=r′+

z

− ∂3v̂1z

∂r3
z

∣∣∣∣
rz=r′−

z

= F1. (B4d)
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We note that the additional boundary conditions obtained here remain true for any orientation of
the swimmer with pz �= 0, as the δ function in Eq. (1) integrates out. Therefore, swimmers oriented
parallel to the interface are a special case. Using Eqs. (A6a), (A6c), (A7a), (A9), and (B4) yields

v̂1z−G(rz|r′
z ) = F1

32π3k3
(1 + 2πk|rz − r′

z|) exp(−2πk|rz − r′
z|)

+ F1

32π3k3

(
1 − λ

1 + λ

)[
1 + 2πkr′

z + 2πkrz − 4πkrz0 + 8π2k2
(
rz − rz0

)(
r′

z − rz0

)]

× exp(4πkrz0 ) exp[−2πk(rz + r′
z )]

−
(

κβ

η1VsL2

)
πk

(1 + λ)

[
1 + 2πk

(
rz − rz0

)]
(4π2k2 + �)ûz exp

[−2πk
(
rz − rz0

)]
;

rz > rz0 , and (B5a)

v̂2z−G(rz|r′
z ) = F1

(1 + λ)

1

16π2k3
[1 + 2πk(r′

z − rz )] exp[−2πk(r′
z − rz )]

−
(

κβ

η1VsL2

)
πk

(1 + λ)

[
1 + 2πk

(
rz0 − rz

)]
(4π2k2 + �)ûz exp

[
2πk

(
rz − rz0

)]
;

rz < rz0 , (B5b)

where the subscript G refers to the Green’s function. We can now obtain v̂αz by convolving v̂αz−G

with the original forcing, that is, replacing F1 by the right-hand side of Eq. (B2a) and integrating
over r′

z. Thus, we solve

v̂αz = −4π2k2D

ln κ

∫
dr′

zv̂αz−G(rz|r′
z )sgn(r′

z )H

[
1

2
− r′

z

pz

]
H

[
1

2
+ r′

z

pz

]
, (B6)

where only the terms involving F1 in Eq. (B5) are to be integrated over. This yields

v̂1z = −
(

κβ

η1VsL2

)
πk

(1 + λ)

[
1 + 2πk

(
rz − rz0

)]
(4π2k2 + �)ûz exp

[−2πk
(
rz − rz0

)]

+ D

8π2k2 ln κ

(
1 − λ

1 + λ

)
exp(4πkrz0 ) exp(−2πkrz )

{
2[cosh(πk) − 1]

× [
1 + 3πkrz − 4πkrz0 4π2k2rz0

(
rz − rz0

)] − πk sinh(πk)
[
1 + 4πk

(
rz − rz0

)]}

− D

8π2k2 ln κ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(2πkrz ){2(πkrz − 1)[cosh(πk) − 1] + πk sinh(πk)};
rz < −∣∣ pz

2

∣∣
[
1 + πk

2 (1 + 2rz )
]

exp[−πk(1 + 2rz )]

−[
1 + πk

2 (1 − 2rz )
]

exp[−πk(1 − 2rz )] + 2sgn(rz )

−[2sgn(rz ) + 2πkrz] exp(−2πk|rz|); rz ∈ [−∣∣ pz

2

∣∣, ∣∣ pz

2

∣∣]

exp(−2πkrz )[2πkrz(cosh(πk) − 1) − πk sinh(πk)]; rz >
∣∣ pz

2

∣∣, and

(B7a)

v̂2z = −
(

κβ

η1VsL2

)
πk

(1 + λ)

[
1 + 2πk

(
rz0 − rz

)]
(4π2k2 + �)ûz exp

[
2πk

(
rz − rz0

)]

+ D

4π2k2 ln κ

exp(2πkrz )

(1 + λ)
{2(1 − πkrz )[cosh(πk) − 1] − πk sinh(πk)}; rz < rz0 .

(B7b)
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Again, using v̂αz from Eq. (B7) in the continuity Eqs. (A3d) and (A5c) readily yield the longitudinal
velocity components v̂αl .

APPENDIX C: SWIMMERS ORTHOGONAL TO INTERFACE—VALIDATION
OF THE KINEMATIC BOUNDARY APPROXIMATION

Here, for swimmers oriented orthogonal to the interface we compare the kinematic boundary
condition from Sec. II B given by Eq. (9), which contains the nonlinear terms, with the approximate
condition Eq. (10) that we have used in the main manuscript. The decoupling of the hydrodynamics
for this swimmer configuration enables us to solve both of the equations numerically in a convenient
manner. The expanded form Eq. (9) in Cartesian coordinate system is

∂uz

∂t
+

(
η1L2Vs

κβ

)[
vx

∂uz

∂rx
+ vy

∂uz

∂ry
− uz

∂vz

∂rz

]
=

(
η1L2Vs

κβ

)[
vz|rz0

+ pz
]
. (C1)

Given that v̂αt is zero for this swimmer configuration (α ∈ [1, 2] for the two fluid regions), the
Fourier transformed planar velocity components are proportional only to v̂αl , and are v̂αx = kx v̂αl/k
and v̂αy = kyv̂αl/k. We can then readily carry out the inverse Fourier transform of the planar and
normal components of the disturbance velocity and the gradient of the normal velocity components
to get the following expressions for vx, vy, vz, and ∂vz/∂rz at rz0 :

vx|rz0
= − Drx

2π (1 + λ) ln κ

⎧⎨
⎩

1[
4r2

‖ + (
1 − 2r2

z0

)2] 1
2

+ 1[
4r2

‖ + (
1 + 2r2

z0

)2] 1
2

− 1(
r2
‖ + r2

z0

) 1
2

⎫⎬
⎭, (C2)

vy|rz0
= − Dry

2π (1 + λ) ln κ

⎧⎨
⎩

1[
4r2

‖ + (
1 − 2r2

z0

)2] 1
2

+ 1[
4r2

‖ + (
1 + 2r2

z0

)2] 1
2

− 1(
r2
‖ + r2

z0

) 1
2

⎫⎬
⎭, (C3)

vz|rz0
= D

2π (1 + λ) ln κ

∫ ∞

0
dk

1

k
J0(2kr‖) exp

(
2krz0

){
2
(
1 − krz0

)
[cosh(k) − 1] − k sinh(k)

}
, and

(C4)

∂vz

∂rz

∣∣∣∣
rz0

= D

2π (1 + λ) ln κ

⎧⎨
⎩

2
[
2r2

‖ + (
1 + 2r2

z0

)2]
[
4r2

‖ + (
1 + 2r2

z0

)2] 3
2

+ 2
[
2r2

‖ + (
1 − 2r2

z0

)2]
[
4r2

‖ + (
1 − 2r2

z0

)2] 3
2

− r2
‖ + 2r2

z0[
r2
‖ + r2

z0

] 3
2

⎫⎬
⎭. (C5)

The radial symmetry of vx and vy allows us to solve Eq. (C1) in cylindrical polar coordinates (r̂‖,
θ̂, ẑ). Because vθ = 0, there is a dimensional reduction in the polar coordinate system; r2

‖ = r2
x + r2

y
and θ = arctan(ry/rx ). Thus, we solve

∂uz

∂t
+

(
η1L2Vs

κβ

)[
vr‖

∂uz

∂r‖
− uz

∂vz

∂z

]
=

(
η1L2Vs

κβ

)[
vz|rz0

+ pz
]
, (C6)

where vr‖ = rxvx/r + ryvy/r. Exploiting radial symmetry, we calculate ∂uz/∂r‖ as an inverse Hankel
transform of ûz with the Bessel function J1(2πkr‖). Here, we refer to the interface deformation
obtained from solving the approximate kinematic condition Eq. (17) as uz-approx.

In the discussion preceding Eq. (10), we argued that the approximation to the kinematic boundary
condition will hold when the ratio of the viscous stress to the bending stress (η1VsL2/κβ ) was O(1)
or smaller. As this ratio becomes larger, one would expect the largeness in (η1VsL2/κβ ) to dominate
over the weak perturbation of the inverse logarithm of the slender swimmer aspect ratio κ and hence
necessitate the inclusion of the neglected nonlinear terms. In Fig. 15 we compare uz obtained from
Eq. (C6) with uz-approx [both solved in along with Eq. (18) for V T

z ], for η1VsL2/κβ = 1, 10 to assess
the relative importance of the nonlinear terms on the left-hand side of Eq. (C6). We focus only on
equations specific to shakers, and thus pz = 0 on the right-hand side of both Eqs. (17) and (C6).
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FIG. 15. The interface deformation uz due to a pusher plotted as a function of the distance parallel to the
interface r‖ on a log-log scale for the ratio of viscous stress to bending stress: η1VsL2/κβ = 1 and 10, at t = 1
when λ = 0.5 and rz0 (0) = 1. Solid lines represent the full solution obtained from Eq. (C6), and the dashed
lines the approximate solution from Eq. (17). The inset shows a linear plot of uz for ηVsL2/κβ = 10.

It is clear that even for an initial distance of the swimmer from the interface of rz0 (0) = 1, uz-approx

provides a very good approximation to the full solution obtained from Eq. (C6). In the inset, a
linear plot is shown for η1VsL2/κβ = 10, showing that the deviation between the two is small, with
a maximum in the region of r‖ = 0 having a relative error of about 0.24. Although not shown here,
uz-approx approaches the uz obtained form Eq. (C6) as rz0 increases. This validates the boundary
approximation for a slender swimmer even at O(1) distances from the interface and for values of
η1VsL2/κβ ∼ O(10).

APPENDIX D: SWIMMERS ARBITRARILY ORIENTED TO THE
INTERFACE—TWO-DIMENSIONAL FOURIER TRANSFORM SUMMARY

To solve for a swimmer arbitrarily oriented to the interface, we follow the same approach to that
of swimmers oriented orthogonal to the interface. Here, the equations for v̂z and v̂t are similar to that
for swimmers orthogonal to the interface, as given by Eq. (B2) in Appendix B. For an arbitrarily ori-
ented slender swimmer, we have the following set of equations to solve for in the two fluid regions:

∂4v̂1z

∂r4
z

− 8π2k2 ∂2v̂1z

∂r2
z

+ 16π4k4v̂1z

= −2π ik
D

ln κ

1

p2
z

exp

(
−2π ikrz

pl

pz

){
2pl pz δ(rz )H

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]

+ pl sgn(rz )H

[
1

2
− rz

pz

]
δ

[
1

2
+ rz

pz

]
− pl sgn(rz )δ

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]

− 2π ik(p2
z + p2

l ) sgn(rz )H

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]}
, (D1a)

∂4v̂2z

∂r4
z

− 8π2k2 ∂2v̂2z

∂r2
z

+ 16π4k4v̂2z = 0, and (D1b)

∂2v̂1t

∂r2
z

− 4π2k2v̂1t = D

ln κ

pt

pz
exp

(
−2π ikrz

pl

pz

)
sgn(rz )H

[
1

2
− rz

pz

]
H

[
1

2
+ rz

pz

]
. (D1c)
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After some algebra, we obtain the following expressions for the transverse component of the
disturbance flow field:

v̂1t = − 1

2π2k2

D

ln κ

pt (i pl − pz )

p2
l + p2

z

(
1 − λ

1 + λ

)
exp(4πkrz0 ) exp(−2πkrz ) sinh2

[
π

2
k(i pl + pz )

]

− 1

4π2k2

D

ln κ

pt

p2
l + p2

z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(i pl − pz ) exp(2πkrz ) sinh2
[

π
2 k(i pl + pz )

]
; rz < −∣∣ pz

2

∣∣
1
2

{
(i pl − pz ) exp(2πkrz ) exp[−πk sgn(pz )(i pl + pz )]

+(i pl + pz ) exp(−2πkrz ) exp[πk sgn(pz )(i pl − pz )]
−2[i pl + sgn(rz )pz] exp(−2πk|rz|) + 2 sgn(rz )pz

× exp
(−2π ikrz

pl

pz

)}
;

rz ∈ [−∣∣ pz

2

∣∣, ∣∣ pz

2

∣∣]

2(i pl + pz ) exp(−2πkrz ) sinh2
[

π
2 k(i pl − pz )

]
; rz >

∣∣ pz

2

∣∣, and

(D2a)

v̂2t = − 1

π2k2

D

(1 + λ) ln κ

pt (i pl − pz )

p2
l + p2

z

exp(2πkrz ) sinh2

[
π

2
k(i pl + pz )

]
; rz < rz0 . (D2b)

For a swimmer oriented orthogonal to the interface, pt = 0, implying that v̂αt = 0, as pointed out
in Appendix B.

The Green’s function for the normal components v̂αz remain the same as given by Eq. (B5),
where α ∈ [1, 2] for the two fluid regions. Convolving the Green’s function with the right-hand
side of Eq. (D1a) gives the normal component of the velocity. The longitudinal components v̂αl

can then be obtained from the use of the continuity Eqs. (A3d) and (A5c). We omit writing the
rather cumbersome expressions for the normal and longitudinal components of the fluid velocity
that emerge in this swimmer configuration.

APPENDIX E: SWIMMERS CONFINED BETWEEN A DEFORMABLE INTERFACE AND
A RIGID BOUNDARY—TWO-DIMENSIONAL FOURIER TRANSFORM SUMMARY

Here, we briefly describe the formulation for a swimmer confined between a rigid boundary
and an initially undeformed interface, specifically when its oriented parallel to the boundaries. We
follow the development in Appendix A, and outline only the additional boundary conditions that
emerge owing to the additional rigid boundary. For this swimmer orientation only the z component
of the velocity is relevant, given that ṗ = 0 as mentioned in Sec. IV. We therefore focus solely on the
additional boundary conditions for v̂αz, where α ∈ [1, 2] for the two fluid regions. For a swimmer
of arbitrary orientation, however, the rotation rate would be nontrivial and it would be essential to
derive the transverse and longitudinal velocity components, v̂αt and v̂αl .

The equations for v̂αz are solved subject to the appropriate boundary conditions; the impenetra-
bility and the no-slip conditions at the deformable interface and the rigid boundary, the continuity
of tangential stress and the normal-stress jump across the deformable interface. The boundary
conditions at the deformable interface are as in Appendix A 2, namely Eqs. (A6a), (A6c), (A7a), and
(A9). The additional Fourier transformed velocity boundary conditions owing to the rigid boundary
are

v̂1z|H− = 0, (E1a)

∂ v̂1z

∂rz

∣∣∣∣
H−

= 0. (E1b)

054001-30



HYDRODYNAMICS OF SLENDER SWIMMERS NEAR …

A general solution for the fourth-order differential equations Eqs. (A4) and (A5a), noting that the
disturbance flow field must decay in the far-field, is

v̂1z =
{

(B1 + B2rz ) exp(−2πkrz ) + (B3 + B4rz ) exp(−2πkrz ); H > rz > rz0 ,

(B5 + B6rz ) exp(2πkrz ) + (B7 + B8rz ) exp(−2πkrz ); 0 < rz < rz0 , and
(E2a)

v̂2z = (B9 + B10rz ) exp(2πkrz ); rz < 0. (E2b)

We use the six boundary conditions mentioned above, in addition to the four conditions emerging
from the properties of the Green’s function, which remain the same as in Eq. (A14), to obtain the
constants B1 − B10. We omit for brevity the cumbersome expressions for v̂αz.
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