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A detailed numerical investigation of pattern selection for thermocapillary flow in
rectangular containers in microgravity is presented. These dynamics are studied for liquid
n-octadecane, an alkane with high Prandtl number (Pr = 52.53), due to its relevance to
recent microgravity experiments. Pattern selection is analyzed in terms of the aspect ratio,
�, and the applied Marangoni number, Ma. In short containers, the bifurcation picture is
characterized by a transition from steady thermocapillary flow to a standing wave (SW)
oscillatory mode as Ma is varied. This transition takes the form of a primary subcritical
Hopf bifurcation accompanied by a secondary saddle node; these two bifurcations delimit
a region of bistability. In large containers, the dynamics is characterized by a supercritical
Hopf bifurcation that marks the transition from steady flow to a traveling wave (TW)
mode. The critical Ma for this transition increases with �. In intermediate containers, a
complex pattern selection scenario is found, where both steady and oscillatory convection,
in the form of either TWs or SWs, can appear depending on � and Ma. Finally, we
apply this bifurcation analysis to help explain recent results on thermocapillary flows
during the melting of phase change materials in microgravity [Salgado Sánchez et al.,
Int. J. Heat Mass Transf. 163, 120478 (2020); Salgado Sánchez et al., J. Fluid Mech. 908,
A20 (2021)]. The temporal evolution of the phase change is characterized by an effective
� and Ma in the liquid phase. We find very good agreement between the flow transitions
observed during melting and those predicted for the equivalent rectangular containers over
the explored range of 1.5 � � � 16.

DOI: 10.1103/PhysRevFluids.7.053502

I. INTRODUCTION

Thermocapillary flows have attracted sustained interest from the scientific community due to
their relevance in many important technological processes such as crystal growth [1–3], combustion
[4,5] and welding [6–8], and in other phenomena like the migration of bubbles and the spreading
of drops [9–12]. During the growth (solidification) of crystals, in particular, there is now a general
consensus that flows driven by the thermocapillary effect can interact with the solidification front,
resulting in complex dynamics that critically affect crystal quality. Such analyses have focused on
two fundamental geometries, cylindrical liquid bridges, and rectangular containers, as models of the
floating-zone and the open-boat techniques, respectively.

In rectangular containers, the streamwise aspect ratio � is the key parameter that selects the
character of the flow [13]. In short containers with � ∼ O(1), the flow is typically dominated by
a single vortex. One of the first numerical investigations of this limit was carried out by Zebib
et al. [14], who analyzed the thermocapillary flow in a square cavity in the absence of natural
convection. They not only clarified the single-vortex flow structure, but also examined the scaling
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of the boundary layers and the free-surface deformations at leading order; these results were later
extended by Carpenter and Homsy [15]. The numerical work of Peltier and Biringen [16] was
the first to show oscillatory behavior in a two-dimensional rectangular domain with � � 2.3 for
a moderate Prandtl number (Pr) of 6.8. Their results indicate that the heated lateral boundaries have
a strong stabilizing effect on the onset of two-dimensional oscillations.

In the case of large containers (� � 1), the basic steady solution is the return flow state,
obtained by Sen and Davis [17] using asymptotic techniques; the validity of this solution was
later checked against numerical simulations in large but finite containers [18]. Motivated by the
seminal experiments of Schwabe and Scharmann [2] and Chub and Wuest [19], who observed
oscillatory thermocapillary flows for the first time, Smith and Davis [20] analyzed the stability of the
return flow solution using linear theory and demonstrated the existence of oscillatory oblique (i.e.,
three-dimensional) hydrothermal waves propagating from the cold side of the cavity. For liquids of
high Pr, these hydrothermal waves were shown to be (nearly) two-dimensional and supported by
vertical gradients in the liquid domain [21]. The return flow, however, can become unstable prior to
the onset of hydrothermal waves. Depending on parameters, a sequence of steady corotating vortices
may penetrate into the interior from the walls [22,23]. A more general stability analysis of the return
flow state was conducted by Priede and Gerbeth [24], who considered both absolute and convective
instabilities and showed that the return flow can become unstable (globally) to two-dimensional
corotating vortices.

There has been continued interest (see, e.g., [13,25] and references therein) in thermocapillary
flows since these early pioneering investigations. However, only a handful of theoretical studies
(that the authors are aware of) have considered the coupling between thermocapillary flows and
the dynamic boundary conditions generated by the moving solid/liquid front during melting or
solidification in microgravity. The first systematic attempt was the recent work of Salgado Sánchez
et al. [26], which analyzed the thermocapillary flows that appear in the liquid phase during
melting from the complementary perspectives of pattern formation and fluid mechanics. Various
regimes depending on the applied Marangoni number (Ma) and � were identified in terms of the
bifurcations separating them. Both steady and oscillatory modes—either having the appearance of
traveling or (approximately) standing waves—were found. The critical boundaries between them
were determined and discussed in terms of the effective aspect ratio of the liquid domain. In the
large � limit, the work of Lappa [3] on the formation of hydrothermal waves in a large container
during the solidification of succilonitrile is also relevant.

Although not directly focused on aspects of pattern formation, the recent numerical work of
Madruga and Mendoza [27,28] on thermocapillary flows was the first to suggest the positive effect of
thermocapillary convection on heat transport during the melting of phase change materials (PCMs)
in microgravity. These predictions were then confirmed by the parabolic flight experiments of
Ezquerro et al. [29,30], which observed for the first time the melting of a PCM (n-octadecane)
in rectangular containers with a free surface. Salgado Sánchez et al. [31] complemented these
results by experimentally and numerically examining the effect of the container aspect ratio for
� ∈ [1, 1.66], i.e., near the � ∼ O(1) limit. The work of Salgado Sánchez et al. [32] extended these
results to � � 1 and also investigated the transitional behavior at intermediate aspect ratios. It was
seen that, for large containers, the thermocapillary effect can enhance heat transport by up to a factor
of 20, depending on Ma. For short containers, the enhancement factor was on the order of 5 when
oscillatory flow was present. As noted above, only a few theoretical studies (see, e.g., [33–36] and
references therein) considered the influence of thermocapillary flow on phase changes.

Recent interest in the effect of thermocapillary flow on PCM performance in microgravity is
motivated by the special and demanding conditions of space missions, where significant unwanted
temperature variations can result from varying radiation exposure and the waste heat generated by
onboard systems. PCMs are attractive for their low maintenance and simplicity, and their ability
to store and release large amounts of energy near the phase transition temperature TM . In ordinary
use (on Earth) they help control temperatures and improve performance in a wide range of systems
including air conditioning, electronics, manufacturing, food storage, construction, and solar energy.
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Among the range of possible materials for PCM devices in space applications, organic PCMs like
alkanes are particularly appealing due to their stability and convenient operating temperatures. Their
effectiveness can be limited, however, by low thermal conductivity and the resulting lag in response
time.

Several strategies have been pursued to reduce the response time of PCM devices. For example,
one can modify the effective thermal conductivity through the addition of more conductive material
[37–41]. However, with the exception of nano-enhanced PCMs using dispersed nanoparticles
[42,43], this approach requires increased mass and/or volume, which is of particular concern in
space missions. Alternatively, convective flows in the liquid phase can significantly enhance the
performance of PCMs, even without modifying conductivity. While buoyancy-driven convection
can be exploited on ground [44–49], the thermocapillary effect stands out as the only simple
alternative in microgravity [50–54]. If the PCM design incorporates a free surface, the temperature
gradient inherent to its operation induces variations in surface tension that drive convective flow.
Furthermore, the presence of the gas layer helps alleviate the problem of disruptive pressure
changes (and related bubbles/voids) associated with the thermal expansion of the material during
its melting/solidification.

As a specific motivation, we note that the potential for thermocapillary flows to improve
the performance of PCM devices in space applications will be experimentally evaluated by the
Marangoni Phase Change Materials (MarPCM) project [55] during a planned series of microgravity
experiments on board the International Space Station. These experiments will investigate cuboidal
and cylindrical configurations with a free (thermocapillary) surface during complete melting and
solidification cycles of the alkane n-octadecane, as well as a nano-enhanced material. The detailed
analysis provided here of pattern selection in rectangular containers of liquid n-octadecane in
microgravity is an important part of the effort to predict and explain the dynamics that are expected
to be observed experimentally.

The manuscript is structured as follows. In Sec. II the model describing thermocapillary flow in
a rectangular container is described, with emphasis on the governing dimensionless parameters, the
numerical implementation and the approach used to conduct the bifurcation analysis of the system.
In Sec. III the pattern selection results are summarized with a stability map in terms of � and
Ma. This is complemented by bifurcation diagrams, spectrograms, and a detailed analysis of the
flow for selected values of � that are representative of short, large, and intermediate containers in
Secs. III A, III B, and III C, respectively. The results are then used in Sec. IV to explain the dynamics
observed during the melting of n-octadecane in microgravity. Here the formulation used to resolve
the phase change is revised, and specific cases are analyzed in terms of an effective Ma and �. Final
conclusions are given in Sec. V.

II. MATHEMATICAL FORMULATION

We consider an open two-dimensional rectangular container of liquid that is subjected to a
temperature difference �T applied at opposite lateral walls. Along the upper boundary, which is
assumed flat and adiabatic, the applied temperatures induce gradients in surface tension that drive
thermocapillary flow.

A. Governing equations and boundary conditions

The Navier-Stokes equations for laminar and incompressible flow [56] are used to describe the
conservation of mass, momentum and energy in the fluid:

∇ · u = 0, (1a)

ρ

[
∂u
∂t

+ (u · ∇) u
]

= −∇p + ∇(μ∇u), (1b)

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇(k ∇T ), (1c)
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where u, p, and T are the velocity, pressure and temperature fields, and ρ, μ, cp, and k refer to the
liquid density, dynamic viscosity, heat capacity at constant pressure, and thermal conductivity.

The thermocapillary effect is considered in the linear approximation, where the interfacial tension
σ depends on temperature as

σ = σ0 − γ (T − T0). (2)

Here the thermocapillary coefficient γ = |∂σ/∂T | characterizes the variation of σ with respect to
the reference value σ0 at temperature T0. This variation in σ provides the driving force for convection
by pulling the liquid along the surface from regions of lower to higher surface tension.

As the temperature gradient at the open boundary generates thermocapillary convection, there
is a balance between pressure, viscous stresses, and surface tension. For simplicity, we assume a
contact angle of β = π/2 and a perfectly flat interface. Thus, the only dependence on σ is through
the thermocapillary coefficient and the balance simplifies to

μ∇nut = −γ ∇t T, (3)

where the subscripts n and t refer to normal and tangential components, respectively.
The remaining boundary conditions for T and u are as follows:
(1) Along the left (x = 0) and right (x = L) lateral walls, isothermal and no-slip conditions

hold:

T = T0 + �T (at x = 0), T = T0 (at x = L); u = 0. (4)

(2) Along the bottom wall (y = 0), adiabatic and no-slip conditions are applied:

∇nT = 0; u = 0. (5)

(3) Along the surface (y = H), the balance of Eq. (3) between viscous and thermocapillary
stress is combined with adiabatic temperature and slip velocity conditions:

∇nT = 0; un = 0. (6)

These boundary conditions are indicated in Fig. 1; the use of perfectly adiabatic boundaries is
consistent with previous analyses (see, e.g., Sen and Davis [17]).

B. Dimensionless parameters

We rescale length with L, time with L2/α, where α = k/(ρcp) is the liquid thermal diffusivity,
and temperature with �T :

(̂x, τ, � ) =
( x

L
, t

α

L2
,

T − T0

�T

)
.

The dynamics of Eqs. (1)–(6) depend on the Marangoni number

Ma = γ L�T

μα
, (7)

which quantifies the relative importance for heat transport of the thermocapillary effect compared
to thermal diffusion, the Prandtl number

Pr = μ

ρα
, (8)

which is the ratio between the diffusion of momentum and heat, and the container aspect ratio

� = L

H
, (9)

which characterizes the geometry.
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T
=

T
M

,
u

=
0

H

L
T

=
T

M
+

Δ
T

,
u

=
0 T1 T2 T3

∇nT = 0, u = 0

∇nT = 0, μ∇nut = −γ∇tT, un = 0

FIG. 1. Sketch of the two-dimensional numerical model considered: an open rectangular container of
length L and height H holding liquid n-octadecane (Pr = 52.53) subjected to isothermal conditions along its
lateral walls and adiabatic ones at the top and bottom boundaries. The temperatures T1, T2, and T3 are measured
at the indicated points, which are a distance 2H/3 up from the bottom and separated from the left wall by L/10,
L/2, and 9L/10, respectively.

We resolve the dynamics of liquid n-octadecane because of its relevance to upcoming micro-
gravity experiments [55] and to recent work on the effect of thermocapillary flows during melting
[26,29–32]. The relevant physical properties of this alkane are summarized in Table I, while the
melting temperature TM is taken as the reference value T0.

Previous analytical studies of thermocapillary flows in rectangular containers [17,18] found that
interface deformation had a negligible effect on the qualitative aspects of the flow structure, which
is the focus of the present work. Furthermore, experimental [57] and numerical [58] analyses of
liquid bridges have reported that the free surface deformation caused by thermocapillary flow is
proportional to the capillary number

Ca = γ�T

σ0
. (10)

For n-octadecane, with a surface tension value of approximately σ0 � 27 mN/m [59] at its melting
temperature, Ca � 0.12 and the free surface deformation is expected to be on the order of microns
[57].

TABLE I. Physical properties of liquid n-octadecane, reproduced from Ref. [31].

Melting temperature, TM 28 ◦C
Density, ρ 780 kg/m3

Heat capacity at constant pressure, cp 2196 J/(kg K)
Thermal conductivity, k 0.15 W/(m K)
Dynamic viscosity, μ 3.54 × 10−3 Pa s
Thermocapillary coefficient, γ 8.44 × 10−5 N/(m K)
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TABLE II. Nondimensional parameters explored, corresponding to a temperature difference �T ∈
(0, 40] K, container height H ∈ [1.125, 15] mm, and the properties of n-octadecane.

Ma � Ca Pr

(0, 248 298] (1, 22.8] (0, 0.12] 52.53

The assumption of two-dimensional dynamics is justified to some extent by the high Prandtl
number (Pr = 52.53) of n-octadecane, which was shown to lead to essentially two-dimensional
thermocapillary flows [13,16,20]. We focus here on this choice of PCM and a range of temperatures
satisfying �T � 40 K, which is the maximum applied temperature difference planned for the
MarPCM experiments [55]. Fluids with larger Pr, such as high viscosity silicone oils, would require
temperature differences well above that range to observe transitions in the flow dynamics. Fluids
with lower Pr, on the other hand, are associated with larger thermal diffusivity and, thus, diminished
importance for thermocapillary effects.

C. Numerical implementation

COMSOL Multiphysics is used to solve the governing equations (1) with the set of boundary
conditions (3)–(6) in dimensional variables using the finite element method.

The initial condition for the temperature field is T = TM so that there is no driving force for fluid
motion and, thus, the liquid is assumed motionless with u = 0. The temperature difference �T is
introduced to the system using linear profiles (ramps) characterized by the heating rate ε (slope) as

�T = ε t . (11)

After reaching the maximum �T = 40 K considered in this work, the system is maintained for
several seconds at that thermal setting until it reaches a stationary (constant-amplitude) solution if
the flow is steady (oscillatory). Then �T is decreased again to zero; Eq. (11) describes this linear
cooling at a rate ε < 0 after an appropriate shift in �T and time.

To explore different values of �, we follow Ref. [16] and vary the container height H for
a fixed length of L = 22.5 mm as in the experiments of Ref. [55]; this is also consistent with
the procedure followed in Refs. [26,32]. Each simulation is thus performed at constant � with a
variable temperature profile, as described above. The range of nondimensional parameters explored
is summarized in Table II.

The temporal evolution is effected with a Backward Differentiation Formulae scheme together
with streamline [60] and crosswind [61] stabilization techniques to avoid spurious numerical oscil-
lations. We use a maximum mesh size of (2/3)S if � � 4.5, and S if � < 4.5 where S = L/67.5,
consistent with the selection of Refs. [26,31,32], where a convergence analysis is provided and
simulations are validated against experiments. The time step is set to �t = 10−2 s, but can be re-
duced automatically according to the Courant-Friedrichs-Levy convergence condition for numerical
stability.

In this work, the thermocapillary flows in an ideal rectangular container (see Fig. 1) are compared
to the flows observed during melting in rectangular containers in microgravity; see Sec. IV. The fact
that the progression of the solid/liquid front during melting modifies the effective � and Ma in the
liquid phase was discussed in Ref. [26], where the phase change was studied under isothermal
conditions with TM + �T and TM imposed at the respective lateral walls. During the initial stage
of the melting process, the characteristic (effective) length of the liquid phase, Leff , is small and,
consequently, so is the associated aspect ratio, �eff , and the effective Marangoni number, Maeff . As
the melting progresses, Leff increases until it takes the value of the container length L and Maeff

reaches the nominal Ma. Similarly, �eff evolves toward �. To model this type of variation in a fixed
rectangular geometry, we increase the applied Ma by using piecewise linear profiles for �T . The
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FIG. 2. (a) Bifurcation diagram showing the temperature deviation T̂3 = T3 − 〈T3〉, using two different rates
ε. The dark (light) gray curve shows T̂3 for a heating (cooling) rate of ε = 10−3 K/s with the envelope of the
oscillations highlighted with a solid (dashed) black curve. The blue envelopes correspond to ε = 10−4 K/s.
(b) Estimated critical temperatures of the primary subcritical Hopf (upright triangles) and saddle-node (down-
right triangles) bifurcations for different values of ε. These estimates are fit with functions of the form
�Tcr (ε) = �Tcr (0) + a

√
ε (solid curves) to permit the critical (ε = 0) values to be extracted (indicated with

squares). This square-root dependence on ramp rate is typical of delayed transitions controlled by transients or
small-amplitude noise [62–64].

effect of geometry is considered separately using a wide range of � that covers the values explored
in Ref. [26] during the phase change.

We note that this approach is just one among a variety of possibilities. For example, one could
simultaneously vary the temperature at both lateral walls to achieve the same applied �T and start
from an initial condition T = TM + �T/2. Another alternative would be to directly impose the
desired �T between both lateral walls and use an ideal conductive profile T = TM + �T (1 − x/L)
for the initial temperature field. Since the selected pattern may depend critically on this initial
condition, it is important for comparison presented in Sec. IV that it approximates the conditions
present during the melting process.

D. Methods for stability analysis

In Sec. III, we present a full picture of pattern selection that includes the critical boundaries
between different flow regimes over a wide range of � and Ma. Here we discuss the methods used
to determine and characterize these bifurcations.

As noted above, the liquid is analyzed from an initially quiescent and isothermal state. The
temperature difference �T is then increased at a rate of ε and, to diagnose qualitative changes in
the flow, the temperatures T1, T2, and T3 at three specific locations are monitored. These locations
are 2/3 of the way up from the bottom of the container at x = L/10, x = L/2 and x = 9L/10,
respectively; see Fig. 1. After the temperature reaches the maximum value of 40 K, the simulation
is run for a short time at constant �T and then, �T is decreased continuously to zero at a rate of
−ε. This process is repeated for each value of �.

An example of the results obtained in this manner is provided in Fig. 2(a), which shows a
bifurcation diagram in terms of the temperature deviation T̂3 = T3 − 〈T3〉, where angled brackets
denote the temporal average over one oscillation period. Here the temperature is changed with a
heating/cooling rate of ε = ±10−3 K/s in a container of height H = 13.5 mm (� � 1.67); the
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dark (light) gray curve shows T̂3 for increasing (decreasing) �T while the solid (dashed) black
curves highlight the envelope of the oscillations. Note that the complete simulation, ramping up
to �T = 40 K then back down, requires a total time of approximately 2(�T/ε) ≈ 8 × 104 s (not
including the short intermediate period at constant �T ).

These bifurcation curves show that oscillatory flow appears and ceases at two critical values of
�T that are consistent with hysteresis and a subcritical primary Hopf bifurcation. Repeating the
same analysis with a smaller ramp rate of ε = ±10−4 K/s (blue envelopes) shows a clear shift in
both values of �T . While such a rate-dependent delay is generally not expected for simple steady
or Hopf bifurcations in ordinary differential equations with a slowly varying parameter [65,66], it
is consistent with transitions controlled by transients or small-amplitude noise [62–64] where the
delay is proportional to the square root of the ramp rate—this follows from an ensemble-averaged
estimate of the escape time for trajectories near the unstable solution. To analyze the error related
to the ramping rate in this system, simulations were conducted using different values of ε and the
critical values �Tcr (ε) were determined. The results, shown by markers in Fig. 2(b), can be fit to
the predicted square root dependence using functions of the form �Tcr (ε) = �Tcr (0) + a

√
ε, where

a is a constant and �Tcr (0) is the critical value at ε = 0; the limiting values are denoted below by
�T H

cr for the Hopf bifurcation and �T SN
cr for the saddle-node bifurcation. The fact that �T H

cr and
�T SN

cr differ is an indication that the hysteresis is not merely due to the delay effect, but also reflects
the subcritical nature of the Hopf instability, something that will be discussed in more detail below
along with the associated bistable regions.

The Hopf and saddle-node bifurcations are located, respectively, at �T H
cr = 12.95 K and �T SN

cr =
11.87 K. If a rate of ε = 10−4 K/s is used, the observed critical values are �T H

cr (ε) = 13.45 K and
�T SN

cr (ε) = 11.22 K, corresponding to errors of approximately 0.5 K. We remark that the values of
�T H

cr (ε) are determined from the modulation envelopes of the temperature signals, as they surpass
an amplitude of 10−5 K, which is the absolute tolerance selected for the numerical solver.

A complete set of simulations were first performed with rates of ε = 10−2 and 10−3 K/s to find
the approximate locations of the critical curves; these will be shown later in Fig. 16 of Sec. IV. The
calculations were then refined using a reduced rate of 10−4 K/s. Since the error associated with this
ramp rate is on the order of 0.5 K, it may be presumed that the primary Hopf bifurcation is subcritical
and accompanied by a saddle-node bifurcation when the estimated critical points with increasing
and decreasing temperature differ by more than 0.5 K. If the difference is less than that, it may be
explained by the delay (memory) effect and is consistent with a supercritical Hopf bifurcation. We
further examine this bifurcation below to confirm its subcritical nature in particular cases.

III. PATTERN SELECTION: STABILITY MAP AND BIFURCATIONS

In this section, we analyze the thermocapillary-driven flow in rectangular containers in mi-
crogravity in terms of pattern selection and bifurcations. The stability map is first determined
as a function of the governing parameters. Details of the flow and bifurcations in representative
cases of short, large, and intermediate � containers are presented separately in the corresponding
subsections. To facilitate physical interpretation and emphasize the connection with experiments,
we present the results in dimensional variables while providing the associated dimensionless values
in parentheses.

The stability map of Fig. 3 summarizes the three thermocapillary flow regimes in terms of the
dimensional parameters H and �T (equivalently, the dimensionless parameters � and Ma). The
critical boundaries separate steady flows and two modes of oscillatory convection: the standing
wave mode (SW, blue curves) and the traveling wave mode (TW, red curves). Both SWs and TWs
appear via a primary Hopf bifurcation that can be either supercritical or subcritical. In the latter
case, this Hopf bifurcation is accompanied by a secondary saddle-node bifurcation. The Hopf and
saddle-node bifurcations are labeled and indicated by solid and dashed curves, respectively, with
circular markers denoting the values of H (�) explored in simulations. We describe these results
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FIG. 3. Stability map in terms of H and �T (� and Ma are indicated on opposing axes) showing the
critical boundaries for oscillatory thermocapillary flow in two regimes: standing wave (SW, blue) and traveling
wave (TW, red). The Hopf (H) and saddle-node (SN) bifurcations are located by solid and dashed curves,
respectively, with circular markers denoting the simulations. Dotted vertical lines mark the values of H (�)
selected to illustrate the flow dynamics in small, large, and intermediate (shaded region) containers.

below in terms of � and Ma for ease of comparison with previous work where those parameters are
standard [13].

In small (short/deep) containers with H > 6.5 mm [� < 3.75 ∼ O(1)], the thermocapillary flow
is steady at low values of �T . For H � 15 mm (� � 1.5), i.e., beyond the leftmost point of the
SNSW curve, steady solutions remain stable and no oscillatory flow is found within the interval of
�T explored. For H < 15 mm (� > 1.5), the initially steady flow at low �T undergoes a Hopf
bifurcation (labeled as HSW) to the SW mode as �T is increased. This primary bifurcation is found
to be subcritical in this region and, thus, is accompanied by a secondary saddle-node bifurcation
(SNSW) and a small region of bistability (between the two curves) where both steady and periodic
solutions exist at the same value of �T . The preceding flow (i.e., the initial condition) determines
which solution is selected. In the vicinity of H � 6 mm (� � 3.75), the region of bistability narrows
as the SNSW curve collides with HSW.

Depending on H , Hopf bifurcation can occur more than once. For example, with H � 13.5 (� �
1.67), marked by the leftmost vertical dotted line, the initially steady flow gives way to the SW
mode near �T � 13.53 K (Ma � 8.40 × 104) but returns again at approximately �T � 28.56 K
(Ma � 1.77 × 105) when the upper branch of the SNSW curve is surpassed. When decreasing �T ,
the stable steady solutions at large �T lose their stability to SW along the upper branch of the
primary Hopf bifurcation, but these SWs later disappear as �T falls below the lower SNSW curve.
The overall shape of the critical HSW curve is consistent with the work of Peltier and Biringen
[16], who analyzed thermocapillary flow in rectangular containers with � ∈ [2.3, 3.8] holding a
liquid of Pr = 6.78. A region was found with a double-valued critical boundary for 2.3 � � � 2.7.
Here we find a similar type of behavior for 1.5 < � < 1.8 [H ∈ (12.5, 15) mm]; the difference
can be attributed to Pr, which is an order of magnitude larger. In this case, we also demonstrate the
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subcritical nature of the primary Hopf instability, which is accompanied by a SNSW bifurcation that
stabilizes the initial branch of SW solutions at finite amplitude.

For intermediate containers with H ∈ (2.75, 6.3) mm (3.75 < � < 8; blue shaded area in the
figure), a more complex bifurcation picture is found. In containers with H ∈ (3.75, 5.6) mm (4 �
� � 6), the steady flow found at low �T becomes unstable to the TW mode as the primary Hopf
curve H1,TW is crossed, which is subcritical in this region. The branch of unstable solutions created
at this Hopf bifurcation is stabilized at finite amplitude through the saddle-node bifurcation SN1,TW.
With increasing �T , these stable TWs disappear in a second saddle-node bifurcation, located by the
upper branch of SN1,TW, where they collide with unstable periodic solutions created along the upper
branch of H1,TW. Again, the region between H1,TW and SN1,TW is bistable and either steady flow or
TWs can be found at the same applied �T . As �T is raised beyond the upper SN1,TW curve, steady
flow returns, persisting until the HSW curve is crossed and the SW mode appears. The SW solutions
in this large Ma region are stable, with no further bifurcations found over the explored interval.

In the vicinity of H � 3.75 mm (� � 6), the region of stable steady flow found at moderate Ma
(i.e., between the H1,TW and HSW curves) extends up to the maximum value of �T considered. Upon
decreasing H (increasing �) a bit more, the system remains inside the upper part of the H1,TW curve
and TWs are stable over a wide interval of �T : from their initial appearance near �T � 9.61 K
(Ma � 5.97 × 104), up to the maximum explored value of 40 K. With further decrease (increase) in
H (�), this extended region of stable TWs is interrupted by an isolated zone of steady solutions
(labeled in Fig. 3) bounded by another subcritical Hopf bifurcation (H2,TW) and an associated
saddle node (SN2,TW). The rightmost limit of this region near H � 2.8 mm (� � 8) marks the
qualitative transition to the behavior typical of large containers. At approximately this same H value,
the SN1,TW curve collides with the H1,TW curve (at �T � 12.70 K, Ma � 7.88 × 104), rendering
the primary bifurcation supercritical for larger containers.

Finally, in the region of H < 2.8 mm (� > 8), also referred to as large/shallow containers, the
steady flow found at small to moderate �T loses stability to the TW mode as the temperature is
raised past the H1,TW curve, which is now supercritical. With decreasing H , the critical �T for this
transition to TWs is delayed.

To complete the stability analysis, additional details of the flow (natural frequency, amplitude,
base flow, etc.) are presented in Secs. III A, III B, and III C, which focus on short, large, and
intermediate containers, respectively. Representative values of � are selected in each section to
illustrate the solutions; these selections are marked by vertical dotted lines in Fig. 3.

A. Small-aspect-ratio containers

Figure 4 shows three bifurcation diagrams (upper panels) in containers of heights (a) H =
13.5 mm (� = 1.67), (b) 10 mm (� = 2.25), and (c) 7.5 mm (� = 3); these values are marked
by vertical lines in Fig. 3. The envelope of T̂3 is plotted as a function of �T , for both increasing
(black curve) and decreasing (thin gray curve) temperature. These diagrams are accompanied by
the corresponding spectrograms (lower panels) showing the fast Fourier transforms (FFTs) of the
signals as a function of �T . The frequency response is calculated over the range of �T where the
oscillatory solutions are stable.

Figure 4(a) shows the details of the dynamics in the bistable region of the SW mode. Steady
solutions correspond to T̂3 = 0. By increasing the applied temperature gradient (following the solid
curve) from the initial steady region, the envelope of T̂3 is observed to suddenly increase to a finite
value at �T � 13.53 K; recall that this is shifted with respect to the value calculated for ε = 0
in Sec. II D. This sharp jump is consistent with the subcritical character of the bifurcation since,
when the steady solution becomes unstable, the system moves rapidly to the stable branch of finite-
amplitude SWs created in the preceding saddle-node bifurcation (labeled SNSW). The amplitude of
the SWs along this branch increases with �T until achieving a maximum value near �T � 23.30 K.
Beyond this, the SW amplitude decreases until the disappearance of this solution at �T � 28.56 K
in the second saddle-node bifurcation. Above that, only steady flow solutions are found.
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FIG. 4. Bifurcation diagrams (upper panels) showing the envelope of T̂3 vs �T in containers with (a) H =
13.5 mm (� = 1.67), (b) H = 10 mm (� = 2.25), (c) H = 7.5 mm (� = 3). Paths obtained by increasing
(decreasing) �T are shown with black (thin gray) curves, with bifurcations labeled in (a). Spectrograms of
T̂3 are shown in the lower panels, with the grayscale proportional to the logarithmic amplitude ratio (black
indicating maximum amplitude).

When decreasing �T (following the thin gray curve in the figure) from the maximum value of
40 K, the stable steady flow at large �T becomes unstable at �T � 26.41 K via subcritical Hopf
bifurcation. Again, this results in the sudden transition from the zero-amplitude (steady) solutions
to a finite-amplitude branch of SWs—this stable branch connects in a saddle-node bifurcation at
�T = 28.56 K to the unstable branch of SW solutions created in the primary subcritical Hopf
bifurcation. With continued reduction of �T , the SW amplitude first increases, then decreases,
along the same path as before. In the case of gradual cooling, however, these periodic solutions
persist below �T � 13.53 K, where the primary Hopf bifurcation was found, and only disappear
when the saddle-node bifurcation at �T � 11.45 K is reached.

As seen in the associated spectrogram of T̂3, the dominant frequency of the SW increases slightly
from 0.03 to 0.06 Hz between the two saddle-node bifurcations; this dependence will be discussed
further below. The spectrum is characterized by this dominant frequency and integer multiples of it.

The flow observed for this value of H = 13.5 mm (� = 1.67) is dominated by a large vortex
whose center is shifted toward the hot lateral wall. For higher values of �T , a secondary vortex
appears just below the free surface and close to the cold wall. This structure of two vortices
constitutes the base flow upon which SWs appear. In Fig. 5 the temperature (colormap) and velocity
fields (streamlines), averaged over one oscillation cycle, are illustrated for �T = 20 K. Similar
structures were found with short containers in the works of Carpenter and Homsy [15] and Peltier
and Biringen [16].

The SW mode develops from the base flow state shown in Fig. 5. Figure 6 illustrates the
SW solution found at �T = 20 K (Ma � 1.24 × 105) through a series of eight snapshots of the
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FIG. 5. Average temperature 〈δT 〉 = 〈T − TM〉 and velocity 〈u〉 illustrating the base flow of the SW mode
for H = 13.5 mm (� = 1.67) and �T = 20 K (Ma � 1.24 × 105).
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FIG. 6. Temperature deviation T̂ and instantaneous velocity field u of the SW mode for H = 13.5 mm
(� = 1.67) and �T = 20 K (Ma � 1.24 × 105) at different phases of the oscillation cycle (labeled).
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temperature deviation T̂ and the instantaneous velocity field u. The snapshots are separated by
one-eighth of the oscillation cycle (labeled by the corresponding phase in each panel).

The characteristics of the oscillation and the mechanism driving the instability can be understood
following the description of Peltier and Biringen [16]. The largest vortex rotates in a clockwise
sense, which propels a cool stream of liquid away from the cold wall and along the bottom of the
container; see the snapshots in Fig. 6 between phases 0 and π . Near the hot wall, this stream is
redirected upward, creating a cool tongue that interacts with the thermocapillary surface; see the
snapshots at phases π and 5π/4. The impact of the cool tongue on the surface establishes a large
thermal gradient near the hot wall that causes the primary convection cell to compress and shift
toward this boundary, becoming stronger in the process; these changes can be seen by comparing
the evolution of the streamlines between phases π and 3π/2. This compression reduces the shear
force between this primary vortex and the secondary vortex with the same sense of rotation, allowing
it to grow; it reaches its maximum strength at a phase of approximately 3π/2. Between these main
vortices, another (tertiary) vortex appears with the opposite sense of rotation, enabled by the shear
between the primary and secondary cells and the weak local temperature gradient along that portion
of the interface; see the snapshot at phase 3π/2.

During the latter part of the cycle, the primary and secondary vortices strengthen up to a certain
point, wherein two different mechanisms act to recover the initial structure. First, in the absence of
sufficient reinforcement of liquid from the cold wall, the cool tongue near the hot wall warms and
its effect on the surface diminishes; this retraction can be seen at phase 3π/2 in the widening of the
cold stream at the thermocapillary interface. Second, the increased strength of the primary vortex
draws more warm liquid from the hot wall—note the warm tongue that is pulled up between phases
π and 7π/4. This process gradually extinguishes the secondary vortex cell while the primary vortex
expands, restoring the original structure.

It is clear that this oscillation relies on an interaction between the sensitivity of the thermocapil-
lary surface to the cooling effect provided by the cold tongue and the extent to which the cool stream
emanating from the cold boundary can support this tongue. It stands to reason that the oscillation
frequency would increase continuously with the driving force and the larger velocities associated
with it, as observed in the spectrogram of Fig. 4(a).

To complete the analysis for H = 13.5 mm, we confirm the bistability of the system for
�T ∈ (11.45, 13.53) K and �T ∈ (26.41, 28.56) K by taking two different paths to reach final
temperatures within these intervals. Figures 7(a) and 7(b) show the time evolution of δT3 = T3 − TM

for final �T values of (a) 12 K and (b) 28 K. In each case, two different profiles of �T are used to
reach the final value (illustrated, respectively, with dark and light red lines) while maintaining the
cold wall at a constant temperature T = TM (shown as a blue line).

One set of results in Fig. 7(a) is for a temperature difference �T that is raised linearly to 12 K and
then maintained constant (dark red line). With this profile, the system does not undergo any primary
instability because the HSW curve is not crossed. This steady flow is reflected in the evolution of δT3

(black curve) that first increases linearly then settles at a constant value of approximately 3 K. The
final thermocapillary flow is steady.

The other set of results in Fig. 7(a) is obtained with a profile in which �T is increased up to a
value of 15 K, beyond the primary bifurcation HSW, then reduced again to the final value of 12 K
(light red lines). With this profile, the steady flow becomes unstable to the SW mode during the
final increase in �T , as revealed by the growth of oscillations in δT3 (gray curve). Once SWs are
triggered, reducing the applied �T to the final value of 12 K lowers the oscillation amplitude but
does not restore the steady flow, consistent with the diagram of Fig. 4(a). The final thermocapillary
flow in this case is oscillatory, which confirms bistability (as opposed to merely a delay effect) and
the existence of the saddle-node bifurcation in the subcritical region that creates it.

Analogous sets of results in Fig. 7(b) confirm the bistability of the higher temperature transition
region. In one case, �T is raised past the (upper branch of the) critical curve HSW until reaching
the final value of 28 K. Since the Hopf bifurcation is subcritical and SNSW lies above the final
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FIG. 7. [(a), (b)] Temporal evolution of δT3 in a container of H = 13.5 mm (� = 1.67) for �T between
the Hopf and saddle-node bifurcations: (a) bistable solutions at �T = 12 K, near the first critical temperature;
(b) bistable solutions at �T = 28 K, near the second critical temperature. In both panels, the black (gray)
line shows the instantaneous value of �T3 with the applied �T profile shown with dark (light) red lines. The
constant temperature TM of the right boundary is indicated with a blue line. (c) The measured (open squares)
exponential growth rate σ as a function of �T near the primary Hopf bifurcation. A linear fit indicates a
threshold near 12.78 K while the value of �T H

cr = 12.95 K found in Sec. II D is indicated with a vertical line.

temperature, the SWs do not lose stability but persist in the final state, as seen in the oscillations of
δT3 (gray curve in the figure). By using a different profile that raises �T beyond the SNSW curve to
32 K, a transition to steady flow is triggered. This steady flow (black curve) remains even as �T is
lowered again to 28 K.

The bistable nature of the primary Hopf bifurcation shown in Fig. 7(a) is further confirmed by
measurements of its exponential growth rate σ (open markers) as a function of the applied �T in
Fig. 7(c). Numerical measurements (open markers) are then fitted with a linear function to estimate
the critical value (solid marker). While this value of �T � 12.78 K lies slightly below the value of
�T H

cr = 12.95 K obtained in Sec. II D, it is close enough to reinforce the conclusion of bistability.
This picture of pattern selection in small containers is complemented with the results for two

additional container heights of 10 and 7.5 mm, which were shown, respectively, in Figs. 4(b)
and 4(c); see also the vertical dotted lines in Fig. 3. The bifurcation diagrams and associated
spectrograms reveal a simpler scenario in those containers. As �T is increased with H = 10 mm
(H = 7.5 mm) the flow undergoes a subcritical Hopf bifurcation to the SW mode at �T � 11.34 K
(�T � 12.72 K), with the corresponding saddle-node bifurcation occurring at �T � 10.42 K
(�T � 11.99 K). The unstable SW solution branch created in this Hopf bifurcation is stabilized by
the saddle node, which creates a small region of bistability. The SWs remain stable as �T is raised
further (over the range of parameters explored). As with H = 13.5 mm, these SW are characterized
by a single dominant frequency that increases continuously with �T (i.e., with the driving force).
The frequency is somewhat higher in these cases compared to that of H = 13.5 mm, which can be
partly explained by looking at the scale of the vortical structure in the base flow. It is worth noting
that for H = 7.5 mm [Fig. 4(c)], the envelope of T̂3 shows irregular variations at higher �T values,
which may be indicative of a transition to chaotic flow, something not investigated here.

To better compare the differences in the SW mode for different heights, Fig. 8 illustrates the
base flow for H = 7.5 mm, while Fig. 9 shows a series of snapshots during one cycle of the SW
oscillation. It is evident that reducing the container height limits the size of the large vortex near
the hot side, whose scale is set by H . This reduction allows the vortex near the cold side to grow
and occupy a larger portion of the container. As H is lowered further, this secondary vortex extends
enough to leave room for a third vortex to appear in the vicinity of the thermocapillary interface
near the cold wall.
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FIG. 8. Average temperature distribution 〈δT 〉 and velocity field 〈u〉 illustrating the base flow of the SW
mode for H = 7.5 mm (� = 3) and �T = 20 K (Ma � 1.24 × 105).

The SW mode develops from the base flow structure illustrated in Fig. 8 and, due to the shared
instability mechanism, has features like those seen with H = 13.5 mm. The details of the oscillation
cycle are captured by eight equally spaced snapshots in Fig. 9 that show the temperature deviation
T̂ and the instantaneous velocity u. Again, the oscillation is supported by the interaction between
cool tongues siphoned off the cold wall and the thermocapillary interface near the hot wall. This
modulates the strength of the large vortex near the hot wall, which retracts and expands during
the oscillation cycle, and leads to the appearance and subsequent disappearance of an oppositely
rotating auxiliary vortex near the interface; see the snapshot at phase 3π/2. The expansion is later
driven by the arrival of a warm tongue of liquid to the hot wall, which acts to reduce the local
thermal gradient.

Compared to the case of H = 13.5 mm shown Fig. 6, the time needed for a warm/cool tongue
(temperature perturbation) to reach the hot boundary is reduced. This can be attributed, in part, to
the smaller size of the vortices and, in particular, the vortex near the hot wall, which plays a key role
in transporting SW perturbations. The contraction of this vortex as � increases is associated with an
increase in the oscillation frequency; see the spectrograms of Fig. 4.
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FIG. 9. Temperature deviation T̂ and instantaneous velocity u for the SW mode with H = 7.5 mm (� = 3)
and �T = 20 K (Ma � 1.24 × 105) at different phases of the oscillation cycle (labeled).
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FIG. 10. Bifurcation diagrams (upper panels) showing the envelope of T̂3 as a function of �T and
associated spectrograms (lower panels), again with the grayscale proportional to the logarithmic amplitude
ratio, obtained for containers of (a) H = 2.5 mm (� = 9), (b) H = 1.875 mm (� = 12), and (c) H = 1.5 mm
(� = 15). Results for increasing (decreasing) �T are shown with black (thin gray) curves; these are nearly
indistinguishable in the plots.

B. Large-aspect-ratio containers

Figure 10 presents three bifurcation diagrams (upper panels) showing the envelope of T̂3 as a
function of �T , obtained for containers of (a) H = 2.5 mm (� = 9), (b) H = 1.875 mm (� = 12),
(c) H = 1.5 mm (� = 15); these values are marked by vertical dotted lines in Fig. 3. Results are
included for both increasing and decreasing �T , indicated by black and thin gray curves, respec-
tively; these are nearly indistinguishable on the scale of the figure. The diagrams are accompanied
in the lower panels by spectrograms of T̂3.

The bifurcation diagrams have a somewhat similar shape, differing mainly in the delay of the
primary Hopf bifurcation with smaller H (larger �). The initial region of steady thermocapillary
flow, which corresponds to T̂3 = 0, becomes unstable to the TW mode as H1,TW is surpassed at
�T � 14.36 K, 20.74 K and 33.06 K, respectively. For this range of �, the primary Hopf bifurcation
is supercritical and associated with the gradual growth of the oscillation amplitude above onset.
Supercriticality is confirmed by simulations with decreasing �T , which provide estimates of the
onset that differ by less than 0.25 K from the above values. This delay is attributed to the use of
ε = 10−4 K/s, as discussed in Sec. II D.

The three spectrograms reveal a dominant frequency that is largely independent of the applied
�T , with values of 0.12, 0.20, and 0.30 Hz, respectively. The case of H = 2.5 mm [Fig. 10(a)],
however, does exhibit a slight increase in the oscillation frequency at large �T . In contrast to the
mild variation with �T , we observe an approximate linear dependence of the initial Hopf frequency
on �: ωH/(2π ) = (0.03 �–0.17) Hz. These aspects of the spectrograms will be discussed below.
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FIG. 11. The TW mode with (a) �T = 15 K (Ma � 9.31 × 104) and (b) �T = 40 K (Ma � 2.48 × 105)
in a container of H = 2.5 mm (� = 9). The upper panels show the average (base) temperature 〈δT 〉 and velocity
〈u〉. The lower panels show snapshots of the instantaneous temperature T̂ and velocity û = u − 〈u〉 deviations
over one oscillation period.

Finally, we note the appearance of irregular variations in the envelope of T̂3 at large �T in
Fig. 10(c) and less so in Fig. 10(b), which are also reflected in the spectrogram. This behavior
suggests a transition to chaotic flow, which has been investigated in rectangular liquid layers by
several numerical studies, identifying, in particular, the Ruelle-Takens-Newhouse route to chaos
[67,68]. These analyses were recently extended by Li et al. [69] in an effort to explore the effect
of geometry and Pr. They conducted a numerical analysis of the behavior of 10 cSt silicone oil for
� = 13, 14.25. One can conclude from the results that the finite extent of the layer has a significant
influence on the spatiotemporal evolution of the flow and on the selected route to chaos. For � =
13, the route to chaos was associated with a cascade of periodic-doubling bifurcations, while for
� = 14.25, the appearance of chaos was preceded by a quasiperiodic state with frequency locking.

The flow observed with H = 2.5 mm (� = 9) is shown in Fig. 11 for (a) �T = 15 K (Ma �
9.31 × 104) and (b) �T = 40 K (Ma � 2.48 × 105). The upper panel shows the average (base)
flow, while the four lower panels show equally spaced snapshots of the temperature T̂ and velocity
û deviations from this base flow during one period of the oscillation,

For �T = 15 K, the structure of the base flow is characterized by a series of vortices that spread
inward from the hot wall, with their centers aligned at approximately 2/3 of the container height.
This type of flow was referred to as a steady multicellular structure (SMC) by Shevtsova et al.
[25], who analyzed thermocapillary-driven flows in a large container with � = 24.7 under different
dynamic Bond numbers. The intensity of the vortices within the SMC structure decays exponentially
with distance from the hot wall. The TW mode that develops from this base flow is characterized
by the cyclic creation of vortices near the cold wall that detach and move toward the hot wall.
The motion of these traveling waves can be seen by comparing the different phases included in
Fig. 11(a), from which the leftward movement of the warm/cool perturbations separating traveling
vortices is clear. Starting from the cold wall, it is also apparent that these perturbations grow in
amplitude near the center of the container and diminish again as they approach the hot wall. These
results are consistent with the observations of Shevtsova et al. [25].

After increasing �T from 15 to 40 K, clear differences arise, both in the base flow and in the
oscillations; see Fig. 11(b). First, the increased thermocapillary force results in a SMC state that
extends throughout the container with all vortices of comparable intensity and with a characteristic
size set by H . It is apparent from a comparison of the two cases that increasing �T increases the
strength and extent of the SMC state. At some point, its extent is limited by the cold wall and further
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FIG. 12. The TW mode with �T = 40 K (Ma � 2.48 × 105) in a container of H = 1.5 mm (� = 15). The
upper panel shows the average (base) temperature 〈δT 〉 and velocity 〈u〉. The lower panels show snapshots of
the instantaneous temperature T̂ and velocity û deviations over one oscillation period.

increases in the strength of the thermocapillary force are reflected in the overall amplification of
vortex intensity. This is consistent with the importance of finite-size effects pointed out by Li et al.
[69].

From this base state TWs develop, but with more complicated dynamics than in the case of
�T = 15 K. While thermal perturbations (and associated vortices) clearly travel from the cold to
the hot wall, these perturbations are pulled and deformed by the base flow; note the curvature of
the cool and warm tongues in Fig. 11(b) as they are rotated by the vortices of the underlying flow.
This behavior helps explain the dependence of the TW frequency on �T that can be observed
in the spectrogram of Fig. 10(a) at large values. An increase in the driving force means that the
perturbations travel faster around the vortices of the base flow, which increases the frequency of the
TW oscillations.

The effect of reducing the container height is illustrated in Fig. 12, which shows the flow
obtained with H = 1.5 mm (� = 15) and �T = 40 K (Ma � 2.48 × 105). The upper panel shows
the average (base) flow, while the lower panels contain snapshots of the temperature and velocity
deviations from this base flow at different phases of the oscillation cycle. The structure of the base
flow is again characterized by a large SMC state. Compared to the case of Fig. 11(b) with � = 9
at the same �T , there are twice as many (ten) vortices distributed along the container length. The
intensity of these vortices decays (exponentially) with distance from the hot wall [25], except in
the vicinity of the cold wall where the high temperature gradient near the interface strengthens the
rightmost vortex. The characteristics of the oscillation cycle, illustrated in the lower panels, are
analogous to those described with Fig. 11(a).

C. Intermediate-aspect-ratio containers

Finally, we analyze the regime of intermediate �; the shaded blue region in the stability map
of Fig. 3. Figure 13 shows three bifurcation diagrams (upper row of panels) in containers of
(a) H = 5 mm (� = 4.5), (b) H = 3.5 mm (� = 6.42), (c) H = 3 mm (� = 7.5); these values are
marked by dotted vertical lines in Fig. 3. The envelope of T̂3 is plotted as a function of �T and
results are included for both heating and cooling ramps, rendered as black and thin gray curves,
respectively; these are nearly indistinguishable in the plots. The diagrams are accompanied by
spectrograms to show the dependence of the dominant frequency on �T .

The results for H = 5 mm in Fig. 13(a) are representative of containers with 4 � � � 6, where
both TW and SW modes can be excited depending on �T . Upon increasing the applied temperature
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FIG. 13. Bifurcation diagrams (upper panels) showing the envelope of T̂3 as a function of �T and
associated spectrograms (lower panels), again with the grayscale proportional to the logarithmic amplitude
ratio, for containers of (a) H = 5 mm (� = 4.5), (b) H = 3.5 mm (� = 6.42), (c) H = 3 mm (� = 7.5). Results
for increasing (decreasing) T̂3 are shown with black (thin gray) curves; they are nearly indistinguishable in most
regions.

difference, the initial steady thermocapillary flow first loses stability to the TW mode as the lower
branch of the H1,TW curve is crossed at �T � 9.14 K. These TWs are found within a narrow region
of �T limited by the upper branch of the SN1,TW curve at �T � 14.99 K. Beyond this value,
the flow becomes steady again and remains so over a relatively large interval of �T (the central
portion of the plot where T̂3 = 0). With further increase in �T , this steady flow loses stability to
the SW mode via a supercritical Hopf bifurcation at �T � 20.40 K. The supercriticality of this SW
instability is reflected in the gradual growth of T̂3 = 0 near onset. Increasing the applied temperature
gradient even more does not change the nature of the selected mode but does lead to the appearance
of irregular variations in the signal of T̂3, suggesting a transition to chaotic dynamics [69]; this
behavior is also reflected in the spectrogram. Decreasing �T from the region of stable SWs confirms
the subcritical nature of H1,TW, which is accompanied by the saddle node SN1,TW that sets the width
of the bistable region, as in Sec. III A.

The results for H = 3.5 mm, presented in Fig. 13(b), show that the stable TWs created in the
initial Hopf bifurcation persist for larger �T , at least within the explored interval of parameters.
One can observe, however, a change in behavior at �T ≈ 20 K where the frequency of the TW
oscillations begins to increase slightly with �T ; prior to that, it is nearly constant. Such behavior
was discussed in Sec. III B and can be attributed to the increasing strength of the base flow, which
carries the perturbations with greater velocity.

The case of H = 3 mm is shown in Fig. 13(c). The subcritical bifurcations H1,TW and H2,TW

coexist for this aspect ratio, which limits the region of stable TWs to an interval of moderate �T
values. Steady flow is found for the explored range of �T beyond this.
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FIG. 14. Dynamics of the TW and SW modes, respectively, at (a) �T = 11.25 K (Ma � 6.98 × 104),
(b) �T = 40 K (Ma � 2.48 × 105) in a container of H = 5 mm (� = 4.5). The upper panels show the average
(base) temperature 〈δT 〉 and velocity 〈u〉 of the solution. The lower panels show the deviations T̂ and û over
one cycle.

The dynamics of the flow for intermediate-aspect-ratio containers is illustrated in Fig. 14 for H =
5 mm, where both TWs and SWs can be found. The TW mode at �T = 11.25 K (Ma � 6.98 × 104)
is depicted in Fig. 14(a), which shows the average (base) flow in the upper panel and the deviations
T̂ and û at equally spaced moments of the oscillation cycle in the lower panels. The SW mode at
�T = 40 K (Ma � 2.48 × 105) is illustrated in the same manner in Fig. 14(b).

Compared to the large-aspect-ratio case of Sec. III B, the characteristics of the TW mode are
a bit different. There are substantially fewer vortices in the base flow and, thus, the finite size of
the container is expected to play a more significant role. This is evident from the equally spaced
snapshots of the perturbation fields T̂ and û, which show structures on the same length scale as
the container. In contrast to Fig. 12, where the vortical perturbations have nearly constant length
(size) and are regularly spaced across the container, the size of the TW vortices in Fig. 14(a) varies
in both space and time. The dynamics of the SW mode, on the other hand, are analogous to those
described in Sec. III A, with the same type of back-and-forth pulsation of the vortical structure. It is
also apparent in Fig. 14(b) how the cool tongue acts to compress the large vortex near the hot wall
and allow the creation of a smaller tertiary vortex near the free surface; see the snapshot at π/2.

IV. APPLICATION TO PHASE CHANGE DYNAMICS IN MICROGRAVITY

We now apply the results of Sec. III to the recent investigation by Salgado Sánchez et al. [26]
of pattern selection in thermocapillary flows during melting in microgravity. For completeness, we
describe in Sec. IV A the mathematical formulation used to resolve the phase change dynamics.
The stability limits obtained during the phase change process are then compared in Sec. IV B to the
stability map of Sec. III. Finally, the transitions observed during melting are explained in terms of
the effective Ma and � in both small, large and intermediate containers in Secs. IV C, IV D, and
IV E, respectively.
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FIG. 15. (Left) Sketch showing the system treated by the numerical model used to resolve the phase
change: an open rectangular container of n-octadecane melted by applying constant temperatures TM + �T
and TM along opposite lateral walls. (Right) Calculation of the effective aspect ratio �eff = Leff/Href during
melting.

A. Statement of the problem

The melting of an open rectangular volume of n-octadecane in microgravity is considered, driven
by constant temperatures on the opposing lateral walls. The process naturally generates thermal
gradients that modify the surface tension of the melted liquid, which generates thermocapillary
convection. A sketch of the setup considered in the numerical model is provided in Fig. 15(a).

As in Sec. II, the flow in the liquid phase is considered laminar and incompressible and the
conservation of mass and momentum is described by Eqs. (1a) and (1b). Following the enthalpy
method for convection/diffusion phase change proposed by Voller et al. [70], the conservation of
thermal energy is modified here to include the contribution of the heat of fusion cL:

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k ∇T ) − ρcL

(
∂ f

∂t
+ u · ∇ f

)
. (12)

During melting, the amount of heat absorbed depends on the fraction of melted material f
through the product f ρ cL. Thermal energy and momentum are thus coupled through f , which
can be expressed as a field depending on temperature as

f (T̃ ) =
⎧⎨
⎩

0 T̃ < −1/2,
1
2 + T̃ + 1

2π
sin 2π T̃ |T̃ | � 1/2,

1 T̃ > 1/2,

(13)

where T̃ = (T − TM )/δT . Note that f changes (symmetrically) from 0 to 1 near TM . The small
temperature δT characterizes the width of the so-called mushy region [71] where solid and liquid
phases can coexist.

The melting material is modelled as a single phase with physical properties that depend on T and
have appropriate limits for the solid and liquid phases. These are written using the liquid fraction f
as follows:

ρ = ρS + (ρL − ρS) f , (14a)

μ = μS + (μL − μS) f , (14b)

cp = cpS + (cpL − cpS) f , (14c)

k = kS + (kL − kS) f , (14d)
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TABLE III. Latent heat and relevant physical properties of solid n-octadecane, reproduced from Ref. [31].

Latent heat, cL 243.5 kJ/kg

Density, ρ 865 kg/m3

Heat capacity at constant pressure, cp 1934 J/(kg K)
Thermal conductivity, k 0.358 W/(m K)

where the subscripts L and S denote liquid and solid, respectively. The parameter μS is a virtual
solid viscosity several orders of magnitude greater than μL [70] to ensure that the velocity in the
solid is effectively zero.

The boundary conditions, including those describing the thermocapillary effect, are as in Sec. II
with the additional condition that γ = 0 if T � TM along the open boundary.

Again, we use L, (L2/α) and �T to rescale length, time, and temperature, and take the physical
properties of the liquid phase as reference values. In addition to the dimensionless parameters of
Sec. II, the dynamics of the phase change depends on the Stefan number

Ste = cpL�T

cL
, (15)

and on the ratios between the physical properties in each phase

ρ̃ = ρS

ρL
, μ̃ = μS

μL
, c̃p = cpS

cpL
, k̃ = kS

kL
. (16)

The additional properties of the solid phase are provided in Table III, from which we obtain the
ratios ρ̃ = 1.11, k̃ = 2.42, c̃p = 0.88.

As above, COMSOL Multiphysics is used to solve the problem in dimensional variables with an
analogous numerical scheme. The initial condition for T is 25 ◦C (< TM) at which the material is
solid and u = 0. The maximum mesh size is selected as in Sec. II, and the remaining numerical
parameters are set to δT = 1 K and μS = 103 Pa s. This choice of parameters was validated
against experiments by Salgado Sánchez et al. [31]. That work considered a fixed rectangular
geometry, neglected the small volume changes between solid and liquid phases during melting, and
demonstrated good agreement between experimental results and simulations. Additional details of
the numerical method, including convergence tests and the criteria used for selecting the maximum
mesh size, δT and μS, can be found in Refs. [26,31,32].

Until melting is completed, the solid/liquid front constitutes a dynamic boundary condition
for the liquid phase. The shape of this front often reflects two distinct regions: one dominated
by conduction, where the isotherms are nearly parallel to the hot wall, and one dominated by the
thermocapillary effect near the thermocapillary interface [26]. For this latter region, in particular,
the progression of the solid/liquid front changes both its length and depth. Time-dependent effective
values of � and Ma may then be used to characterize the region of liquid dominated by thermocap-
illary flow. In order to compare the patterns and dynamics described by Salgado Sánchez et al. [26]
during melting with those of Sec. III, we define the effective parameters in the following manner.

The region dominated by thermocapillary flow can be characterized by the “corner” point where
the solid/liquid front changes from nearly vertical to sloping; see Fig. 15. Specifically, we define this
point as the one on the solid/liquid front closest to the upper left corner of the container. The distance
from this point to the top of the container is the reference height Href . Note that this definition makes
sense even in the large-aspect-ratio limit, where the thermocapillary layer extends across the full
height of the container.
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TABLE IV. Summary of the melting processes analyzed, showing key parameters and observed flow
regimes (and transitions).

Melting no. � H (mm) Ma �T (K) Flow regime(s)

1 2.25 10 6.21 × 104 10 S
2 2.25 10 1.86 × 105 30 S → SW
3 1.5 15 2.48 × 105 40 S → SW → S
4 12 1.875 7.76 × 104 12.5 S
5 12 1.875 1.86 × 105 30 S → TW
6 5.29 4.25 7.76 × 104 12.5 S → TW
7 5.29 4.25 1.29 × 105 20.75 S
8 5.29 4.25 1.40 × 105 22.5 S → SW

After determining Href at given a time of the melting, the liquid area within the thermocapillary
layer is calculated from

Aeff =
∫ H

Href

dA (liquid; T > TM ). (17)

The effective length Leff is then defined from the position of the solid/liquid front along a horizontal
line located a distance Href/2 below the thermocapillary interface. The effective height is obtained
from Heff = Aeff/Leff . These dimensions together define an “equivalent” rectangular container with
effective aspect ratio

�eff = Leff

Heff
, (18)

and Ma:

Maeff = γ Leff�T

μLα
. (19)

These definitions are used below to analyze the melting process in terms of the path it describes in
the parameter space of (�eff , Maeff ).

Table IV summarizes the selection of representative melting processes analyzed below, including
the relevant parameters and flow regimes (transitions) observed. With the exception of no. 3, these
are adapted from Ref. [26]. For the sake of generality, most of the results discussed below are
presented in dimensionless variables, but are accompanied by dimensional values in parentheses to
facilitate physical interpretation and comparison with experiments.

B. Dynamics of melting in microgravity

We briefly review the dynamics of thermocapillary flow observed during the melting of n-
octadecane in microgravity, with more detailed results available in Ref. [26].

In large � containers, the thermocapillary flow at low Ma is initially characterized by a steady
return flow (SRF) solution [17,18]. Increasing Ma destabilizes this SRF solution to a SMC state.
Still further increase in Ma induces a transition to periodic TWs with the characteristic creation of
vortices at the cold side.

In small � containers, the thermocapillary flow at small-to-moderate Ma initially features a
transition from a small-scale SMC located near the open boundary of the container to a large-scale
steady vortical structure. Upon increasing Ma, a complex oscillatory mode appears, characterized by
pulsation of the underlying vortical structure. Its structure evolves as the solid/liquid front advances,
with a reduction in the number of vortices and the frequency of oscillation. This mode was classified
as a SW due to its qualitative differences with the TW mode.
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FIG. 16. Stability map in terms of � and Ma showing the primary Hopf bifurcation to SW (blue) and TW
(red) modes with different heating rates: ε = 10−4 K/s (solid), 10−3 K/s (dotted), and 10−2 K/s (dashed).
The markers show the critical Ma for SW (blue) and TW (red) determined for the melting of n-octadecane in
microgravity; reproduced from Ref. [26].

For the intermediate range of �, simulations were performed in a rectangular container with
� � 5.29. At low Ma, the flow is steady, and a small-scale SMC state appears. With increasing Ma,
this vortical structure becomes unstable to the TW mode. The TWs appear for a limited part of the
melting process and disappear again before its completion. The final thermocapillary flow in this
case is a steady vortical structure. At a certain value of Ma, the evolution of the flow becomes
completely steady, with the initial small-scale SMC state developing directly into a large-scale
structure. This steady regime persists only over a small range of Ma and becomes unstable to the
SW mode at larger values.

Figure 16 summarizes the different flow regimes observed during melting in terms of Ma and
�. The critical boundaries for oscillatory flow (adapted from Ref. [26]) are indicated by markers:
red for the TW mode, blue for the SW mode. The stability map of Fig. 3 for increasing �T is
superimposed on these data points. In addition to the (solid) curve calculated with ε = 10−4 K/s,
the critical curves obtained with ε = 10−3 K/s (dotted) and 10−2 K/s (dashed) are included for
comparison.

Overall, there is reasonable agreement between the stability regions calculated for the ideal
rectangular case, and those observed during the phase change. Note that even the narrow region
of steady solutions observed during melting for � � 5.29 aligns fairly well with the corresponding
region of steady solutions found in Sec. III. The most notable differences are observed at large
� where the critical Ma values found during melting are well below the bifurcation curve for a
rectangular container of liquid. As discussed in more detail below, this suggests that the advancing
solid/liquid front has a destabilizing effect on the flow dynamics.

We use these stability maps to explain the dynamics observed during melting, and make use of
the effective aspect ratio �eff and Marangoni number Maeff of the liquid phase to define the relevant
paths in parameter space. The analysis is divided into the cases of small, large and intermediate �

containers.
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FIG. 17. Melting paths in effective parameters (�eff , Maeff ) for three cases with dynamics representative of
small-aspect-ratio containers. Melting no. 1 (dotted curve): � = 2.25, Ma � 6.21 × 104 (H = 10 mm, �T =
10 K). Melting no. 2 (dashed curve): � = 2.25, Ma = 1.86 × 105 (H = 10 mm, �T = 30 K). Melting no. 3
(solid curve): � = 1.5, Ma � 2.48 × 105 (H = 15 mm, �T = 40 K). The nature of the thermocapillary flow
is indicated by color: steady (gray), SWs (blue).

C. Small-aspect-ratio containers

Figure 17 shows the paths traced by the melting process in the parameter space (�eff , Maeff ) for
three cases that are representative of the dynamics in small-aspect-ratio containers. The nature of the
thermocapillary flow observed during the melting process is indicated: steady solutions in gray and
SWs in blue. The associated temperature profiles δT1 are shown in Fig. 18, with insets illustrating
the temperature field and the streamlines of the flow in the liquid at selected times during the phase
change.

Melting no. 1 is representative of the (quasi-)steady dynamics in small-aspect-ratio containers
discussed in Sec. 4 of Ref. [26]. The melting is analyzed in a container of � = 2.25 (H = 10 mm)
subjected to a moderate Ma � 6.21 × 104 (�T = 10 K). The curves corresponding to this case are
labeled in both figures.

As described by these authors, heat transport is dominated by thermal diffusion at the beginning
of the phase change. As soon as the solid/liquid front separates enough from the hot boundary,
the thermocapillary effect drives convection in an initially thin region (compared to H) near the
free surface. Melting is enhanced in this region, which locally accelerates the progression of the
solid/liquid front; see the insets of Fig. 18. During this stage, �eff of the thermocapillary layer is
generally larger than �; see the dotted curve of Fig. 17. Consequently, the flow structure is that of
an SMC state, as seen in the streamlines of the insets. Recall that this structure is typical of large-
aspect-ratio containers; see Sec. III B, and Sec. 4 of Ref. [26]. During this initial part of the melting,
the cold boundary for the liquid is essentially determined by the advancing solid/liquid front. The
advancement of the melting front near the bottom wall is driven mainly by thermal diffusion.

As the thermocapillary layer evolves, the solid/liquid front reaches the cold wall. After this, the
liquid depth along this boundary increases with time; see the insets. It is near this point of the melting
process when �eff takes its maximum value and Maeff is close to the nominal value of 6.21 × 104;
see Fig. 17. From this point onward, �eff slowly decreases and the vortical structure moves toward
the cold wall. The number of vortices is progressively reduced through the absorption of the smallest
vortex (near the cold wall) by its neighbor, until the final state with two vortices is reached. At the
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FIG. 18. Temperature δT1 = T1 − TM during meltings no. 1–3 (labeled). The vertical lines mark the
appearance/cessation of oscillatory flow and the melting completion (dashed); these are labeled as τ0,#, τf,#

and τmelt , respectively, where # refers to the melting number. The insets show the temperature and velocity
within the liquid at increasing times.

completion of melting, which occurs by 9185 s [32], the final selected pattern is analogous to that
of Fig. 5, with a large vortex shifted toward the hot wall, and a small vortex near the cold side of the
thermocapillary interface, similar to the solution discussed in Refs. [15,16]. For this value of Ma,
the flow remains steady, as shown in Fig. 18. This steady flow is consistent with the path traced by
the effective parameters in Fig. 17.

Melting no. 2 is representative of the oscillatory flow observed during melting in small-aspect-
ratio containers; this was discussed in Sec. 4 of Ref. [26]. This case is analyzed for the same aspect
ratio � = 2.25 (H = 10 mm) but with larger thermal forcing of Ma � 1.86 × 105 (�T = 30 K).
The corresponding curves are labeled in Figs. 17 and 18.

The overall progression of the phase change is similar to that of Ma � 6.21 × 104, but with the
total melting time reduced to tmelt = 3200 s, as expected for a value of Ma that is three times larger;
see the associated vertical dotted line of Fig. 18. Again, the flow in the liquid initially shows two
regions: the thermocapillary-driven layer near the free surface and the diffusion-dominated region
near the bottom wall. The localized SMC state contains four vortices.

After approximately 200 s, the temperature signal of Fig. 18 (dark gray) reveals a transition
to the SW mode; marked by a color change from gray to blue in Fig. 17. As the figure shows,
this transition, when parametrized by �eff and Maeff , occurs between the dotted and dashed curves
obtained with the liquid-only simulations of Sec. III, in very good agreement. Recall that these
curves were calculated for ε = 10−2 K/s and ε = 10−3 K/s, respectively. The faster of these two
ramp rates corresponds to increasing (instantaneous) Ma with d (Ma)/dt = γ Lε/(μLα) � 60 and
the slower one to d (Ma)/dt = 6. For melting no. 2, the phase change is completed by tmelt = 3200 s,
which provides an estimate of d Maeff/dt ≈ Ma/tmelt � 58. The similarity of these rate estimates
helps explain the good agreement.

At all times after the transition, the flow in the liquid is oscillatory with dynamics characteristic
of the SW mode. When melting is finished, (�eff , Maeff ) = (�, Ma) and the system lies within the
region of stable SWs found in Sec. III, consistent with the observed behavior. As discussed in Sec. 4
of Ref. [26], the oscillatory thermocapillary flow has a natural frequency that decreases with time.
The final SW frequency was found to be f � 0.07 Hz, which is in reasonable agreement with the
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FIG. 19. (a) Melting paths in effective parameters (�eff , Maeff ) for two choices of Ma in a container of
� = 12, which are representative of the dynamics in the large-aspect-ratio regime. Melting no. 4 (dotted curve):
Ma � 7.76 × 104 (�T = 12.5 K). Melting no. 5 (solid curve): Ma � 1.86 × 105 (�T = 30 K). The nature of
the thermocapillary flow is indicated by color: steady (gray) and TW (red). (b) Temperature δT2 during melting
no. 5, with vertical lines marking the appearance of oscillatory flow and the completion of melting (at τ, τmelt).
Insets illustrate the temperature and velocity at selected moments during melting.

frequency f � 0.08 Hz obtained in Sec. III A for the same � and Ma; this value can be extracted
from the spectrogram of Fig. 4(b) for �T = 30 K.

Finally, melting no. 3 is selected to examine another type of behavior discussed in Ref. [26],
where the phase change is characterized by two transitions. As observed for � = 1.5, there is one
transition from steady flow to the SW mode, then another back to steady flow. The simulation
included here is for a large thermal forcing of Ma � 2.48 × 105 (�T = 40 K). As seen in Fig. 18
(black curve), the flow begins to oscillate approximately 100 s after melting is initiated; labeled as
τ0,3. These oscillations last for a significant part of the melting process, but disappear at t � 1600 s;
labeled as τf,3. As with the other cases, the transitions can be explained in terms of the path traced
by (�eff , Maeff ); this path is shown in Fig. 17 (solid line). The first transition can be observed just
past the critical curve of the SW mode. Note that, for this simulation, melting finishes after 2785 s,
which leads to the estimate d Maeff/dt � Ma/tmelt ≈ 88 that partly explains the delayed appearance
of SWs. The second transition back to steady flow occurs at the point marked as τf,3 in Fig. 18. It can
be seen from Fig. 17 that this transition (from blue to gray) coincides with the effective parameters
crossing the upper part of the critical curve. The final pattern lies in a region of stable steady flow,
consistent with the analysis of Sec. III.

D. Large-aspect-ratio containers

An analogous set of results is now presented for representative cases in large-aspect-ratio
containers. Figure 19(a) shows the paths traced by meltings nos. 4 and 5 in the space of effective
parameters (�eff , Maeff ); see Table IV. As before, the nature of the observed thermocapillary flow is
indicated by the color: steady (gray) and TW (red). The temperature δT2 = T2 − TM during melting
no. 5 is included in Fig. 19(b), with vertical lines marking the appearance of oscillatory flow and the
completion of melting (labeled as τ and τmelt, respectively). The insets show the temperature and
velocity at selected times during melting.

Melting no. 4 illustrates the type of steady thermocapillary flow found in large containers in
Sec. 3 of Ref. [26]. The phase transition is analyzed for a moderate level of thermal forcing,
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Ma � 7.76 × 104 (�T = 12.5 K), in a container of � = 12. As discussed in that reference, �eff

in large containers rapidly grows to large values and SMC states are consistently observed. This is
consistent with the path of effective parameters shown (dotted curve) in Fig. 19(a), which does not
cross any of the critical boundaries for oscillatory flow found in Sec. III.

Melting no. 5, with a larger value of Ma � 1.86 × 105 (�T = 30 K), does exhibits a transition
to oscillatory flow in the form of TWs. As soon as the solid/liquid front separates enough from
the hot boundary, the thermocapillary effect drives convection near the free surface; see the lower
left inset of Fig. 19(b). As time passes, the thickness of the thermocapillary layer grows until it
spans the full cell height. From this time onward, the solid/liquid front maintains a similar overall
shape as it advances across the container to the cold wall; see the middle inset of Fig. 19(b). During
this interval of the melting process, the SMC flow acquires an increasing number of vortices. At
some moment [labeled as τ in Fig. 19(b)], the vortical structure begins to oscillate, and a TW is
generated. As described earlier, the TW mode is characterized by the cyclic creation of vortices
at the cold boundary (i.e., at the solid/liquid interface or the cold wall) that travel toward the hot
wall. The instability mechanism responsible for generating TWs in high Pr liquids was discussed
by Smith [21].

With this value of Ma, the solid is completely melted by tmelt = 510 s [32], which leads to the
estimate d Ma/dt ≈ Ma/tmelt � 365. This higher rate of increase explains the more pronounced
delay seen in Fig. 19(a) for the appearance of TW, compared to the onset predicted for the ideal
rectangular case. The dominant frequency of the TWs during melting was found to be f � 0.2 Hz
[26] and to be nearly independent of Ma over a wide range, consistent with the spectrograms of
Fig. 10. In fact, Fig. 19(b), which was obtained for the same aspect ratio of � = 12, indicates a
dominant frequency of f � 0.2 Hz, which agrees very well with the value observed during melting.

Finally, we remark on the differences between the onset of TWs obtained in Ref. [26] and the
critical curves calculated in this work for large �. Figure 19(a) shows that the relatively good
agreement over small and intermediate aspect ratios is diminished at larger �. The difference
suggests that, for a given (nominal) � and Ma, the presence of dynamic boundary conditions during
melting has a destabilizing effect, with the critical curve for TW shifted to lower values of Ma
compared to the equivalent container of pure liquid.

E. Intermediate-aspect-ratio containers

The study is completed by exploring melting in intermediate-aspect-ratio containers. As de-
scribed in Sec. IV B, this intermediate regime is characterized by the appearance of both TWs
and SWs, depending on the value of Ma. Again, the melting dynamics are understood by tracing
the paths of (�eff , Maeff ). Meltings nos. 6–8 can be compared to the predicted transitions in the
absence of a phase change, and do exhibit the initial bifurcation to TWs (path no. 6), the intermediate
range of moderate Ma where the melting becomes steady again (path no. 7), and the final transition
to the SW mode at larger Ma (path no. 8). The associated values of (�, Ma) are labeled and located
by circular markers in Fig. 19(a). Note that there is region of steady flow (marker no. 7) between
the critical curve for TW and SWs at moderate Ma.

Figure 20 shows the melting paths superimposed on the stability map obtained in Sec. III. The
path of melting no. 6 in effective parameters explains the appearance of TWs at a certain point of
the melting process. In this case, they persist beyond the completion of melting since the values of
� and Ma lie within the region of stable TWs.

If Ma is increased, these TWs may appear only during a limited portion of the melting [26] as
the upper part of the critical boundary for TWs is crossed. For example, melting no. 7 traces a path
that ends within the region of predicted steady flow and the final observed pattern is steady. Note
that the definition of �eff used here may overestimate the maximum value of the “equivalent” aspect
ratio since this path also predicts the temporary appearance of TWs, which are not observed during
that melting process. Alternatively, it may simply be that the short time spent in this (unstable) part
of the diagram is insufficient for TWs to properly develop.
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FIG. 20. Melting paths in effective parameters (�eff , Maeff ) for intermediate-aspect-ratio containers of � =
5.29 (H = 4.25 mm) and three Ma values: Ma � 7.76 × 104 (melting no. 6, solid curve, �T = 12.5 K), Ma �
1.29 × 105 (melting no. 7, dotted curve, �T = 20.75 K), and Ma � 1.40 × 104 (melting no. 8, dashed curve,
�T = 22.5 K). In all cases, the type of thermocapillary flow is color-coded: steady (gray), SW (blue), TW
(red).

Finally, the path of melting no. 8 shows the selection of SWs at larger Ma. Note that, as with the
TW instability in large-aspect-ratio containers, the threshold for SW to appear during the melting
process is lower than in the corresponding container of pure liquid. While much of this can be
explained by the dynamics of the melting front, as reflected by Maeff and �eff , other differences
likely result from the different numerical models used.

V. CONCLUSIONS

A detailed numerical investigation of pattern selection for thermocapillary-driven flows in rect-
angular containers in microgravity was presented. The flow was analysed for the case of liquid
n-octadecane, which has a high Prandtl number of Pr = 52.53, due to its relevance to anticipated
[55] and recent microgravity experiments [29–31]. The key bifurcation sets were analyzed in
Sec. III and the associated patterns were organized in terms of the aspect ratio (�) and the applied
Marangoni number (Ma). The results were summarized with a stability map showing regions of
steady solutions, standing waves (SW) and traveling waves (TW).

In small-aspect-ratio containers, the thermocapillary flow undergoes a transition from a steady
to an oscillatory SW mode as Ma is varied. The primary instability is due to a subcritical Hopf
bifurcation and is accompanied by a secondary saddle-node bifurcation. These two critical curves
delimit a bistable region where both steady flow and SWs can be found, depending on initial
conditions. The structure of the base flow is characterized by a small number of vortices, which are
biased toward the hot wall, consistent with the observations of Refs. [17] and [18]. The emergence
of SWs from this base flow causes the vortices to pulsate back and forth, a motion driven by the
interaction between cool perturbations, which are repeatedly siphoned off from the cold wall, and
the thermocapillary interface near the hot wall. The spectrum of SW solutions reveals a dominant
frequency that increases with the level of thermal forcing (Ma) and with �.

In large-aspect-ratio containers, the principal transition is from steady flow to an oscillatory TW
mode as Ma is increased. This instability is due to a supercritical Hopf bifurcation whose critical Ma
value increases with �. Prior to this instability, the steady thermocapillary flow exhibits structures
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that evolve from the steady return flow solution [19] at low Ma to a steady multicellular structure
(SMC) [2,27]. This SMC state constitutes the base flow for the development of TWs, which are
characterized by the cyclic creation of vortices at the cold side that detach and travel toward the hot
side. A spectral analysis shows that the TW frequency is largely insensitive to Ma while increasing
with �.

In intermediate-aspect-ratio containers, a more complicated picture of pattern selection is found.
Both steady and oscillatory flow—in the form of either TWs or SWs—can be obtained depending
on � and Ma. For these containers, the SW mode appears via a supercritical Hopf bifurcation, while
the TW arises in a subcritical Hopf bifurcation. This primary TW instability is accompanied by a
secondary saddle-node bifurcation and together they define a bistable region supporting both steady
and TW solutions.

The results obtained for rectangular containers of liquid are used in Sec. IV to understand
the various dynamics observed during the melting process in microgravity. The phase change
is described using an enthalpy-porosity formulation of the Navier-Stokes equations [70], which
models the coexisting solid and liquid states as a single domain with physical properties depending
on temperature and changing sharply across the solid/liquid front. The initially solid n-octadecane is
melted by applying a temperature difference �T across the (isothermal) lateral walls. The temporal
evolution of the melting process and associated flow is then related to the stability map of Sec. III
by defining an effective aspect ratio �eff and an effective Marangoni number Maeff to characterize
the changing liquid domain.

Good agreement is found between the transitions observed during melting and those located in
rectangular containers of liquid by considering the paths traced by these effective parameters �eff

and Maeff . For containers of small �, this correspondence provides a qualitative explanation for
why the convective flow at low-to-moderate Ma is initially characterized by the evolution from
SMC states to large-scale vortical structures. For larger Ma, both the transition from steady flow to
SWs and the subsequent return of steady flow are consistent with the results obtained for rectangular
containers of liquid. For containers of large �, the transition from steady return flow (SRF) to SMC
states, and the ensuing loss of stability to TWs, are likewise consistent with the results of Sec. III.
Furthermore, the measured TW frequencies are in agreement, including their dependence on � and
their insensitivity to Ma. Containers of intermediate aspect ratio are considered as well, using three
distinct melting paths for � � 5.29. The transition from steady flow to TWs, the return of steady
flow at moderate Ma, and the final transition to SWs can be explained quite well using effective
parameters to map the dynamics of the melting process onto the results obtained in Sec. III for ideal
rectangular volumes of liquid.
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