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In this work we study the fingering double diffusive convection, namely, the buoyancy-
driven convection flow within a fluid layer experiencing an unstable salinity gradient and
a stable thermal gradient. In particular, we investigate the influences from a background
shear with uniform strength. Linear stability analysis indicates that the unstable modes shift
from a circular shape to a sheetlike shape as the shear becomes stronger. Three-dimensional
direct numerical simulations are conducted for five groups of cases, each of which has the
same combination of thermal and salinity gradients (measured by corresponding Rayleigh
numbers) and gradually increasing shear strength. The same properties of seawater are
used for all simulations, i.e., the Prandtl number Pr = 7 (the ratio of kinematic viscosity
to thermal diffusivity) and the Schmidt number Sc = 700 (the ratio of kinematic viscosity
to salinity diffusivity). Numerical results reveal that a very weak shear organizes the salt
fingers into a very regular pattern, which enhances the salinity flux. This enhancement
effect, however, reduces as the Rayleigh number increases. For stronger shear the dominant
structures shift from salt fingers to salt sheets, and the coherence length scale increases
in the streamwise direction. Meanwhile, salinity and heat fluxes decrease. These findings
suggest that even a weak shear can notably alter the morphology and transport properties
of fingering double diffusive convection.
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I. INTRODUCTION

When fluid density depends on two scalar components, buoyancy-driven convection happens in
the form of double diffusive convection (DDC). DDC is ubiquitous in the ocean since the density
of seawater is determined mainly by temperature and salinity [1–3]. In the upper water of many
tropical and subtropical oceans, salinity and temperature decrease as the depth increases [4]. In
these regions DDC happens in the finger regime, since the slow-diffusing salinity gradient drives
the flow and the fast-diffusing temperature gradient stabilizes the flow [5]. DDC is very important
for the vertical mixing and transport in the ocean and many other environments, as comprehensively
discussed in the book by Radko [6] and the very recent review paper [7].

In real ocean environments, horizontal currents are omnipresent and inevitably interact with DDC
motions, especially for the finger regime. For instance, observations have found nearly horizontal
small-scale laminas in the salt-finger unstable region of the western North Atlantic [8,9]. The authors
assume these structures to be the salt fingers tilted by background shear. Investigations also confirm
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that the moderate shear indeed appears in the high-gradient interfaces of such regions, with typical
Richardson number of Ri � 1 [10]. Other evidences of the existence of tilted fingers include the
vertical and sloping filaments found in the eastern North Atlantic [11]. All these observations
indicate that the morphology and transport properties of fingers will be affected by the shear in
the ocean.

Over the years people have confirmed the abundant interactions between the salt fingers and
the background shear. The first systematic study, including experiments and theoretical analyses,
of the shear effects on salt fingers was conducted by Linden [12]. The author states that the
steady uniform shear will dampen the DDC disturbances along the streamwise direction, leading
to the two-dimensional structure, namely, the salt sheet. Through linear stability analysis, such
two-dimensional rolls are proved to be the most unstable mode in a finger regime under the
shear with no inflection points [13]. For the inflectional shear, the flow is susceptible to the
Kelvin-Helmholtz (KH) instability, which can coexist with the salt sheets [14]. The fully nonlinear
numerical simulations show that the KH instability has a more lenient criterion with Ri exceeding
unity under the DDC motions [15]. Other three-dimensional direct numerical simulations (DNSs)
also demonstrate that two secondary instabilities will appear after the formation of salt sheets, which
are called zigzag and tip modes [16,17]. The former may explain the origin of the oceanic horizontal
bands mentioned above [8,18]. As the morphology of salt fingers undergoes various variations under
the action of background shear, their transport efficiency also changes accordingly.

The key question about the sheared salt fingers is how the scalar transport capacity varies
with the shear strength. It is natural to assume that the heat and salinity fluxes will decrease to
a two-dimensional level when the salt sheets form, and Radko et al. [19] reach this conclusion
by DNS with the stochastic shear related to the internal wave in the real ocean. However, this
is not always the case when the salt sheets do not totally appear, or the secondary instabilities
occur. In addition, the experimental and numerical settings will also affect the transport properties
a lot. For instance, the experiments of Linden [12] reveal that the fluxes are even enhanced
under the shear, which may be due to the working fluid flowing in and out of the domain
constantly. Fernandes and Krishnamurti [20] conducted experiments and observed that the salinity
flux decreases with the shear strength, and the heat flux eventually decreases to a total molecular
diffusive mode. Through DNS in a sharp high-gradient interface, Kimura and Smyth analyze the
transport properties for the salt sheets in which secondary instabilities appear, and they conclude
that the effective diffusivities of heat and salt decrease with the shear strength and the density
ratio [16,21]. Recently Sichani et al. [22] conducted a series of DNSs for the bounded sheared
fingers within two horizontal plates, and they still found reduced salinity fluxes. Some models are
proposed to explain the declined fluxes [9,23], but a general theory is still lacking for the various
morphology of the sheared fingers. Moreover, the Richardson number in these studies is constrained
in relatively small values. The situation with weak shear (or large Richardson number) is rarely
explored.

It may be natural to assume that weak shear should not have notable influence. However, in this
study we will show that even a relatively weak shear can significantly alter the flow morphology,
making the salt fingers arranged regularly. With the increase of shear strength, the salinity flux first
increases due to the orderly structure, and then decreases when the salt sheets form. The similar
nonmonotonic variation is also reported in the recent sheared Rayleigh-Bénard convection (SRBC)
studies [24,25]. In such systems the weak shear dampens the heat transport by destroying the thermal
convection rolls, while the strong shear totally changes the flow morphology and enhances the
transport. Jin et al. [26] further investigated SRBC with the rough boundaries, in which the weak
shear first serves as a conveyor belt that strengths the thermal circulation and heat transport before
disturbing it. Based on our previous work for fingering DDC [27], here we investigate the fingering
DDC under the influence of background shear flow with a series of large Richardson numbers
of Ri ∼ 1–106. The Prandtl number and the Schmidt number, defined as the respective ratio of
kinematic viscosity to the diffusivities of temperature and salinity, are set as the typical values for
seawater at Pr = 7 and Sc = 700. Different density ratios and Rayleigh numbers are then simulated.
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FIG. 1. Sketch of the domain geometry and flow setup. In the horizontal directions the periodic boundary
condition is used for all flow quantities.

The lower bound of Ri is for the stage when the salt sheets just begin to appear, and is far from the
criteria for KH instability. Thus in the current study we do not consider the secondary instabilities
or the KH instability. We focus on the changes of the finger structures and the transport fluxes in the
vertical direction under the relatively weak shear.

This paper is organized as follows. In Sec. II we introduce the governing equations and the related
control domain. Next we conduct the linear stability analysis in Sec. III. Then Sec. IV presents the
results of fully nonlinear simulations. Finally we give the conclusions in Sec. V.

II. GOVERNING EQUATIONS

We consider the incompressible Navier-Stokes equations for a fluid layer bounded by two
horizontal plates which are separated by a height of H . A brief sketch of the flow domain is shown
in Fig. 1. Let z∗ be the normal direction of the plates (z∗ = 0 at the bottom and z∗ = H at the top),
while x∗ and y∗ are the horizontal directions. Hereafter, the asterisk (∗) stands for the quantities in
dimensional form, and the (x∗, y∗, z∗) directions are referred as spanwise, streamwise, and vertical
directions, respectively. Gravity is oriented along the negative vertical direction. A uniform and
steady background shear is sustained in the streamwise direction as Us = S(z∗ − H/2)ey. Here
S is the shear strength and ey is the streamwise unit vector, respectively. The total velocity then
reads u∗ = û + US = û + S(z∗ − H/2)ey. The shear strength can be written as S = Ub/H , which
is achieved by imposing streamwise velocity ±Ub/2 at the top and bottom plates, respectively. We
use the linear equation of state as ρ = ρ0(1 − βθθ

∗ + βss∗), where ρ0 is the reference value for the
density. The temperature θ∗ and the salinity s∗ are also relative to the values of the reference state.
βθ is the thermal expansion coefficient and βs is the coefficient of the density increase due to salinity
change. The governing equations for the incompressible velocity û and the two scalar components
then read, under the Oberbeck-Boussinesq assumption,

∂t ûi + û j∂ j ûi + US j∂ j ûi + û j∂ jUSi = −∂i p
∗ + ν∂2

j ûi + gδiz∗ (βθθ
∗ − βss

∗), (1a)

∂tθ
∗ + û j∂ jθ

∗ + US j∂ jθ
∗ = κθ∂

2
j θ

∗, (1b)

∂t s
∗ + û j∂ j s

∗ + US j∂ j s
∗ = κs∂

2
j s∗, (1c)

∂ j û j = 0, (1d)

in which ûi with i = x∗, y∗, z∗ are the three components of the perturbation velocity, p∗ is kinematic
pressure, ν is kinematic viscosity, g is the gravitational acceleration, and κθ and κs are the diffusivi-
ties of the temperature and the salinity, respectively. The density has been absorbed in the pressure
term of Eq. (1a).

The temperature and the salinity are kept constant on the top and bottom plates, with the scalar
differences across the fluid layer as 	θ and 	s, respectively. For the flow in the fingering regime, the
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top plate has higher temperature and salinity. Therefore, the convection flow is driven by the salinity
field but stabilized by the temperature field. For the velocity û on the two plates the stress-free
condition is applied for the streamwise and spanwise components, with no penetration condition for
the normal component, respectively. Periodic conditions are used in the two horizontal directions.
All the variables are nondimensionalized by the free-fall velocity

√
gβs	sH , the domain height H ,

and the scalar differences 	θ and 	s. Then the nondimensional equations are

∂t ui + u j∂ jui + (z − 1/2)√
Ri

∂yui + 1√
Ri

δiyuz = −∂i p +
√

Sc√
Ra

∂2
j ui + δiz(
θ − s), (2a)

∂tθ + u j∂ jθ + (z − 1/2)√
Ri

∂yθ =
√

Sc√
RaPr

∂2
j θ, (2b)

∂t s + u j∂ j s + (z − 1/2)√
Ri

∂ys = 1√
RaSc

∂2
j s, (2c)

∂ ju j = 0, (2d)

in which several control parameters are present. Throughout the current study we set the Prandtl
number Pr = ν/κθ = 7 and the Schmidt number Sc = ν/κs = 700, which are the typical values of
seawater. The strength of the driving salinity gradient is measured by saline Rayleigh number, Ra =
βsg	sH3/(κsν). The relative strength of the stabilizing temperature gradient is measured by the
density ratio 
 = βθ	θ/βs	s. In addition, the background shear is characterized by the Richardson
number Ri = βsg	sH/U 2

b . Note that stronger shear corresponds to smaller Ri.
It should be pointed out that, in the current wall-bounded model, the total density ratio defined

by the temperature and salinity differences between the two horizontal plates is different from that
defined by the background temperature and salinity gradients in the unbounded model [5,6]. In
the current configuration, boundary layers develop adjacent to the two plates and sustain certain
temperature and salinity differences. Therefore, the actual scalar differences and the resulting
density ratio across the salt-finger layer in bulk are not equal to those prescribed between the two
plates, but are the results of the interactions between the boundary layers and fingering bulk. It is
then not surprising that in such a wall-bounded model fingers still grow even if the total density ratio
between the two plates is smaller than unity, as observed in several experiments and our previous
simulations [27–30].

In the following sections we will first make a linear stability analysis for governing equations (2)
to identify the unstable parameter region and relevant unstable modes. Then we use our in-house
DNS code to numerically solve the full nonlinear equations in the relevant parameter space. Some
comparison will be made between the stability analyses and fully nonlinear simulations.

III. LINEAR STABILITY ANALYSIS

We now conduct a linear stability analysis for the nondimensionalized governing equations (2).
The standard normal mode method is utilized. That is, the flow variables are decomposed as ψ =
ψ̄ + ψ ′, where ψ̄ is the base state and ψ ′ is the perturbation, respectively. For the current flow, the
base state is chosen to be the background shear flow with a vertically linear distribution for both
temperature and salinity, i.e.,

ū = z − 1/2√
Ri

ey, θ̄ = z, s̄ = z, (3)

in which z ∈ [0, 1]. In Eqs. (2) one can treat the velocity deviating from the uniform shear flow as the
perturbation velocity. Then substituting the base state into the governing equations and neglecting
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FIG. 2. The real part of the temporal growth factor ωr in (ky, kx ) space for three cases with Ra = 107,

 = 1: (a) unsheared case, (b) Ri = 104, (c) Ri = 102, and (d) Ri = 1. The black solid line denotes the neutral
line (ωr = 0).

the high-order terms, the linearized equations read

∂t u
′
i + z − 1/2√

Ri
∂yu′

i + 1√
Ri

δiyu′
z = −∂i p

′ +
√

Sc√
Ra

∂2
j u′

i + δiz(
θ ′ − s′), (4a)

∂tθ
′ + z − 1/2√

Ri
∂yθ

′ + u′
z =

√
Sc√

RaPr
∇2θ ′, (4b)

∂t s
′ + z − 1/2√

Ri
∂ys′ + u′

z = 1√
RaSc

∇2s′, (4c)

∂ ju
′
j = 0. (4d)

By taking the divergence of Eq. (4a) and using the continuity condition (4d), one obtains

2√
Ri

∂yu′
z = −∇2 p′ + ∂z(
θ ′ − s′). (5)

To eliminate the pressure term, one can further take the z derivative of Eq. (5) and minus it by the
Laplacian of the z component of Eq. (4a). A fourth-order differential equation for uz can then be
obtained as

∂t∇2u′
z =

√
Sc√
Ra

∇4u′
z − z − 1/2√

Ri
∂y∇2u′

z + ∇2
h (
θ ′ − s′), (6)

in which ∇2
h = ∂2

x + ∂2
y is the Laplacian in the horizontal plane. The derivations of these linearized

equations are standard and can be found in many textbooks (e.g., see Chap. 6 of [31]). Equa-
tions (4b), (4c), and (6) constitute an eigenvalue problem for three perturbation variables. We can
numerically solve it by introducing a normal-mode solution as

ψ ′(x, y, z, t ) = ψ̃ (z) exp(ikxx + ikyy + ωt ), (7)

in which ψ stands for uz, θ , or s and the tilde denotes the complex vertical shape functions. kx and
ky are the real wave numbers in the horizontal plane. ω = ωr + iωi is the complex temporal growth
factor. To solve the eigenproblem for different control parameters (Ra, Ri,
) and wave numbers
(kx, ky), the Chebyshev polynomial expansion and the collocation method are adopted in the vertical
direction. The resolution in the vertical direction is 300. Grid convergence has been examined by
increasing the resolution to 600, and the relative difference in the growth rate is less than 0.01%.

In Fig. 2 we show the growth rates for modes with different wave numbers. The Rayleigh number
is fixed at Ra = 107 and the density ratio at 
 = 1.0. Unsheared state and three different Richardson
numbers are considered, i.e., Ri = 104, 102, and 1. The neutral curve with ωr = 0 is also plotted for
each set of parameters. For the unsheared case shown in Fig. 2(a), there are very little differences
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of ωr for different directions. The most unstable mode under this condition is supposed to be the
salt-finger instability. In Fig. 2(b) where the shear is very weak, the large value of ωr concentrates
a bit more on the area where kx > ky, which is due to the streamwise shear. As will be shown later,
although this anisotropy is very weak, it will lead to a big change for the arrangements of the salt
fingers. This phenomenon becomes clearer when Ri decreases to 102, as shown in Fig. 2(c). The
instability along the streamwise direction is faded a lot by the shear, but it is hardly affected in
the spanwise direction. When Ri equals unity in Fig. 2(d), the most unstable mode totally reduces
to the area where ky equals zero, which leads to the two-dimensional salt sheets. This result is
consistent with the previous linear stability analyses [12,14]. Note that even the smallest Ri among
our cases (i.e., Ri = 1) is still larger than the criterion of KH instability (Ri < 1/4), which is
often considered in sheared finger studies [15,17]. Furthermore, the vertical shear profile without
inflection points also indicates that the two-dimensional salt sheets are the most unstable mode [13].
Thus in the current study we do not expect a KH instability to occur and focus on the interaction
only between the primary salt-finger instability and the background shear.

The streamwise shear has no effects on the pure spanwise mode (ky = 0). One can easily deduce
this conclusion by noticing that the terms related to Ri disappear automatically when ky equals zero
in Eqs. (4b), (4c), and (6). As the result, when the salt sheets appear, they will no longer be affected
by the shear. Specifically, the width of the salt sheets is related to Ra and 
, but independent of Ri.
Thus we can choose any Ri to find the performance of ωr with other control parameters. In this way
the salt sheets behave like the two-dimensional salt fingers. For 
 > 1, by assuming ky = 0 with the
“tall finger” (TF) approximation [32,33] and the “viscous control” approximation [14], Eqs. (4b),
(4c), and (6) can be simplified as a quadratic equation and one can just solve it and obtain

kx =
(

RaPr

Sc
(
 − 1)

) 1
4

(8)

for the fastest-growing modes [14]. This method applies to the unbounded domain and it is no longer
available for 
 � 1 since the salt-finger instability will not happen. In our wall-bounded model, as
we stated before, the salt fingers still appear when 
 � 1. Therefore we still need to use our original
eigenmethod to get the most unstable modes.

Figure 3 shows ωr as the functions of (kx, Ra) and (kx,
) with ky = 0 and Ri = 10. The black
dashed lines denote the most unstable modes for given Ra or 
. In Figs. 3(a) and 3(b) the slopes
of the dashed lines are about 0.13 and 0.24 for 
 = 0.5 and 
 = 1, respectively, as determined
by the linear fitting. The growth rate ωr along the line has less variation at larger 
. In Figs. 3(c)
and 3(d) the fastest-growing lines are directly compared with Eq. (8) shown by the solid lines. The
coefficients obtained here are very close to the traditional method. As shown in Fig. 3(d), for fixed
Ri = 10 the wave number of the most unstable mode first keeps nearly constant for 
 � 0.7 and
then increases monotonically as 
 increases above unity. In Fig. 3 we also plot the wave number
corresponding to the characteristic length scale extracted from the fully nonlinear DNS results (see
the black dots). Specifically, we extract the width of the salt sheets, d , from flow fields and treat it as
the half wavelength, i.e., corresponding to the wave number kx = π/d . Although the exact values
are different between the results of the linear analysis and the nonlinear simulations, which is totally
expected, the overall trends are still quite similar.

IV. THREE-DIMENSIONAL DIRECT NUMERICAL SIMULATION

A. Numerical settings

We now turn to the fully nonlinear simulations. The numerical method will be briefly described
first; then the numerical results will be discussed. We use our well-developed code to solve
governing equations (2). The code employs a fraction of time step method with the finite-difference
scheme. An advantage of this code is the use of the multigrid method; namely, a refined mesh is
established for the salinity field because of its relatively small diffusivity, while the other variables
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FIG. 3. The real part of the temporal growth factor ωr as a function of (kx, Ra) and (kx, 
) with (a) 
 =
0.5, (b) 
 = 1, (c) 
 = 2, and (d) Ra = 107. For all panels ky = 0 and Ri = 10. The black dashed lines
denote the fastest-growing modes, and dots mark the spanwise length scales of the dominant structures in
DNS results, respectively. The scaling laws in (a) and (b) are given by linear fitting with slopes 0.13 and 0.24,
respectively. The relationships in (c) and (d) are directly obtained from Eqs. (8) and shown by the black solid
lines, respectively.

are solved on the basic mesh. The code has been widely used in our previous DDC cases and
other turbulent simulations [27,34]. Initially both the temperature and salinity increase linearly from
bottom to top, while velocity u is set to zero. Besides, small perturbations are added to trigger the
flow. All the simulations have been run until the statistically steady state is reached, and the flow
fields and statistical results are extracted from the statistically steady stage.

Details of the parameter setting are shown in the Appendix. Specifically, all cases are divided into
five groups by the different Rayleigh number Ra and density ratio 
. The first three groups have the
same Rayleigh number Ra = 107 and different density ratios 
 = 0.5, 1, and 2, respectively. Then
we keep 
 = 1 and increase Ra to 108 and 109, as shown in the last two groups. Within each group,
the Richardson number Ri gradually varies in a large range over five or six orders of magnitude.
We would like to stress again that, although the global density ratios 
 = 0.5 and 1 do not lie in
the traditional range 1 < 
 < κθ/κs = 100 where salt fingers can develop, in our wall-bounded
configuration salt fingers emerge in the bulk for all the simulations since the global density ratio is
not the actual density ratio of the salt-finger bulk.

B. Initial development of the salt fingers

We first investigate the development of the flow field from the beginning of the simulations.
The horizontal averaged salinity 〈s〉h and temperature 〈θ〉h profiles are displayed versus the time
in Fig. 4. Three cases with different density ratios 
 = 0.5, 1, 2 at Ra = 107 and Ri = 104 are
considered. The salinity and temperature field experienced a vertical reverse in the bulk area shortly
after the simulation started, indicating a rough convection emerging. For lower 
, this convection
happens earlier and more roughly (see the variation of Reynolds number Re = |u∗|H/ν in the last
row of Fig. 4). After the intense mixing, the temperature field quickly returns to the linear state
due to its large diffusivity, while the salinity field gradually becomes homogeneous in the bulk,
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FIG. 4. The initial time evolution of the mean salinity vertical profile, the mean temperature vertical profile,
the Turner angle profile, and the Reynolds number (from top to bottom), with (a) 
 = 0.5, (b) 
 = 1, and
(c) 
 = 2 (from left to right). The other control parameters read Ra = 107 and Ri = 104.

leaving the high gradient regions near the two boundaries. To characterize the DDC flow in this
period, we introduce the Turner angle defined as Tu = 135◦ − arg(βs∂z〈s〉h + iβθ∂z〈θ〉h) [35]. In
this way, the range of salt-finger instability 1 < 
 < 100 becomes 45.57◦ < Tu < 90◦. In addition,
90◦ < Tu < 270◦ is for the gravitational unstable convection and −45◦ < Tu < 45◦ is for the stable
stratification. In the third row of Fig. 4, we show the time evolution of Tu. The initial convection
totally changes Tu, making a stable state in the bulk area and unstable convection in the boundary
layers. In this situation, salt-finger instability emerges in the thin region adjacent to the boundary
layers, gradually extending to the whole domain. In the follow sections we will focus on the final
state of the flow field.

C. Flow morphology and transport properties at Ra = 107

In this section we focus on the cases with Ra = 107 and varying 
 and Ri. We first look at the
morphology change of finger structures as the shear enhances for 
 = 1. Our results suggest that
these qualitative behaviors are similar for different Ra and 
. Figure 5 presents three-dimensional
volume rendering of instantaneous salinity fields for five different shear rates. The left column
shows the structures with salinity smaller than 0.3	s and larger than 0.7	s, which include the finger
structures both ascending from the bottom plate and descending from the top plate. The right column
only shows the finger structures growing from the bottom plate with salinity smaller than 0.3	s. In
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FIG. 5. Three-dimensional volume rendering of the instantaneous salinity field with (a) no background
shear, (b) Ri = 104, (c) Ri = 103, (d) Ri = 102, and (e) Ri = 10. The color is determined by the salinity in two
end values (left) and a single end value (right). The other control parameters all read Ra = 107, 
 = 1. The
spanwise half wavelength d and the streamwise length scale λy calculated by the autocorrelation function of
salinity (Fig. 6) are shown in the right column. In (e) the width dl predicted by the linear stability analysis is
also shown.

the absence of shear, as shown in Fig. 5(a), the salt fingers originating from both plates are arranged
disorderly in their horizontal locations, which is similar to the previous simulations [27,36]. Due to
the relatively low Ra, most of the salt fingers reach the opposite plate. Interestingly, a weak shear
already has profound effects on the horizontal arrangement of the fingers. For Ri = 104, namely,
when the shear velocity is only 1% of the free-fall velocity, the salt fingers are still vertically oriented
but their horizontal locations become very well organized. Fingers rooted from the same plate
form nearly straight lines which are along the streamwise direction. Meanwhile, ascending fingers
and descending ones appear alternatively in the spanwise direction. For Ri = 103 the salt fingers
exhibit distinct tilting towards the shearing direction and sheetlike structures along the streamwise
direction emerge at the roots of fingers near the plates. As Ri decreases further the sheetlike
structures are more clear. For Ri = 10, namely, the strongest shear considered here, the dominant
structures become nearly two-dimensional salt sheets, as shown in Fig. 5(e). It should be noted
that Ri = 10 is close to the typical value measured in the ocean [10]. If Ri continues to decrease,
secondary instability may develop for the salt-sheet structures [18]. Above discussions indicate that
as the shear strengthens first the horizontal pattern of fingers is altered, then fingers are tilted, and
finally fingers are replaced by salt sheets along the streamwise direction. To quantitatively inves-
tigate such behaviors, we calculate the autocorrelation coefficient Cs of salinity in the horizontal
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FIG. 6. The autocorrelation coefficient Cs of salinity for the streamwise separation δy and the spanwise
separation δx in the vertical midplane. Different shear strengths are set as unsheared for (a) and Ri = 105,
4 × 104, 104, 4 × 103, 103, 102, and 10 for (b–h), respectively. The other control parameters all read Ra = 107,

 = 1. The spanwise half wavelength d and the streamwise length scale λy are denoted by black solid lines in
each panel.

directions as

Cs(δx, δy) = 〈(s(x, y) − μs)(s(x + δx, y + δy) − μs)〉h

σ 2
s (x, y)

, (9)

in which μs and σs are the mean and the standard deviation of salinity over the given horizontal plane
and time, respectively. Here 〈 〉h stands for the temporal and spatial average over a horizontal plane.
By definition −1 � Cs � 1 and Cs(0, 0) = 0. The coefficient Cs is computed for the cases with
Ra = 107 and 
 = 1 over the horizontal plane at the height 0.2H . The results are shown in Fig. 6.
For the case without shear, the autocorrelation coefficient is isotropic in the (δx, δy) plane, as shown
in Fig. 6(a). This is expected since fingers randomly distribute in the horizontal directions without
any preference. When a weak shear is applied, the correlation immediately becomes stronger along
the line with a small angle to the δy direction, namely, close to streamwise direction. For Ri =
104 an organized pattern emerges in the contours of Cs [see Fig. 6(d)]. Patches with large positive
and negative values appear with a regular spacing. Compared with Fig. 5(b), it is obvious that
the organized pattern of Cs corresponds to the regularly distributed fingers. As the shear further
strengthens, the organized pattern disappears and the autocorrelation coefficient is dominated by a
strong strip along the δy direction, indicating streamwise-oriented sheetlike structures.

Some typical length scales can be extracted from the autocorrelation coefficient Cs. From the
function Cs(δx = 0, δy) one can use a parabola to fit the curve close to the original point, then a
length scale λy can be defined as four times the intersection location of this parabola and the δy axis.
Clearly λy is related to the decreasing rate of Cs along the δy axis and indicates the correlation length
of the salinity field along the streamwise direction, as displayed straightforwardly in Figs. 5 and 6.
The dependence of λy on the shear strength is plotted in Fig. 7. As the shear becomes stronger,
namely, increasing Ri−1, the streamwise correlation length first keeps constant and then increases
for all three density ratios considered. This corresponds to the fact that fingers become organized
at weak shear and then are replaced by sheets when shear is strong enough. Another length scale is
the spanwise spacing d of the salt-finger or salt-sheet structures, which can be determined by the
value of δx at the first negative minimum of the curve Cs(δx, δy = 0). The results are summarized
in the Appendix and also displayed in Figs. 5 and 6. When the salt sheets totally replace the finger
structure, d is assumed to be the width of the sheets and independent of Ri, which is compared
with the linear results in Figs. 3(b) and 5(e). It can be seen that the linear stability analysis captures
the variation trend of this spanwise spacing scale. We now turn to the mean profiles of scalar
fields. Figure 8 shows the vertical profiles of salinity and temperature averaged both in time and
over the horizontal plane. Three cases are shown for (Ra,
) = (107, 1) and Ri = ∞, 1000, and
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FIG. 7. The streamwise correlation length scale determined from the autocorrelation function versus the
shear strength. For all cases Ra is fixed at 107.

10, respectively. The salinity field has distinct boundary layers and bulk regions [see Fig. 8(a)].
Due to the large thermal diffusivity, the temperature profiles are very close to the linear one, as
shown in Fig. 8(b). As the shear becomes stronger, the vertical gradient of mean salinity around
the mid-height changes from slightly positive to negative, and then becomes positive again. We
calculate the salinity vertical gradient averaged in the middle bulk area for each case, i.e., 〈∂zs̄〉b =
(〈s̄〉z=0.6 − 〈s̄〉z=0.4)/0.2. The results are summarized in the Appendix and plotted in Fig. 9(a). The
profiles for the standard deviation of salinity and temperature are shown in Figs. 8(c) and 8(d). For
the weak shear case with negative mean salinity gradient at the center, the fluctuations of both scalars
are also weaker compared to other cases. Moreover, the salinity boundary layer thickness λs can be
calculated by the maximum value points in Fig. 8(c), and its variations are shown in Fig. 9(b).

The nonmonotonic variations of both 〈∂zs̄〉b and λs can be understood by the changing of the
flow morphology and the salinity field near the boundary. In Fig. 10 we plot the salinity contour
on the horizontal plane z/H = 0.9, which is close to the upper boundary. With a weak shear salt
fingers become very well organized in their horizontal locations, and more fingers with relatively
low salinity can rise to the height very close to the top boundary, which can be seen by comparing
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FIG. 8. The mean profiles of (a) salinity, (b) temperature, (c) standard deviation of salinity, and (d) standard
deviation of temperature. The bar and the bracket stand for the temporal and horizontal average value,
respectively. In each panel three cases with Ra = 107, 
 = 1 and different shear strengths are shown.
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FIG. 9. (a) The central salinity gradient 〈∂z s̄〉b vs Ri−1. (b) The salinity boundary layer thickness λs vs Ri−1.
For all cases Ra is fixed at 107.

Figs. 10(a) and 9(b). These rising fingers stop growing as they reach the upper boundary layer,
at which height they reduce the mean salinity and enhance the fluctuation or standard deviation
of the salinity field. Similar behaviors occur for the descending fingers with high salinity as they
reach the lower boundary layer. These effects cause the negative gradient in the bulk and shift
the peak locations in the standard deviation profiles towards the corresponding boundary. With the
strong shear, as in the case shown in Fig. 10(c), the salt fingers cannot reach the opposite boundary,
resulting in the positive mean gradient in salinity and thicker boundary layer.

The change of structure morphology affects the vertical transport property of the system. Three
nondimensional numbers are used to measure the heat, salt, and momentum fluxes, namely, the two
Nusselt numbers and the vertical Reynolds number defined as

Nuθ =
∣∣∣∣ 〈uzθ〉h − κθ∂z〈θ〉h

κθ	θH−1

∣∣∣∣, Nus =
∣∣∣∣ 〈uzs〉h − κs∂z〈s〉h

κs	sH−1

∣∣∣∣, Rez = urms
z H

ν
. (10)

Note that we calculate the Reynolds number by the root-mean-square value of the vertical velocity uz

to measure the vertical momentum transport. These quantities are plotted in Fig. 11. Interestingly,
both Nus and Rez first increase and then decrease as Ri−1 gradually increases. That is, for weak
shear, both salinity transfer and vertical motion are enhanced, while they are suppressed for stronger
shear. The enhancement of these two quantities is caused by the organized fingers which generate a
more efficient transport than the no-shear case. Similar phenomena have also been reported in other
systems [37]. The heat Nusselt number, however, only exhibits a very weak variation for different

FIG. 10. The time-averaged salinity contour in the z = 0.9 plane for (a) the unsheared case, (b) Ri = 104,
and (c) Ri = 10. For all the cases Ra = 107, 
 = 1.
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FIG. 11. The global fluxes for different shear strengths normalized by the values of no-shear cases.
(a) Salinity Nusselt number, (b) heat Nusselt number, and (c) Reynolds number. For all cases Ra is fixed at
107. For 
 = (0.5, 1, 2), Nu0

s = (33.8, 32.3, 31.0), Nu0
θ = (1.32, 1.17, 1.09), and Re0

z = (0.93, 0.78, 0.65).

shear strengths. This is expectable since in the current setting heat diffuses much quicker than salt.
For the relatively low Ra = 107, diffusion dominates the heat transport and shear only has a minor
influence.

D. Influences of different Rayleigh numbers

We now investigate the influences of the Rayleigh number. 
 is fixed at unity and three Rayleigh
numbers are considered, namely, Ra = 107, 108, and 109. As discussed in the previous section, for
all the Ra and 
 considered here, the flow morphology shows a similar transition as those shown in
Fig. 5. Here, Fig. 12 presents the three-dimensional volume rendering of the instantaneous salinity
field with Ra = 108 and 109 for Ri = 104. It should be pointed out that the salt fingers have similar
strength between those ascending from the bottom and those descending from the top. The regularity
of the flow structures weakens with the increase of Ra for the same shear strength. Moreover, the salt
fingers become more turbulent and quickly lose their salinity anomaly before reaching the opposite
boundary. In Fig. 13 we plot the behaviors of λy versus Ri−1 for the three different Ra. For all
Rayleigh numbers the streamwise correlation length increases as shear becomes stronger, indicating
the formation of sheetlike structures. However, λy is smaller for larger Ra. Moreover, even for the
strongest shear with Ri = 10 the increment of λy with respect to the no-shear case is rather small;
i.e., the coherence of the salt-sheet structures is still quite weak. For higher Rayleigh number as in
the ocean, the salt-sheet structures may only develop at even stronger shear.

Different behaviors of the correlation length scales also reflect themselves in the variations of
fluxes. In Fig. 14 we plot the two Nusselt numbers and the Reynolds number, all normalized by the

FIG. 12. Three-dimensional volume rendering of the instantaneous salinity field with (a) Ra = 108 and
(b) Ra = 109. The other control parameters read Ri = 104, 
 = 1.

053501-13



JUNYI LI AND YANTAO YANG

0 10-6 10-5 10-4 10-3 10-2 10-1
0

0.5

1

1.5

2 //

//

FIG. 13. The streamwise correlation length scale determined from the autocorrelation function versus the
shear strength. 
 is fixed at 1.

values of the no-shear cases. For Ra = 107, both Nus and Rez are enhanced considerably for weak
shear. However, this enhancement is smaller as Ra becomes larger. For Ra = 109 there is effectively
no enhancement in Nus. This can be attributed to less coherence of salt-finger structures along the
vertical direction at high Ra. At the strongest shear studied here, Nus can be almost 20% less than
that of the no-shear case. The reduction in heat flux is larger for higher Ra and stronger shear.
With strong buoyancy driving force, convection starts to play an apparent role in the dynamics of
temperature component, instead of the nearly conduction state for Ra = 107. And then shear can
affect the heat flux.

V. CONCLUSIONS

In summary, the salt-finger DDC with a uniform shear is studied by both linear stability analysis
and fully nonlinear simulation. We demonstrate that a weak shear can already alter the flow
morphology significantly. Specifically, salt fingers distribute regularly when a weak shear is applied.
As the background shear further increases, the dominant structures change to salt sheets parallel
to the shearing velocity, and the structures become increasingly correlated along the streamwise
direction. For the current flow bounded by two plates from top and bottom, linear stability analyses
reveal a similar trend: the most unstable modes become two dimensional as shear is enhanced. For

 > 1, the spanwise scales of the most unstable modes predicted by the linear theory for the current
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FIG. 14. The global fluxes for different shear strengths normalized by the values of no-shear cases.
(a) Salinity Nusselt number, (b) heat Nusselt number, and (c) Reynolds number. 
 is fixed at 1. For
Ra = (107, 108, 109), Nu0

s = (32.3, 63.8, 135), Nu0
θ = (1.17, 1.35, 1.77), Re0

z = (0.78, 2.02, 5.50).
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wall-bounded model show similar behaviors as those found in previous sheared salt-finger studies,
i.e., kx ∼ Ra0.25(
 − 1)0.25. For 
 = 1 and 
 = 0.5, the exponent of Ra decreases to 0.24 and 0.13,
respectively. For all the parameters considered here, their overall variations are also consistent with
those obtained from the current nonlinear simulations of fully developed flows.

The effects of shear on global transports are rather complex. The salinity Nusselt number first
increases when a weak shear is applied. The enhancement of NuS is related to the regularization
of salt-finger distribution under weak shear. In this regime, fingers carry more salinity from one
plate to another, which produces the salinity reverse near the boundary layer. The magnitude of this
enhancement reduces for larger Ra. When the shear is strong enough, salinity flux is suppressed.
NuS decreases by about 20% for the strongest shear considered here. At low Ra the thermal field is
effectively in the conductive state, and the temperature Nusselt number only decreases slightly as
shear becomes stronger. For the highest Ra considered here, the decrement of Nuθ becomes notable
for strong shear.

Our results not only reveal interesting results about the fingering DDC with weak shear, but also
have important implications for oceanic DDC. In particular, even a weak shear can notably alter the
heat and salt fluxes in the vertical direction. Moreover, it affects the two fluxes in different ways;
therefore, also the density flux ratio is changed.
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APPENDIX: NUMERICAL DETAILS

In this Appendix we provide the summary of the control parameters, key numerical details,
and the responses for all simulation cases. Each group of cases is listed in each of Tables I–V
for a combination of Rayleigh number Ra and density ratio 
 as indicated in the caption. For all
simulations, we keep the length in the vertical direction Lz = 1, the Prandtl number Pr = 7, and the
Schmidt number Sc = 700, respectively.

TABLE I. Cases for Ra = 107 and 
 = 0.5. Columns from left to right are the Richardson number, domain
sizes in the spanwise and streamwise directions, resolutions in the spanwise, streamwise, and normal directions
(with refinement factors for multiple resolutions), the streamwise correlation length scale, the spanwise spacing
scale, the bulk-averaged vertical gradient of salinity, the salinity boundary layer thickness, the salinity and
temperature Nusselt numbers, and the vertical Reynolds number, respectively.

Ri Lx Ly Nx (mx ) Ny(my ) Nz(mz ) λy d 〈∂z s̄〉b λs Nus Nuθ Rez

1 × 100 4 8 192(4) 384(5) 128(2) 2.872 0.711 0.033 0.025 25.6 1.26 0.77
1 × 101 4 8 192(4) 384(5) 128(2) 1.112 0.680 0.024 0.023 26.5 1.26 0.77
1 × 102 4 8 192(4) 384(5) 128(2) 0.432 0.680 0.007 0.023 27.7 1.25 0.79
4 × 102 4 8 192(4) 384(5) 128(2) 0.568 0.346 −0.074 0.021 30.3 1.26 0.90
1 × 103 4 4 256(4) 256(4) 128(3) 0.384 0.354 −0.033 0.016 35.6 1.29 1.01
4 × 103 4 4 256(4) 256(4) 128(2) 0.312 0.318 −0.031 0.016 35.6 1.26 1.02
1 × 104 4 4 256(4) 256(4) 128(2) 0.268 0.299 −0.020 0.015 37.2 1.30 1.06
4 × 104 4 4 256(4) 256(4) 128(2) 0.240 0.381 −0.012 0.016 36.4 1.32 1.02
1 × 105 4 4 192(4) 192(4) 128(2) 0.232 0.445 0.009 0.016 36.2 1.32 1.01
∞ 4 4 192(4) 192(4) 128(2) 0.236 0.904 −0.011 0.018 33.8 1.32 0.93
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TABLE II. Cases for Ra = 107 and 
 = 1. Columns are the same as those in Table I.

Ri Lx Ly Nx (mx ) Ny(my ) Nz(mz ) λy d 〈∂z s̄〉b λs Nus Nuθ Rez

1 × 101 4 8 288(3) 288(4) 144(2) 1.365 0.674 0.064 0.025 26.7 1.14 0.67
1 × 102 4 8 288(3) 288(4) 144(2) 0.535 0.512 0.044 0.023 27.3 1.13 0.69
1 × 103 4 8 288(3) 288(4) 144(2) 0.421 0.336 −0.065 0.022 28.8 1.15 0.73
4 × 103 4 8 288(3) 288(4) 144(2) 0.321 0.331 −0.016 0.017 33.8 1.18 0.81
1 × 104 4 8 288(3) 288(4) 144(2) 0.294 0.285 −0.018 0.016 36.8 1.18 0.89
4 × 104 4 4 288(3) 288(3) 144(2) 0.287 0.414 0.008 0.019 33.8 1.17 0.81
1 × 105 4 4 288(3) 288(3) 144(2) 0.278 0.433 0.008 0.019 33.7 1.17 0.81
∞ 4 4 288(3) 288(3) 144(2) 0.300 0.674 0.012 0.019 32.3 1.17 0.78

TABLE III. Cases for Ra = 107 and 
 = 2. Columns are the same as those in Table I.

Ri Lx Ly Nx (mx ) Ny(my ) Nz(mz ) λy d 〈∂z s̄〉b λs Nus Nuθ Rez

1 × 101 4 8 288(3) 288(4) 144(2) 1.580 0.220 0.098 0.023 27.4 1.07 0.62
1 × 102 4 8 288(3) 288(4) 144(2) 0.624 0.215 0.083 0.023 27.4 1.07 0.63
1 × 103 4 8 288(3) 288(4) 144(2) 0.412 0.326 0.042 0.022 28.3 1.07 0.62
4 × 103 4 8 288(3) 288(4) 144(2) 0.400 0.280 0.004 0.022 29.3 1.08 0.64
1 × 104 4 8 288(3) 288(4) 144(2) 0.380 0.252 −0.025 0.019 32.8 1.10 0.69
4 × 104 4 4 288(3) 288(3) 144(2) 0.348 0.220 0.005 0.019 33.8 1.09 0.74
1 × 105 4 4 288(3) 288(3) 144(2) 0.340 0.303 0.019 0.019 32.9 1.09 0.70
∞ 4 4 288(3) 288(3) 128(2) 0.388 1.243 0.040 0.021 31.0 1.09 0.65

TABLE IV. Cases for Ra = 108 and 
 = 1. Columns are the same as those in Table I.

Ri Lx Ly Nx (mx ) Ny(my ) Nz(mz ) λy d 〈∂z s̄〉b λs Nus Nuθ Rez

1 × 101 4 8 384(3) 768(3) 192(2) 0.468 0.127 0.075 0.011 55.6 1.25 1.95
1 × 102 4 8 384(3) 768(3) 192(2) 0.248 0.373 0.051 0.011 54.4 1.26 1.85
1 × 103 4 8 384(3) 768(3) 192(2) 0.192 0.352 0.012 0.011 58.4 1.29 1.93
1 × 104 4 8 384(3) 768(3) 192(2) 0.176 0.217 −0.001 0.010 62.3 1.33 2.01
1 × 105 4 4 480(3) 480(3) 192(2) 0.180 0.357 0.002 0.009 65.7 1.33 2.12
1 × 106 4 4 384(3) 384(3) 192(2) 0.188 0.401 0.001 0.009 65.5 1.36 2.06
∞ 4 4 384(3) 384(3) 192(2) 0.208 0.589 0.001 0.009 63.8 1.35 2.02

TABLE V. Cases for Ra = 109 and 
 = 1. Columns are the same as those in Table I.

Ri Lx Ly Nx (mx ) Ny(my ) Nz(mz ) λy d 〈∂z s̄〉b λs Nus Nuθ Rez

1 × 101 1 2 240(4) 480(4) 288(3) 0.208 0.062 0.121 0.005 110 1.51 5.04
1 × 102 1 2 240(4) 480(4) 288(3) 0.124 0.061 0.059 0.005 112 1.51 5.05
1 × 103 1 2 240(4) 480(4) 288(3) 0.100 0.069 0.038 0.005 126 1.59 5.45
1 × 104 1 2 240(4) 480(4) 288(3) 0.092 0.068 0.019 0.005 128 1.60 5.54
1 × 105 1 2 240(4) 480(4) 288(3) 0.096 0.077 0.009 0.004 134 1.67 5.63
1 × 106 1 1 240(4) 240(4) 288(3) 0.104 0.084 0.012 0.004 136 1.69 5.67
∞ 1 1 240(4) 240(4) 288(3) 0.120 0.331 0.005 0.005 135 1.77 5.50
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