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We study entrainment in dry thermals in neutrally and unstably stratified ambients, and
moist thermals in dry-neutrally stratified ambients using direct numerical simulations. We
find, in agreement with results of Lecoanet and Jeevanjee [J. Atmos. Sci. 76, 3785 (2019)],
that turbulence plays a minor role in entrainment in dry thermals in a neutral ambient
for Reynolds numbers Re � 104. We then show that the net entrainment rate increases
when the buoyancy of the thermals increases, either by condensation heating or because
of an unstably stratified ambient. This is in contrast with the findings of Morrison et al.
[J. Atmos. Sci. 78, 797 (2021)]. We also show that the role of turbulence is greater in these
cases than in dry thermals and, significantly, that the combined action of condensation
heating and turbulence creates intense small-scale vorticity, destroying the coherent vortex
ring that is seen in dry and moist laminar thermals. These findings suggest that fully
resolved simulations at Reynolds numbers significantly larger than the mixing transition
Reynolds number Re = 104 are necessary to understand the role of turbulence in the
entrainment in growing cumulus clouds, which consist of a series of thermals rising and
decaying in succession.

DOI: 10.1103/PhysRevFluids.7.050501

I. INTRODUCTION

General circulation models (GCMs) that are used to predict the weather and climate solve
the Navier-Stokes equations for the evolution of the properties of the Earth’s atmosphere. These
calculations are computationally intensive, especially at high resolutions. With present compu-
tational resources, the resolutions that can be achieved in GCMs are such that neighbouring
horizontal grid points are separated by tens if not hundreds of kilometers [1]. While approaches like
superparameterization [2–4], as a step towards global cloud resolving models that would obviate
cumulus parameterization, have been proposed, these are too computationally expensive at present.
Individual clouds and most cloud systems, therefore, exist within a single grid box in current GCM
simulations, and the processes occurring in clouds have to be parameterized.
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Among the processes in clouds that need to be parameterized, the mixing of the fluid in the
rising cloud with the ambient atmospheric air is the most important, since this controls the amounts
of water substance in the cloud. The mixing process by which ambient fluid becomes part of the
cloud flow is termed “entrainment,” and the process by which fluid leaves the cloud flow is termed
“detrainment.” The parametrization of entrainment in growing cumulus clouds has proved to be
among the hardest problems to tackle in the general circulation models used today, since model
outputs (e.g., the climate impact or regional rainfall patterns) depend sensitively on the entrainment
parametrization [5].

The most common approach adopted in parameterizing entrainment in cumulus clouds is to
model (ensembles of) these clouds as one of a few types of basic flow [5], typically plumes or
thermals. (A review of other more recent approaches to modeling cumulus entrainment may be
found in [1].) A steady state plume model for an ensemble of cumulus clouds is the most common
model used in GCMs today [1,5,6], despite the evidence from airborne measurements as well as
large eddy simulations (LES) that cumulus clouds more often resemble a series of thermals [7–16].
(See also Ref. [17] where observations and LES are found to disagree about whether shallow
cumulus clouds show predominantly “bubble-like” or “plume-like” behavior.) Cumulus convection
can therefore be thought of as a succession of thermals, each rising further than its predecessor,
entraining and mixing with the ambient air, and decaying. Understanding the fluid dynamics of
thermals, therefore, may help improve the modeling of cumulus entrainment.

Laboratory experiments of (dry) thermals have been undertaken beginning in the 1950s [18–22],
and have informed the understanding of entrainment. Studies using direct numerical simulations
(DNS) of the entrainment in dry thermals are relative rare (e.g., [23], hereafter LJ19, and [24]. LJ19
show from DNS of laminar and turbulent dry thermals at two Reynolds numbers differing by a
factor of 10 that the entrainment coefficients only differ by about 20%. They argue, following [19]
that entrainment in dry thermals is driven not by turbulence but by buoyancy.

The assumptions that enable the analysis in [23,24] break down (see Sec. III) when the thermals
are influenced not only by their initial buoyancy but also by off-source heating by condensa-
tion, as occurs in atmospheric clouds. The entrainment in such thermals naturally occurring in
a moist convecting atmosphere has been studied in cloud-resolving simulations and LES (e.g.,
[10,12,13,15,16,25]). Morrison et al. [26] study individual moist thermals using axisymmetric and
3D large eddy simulations (LES). In the initial few diameters from release, the authors find, moist
thermals entrain less than dry thermals. After the initial stages, the entrainment rates in moist and dry
thermals are indistinguishable. These results, as the authors note, are in contrast to earlier findings
by the same authors and others that moist thermals do not grow in size [10,12]. We also note that
the axisymmetric and LES results in [26] seem to disagree about whether moist entrainment is the
same as or different from dry entrainment in the initial stages (see, e.g. their Fig. 13 compared to
their Figs. 3 and 5), with (noisy) LES results finding no difference between dry and moist thermals.

Here we aim to definitively answer the question of whether moist thermals indeed entrain ambient
fluid at rates different from dry thermals. To this end, we perform direct numerical simulations
(DNS) resolving the smallest scales of the flow in thermals rising, studying cases with moist
thermodynamics as well as with unstable ambient stratification.

The rest of the paper is organized as follows. In Sec. II we describe the geometry of the problem
we study, and write the governing equations in nondimensional form. We then list the controlling
parameters and the initial and boundary conditions. We also briefly describe the numerical solver
used to perform the DNS. In Sec. III we outline the theoretical arguments of LJ19 and list the cases
we study to examine when these arguments break down. In Sec. IV we present results from the cases
listed and discuss these results in light of earlier results in the literature. We conclude in Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

Our domain is a three-dimensional cuboidal volume with dimensions (Lx, Ly, Lz ) in the three
space directions. The horizontal directions are x and y, and gravity (of constant magnitude g) points
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TABLE I. List of cases presented, along with the domain size, resolution, and time step used in the
simulations. These values are all nondimensional (see text). Note that the term �u − �0 is the nondimensional
Brunt-Väisäla frequency. The Prandtl (Pr) and Schmidt (Sc) numbers are taken to be unity (close to atmospheric
values). The grid resolutions chosen resolve the smallest scales for the respective cases. We run all the
simulations until the thermal hits the boundary at z = Lz. The letters in the abbreviations stand for D: Dry,
M: Moist, N: Neutral, U: Unstable, L: Laminar, and T: Turbulent, with the 12 denoting Re = 12 600.

Case Lx×Ly×Lz Nx, Ny, Nz dt Re s∞ �u − �0

DNL 142×28 3842×768 0.002 630 0 0
DNT 142×28 7682×1536 0.002 6300 0 0
DNT12 142×28 10242×2048 0.001 12600 0 0
MNL 142×28 7682×1536 0.002 630 0.8 0
MNT 142×28 10242×2048 0.0015 6300 0.8 0
DUL 122×24 7682×1536 0.002 630 0 −0.02
DUT 122×24 10242×2048 0.0015 6300 0 −0.02

in the −z direction. We make the Boussinesq approximation [27], so that the fluid velocity u is
incompressible. The ambient temperature T∞ is a function of the height z, and water vapor at a
(constant) relative humidity s∞ exists in the ambient; since the saturation vapor pressure is a steeply
varying function of the temperature, the ambient vapor mixing ratio rv,∞ decreases rapidly with
height.

The governing equations are the Navier-Stokes equations subject to the incompressibility con-
dition, and advection-diffusion equations for the temperature and vapor and liquid mixing ratios.
We nondimensionalize these equations using the initial temperature anomaly �T as the scale for
temperature differences, the diameter of the thermal b0 as the length scale, the buoyancy velocity
Ub = (b0g�T/T0)1/2 as the velocity scale, and the saturation mixing ratio r̃s,0 = r̃s(T0) at the
temperature T0 as the scale for water quantities. The nondimensional equations become

Du
Dt

= −∇p + 1

Re
∇2u + Bêz, (2.1)

∇ · u = 0, (2.2)

Dθ

Dt
= 1

Re
∇2θ + L2Cd + w(�0 − �u), (2.3)

Drv

Dt
= 1

Re
∇2rv − Cd , (2.4)

Drl

Dt
= 1

Re
∇2rl + Cd , (2.5)

where u = (u, v,w) is the fluid velocity, p is the dynamic pressure,

θ = T − T∞
�T

(2.6)

is the temperature, and the normalized vapor and liquid mixing ratios are rv = r̃v/r̃s,0 and rl =
r̃l/r̃s,0 respectively. Quantities without the tilde (̃) are O(1), since they are normalized using r̃s,0.
Similar equations have been used in, e.g., [28,29]. The nondimensional Reynolds number is Re
[defined in Eq. (2.9)], and the Prandtl and Schmidt numbers are implicitly assumed to be equal to
unity. The nondimensional dry adiabatic lapse rate is �u and the lapse rate in the ambient is �0

(see Table I). The thermodynamic constant L2 is defined in Eq. (2.10). Thus, the buoyancy

B = θ + r0(χ (rv − rv,∞) − rl ), (2.7)
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where r0 = r̃s,0/(�T/T0) is a density ratio and χ = Ma/Mw − 1 is derived from the ratio of
molecular masses of air (Ma) and water vapor (Mw); the nondimensional condensation rate

Cd = 1

τs

(
rv

rs
− 1

)
, (2.8)

where the local normalized saturation vapor mixing ratio rs ≡ r̃s/r̃s,0 = exp[L1(θ − �0z)], and L1

is a constant defined below; and the buoyancy and condensation rate are both functions of the local
values of (θ, rv, rl ). The timescale for condensation or evaporation, τs, is a function of droplet size
and liquid water mixing ratio, and, when τs is large, variations of τs can be important (see, e.g., [29]).
Here we assume that the droplets making up the liquid content rl are very small, so that τs � 1 and
the system is always close to equilibrium. The governing parameters are the Reynolds number

Re = Ubb

ν
, (2.9)

and the ambient lapse rate �0 and the ambient relative humidity s∞. The thermodynamic constants

L1 = Lv�T

RvT 2
0

and L2 = Lv r̃s,0

Cp�T
(2.10)

and the saturation mixing ratio r̃s,0 are fixed when the temperature T0 at the initial height z0 and the
temperature scale �T are chosen. We choose T0 = 300 K and �T = 10 K, giving L1 ≈ 0.58 and
L2 ≈ 4.8 and the saturation mixing ratio r̃s,0 = 0.02. We also choose a length scale b = 100 m, such
that the nondimensional dry adiabatic lapse rate �u = 0.098. These values are typical of cumulus
clouds in the tropics. Note that this means that the viscosity in our problem [Eq. (2.9)] is artificially
large. We will, however, only report our results in nondimensional terms. We study the evolution
of dry thermals in dry-unstably stratified and moist thermals in dry-neutrally (i.e., moist-unstably)
stratified ambients. A list of the cases studied is given in Table I.

Equations (2.1)–(2.5) are solved using the finite volume solver Megha-5, which uses second-
order central differences in space and a second-order Adams-Bashforth time-stepping scheme.
Simple open flow boundary conditions [30] are imposed at the boundaries at x = ±Lx/2, y = ±Ly/2
and z = Lz, while the lower boundary at z = 0 is no-slip. The solver has been extensively validated
and used in studies of free-shear flows, flows with moist thermodynamics, and combinations thereof
[29,31–34], and we refer readers to these earlier published works for details of the implementation.

A. Initial conditions

The thermal is initialized as a spherical patch with θ = 1 and rv = s∞rs(θ = 0, z), so that the
temperature in the thermals is greater than the local ambient temperature, and the vapor mixing
ratio equal to the ambient value. The initial velocity is zero. We set z0 = 1.5 in all cases reported
here; the choice of z0 does not affect our results. In both the laminar simulations at Re = 630 and
the turbulent simulations (Re = 6300), noise is added to the initially spherical patch. We find, as
in LJ19, that simulations with different instantiations of noise can produce significantly different
results. Our results are therefore ensemble averages over five runs at the same parameters for the
turbulent simulations; for the laminar simulations where the effects of noise are smaller, we do not
perform ensemble averages. Larger ensembles produced similar results, and we have verified that
the type of noise used does not affect the results: Gaussian and uniformly distributed white noise
lead to the same average results.

B. Tracking of thermals

The net entrainment rate is calculated from the rate of change of the volume V of the thermal,

εnet = 1

V

dV

dz
. (2.11)
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ENTRAINMENT IN DRY AND MOIST THERMALS

FIG. 1. A typical (dry) thermal in our simulations, with the filled contours representing a typical distri-
bution of the temperature θ coloured logarithmically. The radius of the thermal R is defined as the distance
measured from the axis of symmetry (r = 0) to the widest location of the curve ψ = 0. The location of the
centroid of the thermal zct is defined in Appendix A. The vertical locations of maximum radius and centroid
of the thermal do not, in general, coincide. The thermal top height (zt ) is defined as the location of the
steepest gradient of the azimuthally averaged temperature. The volume of the thermal is taken to be the volume
bounded by the dividing streamline ψ = 0 in a frame of reference moving with the velocity wth of the thermal
(see Sec. II B). The maximum flow velocity in the region identified as the thermal is labeled wmax. The trailing
flow suggests detrainment, which is small for dry thermals (see LJ19), but larger for moist thermals.

For a dry spherical thermal, εnet can be written down analytically (see [24]). In order to find this
rate numerically for a thermal of arbitrary shape, the volume of the thermal has to be consistently
defined. Several methods have been used in the literature. In our simulations, we track the thermals
as in, e.g., [10,23,26], as described presently.

We first calculate the velocity at which the thermal rises vertically by calculating the time
derivative of the location of the centroid zct of the thermal. Then, in a frame of reference moving
with the thermal, we compute the azimuthally averaged flow velocity and thus the streamfunction ψ

of the flow. The volume bounded by the dividing streamline ψ = 0 is assumed to be the volume of
the thermal, as shown in Fig. 1. The net entrainment rate is then calculated using Eq. (2.11). These
calculations are detailed in Appendix A.

Since the entrainment rate thus defined is expected to vary as 1/R, we also define the entrainment
efficiency

e = εnetR. (2.12)

III. THEORETICAL PRELIMINARIES

Since there are several governing nondimensional parameters and combinations of ambient
conditions, we outline our approach to studying entrainment in thermals, and our reasons for
studying the specific cases reported in Sec. IV.

For completeness, we briefly recount the arguments of LJ19 following Turner [35]. Buoyant
vortex rings are known to expand in a flow and, since thermals “spin up” into vortex rings, the

050501-5



G. R. VYBHAV AND S. RAVICHANDRAN

impulse

I = 1

2
ρ

∫
r × ω dV (3.1)

of a dry thermal may be written as the impulse of a vortex ring with circulation

� =
∫

ωφ dr dz, (3.2)

where the integral is over the cross-sectional area of the vortex ring, and radius R, giving

I = πρ�R2, (3.3)

where ρ is the fluid density. Note that the symbol � (no subscript) is used for the circulation, and
�0,d are used for the nondimensional (constant, imposed) ambient lapse rates. Since the impulse of
a flow can only increase by the action of an external force, here the buoyancy of the thermal, this
impulse increases with time at a rate

dI

dt
= πρR2 d�

dt
+ πR2�

dρ

dt
+ πρ�

dR2

dt
= F, (3.4)

where F is the volume-integrated buoyancy force on the thermal. In dry thermals, F is nearly
constant since detrainment is about two orders of magnitude smaller than entrainment. Furthermore,
since � is also constant for vortex rings, and ρ is constant (under the Boussinesq approximation in
a neutrally stratified ambient), the dR2/dt term alone has to balance the buoyancy force term on the
right-hand side and we have

π�ρ
dR2

dt
= F. (3.5)

Since the preceding arguments are independent of the level of turbulence, entrainment in dry
thermals cannot be turbulent in nature. As mentioned in Sec. I, LJ19 show that increasing the
Reynolds number from Re = 630 to Re = 6300 changes the entrainment rate by only about 20%.
Further evidence for the role of buoyancy in entrainment in dry thermals is found in [24] where
switching off buoyancy also reduces the entrainment rate to about one-third of its value.

Clearly, this analysis breaks down (see, e.g., the arguments in [26]) if either of the first two terms
in the expansion of dI/dt in Eq. (3.4) is nonzero. This can occur

(i) By the off-source heating of the thermal by condensation which (a) generates vorticity inside
the thermal so the first term is nonzero and (b) changes the density of the thermal, so the second
term can be nonzero

(ii) By detrainment which in dry thermals is very small compared to entrainment, but could be
significant in moist thermals, thus changing the density ρ of the thermal or

(iii) When the (effective) radius of the vortex core is no longer small compared to the radius
R of the vortex ring, so that the definition of the impulse Eq. (3.3) in terms of the vortex strength
� [Eq. (3.2)] is no longer accurate (see, e.g., the discussion in [24]). LJ19 comment that in their
simulations at the higher Re = 6300, this requirements are not met as well as in their laminar sim-
ulations. This is also evident in our turbulent simulations at Re = 6300, as discussed in Sec. IV A,
where the thermals appear to become more elongated.

The terms in Eq. (3.4) are explicitly computed in Sec. IV E. We note, however, that under the
Boussinesq approximation which we make here, the contributions due to changing density cannot
strictly be computed. Density changes with altitude can be accommodated using the anelastic
approximation [36], while fully compressible simulations (such as in [26]) are needed to account
for local density changes.

To test possibilities (i) and (ii), we study the evolution of moist thermals in a (dry-) neutrally
stratified ambient (Sec. IV B) and the evolution of a dry thermal in an dry-unstably stratified
ambient (Sec. IV C). Regarding the role of turbulence (iii), we note that in general, shear-dominated
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ENTRAINMENT IN DRY AND MOIST THERMALS

FIG. 2. The azimuthally averaged temperature θ in laminar (Re = 630, left panels) and turbulent (Re =
6300, right panels) dry thermals in a neutrally stratified ambient at the times indicated. The thermals were
initialized with the same level of noise. The color maps are logarithmically scaled and the same for all three
times shown. The laminar thermals have spun up into vortex rings as expected. The turbulent thermals are
noticeably different in shape, with more diffuse cores and more prominent tails.

(buoyancy or momentum-driven) flows are known to undergo a transition to a higher mixing rate
for a large-scale Reynolds number Re � O(104) [37], and the Reynolds number in LJ19 is smaller
than this mixing transition Reynolds number. If the assumption that the vortex core radius is
small no longer holds for sufficiently large Reynolds numbers, turbulence could play a greater
role in the entrainment. We test this notion by studying a dry thermal at a Reynolds number of
Re = 12 600 > 104 (Sec. IV D).

A possible source of error in this exercise is the inconsistent definition of the radius R. LJ19
(consistently) define R to be the radius of the vortex ring and use this in their calculations; whereas
Morrison et al. [26], while defining R to be radius of the vortex ring, use the radius of the thermal
in their calculations. We examine the results of this switch in Sec. IV E (see Fig. 17)

IV. RESULTS AND DISCUSSION

A. Dry thermals in a dry-neutral ambient

We begin with results from simulations of dry thermals in a neutral ambient. Our results are
in good agreement with those of [23], and therefore serve both as validation of our methods of
numerical analysis as well as independent verification of the results of LJ19.

Figure 2 shows the evolution of laminar (Re = 630) and turbulent (Re = 6300) dry thermals in
our simulations. These may be compared with Fig. 1 in LJ19. Vortex rings with cores where the
temperature contrast is concentrated are seen for both laminar and turbulent cases (see, e.g., [38]).
We note the differences in shape between the laminar and turbulent cases, as well as the fact that the
tails in the turbulent case are more prominent (and hence that the detrainment is marginally larger),
which are also in agreement with LJ19.

Our results are thus broadly consistent with LJ19. The net entrainment rate obeys the relation
ε ∼ R−1 for R < 2. The values for laminar and turbulent thermals differ by less than 10%, whereas
LJ19 report a 20% difference. Despite this, it is clear that the entrainment rate is not a strong function
of Re at least for Re < 104 [37].

The net entrainment εnet and entrainment efficiency e = εnetR are plotted in Figs. 3(a) and
3(b), respectively. These are comparable to Figs. 5 and 7 in LJ19. The entrainment efficiency
remains essentially constant for zct < 17 for both laminar and turbulent thermals. There is a slow
decrease in entrainment efficiency above zct > 17, also noted by LJ19, perhaps because of boundary
effects.
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FIG. 3. The (a) entrainment rate and (b) entrainment efficiency, defined in Eqs. (2.11) and (2.12), for
laminar (blue, Re = 630) and turbulent (red, Re = 6300) dry thermals in a neutral ambient (�0 = �u). The
thin red lines are the five individual runs for the turbulent thermals with different instantiations of noise, while
the average is plotted as a thick line. In (b), the curves from LJ19 are also plotted for comparison. Turbulent
entrainment rates are marginally higher than laminar entrainment rates, and the difference is smaller than in
LJ19. There is a dip in the value of e after zct > 16, more pronounced in the turbulent cases, which is also seen
in LJ19.

The evolution of the thermal location, the maximum flow velocity in the thermal, the thermal
radius, and the thermal volume are plotted in Figs. 14(a)–14(d), respectively in Sec. IV D, and the
curves for Re = 630 and Re = 6300 therein may be compared with Fig. 4 in LJ19.

B. Moist thermals in a dry-neutral ambient

Having validated our numerical method and analysis on dry thermals, we apply the same methods
to moist thermals in a dry-neutrally stratified ambient.

FIG. 4. Instantaneous 2D slices at y = 0 of the temperature θ in laminar (Re = 630, left panels) and
turbulent (Re = 6300, right panels) moist thermals at the times indicated. As in Fig. 2, a logarithmic color
scale is used. Laminar moist thermals assume a distinct “arrowhead” shape where the vortex ring remains. See
Fig. 8 for corresponding plots of the vertical velocity.
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FIG. 5. Azimuthally averaged liquid mixing ratio rl for laminar (Re = 630, left panels) and turbulent
(Re = 6300, right panels) moist thermals in a dry-neutrally stratified ambient at the same times as in Fig. 4.
(a) Initially, moist thermals behave similarly as dry thermals, forming vortex rings whose cores have large rl

in both laminar and turbulent cases. (b) These vortex rings morph into the “arrowhead” shape with large rl in
both the vortex cores as well as the tip of the arrow. (c) At t = 32, the distribution of rl is very different in
the laminar and turbulent cases; in the laminar thermal, large rl values occur in the vortex ring as well as the
thermal top, whereas the vortex ring is destroyed in the turbulent thermal and the maximum in rl occurs only
at the thermal top. Note that a logarithmic color scale is used.

Laminar and turbulent moist thermals are initialized as described in Sec. II A, and instantaneous
slices of the temperature θ and azimuthally averaged liquid water mixing ratio rl are shown in
Figs. 4 and 5, respectively. Unlike dry thermals which take the form of vortex rings (Sec. IV A),
the laminar moist thermals develop a distinct “arrowhead” shape which includes the vortex ring; in
turbulent moist thermals, the coherent vortex ring and arrowhead shape are destroyed, and the flow
features are small scale (Figs. 6 and 7).

Condensation heating and the resulting increase of buoyancy in the MNL thermal leads to
significantly larger values of the azimuthal vorticity (Fig. 6) compared to the DNL thermal (not
shown). The other components of the vorticity are of much smaller magnitude in these laminar
cases where the rings are coherent. In both dry and moist turbulent thermals, on the other hand, the
flow is more isotropic and the different components of the vorticity are of similar magnitude, and we
find that the combined action of condensation heating in concert with turbulence leads to maximal
vorticity magnitudes |ω| 4−5 times larger in the MNT thermals than in the DNT thermals (Fig. 7).

Furthermore, the coherent vortex core present in the dry thermals (even for larger Re; see
Sec. IV D) is destroyed in the MNT thermal; thus, turbulence is a necessary but not sufficient
condition for the destruction of the vortex ring and the emergence of intense small-scale vorticity
in the flow. In highly turbulent flows, the magnitude of the vorticity fluctuations relative to the
mean vorticity is known to increase with the flow Reynolds number as ω′ ∼ Re1/2 (e.g., [39]), and
our observations are consistent with this. Such small-scale vorticity may be responsible for the
crinkly edges seen in cumulus clouds [39]. This generation of intense small-scale vorticity is also
responsible for the smaller vertical mean velocities seen in plots of the vertical velocity w in Fig. 8.
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FIG. 6. Azimuthally averaged azimuthal vorticity ωφ for laminar (Re = 630, left panels) and turbulent
(Re = 6300, right panels) moist thermals in a dry-neutral ambient at the same times as in Fig. 4. (a) The
vorticity is initially concentrated in the vortex ring that forms. (b) The vorticity in the ring increases in the
laminar thermal, while the ring becomes more diffuse in the turbulent thermal. (c) Significant negative vorticity
can be seen along the axis of symmetry in both laminar and turbulent thermals, and the vortex ring in the
turbulent thermal is even more diffuse.

From Figs. 4–8, we see, as also reported in Ref. [26], that a condensing thermal in a dry-
neutrally stratified ambient is highly unstable and leads to large vertical velocities; and thus the
effective Reynolds numbers in the turbulent moist thermal are a factor 4–5 larger than the nominal
Re = 6300.

The location, maximum flow velocity, radius and volume of moist thermals are compared with
dry thermals in Fig. 9. We see that the velocities in moist thermals are larger than the velocties in
dry thermals by a factor of 2–3, whereas the buoyancy is larger by an order of magnitude (compare

FIG. 7. Vorticity magnitude (|ω| = √
ω2

x + ω2
y + ω2

z ) in (a) DNT and (b) MNT thermals. The black circles
in (a) denote the location of core of the vortex ring in the DNT thermal. In the MNT thermal in (b), the vortex
ring has disintegrated and the vorticity is space-filling, and the maximum |ω| is ≈5 times higher than in (a).
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FIG. 8. Instantaneous 2D slices at y = 0 of the vertical velocity w in laminar(Re = 630, left panels) and
turbulent (Re = 6300, right panels) moist thermals at the same times as in Fig. 4. The vertical velocities for
moist thermals are significantly higher than for dry thermals. (a) The flow is initially axisymmetric, with
maximum velocities at the vortex rings. (b) As the thermal is heated by condensation, the laminar case retains
its symmetry but the turbulent case can be seen to show departures from symmetry. Large velocities occur
both in the rings and in thermal center. (c) Velocities have increased significantly in both laminar and turbulent
thermals. The laminar thermal continues to be axisymmetric and the vortex ring continues to become stronger,
whereas the vortex ring is destroyed in the turbulent case. Cf. Figs. 4 and 6.

Figs. 2 and 4). This is consistent with the idea that the velocity scale is set by the square root of the
buoyancy scale (see Sec. II).

We also find that moist thermals have larger volumes than the corresponding dry cases, that the
thermal radii in the moist turbulent case are larger than the radii of dry thermals of the same nominal
Re, and that in both dry and moist thermals, turbulence leads to larger thermal volumes and radii
and smaller velocities. However, the influence of turbulence is significantly larger in moist thermals.

The larger entrainment rate in moist thermals is in contrast to the findings in Ref. [26] from
axisymmetric and 3D LES that moist thermals have smaller volumes and radii than dry thermals.
The reasons for this difference are unclear. Morrison et al. argue [26] that the radial distribution
of the heat added to the thermals (by condensation) results in the smaller entrainment in moist
thermals in the initial stages (e.g., see their Fig. 6). We note, however, that the ‘arrowhead’ shape
that laminar moist thermals take (Fig. 4) permits the same mechanism of outward expansion operant
in dry thermals that is shown schematically in Fig. 9 of Ref. [26].

Similarly, the large increase of vorticity due to the action of (external) buoyancy addition has
been noted in earlier numerical studies (e.g., [40]), and is thought to be responsible for the increased
mixing of the fluid inside the flow seen in Ref. [41]. These studies also report a decrease in
entrainment attributed to the destruction of the coherent toroidal vortical structures due to the
external heat addition, which we do not see. We instead find that laminar moist thermals rise faster
than turbulent moist thermals, and grow to smaller radii and volumes (and therefore have smaller
entrainment rates).

Entrainment in shear flows may occur through the action of large scale coherent structures
(through “engulfment”), or intense small-scale vortices (through “nibbling”), or a combination
[42,43]. The role of buoyancy in entrainment (LJ19 and Sec. IV A) suggests the former, while the
fact that increased turbulence leads to greater entrainment in moist thermals suggests that the latter
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FIG. 9. The (a) location zct , (b) maximum velocity wmax (c) radius R, and (d) volume V of laminar (Re =
630) and turbulent (Re = 6300) moist thermals in a (dry-) neutrally stratified ambient.The x axis starts from
four for all the sub figures. The curves for dry thermals in the same ambient are shown for comparison. In
each case, individual runs are plotted as thin lines while ensemble averages are plotted as thick lines. Moist
thermals begin to accelerate for zct � 10 due to condensation heating and, as a result, grow to larger radii, have
greater volumes and rise faster than dry thermals. It is worth noting that, even though the volumes of the moist
thermals grow much faster than their dry counterparts, the radius of the moist laminar thermal grows similarly
to the dry cases. This is due to a change in the shape of the thermal (see, e.g., Fig. 19; see also Fig. 15).

may not be negligible. The relative importance of these mechanisms (whether there is a transition
beyond some critical Re, say) is a subject of ongoing study.

Turbulence is known to lead to increased scalar mixing across a shear layer (e.g., [44]). In clouds,
this mixing of the saturated cloud parcel with the unsaturated ambient air can lead to evaporative
cooling and a subsiding shell of colder fluid at the edges of the cloud [45]. This subsiding shell
is richer in vapor that the ambient, and may subsequently be re-entrained into the cloud [25], thus
altering the rate of dilution of the flow [46]. As a result, trailing thermals often encounter different
properties from their predecessors which dissipated more quickly, which is an important factor in
the behavior of thermal chains [15,16].

We noted that due to the addition of buoyancy through condensation heating and the resulting
increase in both their vertical velocity and radius, the turbulent moist thermals in Figs. 4–8 have
effective Reynolds numbers 4–5 times larger than the nominal Re = 6300. In Sec. IV C we study
the addition of buoyancy through unstable stratification instead of condensation heating.

Furthermore, in order to delineate the effects of buoyancy addition from the effects of turbulence,
we study thermals with a nominal Re = 12 600 in Sec. IV D.
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FIG. 10. As in Figs. 2 and 4, but for dry thermals in an unstably stratified ambient.

C. Dry thermals in a dry-unstable ambient

In moist thermals, the buoyancy of the thermal increases due to condensation heating. The
buoyancy of the thermal can also increase if the ambient is unstably stratified, i.e., when the lapse
rate in the ambient is greater than the dry adiabatic lapse rate. The evolution of θ and w for a dry
thermal in an ambient with �0 − �u = 0.02 is shown in Figs. 10 and 11, respectively. We see
that the flow resembles the starting plumes described by Turner [20], with heads that are thermals
and plumes rising behind them. We note that the shape of the thermals in Fig. 10 resembles the
“arrowhead” shape in Fig. 4. Since the ambient is inherently unstable, even small upward velocities
that the ambient air in the wake of the thermal are amplified.

In Fig. 12 we compare the location, maximum flow velocity, radius and volume of dry thermals
in unstably and neutrally stratified ambients. As in moist thermals (Sec. IV B), the volume and
radius (and velocity) of dry thermals in unstably stratified ambients increase with time faster than
dry thermals in a neutraly stratified ambient. Furthermore, as in moist thermals, the influence of
turbulence is larger in accelerating dry thermals than in dry thermals in a neutrally stratified ambient.

FIG. 11. As in Fig. 8, but for dry thermals in an unstably stratified ambient.
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FIG. 12. The (a) location zct , (b) vertical velocity wth (c) radius R, and (d) volume V of laminar (Re = 630)
and turbulent (Re = 6300) dry thermals in an unstably stratified ambient with �0 − �u = 0.02 compared with
dry thermals in a neutrally stratified ambient. Similarly to moist thermals in a (dry-) neutrally stratified ambient,
the accelerating thermals here rise faster, grow to greater radii, and have larger volumes than dry thermals in a
neutrally stratified ambient. Also note that the laminar thermals rise faster but have smaller radii and volumes
than the turbulent thermals. The changing shape of the thermal accounts for the increase in thermal volume
in the laminar case even though the thermal radius evolves similarly to the dry thermals in a neutral ambient
(cf. Fig. 9).

Unlike in moist thermals, however, the arrowhead shape is not completely destroyed in turbulent dry
thermals here.

D. Dry thermals in a dry-neutral ambient at Re = 12 600

Figure 2 shows that turbulent dry thermals can evolve such that their vortex cores are not small,
with vorticity in their interiors and that they detrain at larger rates. The spread of the vortex cores
is greater for an even larger Re = 12 600, as seen from the evolution in Fig. 13. In Sec. III we
hypothesized that the spreading of the vortex core, (or even complete disintegration; see Sec. IV B)
may mean that at a sufficiently large Reynolds number, the entrainment could change significantly.
However, our results at Re = 12 600 are inconclusive. The mean values of entrainment rate and
entrainment efficiency are approximately the same as those found for Re = 6300. We note that this
is an imperfect test: While finding significant differences would have shown that turbulence plays
a role, finding no differences does not rule out a role for turbulence, since the Reynolds number
studied here is barely above the mixing transition Reynolds number of 104. The plots of thermal
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FIG. 13. The evolution of a dry turbulent thermal at Re = 12 600. The contour plots shows the aximuthally
averaged temperature θ and as with other cases, the black line represent the thermal boundary. Cf. the laminar
and turbulent (Re = 6300) cases in Fig. 2.

location, maximum velocity, radius, and volume in Fig. 14 show that thermals at the higher Reynolds
numbers rise at (slightly) smaller velocities, and that the thermal volume and radius increase faster
for larger Re. The entrainment rates are therefore larger for larger Re. This is not a qualitative
change, however, and simulations at Reynolds number much greater than 104 are therefore necessary
to determine if the effects of turbulence are indeed small beyond the mixing transition.

E. Entrainment rate and entrainment efficiency

In Secs. IV A–IV D, we examined several cases of dry and moist thermals, and compared their
evolution with the standard case of dry thermals in a neutrally stratified ambient. In Fig. 15 we
plot the thermal volume as a function of the thermal radius, showing that V ∼ R3 and suggesting
that the evolution of the thermals in all these cases is self-similar, and therefore that analytical or
reduced-order models for the evolution of thermals may be possible. Figures 9, 12, 14 also show
that thermals that have an external source of buoyancy—either condensation heating or an unstable
ambient stratification—grow fastest in volume, and thus have the largest entrainment rates.

Cumulus cloud entrainment is parameterized in cloud models using dimensional and scaling
relationships, with the entrainment varying as ε ∝ R−1, Z−1

th and Bavgw
−2
th [13]. In Figs. 16(a) and

16(b), we plot the entrainment rate as a function of the thermal radius R and as a function of the
thermal height zct . The curves deviate to different degrees from the εnet ∼ R−1 for dry thermals.
Figure 16(a) shows that while εnet ∝ R−1 holds well for laminar and turbulent dry thermals, the
entrainment in MNT and DUT thermals deviates from the εnet ∼ R−1 relationship (especially in the
later stages).

Both off-source addition of buoyancy to the thermals (either through condensation or through
unstable stratification) lead to an increase in entrainment, while the role of turbulence alone (higher
Re) in increasing the entrainment in dry thermals is marginal. This is seen in Fig. 16(c), where we
plot the entrainment efficiency in these different cases.

Figure 16(c) also shows that the entrainment efficiency e in the MNL thermal is always
marginally higher than the DNL thermal, consistent with the role of buoyancy in inducing entrain-
ment envisaged in LJ19 (see also Sec. IV A). However, this is contrary to [26] where e is lower
than the dry thermal at lower levels of thermal assent and thereafter it is similar to dry thermal. The
marginal role of turbulence (alone) in entrainment is further corroborated by the observation that
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FIG. 14. The (a) location zct , (b) maximum velocity wmax, (c) radius R, and (d) volume V of a laminar dry
thermal (Re = 630) and turbulent dry thermals (Re = 6300 and Re = 12 600) in a neutrally stratified ambient.
In the turbulent case, curves for individual runs at Re = 6300 (thin gray lines) and Re = 12 600 are plotted
along with the ensemble average.

the entrainment at a higher (nominal) Re in the DNT12 thermal is only marginally higher than the
DNT thermal. However, the entrainment in turbulent thermals with increasing buoyancy (MNT or
DUT) is significantly higher, suggesting that the interplay of volumetric heating and turbulence is
responsible. In Fig. 16(d) we plot the entrainment rate ε vs the ratio Bavg/w

2
ct , showing that these

are proportional. However, we note that the spread is the data is not small. A systematic study of the
curves for MNT thermals as the ambient relative humidity is varied will be presented elsewhere.

For a more detailed understanding of the role of condensation heating in entrainment, we plot the
entrainment and circulation terms in Eq. (3.4) in Fig. 17. For dry thermals, in agreement with LJ19,
the circulation term remains small throughout the evolution, while the buoyancy term is balanced
by the entrainment term. For both laminar and turbulent moist thermals, on the other hand, the
circulation term is nonzero. As a result, the individual terms on the left-hand side of the impulse
budget [Eq. (3.4)] in Fig. 17 are much larger for moist thermals than for dry thermals, and the
balance implied by Eq. (3.4) breaks down for moist thermals.

Furthermore, we see that the buoyancy term FB is slightly larger for MNT than for MNL thermals.
This is due to the fact that while the mean buoyancy Bavg in the thermals is lower for MNT thermals,
the larger volume leads to a larger value of FB = Bavg×V . This may be seen explicitly from the plots
of the average buoyancy Bavg in Fig. 18(a). We note that the mean buoyancy increases for both MNL
and MNT thermals due to latent heat release by condensation, but increases much faster for MNL
thermals where the entrainment is lower. In dry thermals, where there is no source of buoyancy in
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FIG. 15. As thermals rise, the volume scales with the thermal radius as V ∝ R3, suggesting self-similarity.

the flow, the buoyancy decreases as expected. Plots of the mean value Cavg of a passive scalar C,
initialized similarly to the temperature θ and governed by the equation

DC

Dt
= 1

Re
∇2C, (4.1)

which is thus a direct measure of the dilution of the flow, also show that the larger entrainment
dilutes the turbulent thermal to a greater extent, as expected.

From the foregoing arguments and Figs. 16–18, we draw the following conclusions about the
effects of condensation heating and turbulence on entrainment: (a) an increase in buoyancy alone
increases the entrainment efficiency e from 0.32 in DNL thermals to 0.39 in MNL thermals; (b) an
increase in the Reynolds number alone increases e to 0.37 in DNT thermals and to a similar value
in DNT12 thermals; and (c) the combined effects of heating and turbulence lead to a significant
increase in e to a value of 0.54 in MNT thermals (where the effective Reynolds number is ≈2×104.)
This increase in the entrainment is made possible by the breakdown of the vortex rings, and
thus Eq. (3.4), for moist thermals. The increased entrainment is consistent with the parametric
relationship ε ∼ Bavg/w

2
th, as shown in Fig. 16(d), because while MNT thermals have smaller

average buoyancy Bavg, they also have smaller velocities wth, than MNL thermals.
The breakdown of the vortex ring in MNT thermals is accompanied by the generation of intense

small-scale vorticity, as seen in Figs. 6 and 7(b). The role of this small-scale vorticity, which
increases the mixing of the fluid inside the thermal [41], in increasing the entrainment in turbulent
moist thermals merits further study.

We also note here that while we see an increase in the entrainment efficiency for moist thermals
over dry thermals, laboratory experiments on dry thermals find a larger spread of entrainment values
ranging from 0.4–0.7 (see, e.g., [18,19,22]).

V. CONCLUSION

In summary, we have presented results from direct numerical simulations (DNS) of laminar and
turbulent dry thermals in neutral and unstable ambients and laminar and turbulent moist thermals
in a dry-neutral ambient. Using a self-consistent and robust definition of the volume of a thermal,
we studied how the properties of thermals—their velocities, volumes, and radii—evolve under these
different conditions. Our results for dry thermals in a neutrally stratified ambient agree with those
of LJ19, and we showed that turbulence, at least for Re � 104, only causes a small increase in the
entrainment rate.

We found that thermals whose buoyancy increases with time, either because of condensation
heating, or because of unstable ambient stratification, entrain at higher rates than dry thermals
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FIG. 16. (a) The net entrainment rate εnet as a function of the thermal radius R for the cases in Secs. IV A–
IV D. The dotted line represents the scaling relation Eq. (2.11). The moist laminar and turbulent cases seem
to have slightly higher entrainment rates. (b) εnet as a function of the thermal location zct . (c) The entrainment
efficiency e [Eq. (2.12)] plotted as a function of zct . The entrainment efficiency in the moist cases is larger
than the entrainment efficiency in the corresponding dry cases. (d) The correlation εnet ∼ Bavgw

−2
ct (see text),

showing a reasonable collapse. The points are plotted for every 0.3 flow time unit.

in a neutral ambient, in contrast with the findings of [26], and also in contrast with some earlier
numerical and experimental studies that found a decrease in entrainment upon heat addition [40,41].
We showed that the influence of turbulence is in fact greater in these accelerating thermals, and
that the change in entrainment due to the combined action of buoyancy and turbulence is greater
than the change in entrainment due to either buoyancy or turbulence individually. We argued that
the intense small-scale vorticity generated in moist thermals and the resulting scalar mixing that
occurs in the shear layers of thermals may play a role in this increase in the entrainment rate.
Therefore, simulations of moist thermals at Reynolds numbers significantly higher than the mixing
transition Reynolds number of Re = 104 [37] may be essential to understand the role of turbulence
in cumulus entrainment.

Our results suggest several avenues for future research. The role that baroclinic torques and
vorticity play in increasing the entrainment rate in moist thermals relative to dry thermals are the
subject of an ongoing study. Results from such studies may be useful in devising parametrizations
for the entrainment that include terms for the interaction between turbulence and volumetric
heating, building on previous parametrizations of the influences of shear and baroclinic effects
[47]. Furthermore, while we find that both condensation heating and unstable stratification lead
to increased entrainment, the differences between these cases (e.g., in the generation of small-scale
vorticity) may be studied to understand what role evaporative cooling at the edges of the thermal
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FIG. 17. The terms in the impulse budget, Eq. (3.4), as a function of the thermal height zct for (a) dry
laminar (b) dry turbulent, (c) moist laminar, and (d) moist turbulent thermals. Terms calculated using the
radius of the thermal are plotted with solid lines, while terms calculated using the vortex ring radius (in plots
a–c) are plotted with dashed lines. In moist thermals, the buoyancy, the circulation and entrainment terms are
all an order of magnitude higher than in dry thermals. Turbulence also leads to a greater entrainment rate in
moist thermals. Note that ρ = 1 under the Boussinesq approximation.

FIG. 18. (a) The average buoyancy Bavg, and (b) the average value of the passive scalar C (see text) in dry
and moist thermals as they rise in dry-neutral ambient.
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plays in entrainment. Such studies would build on previous studies that have addressed the role of
shear turbulence in scalar mixing [44,45].

Condensation heating, as we have seen, increases buoyancy while stable stratification would de-
crease buoyancy. The combined effects of condensation heating and stable stratification, therefore,
would depend on the relative magnitudes of these effects. This has bearing on the transition from
shallow to deep convection (e.g., [48]).

Cumulus clouds are known to more closely resemble a series of thermals than steady plumes.
Fully resolved studies of how ensembles of thermals interact, therefore, would help better un-
derstand how clouds behave in the Earth’s atmosphere. Studies along these lines using LES have
recently [15,16] been conducted. Such studies could pave the way towards more reliable weather
and climate simulations.
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APPENDIX A: CALCULATION OF THERMAL VOLUME

As noted in Sec. II B, the volume of the thermal has to be consistently defined before the
entrainment rate can be calculated. Following [10,23,26], we use the volume bounded by the
dividing streamline ψ = 0 in a frame of reference moving with the thermal. This therefore requires
the velocity of the thermal to first be calculated. The following are the steps involved.

(i) First, we azimuthally average the instantaneous axial and radial velocity and temperature to
obtain w̄(r), ūr (r), and θ̄ (r) respectively.

(ii) These azimuthal averages are used to find the location of the centroid zct of the thermal

zct =
∑

w̄∗>0.6 w̄∗z∑
w̄∗>0.6 w̄∗ , (A1)

where w̄∗ = w̄/wmax with wmax the maximum flow velocity in the domain.
(iii) The velocity of the thermal is computed as

wth = dzct

dt
,

where zct is computed at intervals of �t = 0.4. As noted in [23,49], the volume of the thermal is
sensitive to the wth. We therefore perform a third order Savitsa-Golay curve fit to the zct date before
computing wth.

(iv) The streamfunction ψ is obtained using the flow velocity in the frame of reference of the
thermal, (ūr, w̄ − wth ),

∂rψ = 2πr(w − wth ) and ∂zψ = 2πr(ur ) (A2)

and the dividing streamline ψ = 0. In some cases, the method identifies the more than one closed
loop, and these have to be manually removed.

(v) The thermal volume is then given by

V =
∫

πr2(z)dz

where the integral is calculated using composite Simpson’s rule.
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FIG. 19. Identification of coherent thermals using the steps from Appendix A. The parameters are the
same as in Fig. 8. The dividing streamline (ψ = 0, black curve) delineates the volume of the thermal from the
ambient. The dividing streamline is superimposed on filled contours of the azimuthally averaged temperature,
showing that the using the streamfunction allows for nearly autonomous boundary detection, with minimal
manual intervention. The pink curve shows a spherical volume drawn with the thermal centroid as its center
and radius R (defined in Sec. II B). The green curve is a spheroidal volume with the distance from thermal top
to the centroid as its major axis and R as its minor axis. These three methods, variously used in the literature
(e.g., [12,13,23,26]) predict similar thermal volumes for the turbulent case while the differences are noticeable
in the laminar case.

This method is compared with two simpler methods that only involve locating the centroid of the
thermal and the top of the thermal in Fig. 19.

APPENDIX B: THE ROLE OF AMBIENT VAPOR IN MOIST THERMALS

Consider a saturated parcel of air of volume V0 = 1 at an altitude z0 = 0 with θ = 0 such that the
buoyancy is B0 = 0 rising adiabatically–i.e. without entrainment–to an altitude z2. The conservation
of energy requires

θ + L2rs(z = 0) = L2 = θ (z = z2) + L2rs(z = z2), (B1)

giving the adiabatic temperature θad = L2[1 − rs(z = z2)] � 0, and the resulting buoyancy,

Bad = (L2 − r0)[1 − rs(z2)] + r0χ (1 − s∞)rs(z2) � 0 (B2)

Consider now a case where the parcel entrains an equal mass (or, in the Boussinesq approxima-
tion, an equal volume) of ambient air from an altitude z1 before rising to z = z2. The conservation
of energy again gives

θ∗ + L2rs(z2) = L2 + s∞L2rs(z1), (B3)

giving

θ∗ = L2

[
1 + s∞rs(z1)

2
− rs(z2)

]
(B4)

and

B∗ = (L2 − r0)

[
1 + s∞rs(z1)

2
− rs(z2)

]
+ r0χ [(1 − s∞)rs(z2)] (B5)

The latter expressions show that for sufficiently large s∞,
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(1) θ∗ � 0, and thus B∗ � 0, and
(2) B∗ � Bad .
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