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In this paper, a detailed two-dimensional numerical study on the nonlinear behaviors
of electrohydrodynamic flows of Oldroyd-B viscoelastic dielectric liquid between two
coaxial cylinders is conducted. The liquid is subjected to strong unipolar injection from
inner annulus. The entire set of coupled equations, including the Navier-Stokes equations,
simplified Maxwell’s equations, and constitutive equations, is solved by the finite-volume
method. Detailed analyses of elastic effects on the flows are presented with corresponding
explanation. A bifurcation mode, namely supercritical bifurcation, has been found com-
paring to the subcritical bifurcation of Newtonian fluids. The linear stability criteria and
nonlinear ones corresponding to the onset and stop of the flow motion, respectively, are
presented under different elastic conditions. Comparing to Newtonian fluids, the linear
stability criteria do not change at low Weissenberg number and decline when Weissenberg
number is more than 1, and the nonlinear criteria are larger than that of Newtonian fluids. In
addition, viscoelastic fluids show more dynamic behaviors. For example, two charge-void
regions rotate in the domain because of azimuthal stress. Due to the first principal normal
stress, two parts of charge-void regions first rotate to each other and then are pushed apart.
These behaviors are explained in detail and are closely related to the elastic effects.
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I. INTRODUCTION

Electrohydrodynamics (EHD) [1,2] is a multidisciplinary phenomenon dealing with interactions
of electric field and hydrodynamics. The investigation of EHD in a dielectric liquid subjected to
unipolar injection of ions is one of classic problems in EHD, which is called electroconvection
mainly driven by Coulomb force and is a general phenomenon in such mediums same as Rayleigh-
Bénard convection in nonisothermal fluid [3], has received extensive attention in the past few
decades [4]. When the metallic electrodes are immersed in low-conductivity dielectric liquid, the
free charges are injected into the liquid at the interface between the liquid and the electrodes, due
to the difference in electric potential, which results in the motion of fluid [5–7]. EHD happens
widely in nature, and because of its easy controlling and fast response features, it plays a vital
role in many industrial domains, for example, EHD pumps [8], electrostatic precipitators [9], and
EHD plumes for heat-transfer enhancement [10]. Additionally, due to the strong coupling between
the hydrodynamic and electrical effects in liquids, it is usually extremely difficult to determinate
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the electric field and charge-density distribution, because the charges which drift under the electric
potential difference are transported by the fluid as well. In addition, there are abundant phenomena
in EHD, such as instability, fluid motion transition [11], and bifurcations [12].

Researchers used different kinds of methods to study EHD phenomena, like experiments [13] and
theoretical analysis [14], making people understand EHD better. Besides, another method, namely
direct numerical simulation (DNS) of EHD, can be used to provide richer information about the
whole physical fields. However, DNS on EHD has two main difficulties. The first difficulty is the
robust coupling among charges, electric field, and flow field. The second is the strong convection-
dominated characteristic of the charge transport equation [12]. The strong numerical diffusion
invalidates the method based on the finite difference presented by Castellanos and Atten [15]. Given
this matter, Chicón et al. [16] developed the particle-in-cell (PIC) method, and then Vázquez et al.
[17] put the forward flux-corrected transport (FCT) scheme comparing the PIC method with integral
form of the charge-density transport equation. After that, many other methods were developed,
such as the finite elements combined with the particle-in-cell method„ the finite elements and
the flux-corrected transport (FE-FCT) method, the discontinuous Galerkin finite-element method
[18,19], the total variation diminishing (TVD) scheme based on the finite-volume method [5,20],
and the lattice Boltzmann method [21,22]. These studies make it possible to carry out reliable and
accurate DNS on EHD, which has greatly promoted the development of EHD.

Plenty of numerical studies on electroconvection in different geometric configurations have
been carried out in recent decades, i.e., parallel plates [23,24], concentric annuli [25,26], and
spheres symmetrically placed electrodes [27]. There are two main features of EHD problems in
these symmetric models [7]:(1) a potentially unstable hydrostatic state implying a linear instability
bifurcation, and (2) the subcritical bifurcation nature. Atten and Moreau [28] firstly predicted
the onset of the flow motion in the parallel plates using the linear stability analysis approach. It
appears that when the voltage difference between two electrodes is beyond a critical value, the
fluid begins to move, and they found that this critical value is related to the injection strength and
irrelevant to the dimensionless mobility parameter. Later, the experiment proved this prediction
conducted by Lacroix and Atten [29]. And then, Atten and Lacroix [30] investigated the subcritical
bifurcation phenomenon in planar configuration under injection condition. In addition, there is
another associated phenomenon, the nonlinear stability criterion, which means the stop of the flow
motion again when the voltage drops to a critical value. This phenomenon is caused by two transport
mechanism of charges, i.e., drifted by the electric field and convection by the velocity of the field of
fluid, which also leads to the void regions of charges [31]. Then, the investigation in the experiment
conducted by Atten and Lacroix [13] verified the nonlinear phenomenon.

In recent years, there were large quantities of studies on EHD in annulus model given the two
features of the annulus EHD problems. One is that there is no lateral-wall effect which may affect the
rationality of the results, and the other is the wider application of this configuration in real life. Atten
and Elouadie [32] investigated eletroconvection in a dielectric liquid under strong unipolar injection
condition comparing with the main results in a planar layer of liquid and found that in wire-cylinder
geometry there is a quadratic law I ∝ V 2 for high applied voltages; however, for moderate applied
voltage, the current varies according to a power law I ∝ V α . Fernandes et al. [33,34] firstly studied
the various complex flows from the stable hydrostatic state to electroconvective state and finally
to chaotic state, finding that with the increasing electric Rayleigh number T (which represents
the voltage difference) the number of charged plumes and vortex pairs augments. What is more,
they found that the onset of electroconvection starts earlier for inner injection than outer injection;
however, the transition to chaotic is later. Thereafter they conducted a study on concentric circular
cylinders subjected to unipolar charge injection using the normal-mode instability analysis. Hassen
et al. [35] had a parametric study on electroconvection between coaxial cylinders considering
various parameters including the radius ratio, injection strength, and electric Rayleigh number. The
onset criterion of electroconvection was obtained by Wu et al. [7] using linear stability analysis
and direct numerical simulation, and these two results showed an excellent agreement. They mainly
focused on the influence of injection strength on the flow patterns. A detailed investigation into
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FIG. 1. Sketch of the physical domain and boundary conditions.

subcritical bifurcation and hysteresis loop phenomenon was launched in the finite-amplitude regime
between two coaxial cylinders using the finite-volume method and they found that the different
complex flow patterns transition is due to the competition of different modes through a simple model
analysis. Recently, Huang et al. [36,37] investigated the path from the weak steady convective state
to chaos in the annuli electroconvective system considering the influence of different radius ratio,
the eccentricity, and different mobility parameter.

The fluid types have a great influence on the flow pattern and bifurcation. Viscoelastic fluids
as typical non-Newtonians fluids show many unique new phenomena comparing with Newtonian
fluid, such as turbulent drag reduction effect [38], and rod climbing phenomenon [39,40], induced
by the first principal normal stress difference. There are also many important applications with
EHD effects, such as electrospinning [41] which uses electric fields to accelerate and stretch a
charged polymer jet. In addition, crude oil could be separated by electric fields from pure water.
However, scarce studies of EHD flow subjected to unipolar injection focus on viscoelastic fluids,
which largely limits the scope of problem. As more abundant flow patterns exist in viscoelastic
fluids, recently, Su [6] et al. researched the instability behaviors of viscoelastic fluids subjected to
unipolar injection, finding that supercritical bifurcation exits in free-boundary cavity which has no
counterpart in Newtonian fluids. Afterwards, Su [42] conducted further research on the effect of
nonlinearity of elasticity, finding that there are more abundant transition sequences than those of
Newtonian fluids. Li [43] et al. had a study on electro-osmotic flow with polymer additives in an
electrolyte liquid, which indicates an earlier transition from steady to unsteady convection due to
elasticity. Moreover, recently Chen [44] conducted a research of EHD conduction pumping of a
viscoelastic fluid, finding that elastic instability is more likely to occur in an Ohmic regime.

Due to two benefits of annulus discussed above, and owing to the rich rheological properties
of viscoelastic fluids, it would be natural to expand the electroconvection of Newtonian fluids to
viscoelastic fluids in annuli. In this paper, we mainly focus on investigating the effect of elasticity
on bifurcation behaviors and its influence on the flow. In addition, there is rare stability analysis
work about linear and nonlinear stability criteria of viscoelastic fluids under effect of electric field.
Thus, the following linear and nonlinear criteria gotten from numerical results in this paper could
serve as the reference of stability analysis. The remainder of this paper is organized as follows.
In Sec. II the physical problem, governing equations, boundary conditions, initial conditions, and
numerical methods are stated. Section III gives the results of model verification using lid-driven flow
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and hydrostatic solution of electroconvection. Then, results and discussions are presented. Finally,
a conclusion is drawn in Sec. IV.

II. PROBLEM FORMULATION

A. Physical problem and governing equations

The system under consideration is a layer of dielectric liquid bounded between two concentric
infinite cylinders of radius Ro and Ri, respectively (as shown in Fig. 1). We focus on the viscoelastic
fluids with constant physical properties such as density ρ0, dynamic viscosity η, permittivity ε, and
ion mobility K , which are assumed to be incompressible and perfectly insulating. The autonomously
and homogeneously unipolar inner injection is considered, which means that the charge density
injected from the emitter electrode is neither influenced by the electric field nor by the liquid motion
and always equals to q0. The inner emitter electrode is held at V0 while the outer collector electrode
is held at V1, and this electrical potential difference �V = V0 − V1 will induce a radial electric field
�E and charge injection into the bulk. And, here is the set of governing equations [5–7]:

∇ · −→
U = 0, (1)

ρ0

(
∂
−→
U

∂t
+ (

−→
U · ∇)

−→
U

)
= −∇p + ∇ · τ + −→

fe , (2)

∂q

∂t
+ ∇ · −→j = 0, (3)

−→
E = −∇V, (4)

�V = −q

ε
. (5)

Here,
−→
U ≡ [u, v] is the fluid velocity, �E ≡ [Ex, Ey] is the electric field vector, q is the

charge density, τ is the total extra stress tensor,
−→
fe is the density of the electric force, and �j is the

electrical current density. It is assumed that this quasielectrostatical fluid is nonconducting medium,
and also the diffusive processes of free charges could be neglected compared with the migration
and convection processes. It is worth noting that α is the nondimensional charge-diffusion number
and is typically in the range of 10–4 to 10–3 [45]. With this assumption the charge density could be
denoted as [46]

−→
j = q

−→
U + qK

−→
E . (6)

Additionally, the electric force could be expressed as [5]

−→
fe = q

−→
E − E2

2
∇ε + ∇

[
E2

2
ρ

∂ε

∂ρ

]
. (7)

Since the viscous dissipation and Joule heating are very small [46], we can consider the fluids
as being isothermal and homogeneous, so the dielectric force, namely the second term including in
the electric force vanishes, and we can include the third term, namely the electrostriction force, in
the pressure gradient term to simplify the momentum equation [5]. Because the fluid is viscoelastic,
the total extra stress tensor τ can be denoted as the sum of a polymer stress τp with a solvent stress
τs. In this paper, the rheology of the polymer is approximated by the Oldroyd-B constitutive model
in order to exclude the influences of other factors such as shear thinning [6]. Thus, the solvent

stress could be written as τs = ηs[∇ �U + (∇−→
U )

T
] and the polymer stress τp = ηp(C−I )/λ. Here,

ηs and ηp refer to the solvent dynamic viscosity and polymeric dynamic viscosity, respectively,
λ denotes the relaxation time of the polymers, and C is the conformation tensor, which has the
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same dimensionless form. In addition, the dynamic viscosity of the fluid could be expressed as
η = ηs + ηp, and the conformation tensor transport equation is

∂C
∂t

+ −→
U · ∇C = C · ∇−→

U + C · ∇−→
U T − 1

λ
[C − I]. (8)

It is particularly convenient to work with nondimensional equations for describing the problem
universally. Here, we introduce the interelectrode spacing L = (Ro − Ri ) for length normaliza-
tion, �V for electrical potential, ionic velocity scale K�V/L for velocity, q0 for charge density,
ρK2�V 2/L2 for pressure, L2/ K�V for time, and �V/L for electrical field, and the conformation
tensor is a nondimensional physical variable, which leads to the following sets of nondimensional
equations (for clarity, the superscript asterisk for nondimensional variables is omitted):

Continuity equation:

∇ · −→
U = 0. (9)

Momentum conservation equation:

∂
−→
U

∂t
+ (

−→
U · ∇)

−→
U = −∇p + β

T/M2
�

−→
U + 1 − β

Wi · T/M2
∇ · C + CM2q

−→
E . (10)

Poisson equation:

�V = −Cq. (11)

Electric potential equation:
−→
E = −∇V (12)

Charge transport equation:

∂q

∂t
+ ∇ · (q(

−→
U + −→

E )) = 0. (13)

Conformation transport equation:

∂C
∂t

+ −→
U · ∇C = C · ∇−→

U + C · ∇−→
U T − 1

Wi
[C − I]. (14)

From the above set of equations, there are several dimensionless numbers relevant to this
problem:

T = ε(V0 − V1)

ηK
,C = q0L2

ε(V0 − V1)
, M = 1

K

(
ε

ρ

)1/2

,Wi = λU0

L
, β = ηs

ηs + ηp
, (15)

where the electric Rayleigh number T represents the ratio of Coulomb and viscous forces, which
denotes the intensity of the dominated driving force; C is the dimensionless measure of the injection
level representing the charge injection intensity. According to the definition in Ref. [47], the injec-
tion level could be divided into three regimes from weak level to strong: weak (C < 0.2), medium
(0.2 < C < 5), and strong (C > 5). M is defined as the ratio between the so-called hydrodynamic
mobility and the true mobility, and it totally depends on the nature of the fluid and the ion; Wi
is Weissenberg number representing the ratio of relaxation time of the viscoelastic fluids to the
characteristic time of the flow; and β denotes the ratio of the solvent viscosity to the total viscosity.
In addition, we define the radius ratio � = Ri/Ro to describe this concentric annulus problem.

B. Boundary and initial conditions

The nondimensional computational domain is bounded within the annulus 0 � θ � 2π and
Ri � r � Ro. For both inner and outer electrodes, no-slip boundary conditions are applied. On
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TABLE I. Ae and Be coefficients of the hydrostatic solution. The bold values are to highlight the case under
consideration in this paper, η = 0.5.

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ae 1.009 1.099 1.193 1.302 1.439 1.622 1.886 2.325 3.309
Be −0.0022 −0.050 −0.169 −0.427 −0.979 −2.224 −5.409 −15.946 −80.890

the inner emitter electrode, V = V0 = 1 and q = q0 = 1 are set; on the outer collecting cylinder,
V and the normal gradient for q are set as zero. In addition, the conformation tensor components on
the boundary are obtained by linear extrapolation.

Since the whole set of equations is time dependent, initial conditions should be given. Generally,
we could start from the fluid with all variables being zero, the hydrostatic state or the steady state
gotten from previous simulations. The hydrostatic solution corresponds to the analytical solution in
the case where the fluid velocity is taken as zero, and it could be expressed as [46]

qs(r) = Ae[δ(r2 + Be)]−(1/2), (16)

where δ = +1 and −1 for the inner and outer injections, respectively. Ae and Be depend on the
radius ratio �, injection level C, and the injection direction. In this paper we just consider inner
injection, and Table I lists the values of Ae and Be when C = 10.

C. Numerical methods

It is worth noting that the hyperbolic nature of charge density and conformation tensor transport
equations make the problem more nonlinear, resulting in more difficulties in numerical simulation.
In this paper, the whole set of coupled partial differential equations [Eqs. (9)–(14)] is solved using
the finite-volume method in the open-source OPENFOAM® toolbox [48,49]. The whole domain
is discretized with uniform constructed grids consisting of nonorthogonal quadrilaterals. In the
discretization scheme, the second-order central difference scheme is used to discretized the diffusion
terms, and the second-order semi-implicit scheme is used to discretize the variables related with
the time. Additionally, the semi-implicit method for pressure-linked equations-consistent algorithm
[50] is adopted for the decoupling of velocity and pressure. Due to the hyperbolic nature of charge
density and conformation tensor transport equations, we pay special attention to the convective term
in both equations.

Because the diffusion term in the charge transport equation could be ignored, it becomes the
typical hyperbolic equation which is strong convection prevailed. To avoid the large numerical
diffusion from the low-order formats or nonphysical oscillations induced by higher-order formats,
we use the total variation diminishing scheme (TVD) [5] to deal with the convective term of
the charge transport equation. And, TVD was proved to be efficient in simulation of the charge
transport by Traoré and Pérez [5], which could capture the steep gradient of charge density and
avoid unphysical oscillations.

Considering the constitutional governing equation of conformation tensor, some numerical meth-
ods proposed by Pimenta and Alves [49] have been used to treat it because of its hyperbolic nature.
Firstly, given the coupling between the extra stress and velocity, a stress-velocity coupling method
(see Ref. [49] for details) is introduced to solve the problem which is the similar to pressure-velocity
problem. Secondly, in order to solve the high Weissenberg numbers (Wi) problem resulting from the
exponential growth of stresses with the increasing of Wi, we use the log-conformation representation
to transform the conformation tensor transport equation. By using the method, the symmetry and
positive definiteness of conformation tensor could be maintained, and it can also capture higher
stress gradients at a high Wi value by linearizing the exponential growth; for a detailed introduction
of log-conformation representation please refer to Refs. [51,52]. In addition, the convergent and
universally bounded interpolation scheme for the treatment of advection (CUBISTA) [53] is widely

053701-6



INSTABILITY OF ELECTROCONVECTION IN …

(a) (b)

FIG. 2. Comparison of velocity profiles in lid-driven cavity along the lines x = 0.5 and y = 0.75 at time
t = 8 for Wi = 2.0 and β = 0.5.

used in non-Newtonian problems for the conformation transport equation, so it is used to discretize
the convective term in conformation tensor transport equation.

III. RESULTS AND DISCUSSION

In this paper, we mainly focus on the strong injection case with C = 10 and M = 10, which
is always taken into consideration with parallel plates, concentric annuli, and spheres symmetri-
cally placed electrodes configuration. It could be approximately compared to space-charge limited
regime, which is defined as C � 1 [13] and usually adopted in experiments. We fix the radius ratio
� to 0.5 (namely, Ro = 2 and Ri = 1), and only consider the case that the injection is induced from
the inner electrodes. Viscoelastic fluids are considered and the value of β is fixed at 0.8. A detailed
examination of bifurcation processes, charge distributions, as well as flow patterns under different
elastic effects has been carried out. Notably, the results of Newtonian fluids under similar geometric
configuration were well presented in Ref. [7], which could serve as a reference for comparison.

A. Code and model verification

The correctness and precision of the solver adopted in this work are validated by separately
verifying the viscoelastic and electrical parts. First, consider a benchmark test of viscoelastic fluids
simulation, namely, the extensively studied problem about lid-driven cavity flow. The fluid in the
cavity is driven by the moving of upper lid, and we compare our results with those in Ref. [51]. The
case when Wi (≡ λU/H ) = 2, β = 0.5, and Re (≡ρUH/η) → 0, is computed. Figure 2 shows
the velocity profiles along the lines x = 0.5 and y = 0.75 (dimensionless length) at time t = 8. It
appears that our results are in good agreement with those in Ref. [51].

Secondly, in the validation of the electrical part, the strong injection of C = 10 and M = 10 in the
annulus model is studied. The according analytical solution of charge distribution in the hydrostatic
regime has been given in Eq. (16) and relevant parameters are presented in Table I. We consider
the concentric annulus when � = 0.5. The charge-density profiles are shown in Fig. 3 obtained
from different grid sizes of 300×120, 400×150, and 400×200. It is worth noting that the numerical
results computing from our codes are in great accordance with the analytical solutions even for the
coarsest grid of 300×120. In the remainder of the paper, fluid motion starts from the hydrostatic
state unless otherwise stated. In addition, in order to confirm the validity of the code of the electrical
part, the maximum velocities and the electrical Nusselt number (Ne is defined as the ratio of the
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����
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����

FIG. 3. Charge-density profile obtained in the hydrostatic regime under different grid sizes, computed
numerically and compared to the analytical solution.

total current Ie to the conductive current I0) have been given in Table II compared with the results
of Wu and Traoré [54] (the results given in Table 2 of their paper). It could be found that our results
show a great agreement with the results in their paper considering the currents. So, the electrical
module has been sufficiently proved.

B. Weakly elastic fluids

The weakly elastic effect with Wi = 0.1 is first selected to make a preliminary comparison with
the Newtonian fluids. According to the instability phenomenon under the condition with Newtonian
fluids, when the driving parameter is near the linear bifurcation criterion, the perturbations of
relevant physical quantity f follow the exponential law f = f0eσ t [5]. The growth rate σ is
positive above the instability threshold and negative below it, so we can get the linear criterion by
examining the growth rate. Moreover, it has been reported that the perturbations of electroconvection
in viscoelastic fluids still follow this exponential growth law [6]. In this paper, the maximum value
of the velocity vmax = −→

U max · −→e y is taken as the representative physical quantity. Figure 4 shows
the velocity profiles: log(vmax) versus t evolution processes with Wi = 0.1. It could be found that
near the critical value of T , the growth rate σ is a linear function of T . Thus, a linear fitting of the
curve σ (T ) is used to obtain the linear criterion, and Tc = 123.6 could be found when σ = 0. This
is in good accordance with the critical value of Newtonian fluids, which is 122.84 [7] theoretically
and 123.06 obtained by numerical study of Wu [7]. From the velocity profiles, it could be discovered
that the growth curves of velocity eventually tend to the same growth stage with the increasing of
T , because when T increases, the motion of fluid will be reinforced, and the nonlinear effect from
elasticity and fluid dynamics would have an influence on the first linear growth stage and result it
into one. Therefore, it is worth noting that under this parameter region the linear criterion of the

TABLE II. The maximum vertical velocity and the electric Nusselt number for various M for T = 190.

M 3 5 10 20 50

vmax (Present) 3.143 3.515 3.751 3.803 3.818
vmax (Wu et al.) 3.146 3.520 3.755 3.807 3.822
Ne (Present) 1.486 1.493 1.530 1.543 1.548
Ne (Wu et al.) 1.492 1.497 1.535 1.548 1.552
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�
FIG. 4. Temporal evolutions of the maximum velocity in the logarithmic coordinate, Wi = 0.1.

viscoelastic fluid is identical to that of Newtonian fluids, and it is the same as what Su [6] obtained
in the parallel plate model. It was pointed out by Larson [55] that a simple type of viscoelastic fluids
becomes Newtonian when the motion of fluid is weak and stable, which is in agreement with our
result.

Next, the bifurcation process under weakly elastic effect with Wi = 0.1 is examined. As shown
in Fig. 5, by increasing T , when T is below the linear criterion, the small perturbations of velocity
will be dissipated by the viscous effect and elastic effect which could be neglected under this weak
motion comparing with viscous torque, so the fluid remains static. When T increases to the critical
value, the Coulomb force acts like a torque to speed up the flow. To briefly introduce this process,
we assume a small perturbation of velocity in the computation domain. Considering a vortex in
the system, on the one side, the Coulomb force overcomes the effect of viscosity at these domains
where the flow direction is identical to the drift direction of free charges, and then the charge density
near this region increases inducing larger Coulomb force, while on the other side, the flow direction
is reversed, and the region void of charge will exist when the flow velocity is larger than the ion
drift velocity, which is a very important feature of electroconvection problems. In addition, the ion
drift exists all the time, so the flow velocity will be stable at a finite velocity value, which is another
characteristic feature of EHD, namely, subcritical bifurcation.

� �

FIG. 5. Hysteresis loop represented by the maximum velocity vmax, Wi = 0.1.
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(a) (b)

FIG. 6. Distributions of (a) charge density and (b) stream function and velocity field with T = 130,
Wi = 0.1.

As an example, the charge density and streamline distributions for T = 130 are presented in
Fig. 6. Differ from what Wu reported in Ref. [7], where the steady state could be of seven or eight
pairs of vortices through different development paths for Newtonian fluids. For viscoelastic fluids,
it is always of the eight-pairs steady flow pattern through the paths under the same parameters.
Then in Fig. 5, we gradually increase T , and it could be obviously found that with the increment
of T , the maximum velocity grows. As we reduce T from the result of T = 185, the fluid does
not get to rest when T is slightly below Tc. This is because the maximum convective velocity
is still larger than ion drift velocity, and a hysteresis loop is traced. The same phenomenon that
the charge-void regions shrink when we incessantly decrease T compared with Newtonian fluids
happens considering viscoelastic fluids. However, when T is close to 92.8, the fluid motion stops
suddenly, which corresponds to the nonlinear criterion. The nonlinear criterion value is slightly
higher than that of Newtonian fluids [7], and this is identical to the trend gotten by Su [6] which
is also slightly higher in parallel plates model. With the decreasing of T , the flow velocity goes
down, and then the flow returns to rest and remains stable at hydrostatic state. Due to the effect of
elastic stress, the flow velocity gets slower than that of Newtonian fluids under the same situation,
as shown in Fig. 7. It can be seen that in the middle of the charge-void regions, the first principal
normal stress is positive, which means the elastic stress in the radial direction is dominant, and it
suppresses the motion of the fluid in the radial direction. Thus, when T = 92.8, the flow returns to
rest, while under the parameters the elastic effect is weak, resulting in a slightly larger nonlinear
criterion.

C. Moderately elastic fluids

When the elastic effect is weak, the corresponding bifurcation process is similar to that of
Newtonian fluids. However, when the elastic effect becomes stronger, the bifurcation process is
quite different. In this subsection, we have a detailed examination of flow bifurcation of moderate
elastic effect. In these moderate elastic fluids, the exponential growth region has been submerged
by oscillation. Therefore, dichotomy is used to confirm the linear stability criteria. When the value
of Wi increases to 0.4, it could be observed in Fig. 8 that the maximum vertical velocity increases
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FIG. 7. Distributions of first principal normal stress with T = 130, Wi = 0.1. Note: we show the contour
line of charge density where q � 0.05, which represents the charge-void regions.

continuously with the growth of T at first, which means the supercritical bifurcation happens at
first, and the flow stays stable in this small region (from T = 123.6 to T = 125.3). The typical
charge distribution with its stream function in this region is presented in the inset of Fig. 8, where it
could be discovered that the charge-void regions are not formed yet, because in the small region the
flow is weak, and the convection of charge is weaker than the drift effect. It is mainly because the
polymeric stress torque could help the electrical torque compete with viscous torque, which makes
these solutions (namely 0 <

−→
U < K �E ) possible. Moreover, the corresponding eight pairs of vortices

could be discovered through the inset.
By further increasing the value of T , the velocity drastically increases and jumps into a larger

branch with the flow unstable at T = 125.3 as a secondary bifurcation, and each velocity point in
Fig. 8 is time-averaged value when T is bigger than 125.3. In order to describe the corresponding

�

�
�

FIG. 8. Bifurcation diagram for Wi = 0.4 represented by the maximum velocity vmax.
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(a) (b)

FIG. 9. Distributions of charge density and stream function with temporal evolution of vmax for Wi = 0.4
(a) T = 130 at t = 810 and (b) T = 160 at t = 250.

flow state more clearly, the time evolutions of vmax as well as charge-density distributions with
stream function at different times for typical cases with T = 130 and T = 160 have been presented
in Fig. 9. It could be found from Fig. 9(a) that an oscillatory flow with eight pairs of vortices
is at T = 130, which corresponds to eight asymmetric charge-void regions swinging within a
small domain, and the frequency spectrum analysis (see Fig. 14) of the temporal evolution of its
corresponding vmax shows that the flow is periodic. Further increasing the value of T , as shown in
Fig. 9(b), we observe that a large charge-void region splits into two little ones when T = 160. It is
pretty different from Newtonian fluids that are totally stable state under this parameter. In addition,
the change of velocity no longer shows the law of periodic oscillation, but tends to chaos. Due to
the fact, we think that elasticity has significant influence on the stability of fluids. For larger values
of T , the pairs of vortices increase and change within a certain amount, and the flow changes into
completely random state, which is beyond the scope of this paper.
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(a) (b)

FIG. 10. (a) Temporal evolution of vmax and (b) distributions of charge density with stream function for
T = 115 when Wi = 0.4.

When T decreases, the hysteresis loop still remains, as shown in Fig. 8. It is worth noting that this
bifurcation process is similar to what Su [6] reported in cavity with rigid walls cases, and it could be
found that the stable-state region is much larger than ours, while this stable region is not permissible
for annuli with Newtonian fluids. By further reducing T , comparing with the results in Ref. [6], it
shows abundant flow patterns rather than returning to steady state without lateral-wall effect, and
the nonlinear criterion is Tf = 109.0. Since the flow shows the subcritical bifurcation nature, it is
of great significance to investigate the flow behavior under the linear criterion. It should be noted
that when we reduce T from 130 to 120, eight pairs of oscillatory vortices with corresponding eight
charge-void regions are found, which is similar to the result of T = 130, as shown in Fig. 9(a). This
means that the hysteresis loop nature does not change yet and the fluid motion does not return to
steady state again comparing to the fluid with low Weissenberg number. This behavior maintains
until T = 115. When T decreases to 115, only seven pairs of oscillatory vortices remain, as shown
in Fig. 10 with according temporal evolution of vmax. Additionally, the corresponding seven charge-
void regions still swing within a small domain. As T is further reduced to T = 112, only four
charge-void regions remain in the domain, and as the number of charge-void regions decreases, the
swinging amplitude is enlarged for each one combining with the development and vanishment of
pairs of vortexes, as shown in Fig. 11. Then, continuing to reduce the value of T to 110, the flow
field is switched to two charge-void regions rotating in the domain as can be seen in Fig. 12.

Here, we will give the corresponding explanation on above behaviors. When T decreases, the
number of charge-void regions decreases, and this is because in this process, the electric effect
is weakened, and the elastic effect is suppressed at the same time, resulting in the reduction of
convection velocity. This is similar to the convection in parallel plates with large aspect ratios where
the electric torque competes with the viscous torque, and due to the decrease of the convection
velocity, the charge-void regions decline. Considering the rod-climbing phenomenon [40], the
mainstream is azimuthal direction, and it induces the radial stress, namely, the volume force induced
by the first principal normal stress. Comparing to the rod-climbing phenomenon, when T = 112,
the mainstream of this motion is in the radial direction. Thus, when the left two charge-void regions
rotate towards the two right ones (a, b towards c, d), due to the high value of the first principal
stress between the left and right parts of charge-void regions (in the middle of a, b and c, d),
as shown in Fig. 13(a), it induces the azimuthal stress which is perpendicular to the mainstream
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(a)

(b)

t1 t2 t3

FIG. 11. (a) Temporal evolution of vmax and (b) distributions of charge density with stream function for
T = 112 when Wi = 0.4. Note: The charge-void regions move following the direction of the blue arrow at first
and turn back following the red arrow.

direction to push the adjacent charge void regions apart. Similar description has been used to explain
pushing heat plumes apart [56]. It is worth noting that this rotating phenomenon when T = 110 was
found by Huang et al. [36] in eccentric annuli. It is explained that the eccentricity leads to the
asymmetry of electric field, resulting in a difference of electrical torque that induces the rotating
flow. Nevertheless, considering our symmetric model, as shown in Fig. 13(b), the azimuthal stress
sets the flow into anticlockwise rotating represented by positive value in the image, and equals to
3.765 in nondimensional value by summing up the elastic torque, which means that it induces the
flow rotate anticlockwise.

To further explain the flow behaviors in this system, the trajectory of the velocity at sample point
is shown in Fig. 14, and the sample point A is at (1.5, 0). Through Fig. 14(a), a closed loop is
displayed, and it could be found that there is one main peak frequency, which shows a characteristic
of periodic flow. The fundamental frequency at T = 130 is f = 0.0804, while when T = 115 and
112, it could be discovered through temporal velocity images that they are quasiperiodic flows, and
the flow patterns which change from swinging in the little regions to rotating are different from
those of T = 130. Note that when T = 110, the flow transforms to periodic state with fundamental
frequency of f = 0.0053; this result is not presented here for space limitations. Eventually, the
flow returns to rest at T = 109.0, which is much higher than the nonlinear criterion for the case of
Wi = 0.1. Moreover, as the nonlinear criterion increases with Wi while the linear criterion stays the
same, it indicates that the nonlinear criterion will coincide with the linear criterion by increasing
Wi, which will be presented later when Wi = 0.7.
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(a)

(b)

t1 t2 t3 t4

FIG. 12. (a) Temporal evolution of vmax and (b) distributions of charge density with stream function for
T = 110 when Wi = 0.4. Note: The charge-void regions rotate following the direction of the blue arrow.

Next, we examine the solutions when Wi = 0.7, as shown in Fig. 15; the supercritical bifurcation
happens with stable state in the low-velocity branch at Tc = 123.6 as well. With the increasing of
T , the stable state is maintained until T = 126.3. Then, the flow becomes unstable at T = 126.3. It
is intriguing that the hysteresis loop vanishes and the velocity decreases along the same path when
T is reduced from the upper branch, which is quite different from rigid-wall cases of Newtonian
fluids found by Wu [4] and viscoelastic fluids reported by Su [6]. In the inset of Fig. 15, the typical
charge distribution with stream function of stable state in the stable region is given, and eight pairs
of vortices indicated by the charge distribution can be observed. Similarly, the charge-void regions
are formed on the upper branch. The Fourier frequency spectrum of velocity at sample point A of
T = 135 is also shown in the inset of Fig. 15. It can be seen from the inset that the flow is very
chaotic. In addition, after increasing T to the unstable branch, the charge distributions are similar to
the random state at T = 160 for Wi = 0.4 [see Fig. 9(b)], while this phenomenon does not happen
at the same low driving parameter for Newtonian fluids [7]. This elastic instability [57] phenomenon
at low Reynolds number happens widely in viscoelastic fluids, and could be applied in enhancement
of mass transfer.

D. Strongly elastic fluids

In this subsection, the strongly elastic fluids with Wi � 1 are considered. First, compared with
Wi = 0.4 and 0.7, when the value of Wi number is increased to 1, the bifurcation process has turned
back into subcritical bifurcation again, as shown in Fig. 16(a). It is worth noting that each point in
this process is unstable and we get corresponding time-averaged value, which is quite different from
the case of Newtonian fluid or fluid with low Wi. It could be found that the maximum velocity of
different T values is also much lower than that of Newtonian fluids or lower Weissenberg numbers.
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FIG. 13. (a) Distributions of first principal normal stress for T = 112 and (b) elastic stress in the azimuthal
direction for T = 110 when Wi = 0.4. Note: we show the contour line of charge density where q � 0.05,
which we consider as charge-void regions.

This means that the strong elasticity causes the suppression of flow motion, though the flow is quite
unstable. Figure 16(b) shows that the velocity experiences an oscillating growing process at the
beginning of its evolution, and finally turns into a totally irregular oscillation.

Once the flow is set into motion above the onset criterion, it is in a quite random state with seven
pairs of oscillatory vortices with corresponding seven charge-void regions; thus, we focus on the
lower values of T . We reduce the T value from the former state, and find that the flow motions are
very similar to each other when T is below Tc. Additionally, we show the result of T = 115 in Fig. 17
as an example. It appears that the result is a periodic state observing from the temporal evolution of
vmax in Fig. 17(a). As shown in Fig. 17(b), there are still seven charge-void regions. From t1 to t4 the
charge-void regions rotate anticlockwise. In addition, these charge-void regions vanish from t1 to
t2, and are formed again from t2 to t3. Moreover, from t3 to t4 the charge-void regions vanish again.

(a) (b)

FIG. 14. (a) Phase-space trajectory of the velocity at sample point A and (b) Fourier frequency spectrum
of velocity at sample point A for T = 130 when Wi = 0.4.
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FIG. 15. Bifurcation diagram for Wi = 0.7 represented by the maximum velocity vmax.

This whole process runs in circle. This rotating phenomenon could be attributed to the azimuthal
stress, and the vanishment of charge-void regions is because the convection of charges is weaker
than the drift in the according regions.

When the Weissenberg number is larger, ranging from 1 to 5, the system is still of subcritical
bifurcation. Due to the fact that the flow patterns vary significantly in these large Wi values, the flow
already tends to random state when Wi = 1, and considering space limitations we mainly focus on
the values of Tc and Tf obtained from our numerical simulations for different values of Wi, which
are summarized in Table III. Until today, there is no linear or nonlinear stability analysis about EHD
problems of viscoelastic fluids in annuli. We give the corresponding numerical criteria. First, it is
shown that when Wi changes from 1 to 2, the two criteria decrease greatly. When Wi � 2, with the
increase of Wi the linear and nonlinear criteria decrease slightly. For example, the nonlinear criterion
is Tf = 105.1 for Wi = 2, and Tf = 103.1 for Wi = 5, showing a difference of 1.9%. This is the
maximum difference for Tf that we observed when Wi � 2. The results reveal that the dependence
of Tc and Tf on Wi becomes weak with the increase of Wi, and finally they are expected to tend to
constants.

� �

(a) (b)

FIG. 16. (a) Bifurcation diagram for Wi = 1 and (b) temporal evolution of vmax for T = 125.
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(a)

(b)

t1 t2 t3 t4

FIG. 17. (a) Temporal evolution of vmax and (b) distributions of charge density and stream function for
T = 115, Wi = 1.

E. Variation of onset bifurcation

In order to demonstrate the onset bifurcation more clearly, a flow chart explicitly showing the
change of the system due to Wi has been given in Fig. 18. The green spot means the fluid stays
in the hydrostatic state under one certain case. The blue triangle means the charge-void regions
do not exist but the system already starts to move. The orange rhombus means the charge-void
regions exist in the system. Moreover, the symbol line approximately shows the linear criteria and
the symbols on the line show the bifurcation types for certain Wi. For example, when Wi = 0.4,
the bifurcation type changes to supercritical bifurcation. This is because the system could maintain
the state without charge-void regions in a range of T after the system starts to move. It is noted
that a small range of T (<125) with no charge-void regions is observed but in this range the fluid
starts to flow when Wi = 0.8 and 0.9, which is the characteristic of supercritical bifurcation. When
Wi � 1, the system shows a characteristic of subcritical bifurcation, which means the charge-void
regions have been formed after the fluids start to move. What is more, in our work all the changes
of system are confirmed by numerical results. Thus, a quantity of computations and analyses should
be done for each Wi. Admittedly, a more detailed flow chart could more clearly show the change of
the system due to Wi, but it is hard due to the limited computations and analyses.

TABLE III. Dependence of the linear and nonlinear stability criteria on the Weissenberg number Wi.

Weissenberg number, Wi 1 2 3 4 5

Linear (Tc) 122.4 110.2 106.8 104.8 104.0
Nonlinear (Tf ) 114.0 105.1 105.2 104.1 103.1
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FIG. 18. Flow chart explicitly showing the change of system due to Wi.

IV. CONCLUSIONS

In this paper, the electroconvection in a dielectric viscoelastic liquid between two-dimensional
annuli subjected to strong unipolar injection of ions from inner annulus has been investigated in
detail. The flow patterns and the bifurcation diagrams have been shown under various Weissenberg
numbers.

The results demonstrate that the elastic effect plays an important role in instability modes. It
also shows that the bifurcation types of onset and flow patterns will change significantly with the
Weissenberg number. When Wi = 0.1, the system exhibits subcritical bifurcation, which is the same
as the electroconvection of Newtonian fluids, and the linear criterion is the same as well, while the
corresponding nonlinear criterion is larger due to the radially dominant first principal normal stress.
When Wi = 0.4, the supercritical bifurcation happens with a stable state at Tc = 123.6, and the
subcritical bifurcation continues to happen at T = 125.3. When Wi = 0.7, the system changes to
supercritical bifurcation at the same linear criterion, Tc = 123.6. At this time, the hysteresis loop
vanishes and the velocity traces back to the former path when T is decreased, which is not observed
in classical electroconvection of Newtonian fluids in annuli. When Wi � 1, it has turned back to
subcritical bifurcation, and the fluid motion is of unstable state after the flow begins. In addition,
with the increase of Wi, the linear stability and nonlinear stability criteria of the system begin to
decline. However, the nonlinear stability criteria of viscoelastic liquid in annuli are still larger than
that of Newtonian fluids.

On the other hand, the flow patterns are quite different from those of Newtonian fluids. When
Wi is below 0.4, it is shown that the flow patterns are very similar to those of Newtonian fluids.
Through different development paths, it appears that viscoelastic fluids always show eight charge-
void regions in the domain after the onset of flow motion under the cases considered in this paper,
which is quite different from Newtonian fluids with seven or eight charge-void regions, while with
the increasing of Wi, the flow patterns of charge-void regions change drastically because of the
special rheological nature of viscoelastic fluids, and various flow modes caused by azimuthal stress,
first principal normal stress, etc. could be found, namely rotation, swinging, splitting, and vanishing.
What is more, when Wi is higher, the behaviors of flow motion are the combination of these four
fundamental modes. In addition, it appears that the flow will change into unstable state earlier than
Newtonian fluids under the same conditions.
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In conclusion, the elastic effect leads to instability patterns and richer dynamical behaviors in
electroconvection, which does not exist in Newtonian fluids. On the one hand, the bifurcation types
are more abundant with different linear and nonlinear criteria. On the other hand, the flows are prone
to rotating due to azimuthal stress. Moreover, the elasticity promotes the transition from the steady
state to unsteady convection under the considered conditions. Our numerical results may serve as a
reference for the upcoming linear stability analysis and weakly nonlinear stability analysis. In the
future work, we will investigate the effects of the radius ratio and viscosity ratio on the bifurcation
behaviors and flow patterns.
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