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Effect of streak employing control of oblique-breakdown in a supersonic
boundary layer with weak wall heating/cooling
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Contrary to incompressible flows, there has been an immense research gap in the flow
transition control using velocity streaks for supersonic flows. The first direct numerical
simulations (DNS) study in this direction was conducted at Mach 2.0 for an adiabatic wall
condition and showed that effective control could be provided by employing streak modes
having four to five times the fundamental wave number of the most amplified oblique
disturbance waves. However, the application range of the method in terms of the control
amplitude is studied roughly and only for adiabatic walls. The present study scrutinizes
the controlling capability of these decaying streak modes under the influence of both
adiabatic and weak wall heating/cooling by means of DNS. The stabilizing/destabilizing
influence of the control streaks in combination with different thermal boundary conditions
in a perturbed boundary layer is shown. The effective range of the streak amplitudes under
the given flow conditions is presented both for adiabatic and isothermal wall conditions.
No significant impact of the wall-boundary condition on the control-streak development
is observed in the sustainable flow control range, but the useful control-streak amplitude
range diminishes with wall heating.
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I. INTRODUCTION

Increasing attention on emission reduction and designing an economically sustainable supersonic
aircraft are just a few reasons among many others that augmented the interest in understanding the
laminar-to-turbulent flow transition. Keeping the flow laminar as much as possible has been the
primary intention to decrease the skin friction around the aerodynamic vehicle in order to reduce
the drag which naturally decreases the fuel consumption and thermal load on the body. However,
transition might also be desired in the case of scramjet applications where the boundary layer is
tripped deliberately to have a uniform turbulent flow at the entrance of the combustor inlet [1]. For
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all these reasons, it is highly important to have a better comprehension and a possible control of the
transition phenomenon, which ultimately requires further elaboration of its governing mechanism.

For incompressible flows, the flow transition in a low-disturbance environment is driven by two-
dimensional (2D) sinusoidal waves, called Tollmien-Schlichting (TS). Moving further downstream,
these waves are superseded by the secondary instability mechanism, corresponding to the weakly
nonlinear stage in the roadmap of Fedorov [2] with the appearance of �-shaped vortices [3,4]
located near the boundary-layer edge. Their breakdown forms turbulent spots which coalescence
to generate turbulence as the flow moves downstream. However, in compressible flows, the most-
amplified waves become three-dimensional running obliquely with respect to the free-stream with
a nonzero inclination angle. For a transonic boundary layer at Mach number 1.6, direct numerical
simulations (DNS) studies of Thumm [5] and Fasel et al. [6] were the first illustrating that the
transition is controlled by oblique breakdown which is initiated by a pair of most-amplified waves
traveling at identical but opposite wave angles with respect to the free-stream. Once emerged, the
self-nonlinear interaction of these waves generates the steady vortex mode (0,2) in the domain,
thus closing the wave-vortex triad [7]. Moving downstream in the flow, higher harmonic modes
are generated by the interaction of the most-amplified disturbance and the steady mode resulting
in a broader frequency/wave-number spectrum extending the energy exchange mechanism to a
more complex stage [8]. Furthermore, a study of Fezer and Kloker [9] unraveled the predominant
effect of the fundamental mode than three-dimensional subharmonic modes in terms of growth rates,
although the transition process is found to be accelerated by the presence of subharmonic waves.
The DNS study of Husmeier et al. [10] for various breakdown scenarios at Mach = 3 proved that the
oblique breakdown scenario is the most viable path to that transition. For an overall understanding
of the oblique breakdown mechanism in two-dimensional supersonic flows, the reader is referred
to Mayer et al. [11]. Since then, oblique breakdown triggered by the unsteady 3D mode has been
proven to be the most dominant mechanism in flow transition of supersonic flows for a wide range
of Mach numbers over flat surfaces. In a more realistic situation, natural transition scenario, the
interaction between waves should be considered rather than perturbing the flow solely by one
single pair of waves. Laible et al. [12] concluded that multiple pairs of waves may result in earlier
breakdown with a shorter transitional region than the case with a single pair of waves, also verified
by Chang and Malik [7] over flat-plates. To elaborate on the feeding mechanism of disturbance
modes, temporal DNS was used for simulating an oblique breakdown over a flat plate. It was
revealed that the modes (0,0), (2,2), (2,0) are generated only through the self-nonlinear interaction
of the fundamental disturbance and remain completely unaffected by their linear eigenbehavior.
Steady longitudinal mode (0,2), on the other hand, exhibits transient growth after having generated
by the primary mode [12].

Regarding the transition control in incompressible flows, closely spaced streak vortices, i.e.,
those carrying higher wave number than the most-amplified mode are found effective in postponing
the transition onset by dampening the most-amplified cross-flow vortices over an infinite swept wing
[13]. The use of these vortical structures was extended to a flat-plate configuration where TS waves
dominate the transition mechanism in a low-disturbance environment. Vortex-induced streamwise
streaks bearing sufficiently large amplitude are capable of delaying transition by surpassing these
two-dimensional waves while early transition might be triggered above some critical amplitude [14].
This phenomenon was later verified experimentally by Fransson et al. [15,16] in which a series of
roughness elements placed in the spanwise direction to generate streaks of moderate amplitudes.
Furthermore, stabilizing effect of finite-amplitude streaks on the linear amplification of unstable
perturbations, TS, and oblique waves, was investigated by means of nonlinear parabolized-stability-
equations (PSE). A careful examination revealed the existence of an optimum spanwise wave
number for diminishing the growing perturbation [17]. Alternative methods such as miniature vortex
generators [18] and plasma actuators [19] were also used to generate streamwisely elongated streaks
and highlight their stabilizing influence in low-speed boundary layers. However, the stabilizing
effect of the streaks in supersonic flows was studied only quite recently by Paredes et al. [20].
Their analysis of the steady growing streaks with the use of nonlinear plane-marching PSE showed
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that streaks are required to carry a wave number at least two times the one of the fundamental
disturbance, i.e., first-mode oblique wave. It was also revealed that mean-flow-deformation (MFD)
is in favor of stabilizing the first mode. Direct nonlinear control of oblique breakdown has been
investigated by Sharma et al. [21] in a comprehensive DNS study in a supersonic boundary layer
at M∞ = 2.0, with the use of streamwisely elongated streak structures forced by a blowing-and-
suction strip. A blowing/suction strip placed at the wall is employed to generate these vortices,
decaying in the streamwise direction, in their study over a flat-plate with adiabatic wall condition.
Consequently, streak modes having four to five times the fundamental wave number are found to
be effective in controlling the transition. However, it is pointed out that maximum streak amplitude
higher than about 25% of ρ∞u∞ results in early transition due to strong streak-mode instability.
Here “∞” refers to the free-stream conditions. Moreover, the MFD and 3D part of the control are
found responsible of the stabilizing effect by reducing the growth of the most amplified instability
mode. Their findings concerning the MFD conforms with those of Paredes et al. [20], whereas it
was indicated that the 3D part of the control requires the spanwise wavelength to be smaller by
about 2.5 times the local boundary-layer thickness. Later, Kneer et al. [22] applied an identical
control technique to a scenario that includes subharmonic modes which were previously found to
be accelerating the flow transition with the fundamental mode [9]. In their preceding study [23],
the impact of relatively moderate wall cooling on the downstream development of the control
streaks and their controlling capabilities were investigated for an isothermal wall at Tw = 0.9 × Tad,
where Tw and Tad are wall and adiabatic temperatures for laminar flow, respectively. According to
linear stability theory (LST) [24,25], cooling alone stabilizes the first mode disturbances, whereas
its effect is reversed for the second mode (Mack mode) which is intrinsically neglected given the
low free-stream Mach number in the concerning study. The introduction of the control streaks with
wall cooling further delayed the flow transition by reducing the growth of the fundamental mode
(1,1) and the inherent streaky mode (0,2) in oblique breakdown. However, no significant effect was
remarked on the downstream development of the control mode and the hampering role of the MFD.

Although, the pioneering DNS studies [21–23] had laid out to a good amount of knowledge
concerning the streak employing transition control, there still remains some open questions that will
be addressed in this study. For instance, what is the range of streak amplitudes that is successful
in suppressing the flow transition for both adiabatic and isothermal wall conditions? Besides, does
heating have a significant impact on the downstream development of the control streaks? To the best
knowledge of the authors, the heated scenario has not been reported in the literature so far. In the
present work, contrary to Kneer [23] where a new pair of most-amplified disturbance, estimated by
LST, is used for the cooled scenario, the identical fundamental mode of the adiabatic case is retained
here for both heated and cooled walls. Given the low amount of heating/cooling (5%) whose effect
on LST results might be considered negligible, the examination of the effects of pure isothermal
wall condition becomes viable.

The paper is organized as follows. Section II provides details about the computation setup
including the used DNS solver, boundary conditions, and flow-geometry configuration of interest.
Thereafter, the results starting with the effective control scenario under various thermal wall bound-
ary conditions are provided in Sec. III. Following the parametric study of the control amplitude in
Sec. III C, the conclusion is made in Sec. IV.

II. COMPUTATION SETUP

A. Numerical solver

The present study utilizes an in-house developed direct numerical-/large eddy simulation nu-
merical solver known as compressible high-order code using Weno adaptive stencils, which solves
three-dimensional, compressible, unsteady Navier-Stokes equations for perfect gases. Convec-
tive fluxes are discretized by a hybrid conservative fourth-order split centered finite-difference
scheme with a fifth-order weighted essential nonoscillatory scheme. Convective terms are split in

053904-3



M. CELEP et al.

skew-symmetric form to minimize the aliasing error and to enforce the discrete conservation of
the kinetic energy to achieve numerical stability. The diffusive terms, expressed in compact form,
are approximated with a fourth-order scheme. The system of equations is time-integrated using a
third-order RungeKutta scheme. The solver has been validated and proven its practicality in various
applications [26,27].

B. Governing equations

The Newtonian fluid motion is governed by the Navier-Stokes equations comprising of the
equations of conservation of mass, momentum, and total energy. This set of equations is written
as follows:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂τi j

∂x j
, (2)

∂ρE

∂t
+ ∂ (ρE + p)u j

∂x j
= −∂q j

∂x j
+ ∂uiτi j

∂x j
, (3)

where the pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρuiui
)
, (4)

where γ and M denote the heat capacity ratio and Mach number, respectively. τ is the viscous stress
tensor, given by:

τi j = μ

(
∂u j

∂xi
+ ∂ui

∂x j
− 2

3

∂uk

∂xk
δi j

)
, (5)

Here ρ, u, and p represent density, velocity components, and pressure, respectively, whereas δi j

is the Kronecker delta with Re indicating the Reynolds number. The fluid of interest is air, with
constant specific heat capacities, whose dynamic viscosity is assumed to be only temperature
dependent and calculated by the Sutherland’s law,

μ(T ) = C1T 3/2

T + S
. (6)

Here Sutherland’s temperature for air is S = 110.4 K and the constant C1 = 1.458 × 10−6

kg/ms
√

K which is calculated through C1 = μr (Tr + S)/T 3/2
r . Reference dynamic viscosity of air

μr = 1.716 × 10−5 kg/ms at the reference temperature, Tr of 273.15 K, where the subscript r refers
to the reference values.

C. Problem setup

Simulations are carried out for supersonic flows at Mach number M∞ = 2.0, with temperature
T∞ = 160 K, velocity u∞ = 507.1 m/s, kinematic viscosity ν∞ = 2.1067 × 10−5 m2/s, pres-
sure p∞ = 23.786 kPa and Prandtl number Pr = 0.72. The unit Reynolds number Reu = u∞

ν∞
=

2.407 × 107 m−1. Here “∞” denotes the free-stream flow conditions. Following the schematic of
the computational domain presented in Fig. 1, the inlet location, xin = 4.154 mm, corresponding
to the inlet Reynolds number, Rexin = u∞xin

ν∞
= 105, is designated far enough from the leading edge

to preclude possible interactions between weakly generated shocks at the leading edge and the
disturbance modes of the boundary layer. The length and the height of the domain are Lx = 55 mm
and Ly = 10.2 mm, respectively, while the width of the domain corresponds to the fundamental
wavelength of the disturbed mode, Lz = 2.153 mm. Grid is distributed equidistantly in streamwise,
x, and spanwise, z directions with Nx = 800 and Nz = 140 number of points, while grid stretching
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xin

u(y)

xin +Lx

FIG. 1. Schematic of the computational domain and boundary conditions. Lx , xin, u(y) denote the length of
the domain, inlet location, and streamwise velocity in the wall-normal direction, respectively.

function is used with Ny = 180 in the wall-normal direction for accurately capturing the inner
boundary layer next to wall which given as

y = Ly

(
1 + tanhκy

tanhκ

)
, (7)

where the stretching parameter κ ≈ 3.

D. Boundary conditions

Blowing/suction strips whose formulations are identical as in the case of Sharma et al. [21]
are used here. The laminar boundary layer is excited via blowing and suction strip extending from
Rex1 = 2 × 105 to Rex2 = 3.32 × 105 and can be expressed as

ṁ(x, y = 0, z, t ) = ρυ = Aρ∞u∞ f (x)g(z)h1(t ), (8)

f (x) = 4sinθ (x)[1 − cosθ (x)]/
√

27, (9)

θ (x) = 2π [x − (x1 − xin )]/(x2 − x1), (10)

g(z) = (−1)kcos(2πkz/Lz ), (11)

h1(t ) = sin(hωt ), (12)

where A is the disturbance amplitude given as (ρυ )wall/(ρ∞u∞), ṁ is the cross-stream mass
flux, ω is the angular frequency of the excitation mode, h being the multiple of the fundamental
frequency and k the multiple of the fundamental spanwise wave number. Here A = 3.27 × 10−4,
the fundamental frequency f0 = 73.87 kHz and wave number β0 = 2π/λz = 2.9176 × 103 m−1

corresponding to the most amplified modes (1,1) and (1,−1) based on the linear stability theory.
Note that (h, k) indicates the disturbance mode with frequency h × f0 and spanwise wave number
k × β0, while it stands for the sum of (h,+k) and (h,−k). Furthermore, an additional strip placed
in between Rexc,1 = 1.48 × 105 to Rexc,2 = 1.96 × 105, is used to introduce steady control streaks,
such as

ṁ(x, y = 0, z) = ρυ = Acρ∞u∞ f (x)g(z), (13)

f (x) = 2.5983[1 − cosθ (x)]/
√

27. (14)
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FIG. 2. (a) Velocity and (b) temperature profiles obtained through DNS at Rex = 105. Cooled ( ), adiabatic

( ), and heated ( ) with η = y
√

u∞
ν∞x .

with a control amplitude Ac = 1.22 × 10−2, while θ (x) and g(z) formulations of the perturbation
strip are retained. It is noted that the mean net mass flux injected to the domain in both of the
strips is zero. Supersonic inflow and outflow conditions are applied at the inlet (x = xin ) and at
the outlet (x = xin + Lx ) of the computational domain, respectively. To obtain the inlet boundary
conditions, a different method is performed than the one used by Sharma et al. [21]. Self-similarity
solution from the compressible boundary-layer equations is obtained at Rex = 5 × 104, which is
used at the inlet of a DNS simulation where neither of the strips is activated. Results, collected
at Rex = 105, based on density, temperature and velocity profiles are used as input for the main
simulations. Figure 2 shows the nondimensional velocity and temperature profiles at the inlet for
different boundary conditions. It is observed that the deviation between the cases is palpable in
the temperature profiles, whereas a minute difference is seen in those of velocities. Besides, the
boundary-layer thickness at the inlet is found identical, δin = 8.823 × 10−2 mm for all the cases.
The reason is attributed to the low rate of heating/cooling and low inlet Reynolds number. As for
the rest of the boundaries, periodicity is imposed at the side walls. No-slip condition is applied at the
wall with the permeable region occupied by the perturbation and control strips. The wall is assumed
to be either adiabatic or fixed temperature, Tw = 0.95 × Taw for cooled wall, Tw = 1.05 × Taw for
heated wall, where Taw = T∞[1 + 1

2 (γ − 1)Pr1/2M2
∞]. A slip condition with zero boundary-normal

gradient is imposed at the upper boundary. In what follows is the analysis of various simulations
under different conditions. For simplicity, the details about the performed cases are enlisted in
Table I.

TABLE I. Computational parameters for various cases.

Cases Tw/Taw Control mode Ac

A5C 1 (0,5) 1.22 ×10−2

C5C 0.95 (0,5) 1.22 ×10−2

H5C 1.05 (0,5) 1.22 ×10−2

AT 1 — 0
CT 0.95 — 0
HT 1.05 — 0
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FIG. 3. Streamwise evolution of the maximum disturbance amplitudes of various modes for AT ( , )
and A5C ( , •). The vertical dashed lines indicate the midpoint of the disturbance and the control strips with
respect to streamwise direction.

III. RESULTS AND DISCUSSION

A. Adiabatic wall

The validation of the solver for transitional supersonic boundary layers was already performed
by Sharma et al. [21]. A comparison was done with the results of Fezer and Kloker [9] in terms of
growing modes in the boundary layer and a good collapse of data is presented. Therefore, the current
paper starts directly with the efficient use of velocity streaks in delaying the transition. Before
embarking on the influence of the isothermal boundary conditions on the control streaks, simulations
are performed for adiabatic wall condition. The control mode (0,5) is used in A5C, whereas no
control is activated in AT. A comparison between the cases is made in terms of the evolution of the
disturbance modes with respect to streamwise direction, see Fig. 3. Hereby, each mode is computed
by a time-sampling over two fundamental periods. Fourier transform is performed in time and in
the spanwise direction, whose maximum value in the wall-normal direction is plotted. The reader
is referred to Sharma [26] and Kloker [28] for more details about the data sampling for disturbance
modes. It is inferred from Fig. 3 that the growth rate reduction in the fundamental (1,±1) and the
nonlinearly generated steady (0,2) modes illustrates the transition delaying effect of the control
streaks. Besides, introducing the control streaks resulted in an earlier generation of MFD (0,0),
which plays a vital role in delaying the flow transition [20]. From the physical point of view, MFD
can be defined as the distortion from the baseflow, where neither of the strips is activated, as a
consequence of introducing disturbance and control modes. In the absence of the control mode (0,5),
chaotic nature of turbulence demonstrates itself in the amplitudes of the fundamental disturbance
mode (1,1) and nonlinearly generated (1,3), (1,5) 3D unsteady modes at around Rex = 9 × 105.
In the meantime, a saturation sets in for the MFD after having reached an amplitude of ≈35%
of ρ∞u∞, whereas an exponential drop is observed in (0,2). The oscillations in the low-amplitude
region attributed to the higher background noise intrinsic in our solver [23]. As a continuation of the
work of Sharma et al. [21], the current research is aligned in the direction of elaborating the effects of
wall cooling/heating on the downstream development of the disturbances in the following section.

B. Isothermal wall

This section is dedicated to the study of the influence of isothermal wall conditions on down-
stream development of the control streaks and the modulation of various disturbance modes.

053904-7



M. CELEP et al.

FIG. 4. Contours of u/u∞ at y/δin = 0.517 in an instantaneous flow-field for (a) CT, (b) C5C, (c) AT,
(d) A5C, (e) HT, and (f) H5C scenarios.

Simulations are carried out for slightly heated, Tw = 1.05 × Taw, and slightly cooled, Tw = 0.95 ×
Taw wall conditions. Results are compared with those of adiabatic wall cases.

Figure 4 illustrates the nondimensional streamwise velocity contour taken inside the boundary
layer at y/δin = 0.517 in the x-z plane for cases with and without control streaks. Note that
the transition-to-turbulence takes place in all the control-free scenarios. Therefore, a comparison
between control-free cases shows, although not explicitly in Fig. 4, stabilizing/destabilizing effect
of cooling/heating, as predicted by LST, see the discussion of Fig. 5 below. Similar behavior in
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(a) (b)

FIG. 5. Streamwise evolution of the maximum disturbance amplitudes of various disturbance modes for
the cases (a) without CT, AT, and HT and (b) with control streaks C5C, A5C, and H5C. Cooled ( , ), adiabatic
( , ), and heated ( , ) scenarios.

flow stabilization by cooling is also reported by Kneer [23]. Concerning the cases with control
streaks, the formation of streamwisely elongated steady vortices is represented by the superposition
of streaky modes (0,2), (0,4), (0,6), observed in A5C and C5C in the downstream direction. They
regulate the flow field by transporting high-momentum fluid from the external boundary layer to the
near wall regime. Thereafter, the flow stays laminar in A5C and C5C scenarios, whereas the streaks
break down to turbulence as they are strongly amplified in H5C.

For a better understanding of the propagation of disturbances and their possible breakdown
mechanism, the streamwise evolution of various disturbance modes is plotted in Fig. 5. Concerning
the control-free scenarios, exponential growth of the fundamental disturbance (1,1) is followed
by fully nonlinear behavior indicating a flow transition farther downstream in all the cases. The
earliest in the heated (HT) and the latest in the cooled (CT) are marked, as shown in Fig. 5(a). For a
given streamwise location, it is seen that both the maximum disturbance amplitude and the growth
rate of any mode are the highest for HT and the lowest for CT once the modes reach significant
amplitudes. After having generated, the steady mode (0,2) drives the flow to transition with the
contribution of (1,1) and nonlinearly generated modes, i.e., (1,3), (1,5), and so on. Close to the
end of the computational domain, the MFD (0, 0) attains the highest amplitude, indicating a strong
mean flow deformation due to transition to turbulence. When the control strip is activated, see
Fig. 5(b), the presence of the control mode (0,5) leads to an earlier generation of the MFD in all
cases, as mentioned in Sec. III A. It is seen that the MFD carries approximately the same value
until around a point where the steady mode (0,2) gains significant amplitude. Then H5C deviates
from the cases at around Rex = 9 × 105. Here the steady mode (0,2) will be used for marking the
presence of transition in the domain since sudden changes in MFD could also be an indication of
sharp but regular deformation of the flow field. In doing so, it could be deducted that the laminar
flow regime is preserved until the end of the computational domain in A5C and C5C, whereas the
transition in H5C is postponed to downstream without being able to completely avoid it. Moreover,
the fundamental mode (1,1) for the cooled scenario (C5C) is fully attenuated after having reached
its maximum value at around Rex = 8 × 105. This is a definite sign of flow staying laminar.

There exist various parameters which have been exploited to pinpoint the flow transition and
its onset location in the literature. Among others, the skin-friction coefficient is illustrated as a
function of streamwise direction in Fig. 6. Stabilizing effect of wall cooling, as predicted by LST
[30] and experimentally for a wide range of Mach numbers [31], is evidently seen for control-free
scenarios in Fig. 6(a). Having traced the laminar skin-friction coefficient trend, transition onset is
observed the earliest in HT and the latest in CT. When the flow breaks down to turbulence, the
order is inversed in terms of the magnitude of the turbulent skin-friction coefficient. The reason is
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FIG. 6. Streamwise evolution of skin-friction coefficient for (a) control-free cases (CT, AT, and HT) and
(b) controlled cases (C5C, A5C, and H5C) where cooled ( ), adiabatic ( ), and heated (+). Skin-friction
coefficient for laminar flow ( ) estimated by [29] Cf = 0.664/

√
Rex .

attributed to the higher velocity gradient of the cooled scenarios in the wall-normal direction. Since
the dynamic viscosity scales up with temperature which is inversely proportional to the density, wall
cooling results in a lower air kinematic viscosity, so does a thinner boundary layer compared to the
heated cases. Although the dynamic viscosity is lowered with the temperature decrease, higher
velocity gradient due to lower boundary-layer thickness is dominant and causes a higher skin-
friction coefficient. Concerning the cases with control streaks, Fig. 6(b) illustrates their skin-friction
coefficient evolution in the streamwise direction. The kinks corresponding to the location of the
control strip are generated due to control streaks. All the profiles follow the laminar skin-friction
trend, to a streamwise location corresponding to about Rex = 8 × 105 from which a prominent
deviation can be observed in H5C. This deviation corresponds to a region between Rex = 8.5 × 105

and Rex = 106 in Fig. 4(f), where a formation of two high-velocity streaks becomes visible in
addition to the control streaks. Since they rapidly break down to turbulence further downstream,
their formation in H5C is relatively discrete compared to the adiabatic counterpart (A5C), see
Fig. 4(d). The concerning breakdown mechanism exhibits its impact on the skin-friction coefficient
with a drastic augmentation at around Rex = 106 for H5C. Contrarily, these nonlinearly generated
streamise vortices last longer in the streamwise direction and reach the end of the computation
domain for C5C and A5C. The boundary layer gets thinner in the proximity of these streaks which
results in a steeper velocity gradient at the wall in the case of A5C. Consequently, the skin-friction
coefficient makes a slight augmentation around Rex = 106, followed by a decrease with a slope
similar to that in the laminar regime while the flow remains laminar until the end.

In addition to the maximum amplitude of various disturbances, the shape of a disturbance with
respect to the wall-normal direction should also be looked at to understand its evolution inside
the boundary layer. Prior to the isothermal boundary condition, the nonlinear transitional regime
is elaborated for the adiabatic wall condition. The most significant modes in oblique breakdown
are plotted and a comparison between AT and A5C scenarios is provided in Fig. 7. Figure 7(a)
depicts the evolution of the MFD in the presence and absence of the control mode. Herein, an early
generation of the MFD can be seen with the control streaks. Although its maximum amplitude
already decreased from 12% to 3% of ρ∞u∞ from its generation to the first streamwise location,
its maximum amplitude is still substantially higher than that of AT until Rex = 8 × 105. For AT,
the MFD attains a positive amplitude near the wall making the mean flow profile fuller as the onset
of transition is reached at Rex = 8 × 105. However, the MFD in A5C stabilizes the flow since its
generation, by impressing a fuller velocity profile in the boundary layer with positive values in the
inner boundary layer and negative values in the outer two-thirds of the boundary layer. It is seen
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(a) MFD (0,0) (b) Fundamental mode (1,1)

(c) Steady mode (0,2) (d) Steady mode (0,5)

FIG. 7. Disturbance amplitude of various modes for AT ( ) and A5C ( ) obtained at Rex = 4 × 105 ( ),
Rex = 6 × 105 ( ), Rex = 8 × 105 ( ) and Rex = 10 × 105 ( ) with respect to the wall-normal direction.
Two additional locations are given (d) at Rex = 12 × 105 ( ) and Rex = 14 × 105 ( ). δ denotes the local
boundary-layer thickness.

that the distortion of the control streaks (0,5) manifests itself relatively higher in the upper half
of the boundary layer. Going downstream the maximum MFD amplitude, the MFD is overtaken
by the steady mode (0,2) at around Rex = 8 × 105 in A5C. Once the steady modes (0,2), (0,4),
(0,6), etc., turn into streamwise elongated vortices, the positive shape of the profile is expanded in
the boundary layer, making the profile antisymmetric centered at about half of the boundary-layer
thickness. Following a linear modulation, the fundamental mode (1,1) for AT consistently grows
while carrying its maximum at around y/δ = 0.5 until Rex = 8 × 105, see Fig. 7(b). There, the flow
experiences a flow transition that strongly modifies the shape of the disturbance profile generating
a second hump in the inner half of the boundary layer. With the presence of the control streaks
(0,5) in AC5, the amplitude increase of the fundamental mode in each fluid layer is attenuated.
Regression, also observed in Fig. 5(b) for the maximum disturbance amplitude, is observed in the
upper two-thirds of the boundary layer at Rex = 106. Although not shown here, for concision,
the regression is compensated once the fundamental mode starts growing after Rex = 1.1 × 106.
However, its maximum amplitude never goes beyond 2.3% of ρ∞u∞ in A5C. The strong damping
of the fundamental mode reflected itself in the growth rate and the amplitude profile of the steady
mode (0,2) as shown in Fig. 7(c). Although its growth rate is reduced with the presence of the control
streaks, it still persistently increases in amplitude until the end of the computational domain in A5C.
Contrary to the shift of the profile closer to the boundary-layer edge in AT, the profile approaches
the wall with an increased maximum disturbance amplitude in AC5. Having obtained significant
amplitudes at Rex = 106, it leads to the generation of two high-velocity streaks with the contribution
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of its integer multiples, i.e., (0,4), (0,6), and so on, see Fig. 4(b). On the other hand, the profile of AT

is distinctively distorted at Rex = 106 with the fully nonlinear effects followed by a flow transition
further downstream. Besides, the control mode (0,5) is represented with two additional streamwise
positions in Fig. 7(d). Following its evolution, the amplitude of the control mode in each fluid
layer decreases until Rex = 6 × 105. Moving downstream, the control mode starts to grow and its
profile gets distorted in the inner half of the boundary layer after Rex = 8 × 105 as a consequence
of high-amplitude steady modes.

Regarding the influence of the isothermal wall condition on the disturbances, Fig. 8 depicts
the shape evolution of various modes in the boundary layer obtained at four different streamwise
locations for cooled, adiabatic, and heated boundary conditions. The extraction is done at points
where the deviations between the cases become significant. Nonlinear PSE calculations of Chang
and Malik [7] asserted that negative values of the MFD indicate an energy transfer extracted from the
mean flow and transferred to the unsteady disturbances. It is seen that the MFD retains only positive
values near the wall in all cases, yielding a fuller velocity profile as the flow goes toward transition to
turbulence, denoting the energy transfer from the disturbances to mean flow, see Fig. 8(a). Also, it is
observed that HT is the first scenario bearing relatively high negative values at Rex = 9 × 105 in the
upper boundary layer compared to the cooled and adiabatic cases. This corresponds to the position
at which the MFD starts taking over the fundamental disturbance (1,1), where the flow enters the late
nonlinear regime [11], see Fig. 5(a). The MFD maximum gets closer to the wall with the positive
region shrinking and approaching the wall. Meanwhile, the region of negative values occupies
two-thirds of the boundary layer corresponding to its outer part. This identical trend is observed in
each scenario. With transition to turbulence, the MFD attains the maximum disturbance amplitude
representing the shape change of the mean-velocity profile from its laminar to the turbulent shape,
induced by the action of the Reynolds stresses. The evolution of the fundamental mode (1,1) shows
that its peak amplitude appears closer to the boundary-layer edge as the wall is heated, whereas it
gets closer to the wall if it is cooled down, as shown in Fig. 8(c). As soon as the onset of transition
is reached, the profiles are distorted due to strong nonlinear effects. As for the steady mode (0,2),
based on the terminology of Mayer et al. [11], the point corresponding roughly to a position where
(0,2) and (1,3) reach the same order of amplitude indicates the end of the early transition regime.
Being the characteristic for the oblique breakdown mechanism, distortion in its wall-normal profile
can be interpreted as the inception of strong nonlinear interactions in the flow domain. Besides,
the cooling diminishes the growth of the mode causing it to have a lower maximum amplitude,
whereas its influence is reversed in the inner boundary layer at Rex = 7 × 105, see Fig. 8(e). Further
downstream, the shape of the profiles gets more bumpier in the lower half of the boundary layer,
earliest in the heated case, latest in the cooled scenario, indicating strong nonlinearities.

It was pointed out previously that the presence of streaks leads to an earlier generation of the
(0,0) mode. Although it reaches 12% of ρ∞u∞ at the control strip location, it decreases up to 3%
of ρ∞u∞ at Rex = 7 × 105, see Fig. 8(b). As indicated in Fig. 8(a), the region with positive values
moves closer to the wall as the boundary layer grows, whereas the negative zone expands in the
boundary layer. Also, significant increase is seen in H5C at Rex = 11 × 105 and Rex = 13 × 105

that indicates the flow transition. The combined stabilizing effect of cooling and induced control
modes is clearly seen in the damping of (1,1) as the flow proceeds downstream, see Fig. 8(d).
It is not only the maximum value of the disturbance amplitude but also the entire profile which
experiences the regression. However, flow transition is observed in H5C with a maximum amplitude
growing in the streamwise direction. Its profile is fully distorted with a second peak much closer
to the wall holding a value more than half of its maximum at Rex = 13 × 105. On the other hand,
A5C experiences an exponential amplification in the fundamental mode until its saturation at around
Rex = 7 × 105. Having reached the saturation with around 2% of ρ∞u∞, the maximum amplitude
retains its value until Rex = 106 after which it experiences an exponential increase until the end of
the domain. As long as the flow remains laminar, the maximum disturbance amplitude of the steady
vortex mode (0,2) gets closer to the wall as the flow develops, regardless of the wall boundary
condition, see Fig. 8(f). Its active role in regulating the flow field gets stronger as it gets closer to
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(a) MFD (0,0). (b) MFD (0,0).

(c) Fundamental mode (1,1). (d) Fundamental mode (1,1).

(e) Steady mode (0,2). (f) Steady mode (0,2).

FIG. 8. Disturbance amplitude of trademark modes in oblique breakdown as a function of the wall-normal
direction at Rex = 7 × 105 ( ), Rex = 9 × 105 ( ), Rex = 11 × 105 ( ), Rex = 13 × 105 ( ). Cooled ( ),
adiabatic ( ), and heated ( ) scenarios. The left column indicates the control-free cases (CT, AT and HT),
whereas C5C, A5C and H5C are illustrated on the right side.

the wall with a maximum disturbance amplitude reaching up to 14% of ρ∞u∞ and 8% of ρ∞u∞
for AC5 and C5C, respectively. Further downstream, a hump starts to form in the outer half of the
boundary layer in all scenarios. The disturbance profile of H5C becomes significantly distorted once
the flow becomes turbulent. Experiencing a saturation, A5C preserves its maximum amplitude for
a longer streamwise distance in (0,2), see Fig. 5(b), while its profile attains the highest amplitude
in the entire boundary layer compared with C5C and H5C. Besides, the wall cooling reduces the
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FIG. 9. Streamwise evolution of (a) Stanton number (St ) and (b) Reynolds analogy factor (2St/Cf ),
whereas horizontal solid line on the right figure is Pr−2/3. C5C ( ), CT ( ), H5C ( ), and HT ( ).

amplitude growth of the steady mode and keeps its maximum always at a higher location in the
wall-normal direction compared to A5C and H5C before transition occurs in the heating scenario.

As a dimensionless parameter, the Stanton number is a measure of the wall heat-transfer rate and
is defined as St = qw/[ρ∞U∞Cp(Taw − Tw )] where qw is the heat transfer rate from the wall and

is calculated as qw = −k(∂ < T >z /∂y)|y=0. Here the overbar and “<>” denote time- and space
averaged quantities, respectively. Being the adiabatic wall temperature for a laminar boundary layer,
Taw is estimated with Taw = T∞[1 + r(γ − 1)/2 × M2

∞] where r is the recovery factor. For laminar
flow [29], r = √

Pr. As the definition of Stanton number is based on adiabatic wall temperature for
laminar flows, its values for turbulent and transitional regimes should solely be treated qualitatively.
Figure 9(a) shows the streamwise evolution of the Stanton number for isothermal scenarios. Heat
transfer is found to be strongly influenced by the control streaks which alter the Stanton number in
favor of the C5C as opposed to the control-free cases. However, they all converge until the earliest
transition onset which is observed in HT. From this point onward, a significant variation between the
scenarios reveals itself. It is observed that the rate of heat transfer becomes 5 to 6 times higher for CT

than C5C as a result of a marginally steeper temperature gradient near the wall in the absence of the
control mechanism as shown in Fig. 10. As for H5C, following a delayed transition in the presence

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0

0.5

1
10-3

FIG. 10. Temperature profiles at Rex = 4.3 × 105 (solid lines) and Rex = 12.57 × 105 (dashed lines). CT

( ), C5C ( ), AT ( ), A5C ( ), HT ( ), and H5C ( ).
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FIG. 11. Mean temperature �T = 〈T 〉z − Tb profile (dashed lines) and mean streamwise velocity compo-
nent (solid lines) �u = 〈u〉z − ub at Rex = 3 × 105 for C5C ( ), A5C ( ), and H5C ( ).

of the control streaks, an initial reduction ensued by an increase toward downstream where St meets
its control-free counterpart of HT toward the end of the domain. Furthermore, direct relation between
the shear stress and the heat transfer is provided by the Reynolds analogy factor 2St/Cf = Pr−2/3,
which serves as a useful tool in practical applications to estimate the heat transfer rate through the
skin-friction coefficient [32]. They all converge, rather slower in the control-free cases, to the Pr−2/3,
see Fig. 9(b). In the sequel of the transition onset, the cases drift apart with a decrease in the heated
scenarios and a rise in CT. Moving further downstream, the increase both in the Stanton number and
the skin-friction coefficient due to the formation of two-high velocity streaks increase the Reynolds
analogy factor in C5C.

In an attempt to consider the influence of the boundary-layer growth in the streamwise direction,
knowing that the boundary-layer thickness is proportional [33] to

√
x, Fig. 10 is plotted with respect

to y/
√

x. It is seen that employing the velocity streaks decreases the temperature gradient at the
wall and retains the laminar temperature profile for C5C at Rex = 12.57 × 105. When no control is
applied, the cooled wall scenario (CT) attains a turbulent profile with identical wall temperature as
the rest of the cooled scenarios but with a steeper temperature gradient. This gradient is the main
reason for observing a tremendous increase in the Stanton number in Fig. 9(a). As for the heated
cases (H5C, HT), it is seen that the presence of the control streaks does not carry any significance
at the wall, but they modify the temperature profile at the first streamwise location. Given that
Rex = 12.57 × 105 corresponding to the turbulent regime in both HT and H5C, they present
steeper temperature profiles. Adiabatic cases, on the other hand, show different trends compared
to the isothermal scenarios. The presence of velocity streaks generates a marginally higher wall
temperature at the wall at Rex = 4.3 × 105, which increases downstream following the formation of
high-velocity streaks with a modified temperature profile. Once the control mechanism is discarded,
the flow becomes turbulent with a wall temperature equal to the adiabatic wall temperature of
turbulent flow at the second streamwise location, Rex = 12.57 × 105. Kneer [23] reported similar
behaviors for adiabatic and cooled wall scenarios.

Figure 11 represents the mean flow temperature and velocity profiles in order to scrutinize the
stabilizing influence of the MFD (0,0) stated by Paredes et al. [20]. It is seen that the flow is
accelerated near the wall with the induction of the streaks, whereas it decelerates in the outer region
of the boundary layer. Thus, a fuller velocity profile is provided indicating a more stable flow [34].
Contrarily, the temperature field exhibits an opposite behavior such that the flow is slightly cooled
down in the inner boundary layer, whereas it is heated in the outer part. However, there exists a
region where the fluid is heated in the adiabatic scenario close to the wall as illustrated in Fig. 10
with respect to AT. While the role of heating/cooling continuously changes in the wall-normal
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FIG. 12. Streamwise evolution of (a) momentum thickness, (b) shape factor, and (c) boundary-layer
thickness. Control-free cases (dashed lines), control cases (solid lines) wherein cooled ( ), adiabatic ( ), and
heated ( ).

direction in terms of the velocity profile, it is decidedly seen that H5C has the highest heating and
the lowest decelerating impact on the fluid in the outer boundary layer.

The streamwise evolution of the momentum thickness is presented in Fig. 12(a). The profiles
in each case follow a smooth trend in the laminar region except for the location where the earlier
appearance of the MFD becomes evident due to the control streaks. It is seen that the growth rate
increases drastically once the flow becomes turbulent in control-free and H5C cases. Besides, the
highest value is obtained always for the case with earliest transition. Cooling has been one of
the common techniques to achieve a fuller velocity profile for air-flow stabilization [35] which
consequently decreases the shape factor. The presence of the control mode (0,5) results in an
instantaneous decrease in the shape factor at the beginning of the domain as shown in Fig. 12(b). In
that way, transition is avoided in A5C and C5C, whereas the shape factor of H5C decreases further
downstream with regard to HT that indicates a delay in the heated scenarios. Despite having a fuller
velocity profile in the boundary layer, the presence of the streaks resulted in thickening the boundary
layer, see Fig. 12(c). Although there exists a minute difference in control cases due to the low rate
of heating/cooling at the wall, an increase in kinematic viscosity due to temperature increase has a
significant impact on the boundary-layer development.

Figure 13 shows the streamwise vorticity contours obtained at various downstream positions for
AT and A5C. Structural flow development is analyzed only for the adiabatic scenario after having
concluded that weak heating/cooling does not exhibit a significant impact on the general flow
structures. Concerning the control-free case, the evolution of the disturbances is accompanied by the
opposite signs of vorticity values due to their obliquely running nature, are depicted in Fig. 13(a) at
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(a)Rex = 5×105 (b)Rex = 5×105

(c)Rex = 8×105 (d)Rex = 8×105

(e)Rex = 11×105 (f)Rex = 11×105

FIG. 13. Streamwise vorticity (ωx) contours of an instantaneous flow-field at various streamwise positions
for AT (left row) and A5C (right row). The black solid lines are isolines of streamwise velocity component
with 0.1, 0.3, 0.5, 0.7, and 0.9 × u∞.

Rex = 5 × 105. Further downstream, the steady mode (0,2) having maximum disturbance amplitude
of 8% of ρ∞u∞, see Fig. 5(a), shows its impact on the flow by prominently distorting the streamwise
vorticity field in Fig. 13(c). At around Rex = 9 × 105, the onset of the transition appears in the
domain, leading the flow to transition where a fully nonlinear regime prevails in the field resulting
the formation of small near-wall structures as illustrated in Fig. 13(e). Once the control streaks are
applied, the strong flow field regulation, visualized in the x-z plane in Fig. 4(d), can also be seen for
the vorticity field in Fig. 13(b) with some deformation in the inner boundary. Following the growth
of the disturbance modes, deformation is reflected in the vorticity field at Rex = 8 × 105 as seen
in Fig. 13(d). Further downstream, high deformation due to strengthened steady modes is observed
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(a)Q= 0.01%×Qmax at Rex = 5−9×105 (b)Q= 0.05%×Qmax at Rex = 5−9×105

(c)Q= 0.5%×Qmax at Rex = 8−12×105

FIG. 14. Isosurfaces of Q criterion for AT: [(a) and (b)] Top view and (c) 3D view. U ∗ = (u −
umin )/(umax − umin ).

with its clear physical domination of the flow field in Fig. 13(f). The fluid retains its regular structure
with the formation of two high-velocity streaks, while the boundary-layer properties remain akin to
those of the laminar flow until the end of the computational domain.

The vortical structures developed in AT are identified by the Q criterion [36] in Fig. 14 (Q
being the second invariant of the velocity gradient, which defines the vortical regions where the
vorticity magnitude is larger than that of the strain rate). Figure 14(a) illustrates the superposition
of the fundamental oblique wave traveling in the opposite spanwise directions. The formation of
honeycomb-like structure is seen as reported by Bestek et al. [8]. Moving downstream, its shape
is distorted due to the steady modes that are rapidly growing. When the Q criterion is increased,
the vortical structures generated due to steady modes become visible, see Fig. 14(b). To accurately
display the transitional and the turbulent regimes, a 3D flow-field visualization is used in Fig. 14(c).
Proceeding to the onset of transition at around Rex = 8 × 105, the formation of ring-shaped vortices
are marked in the figure. Further downstream, the identification of hairpin vortices is a clear evidence
of a fully turbulent boundary layer in the domain. A similar study is carried out for A5C to reveal
the influence of the control streaks in the flow development. The presence of the control streaks
regulates the flow field by damping the disturbances in Figs. 15(a)–15(b). Besides, an increase in Q
criterion highlights the formation of the steady modes in the domain. With the 3D view of the flow
field, it is observed that no transitional regime is reached by the end of the domain, see Fig. 15(c).
Therefore, a successful transition delay is proven to be sustained once again in the presence of the
control mode (0,5).
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(a)Q= 0.5%×Qmax at Rex = 5−9×105 (b)Q= 5%×Qmax at Rex = 5−9×105

(c)Q= 0.1%×Qmax at Rex = 1−1.42×106
(c)

FIG. 15. Isosurfaces of Q criterion for A5C: [(a) and (b)] Top view and (c) 3D view. U ∗ = (u −
umin )/(umax − umin ).

C. Parametric study

Preceding the effective transition delay of the current strategy, the question as to what extent this
method could be applied should be answered. In that way, an extensive parametric study is carried
out for adiabatic and weakly cooled/heated walls for a wide range of the control strip amplitudes.
Velocity contours obtained at y/δin = 0.517 are illustrated in Figs. 16–18 representing cooled,
adiabatic and heated scenarios, respectively. Here, the applied control amplitude is in the range
of Ac,ref × 0.25 � Ac � Ac,ref × 2.0 where Ac,ref = 1.22 × 10−2, identical to the control amplitude
in Sec. III A. Also, an effective transition control is defined for those where transition is delayed
until the end of the computational domain. What could be generally seen in these figures is that
below a certain threshold of the control amplitude, the transition scenario is akin to the control-free
cases. Similar behavior is observed by Sharma et al. [21] and Kneer [23] when the control amplitude
is halved although their control amplitude was reported to be differing by a factor of 2 among each
other. Furthermore, a drastic change in flow is observed with a successful transition delay when the
amplitude is increased above certain value, i.e., Ac � 0.7 × Ac,ref for cooled, Ac � 0.9 × Ac,ref for
adiabatic and Ac � 1.2 × Ac,ref for the heated cases. However, contrary behavior in the flow field is
seen for the upper threshold amplitude. When the amplitude is increased from 1.7 to 1.8 × Ac,ref ,
an earlier transition onset compared to the control-free scenarios is observed no matter the thermal
boundary condition. The study of streamwise evolution of various disturbance modes revealed that
the MFD (0,0), the control mode (0,5), and the integer multiples of the control mode are the only
increasing modes among all. Therefore, the immediate shift in transition onset is concluded to be
due to streak instabilities which induce bypass transition according to Parades et al. [37,38]. They
also reported an approximate saturation of the transition onset location following a sufficiently high
amplitude reached by the streaks. This is reflected in the present study once the amplitude goes
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FIG. 16. Contours of U ∗ = (u − umin )/(umax − umin ) at y/δin = 0.517 in an instantaneous flow-field for
various control amplitudes in the cooled scenarios. From top to bottom, the first one designates CT, whereas
the trailing two ones are the control cases with Ac = 0.25 × Ac,ref and Ac = 0.5 × Ac,ref , respectively. Then, the
increase of control amplitude is by 0.1 in the direction of the arrow.

1.7 times higher than the reference control amplitude. However, additional simulations indicate
that transition might even be induced immediately after the control strip in case of higher control
amplitudes than the maximum value used here. All in all, cooling increases the range of amplitude
for which a successful transition could be sustained whereas heating inversely impacts by reducing
the range of application. Besides, heating is found to be carrying higher influence on the flow in
terms of control amplitude range modification compared to cooling. As shown in the present study,
Sharma et al. [21] reported an earlier flow transition when the amplitude is doubled for an oblique
breakdown initiated solely by a pair of three-dimensional disturbances. However, more effective
dampening is pointed out by Kneer [23] in the presence of subharmonic disturbances in addition
to that of the fundamental one. Therefore, the control amplitude range of the streak-employing
strategy is found highly case dependent. Additionally, the effectiveness of the control streak mode
(0,4) should be investigated since it was also found beneficial in delaying transition for the identical
flow/geometry configuration with adiabatic wall [21]. Therefore, although the results are not
presented here, a parametric study with (0,4) has also been carried out for the same range of control
amplitudes. The study has been performed only for the adiabatic wall condition and the effective
range is found to be in the range of Ac,ref × 0.7 � Ac � Ac,ref × 1.2. It is seen that the low-level
threshold of (0,4) is lower than that of (0,5) whereas a significant difference is observed in terms of
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FIG. 17. Contours of U ∗ = (u − umin )/(umax − umin ) at y/δin = 0.517 in an instantaneous flow-field for
various control amplitudes in the adiabatic scenarios. From top-to-bottom, the first one designates AT, whereas
the trailing two ones are the control cases with Ac = 0.25 × Ac,ref and Ac = 0.5 × Ac,ref , respectively. Then the
increase of control amplitude is by 0.1 in the direction of the arrow.

their applicable range for successful transition control. A comparison in terms of (ρu)′max/(ρ∞u∞)
shows, 16.8–24.1% for (0,4) and 18–25.8% for (0,5), estimated at the control strip. The summary
of the effective range of control amplitudes for the studied scenarios are summarized in Table II.

TABLE II. The range of the control streaks amplitude for effective transition control.

Cases Tw/Taw Control mode Ac/Acref (%) (ρu)′max/(ρ∞u∞) (%)

A5C 1 (0,5) 90–170 18–25.8
A4C 1 (0,4) 70–120 16.8–24.1
C5C 0.95 (0,5) 70–170 15.8–26.5
H5C 1.05 (0,5) 120–170 20.8–25.2
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FIG. 18. Contours of U ∗ = (u − umin )/(umax − umin ) at y/δin = 0.517 in an instantaneous flow-field for
various control amplitudes in the heated scenarios. From top to bottom, the first one designates HT, whereas
the trailing two ones are the control cases with Ac = 0.25 × Ac,ref and Ac = 0.5 × Ac,ref , respectively. Then, the
increase of control amplitude is by 0.1 in the direction of the arrow.

IV. CONCLUSIONS

In an attempt to investigate the effectiveness of the use of velocity streaks in delaying boundary-
layer transition under the influence of wall heat transfer, perturbed supersonic flows at M∞ = 2 were
investigated by means of direct numerical simulations. The most-amplified disturbance, estimated
for the adiabatic wall condition, was retained for the isothermal walls. In doing so, the isolated
impact of weak heating/cooling could be evaluated rigorously. The control streaks are introduced
using an additional blowing/suction strip placed right in front of the perturbation strip. The steady
streaks (0,5), which was reported to be the most effective mode in delaying transition, were
assessed for a wide range of control amplitudes. Initially, a stabilizing/destabilizing influence of
cooling/heating was demonstrated in the absence of the control streaks, which is in accordance
with the linear-stability-theory for the still dominantly viscous instability. Then, the parametric
study illustrated the control amplitude range in postponing the transition onset. It was revealed
that amplitude-(ρu)′max/(ρ∞u∞) of 15.8–26.5%, 18–25.8%, and 20.8–25.2% are required for the
cooled, adiabatic, and heated walls, respectively, to sustain a successful transition delay. It is
therefore concluded that the accumulated influence of the control mode and the cooling increases the
successful application range of the control amplitude, whereas the range is narrowed in the presence
of weak heating.

Heating has no significant impact on the development of the control streaks, and the evolution of
the disturbances in terms of their profile shape in the boundary layer. However, it strongly influences
the growth rate of the disturbances, while dramatically reducing the application range of the
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once-excited control streaks, i.e., low control amplitudes are not as effective as for the adiabatic
or cooled cases. A second control strip, see Sharma et al. [21], might be useful for improving
the effective use of the streaks. Besides, an alternative steady control mode (0,4) is also tested
for the identical control amplitude range in adiabatic condition. It is found that the mode (0,4)
with (ρu)′max/(ρ∞u∞) of 16.8–24.1% is required to sustain a successful transition delay in the
domain. Thereby, higher effectiveness of (0,5) was unveiled. It should be emphasized that the
performed simulations in this study deal with a forced transition scenario at a single frequency
and wave number, while transition control in a realistic scenario would be affected by the broadband
freestream disturbances [7,12] and modified receptivity due to the introduction of the control devices
[22,23].

For a comprehensive understanding of the effective applicability of the presented flow control
mechanism, the research should be oriented to the investigation under strongly heated/cooled walls.
To do so, LST must be exploited in order to estimate the most amplified frequency/wave number
pair for each isothermal scenario. Besides, it is of our curiosity whether the control streaks might be
used as an active control mechanism. Practical applications mostly require the adaption of a control
system to the variations, slight or abrupt, in the environment. For that aim, a dynamic system should
be implemented in the solver which serves as a bridge between the control strip and the downstream
flow development. These two aspects would be significant extensions of the present work.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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